
 
S
G
 
 
D
in
C
A
 
 

T
a
 
 
S
T
 
 
 
C
 
 
 
P
 
 
 
 
 
 
 
 
  

Scuola Do
Graduate 

Dottorato
n Scienze

Ciclo XXV
Anno di d

The ma
and its 

ETTORE S
Tesi di Do

Coordinat

Prof. Gab

 

ottorale d
School 

o di ricerc
e Ambie
VI 
discussio

apping 
potent

SCIENTIFI
ottorato d

tore del 

briele Cap

di Atene

ca 
ntali, Info

one 2014

and qu
tial imp

ICO DISCI
di Stanle

Dottorat

podaglio

eo 

ormatica

4 

uantific
pact on

IPLINARE
ey Eugen

to

o

a e Statis

cation 
n groun

E DI AFFER
ne Beaub

Tu

Pr

Co
 

Pr

stica 

of CO2

ndwate

RENZA: G
bien, mat

utore del

rof. Salva

o-tutore 

rof. Gian

2 leakag
er qual

GEO/08 
tricola 9

 Dottora

atore Lo

del Dotto

carlo Ra

ge 
lity 

55906 

ando 

mbardi 

orando 

ampazzo



i 
 

TABLE	OF	CONTENTS	

	

DEDICATION	 	 iii 

ACKNOWLEDGMENTS	 iv 

ABSTRACT	 	 v 

CHAPTER	1.  INTRODUCTION	 1 

CHAPTER	2.  THEORETICAL	BACKGROUND	 5 

2.1.  CO2 characteristics  5 

2.2.  Soil gas CO2 origins  5 
2.2.1.  Biogenic CO2  7 
2.2.2.  Shallow inorganic CO2  10 
2.2.3.  Geogenic CO2  10 
2.2.4.  Atmospheric and Anthropogenic CO2  14 

2.3.  Gas migration  14 
2.3.1.  Migration mechanisms  14 

2.3.1.1.  Advection  15 
2.3.1.2.  Diffusion  16 
2.3.1.3.  Attenuation or migration via dissolution  18 

2.3.2.  Deep Pathways  19 
2.3.2.1.  Faults  19 
2.3.2.2.  Boreholes  23 

2.3.3.  Shallow pathways  25 
2.3.3.1.  Free‐phase gas in sediments below the water table  26 
2.3.3.2.  Gas movement and distribution in the unsaturated zone  27 

2.3.4.  Release to the atmosphere  28 

2.4.  Surface leakage characterisation  29 
2.4.1.  Finding Leaks  30 
2.4.2.  Quantifying Leaks  33 

2.4.2.1.  Single survey of flux measurements  33 
2.4.2.2.  Multiple flux surveys  36 
2.4.2.3.  Monitoring of soil gas tracers  36 
2.4.2.4.  Combined flux and soil gas measurements  36 

CHAPTER	3.  LATERA	CALDERA	DESCRIPTION	 38 

3.1.  Geology  39 

3.2.  Hydrogeology  41 
3.2.1.  Geothermal fluids  41 
3.2.2.  Springs and Groundwaters  41 

3.3.  Gas leakage at the ground surface  43 
3.3.1.  General overview  43 

CHAPTER	4.  THE	LEAKAGE	OF	CO2	AT	LATERA	 46 

4.1.  Introduction  46 

4.2.  Study site  47 



ii 
 

4.3.  Material and Methods  50 
4.3.1.  Flux measurements  50 

4.4.  Latera flux results and discussion  50 

4.5.  Summary  54 

CHAPTER	5.  MODELLING	OF	SAMPLING	DENSITY	 56 

5.1.  Introduction  56 

5.2.  Program architecture  56 
5.2.1.  Data Input  56 
5.2.2.  Algorithm description  58 

5.2.2.1.  Synthetic versus Real Data  58 
5.2.2.2.  Sub‐sampling approaches  64 
5.2.2.3.  Data contouring and flux calculations using Surfer 9  66 
5.2.2.4.  Boundary effects  67 

5.3.  Synthetic data modelling  68 
5.3.1.  Leak detection  68 
5.3.2.  Leak quantification  77 

5.3.2.1.  Scenario 1 – no leakage  78 
5.3.2.2.  Scenario 2 – single vent  81 
5.3.2.3.  Scenario 3 – three vents, simulations at three different distances  86 

5.4.  Latera data modelling  89 

5.5.  Summary  93 

CHAPTER	6.  IMPACT	OF	CO2	ON	GROUNDWATER	QUALITY	 96 

6.1.  Introduction  96 

6.2.  Study site  98 

6.3.  Material and Methods  101 
6.3.1.  Sampling  101 
6.3.2.  Analytical Methods  103 

6.4.  Latera groundwater results and discussion  104 
6.4.1.  Borehole log and piezometric surface results  104 
6.4.2.  Data Statistics  105 
6.4.3.  Groundwater chemistry compared to regional data from the literature  107 
6.4.4.  Spatial distribution of groundwater chemistry  108 
6.4.5.  Spatial distribution of surface water chemistry  116 

6.5.  Summary  117 

CHAPTER	7.  CONCLUSIONS	 119 

CHAPTER	8.  REFERENCES	 122 

Appendix	1		 136	

  



iii 
 

Dedication 
 

To my wife, Elena, who understood better than anyone my problems and 
difficulties, who cheered me up when I was stressed, and who gave me 
the space, the time, and the understanding which allowed me to make this 
happen. 

 

To my mom, Joyce, whose unwavering enthusiasm and support, from the 
day I announced I would undertake the PhD to the day I submitted, has 
been a constant source of inspiration and motivation. 

 

To my dad, Joffre, who I wish could be here to share this with me. 



iv 
 

Acknowledgments 
The untimely passing of Prof. Giovanni Maria Zuppi, my original thesis advisor, was a shock to 
all. His energy and enthusiasm for his research was an inspiration, and I will be forever indebted 
to him for accepting me as his student and giving me this opportunity.  

I thank Prof. Giancarlo Rampazzo for kindly accepting me as his student within the department, 
and Prof. Bruno Pavoni for his very sincere support during his tenure as coordinator of the 
doctoral program.  

I cannot express enough my gratitude to Prof. Salvatore Lombardi of the Department of Earth 
Sciences at the Università di Roma “La Sapienza”, with whom I have worked for so many years. 
His constant drive and energy to carry his group forward and to open new avenues of research, 
ever more challenging in these difficult times, has never failed to amaze me. His very human 
approach to research has always focussed on treating all who work with him with respect and 
trying to use the different capabilities that each person has. It was he who convinced me, after 
many years, to attempt the PhD - something for which I have cursed him many times in the past, 
but for which I thank him sincerely now!  

I would like to thank the many friends from Professor Lombardi’s team who, over the years, 
have helped me in so many ways to make this journey, including Giancarlo Ciotoli, Anna 
Baccani, Aldo Annunziatellis, Stefano Graziani, Sabina Bigi, Samuela Vercelli, Chiara 
Tartarello, Livio Ruggiero, Pietro Sacco, Davide de Angelis, and Mariagrazia Finoia. Thanks 
especially to Giancarlo and Mariagrazia for their reading of, and comments on, parts of the 
thesis, and to Pietro and Davide for their help in the field.  

I would also like to acknowledge the kind access given by Signor Iaccarelli to the field where the 
Latera soil flux grid measurements were performed. 

Finally I would like to thank my family, for always being there for me. 

Parts of Section 2.4 ("Surface Leakage Characterization") were originally written by the author 
for the report "Quantification Techniques for CO2 Leakage" (IEAGHG, Report Number 
2012/02, 2012); the kind permission granted by the IEAGHG to reproduce and/or summarize 
segments of this text is greatly appreciated. Chapter 6, on the impact of CO2 leakage on 
groundwater quality at the Latera site, was written by the author as part of our research group’s 
contribution to the European Community (EC) funded RISCS project.  

  



v 
 

Abstract 
The present study relates to CO2 leakage from the deep subsurface towards the atmosphere. 
Work involved writing a computer code to study the impact of different sampling strategies and 
densities on the capability of a gas flux survey to find and quantify the leakage of CO2, with 
simulations being performed using both synthetic and real data. In addition, the potential impact 
of a CO2 leak on drinking water quality was studied by measuring groundwater chemistry along 
a transect through a major natural CO2 leakage area. The research detailed here relates to both 
natural leaking systems as well as to man-made systems where leakage may hypothetically occur 
(such as carbon capture and storage, CCS, projects).   

A dense grid (10 m spacing) of 550 CO2 flux measurements were made in a field within the 
Latera Caldera where numerous gas leakage points are known to occur. The obtained results are 
discussed looking at issues related to finding and quantifying leakage (e.g., sample density, 
background subtraction) and migration processes and pathways (e.g., faults, sediment control). In 
addition, another critical goal of this survey was to obtain a real-world dataset of spatially 
distributed CO2 flux measurements on which sub-sampling simulations could be conducted 
using the software developed during this research, to compare these real-world results with those 
obtained from simulations using purely synthetic data. 

A major focus of the present research was to develop a new computer code capable of examining 
the effects of different sampling strategies and sampling densities on the end results of gas flux 
surveys aimed at CCS monitoring or quantification of natural CO2 emissions. The developed 
program creates a highly detailed (1 m node spacing) original dataset of synthetic data (or 
imports real CO2 flux data from a grid), which is in turn randomly sub-sampled N times for each 
of M different sample densities using one of four different sample strategies. By performing 
multiple, but unique, simulations on a known input, the resulting output can be interpreted in 
terms of probabilities and statistics. Various calculations and monitoring of different parameters 
permits one to determine, under the simulation conditions and sampling settings, the number of 
samples needed to find a leakage point at a given confidence level and the precision and accuracy 
of estimated leakage flux values compared to the “true” original value. Various representative 
simulations are presented and the observed trends are discussed in terms of how they may 
influence and impact the results of actual surveys. 

Finally, a groundwater study was performed to examine the potential impact of CO2 leakage on 
water chemistry within the Latera Caldera. This site consists of deep carbonate units that are 
overlain by volcanic lithologies and surface alluvial and fluvial sediments formed from the same 
volcanic rocks. At this location gas (>95% CO2) is leaking over a wide area, however there is no 
clear indication of co-migration of deep water, meaning that any observed changes in chemistry 
may be due to gas-induced in situ reactions only. A series of boreholes were augered by hand 
along a transect parallel to the groundwater flow direction, with sampling points located up 
gradient, within, and down gradient of the leakage area. Samples were analysed in the laboratory 
for major and trace elements, whilst some physical-chemical parameters, such as pH and 
temperature, were measured in the field. Results are discussed in terms of the spatial trends along 
the flow gradient, the potential chemical mechanisms that may be controlling the release or 
immobilization of various elements and compounds, and how local site conditions can control 
and influence potential impact.  
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Chapter 1. Introduction 
The Earth is a dynamic system, with a constant exchange of mass between solid, liquid, and 
gaseous phases and a constant cycling of the fluid phases to and from the solid earth, the oceans, 
and the atmosphere. Research into these transformation and migration processes can lead to a 
greater understanding of how best to manage the complex geological environment in which we 
live and on which we depend.  

Carbon dioxide (CO2) gas is a critical component of the global carbon cycle in terms of both the 
abiotic and biotic systems (and the interaction between them). A very simplified overview of the 
abiotic system involves CO2 in the atmosphere as a minor component (but having a critical role 
in regulating global climate), dissolution in the oceans, transformation and precipitation as 
carbonate mineral phases, sedimentation, subduction, transformation back to CO2 via 
metamorphic and metasomatic processes, and eventual re-release to the atmosphere and 
hydrosphere via volcanoes and fault systems. A very simplified overview of the biotic system 
involves the fixation of CO2 in plant material via photosynthesis, its incorporation in the shells, 
tests, or exoskeletons of aquatic organisms, and the production and release of gaseous CO2 as a 
by-product of the respiration process. Clearly these two cycles have many points of overlap and 
interaction, and it is the balance and equilibrium amongst the numerous processes which control 
CO2 concentrations within, and fluxes between, the various compartments. For the goals of the 
present work, research has focused on the leakage of deep, geologically produced CO2 from the 
ground surface to the atmosphere and the potential impact that this leaking gas may have on 
groundwater quality. 

Italy is geologically young and highly dynamic, formed by a series of tectonic events that caused 
both crustal thinning and orogenesis (Di Stefano et al., 2009; Devoti et al., 2011; Giacomuzzi et 
al., 2011). These in turn have formed areas of high heat flow, volcanism, subduction, and deep 
faulting, all processes that contribute to the production and migration of abiotic, geogenic CO2. 
Central Italy is particularly interesting from this point of view, with extensive CO2 release being 
associated with high geothermal gradients and predominantly extinct Quaternary volcanism 
along the western Tyrrhenian coast (Minissale 2004; Chiodini et al., 2004). Originating from 
mantle / magma degassing or metasomatism of subducted carbonate-rich crust, this gas migrates 
upwards along permeable pathways within faults and fracture networks and is released to the 
atmosphere from individual points known as gas vents or moffates (e.g. Annunziatellis et al., 
2008) or over more diffuse areas via aquifer degassing. 

An extensive literature exists on the origins, migration, and release of CO2 within central Italy 
(Hooker et al., 1985; Minissale 2004; Chiodini et al., 2004; Frondini et al., 2008; Frezzotti et al., 
2009) and other geologically similar areas throughout the world, with studies trying to map and 
quantify the total amounts of leaking CO2 for various purposes. For example, there are health and 
safety concerns due to the fact that the denser than air CO2 can accumulate in confined or 
depressed areas (like basements or cellars) and reach life-threatening concentrations, and thus 
mapping can provide a critical tool for local governments to define, and limit construction 
within, high risk areas (e.g. Beaubien et al., 2003). Other studies contribute to the need to 
quantify all natural and anthropogenic sources and sinks of atmospheric greenhouse gases like 
CO2 to improve climate change predictive modelling efforts (e.g. Chiodini et al., 2004), or use 
CO2 leakage rates (combined with chemical geothermometers) to estimate the potential in situ 
energy level that could be exploited from geothermal reservoirs (e.g. Chiodini et al., 2007).  
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Natural leaking sites have also been studied in light of human activities related to underground 
gas storage. In particular, Carbon Capture and Storage (CCS), is one issue that has greatly 
benefitted through the study of these natural laboratories. CCS involves the capture of 
anthropogenic CO2 from point sources (such as coal-fired power plants) and its injection into 
deep saline aquifers or depleted hydrocarbon reservoirs for permanent storage as a mitigating 
technology to reduce greenhouse gas loading to the atmosphere (White 2003; IPCC 2005, Leung 
et al., 2014). Although a well-chosen and well-engineered CCS site is not expected to leak, all 
risks must be assessed to ensure safety, it must be shown that technologies exist that will give 
early warning and aid in remediation / mitigation if necessary, and accurate leakage 
quantification will be critical for carbon credit auditing and liability issues. In this regard, 
research at such leaking sites has been conducted to better understand gas migration pathways 
and processes (Pearce et al., 2004; Shipton et al., 2005; Stevens, 2005; Lewicki et al., 2007; 
Annunziatellis et al., 2008; Dockrill et al., 2010; Bigi et al., 2013), test new and existing 
technologies for site assessment, safety monitoring, and leakage quantification (Pettinelli et al., 
2008; Pettinelli et al., 2010; Bateson et al., 2008; Jones et al., 2009; Sauer et al., 2014; Schutze et 
al., 2013; Schutze et al., 2012), and to assess potential health and ecosystem risks and impacts 
should such a site leak (Beaubien et al., 2008; Oppenheimer et al., 2010; Kruger et al., 2011; 
Frerichs et al., 2012).  

The present research focusses on CO2 leakage at surface and its potential impacts, examining a 
natural leakage site, the Latera caldera in central Italy, with the goal of addressing questions 
relative to both “pure” research of such natural sites as well as “applied” research related to CCS. 
The work on CO2 leakage examines how sampling strategy and density can influence the 
possibility of finding and accurately quantifying leakage flux by inputting both real and synthetic 
data into a simulation program developed by the author, while the work on CO2 impact looks at 
how the leakage of this gas could potentially alter the chemistry of near-surface potable 
groundwater resources via water-rock-gas interaction. This research was conducted in 
collaboration with the Fluid Geochemistry Laboratory, run by Professor Salvatore Lombardi, at 
the Department of Earth Sciences, University of Rome “La Sapienza”. 

The most common approach for leakage mapping and quantification is to measure the flux of 
this gas at individual points over a given study area and then estimate the total flux based on the 
interpolation of the obtained dataset or by applying a leakage population average to a given 
surface area (Bergfeld et al., 2006; Bergfeld et al., 2012; Cardellini et al., 2003; Chiodini et al., 
2007; Chiodini et al., 2008; Evans et al., 2009; Hernandez et al., 2012; Lewicki et al., 2005; 
Lewicki et al., 2010). The precision and accuracy of the obtained results will depend on various 
factors, including whether the sampling density is sufficient to find most leakage points, whether 
the related anomalies can be spatially constrained, and whether it is possible to accurately 
separate the leakage flux rate from the omnipresent and diffuse biogenic CO2 flux produced by 
soil respiration processes. Despite extensive research in this field, questions still remain regarding 
the magnitude of potential errors in the total flux estimates and how survey design could be 
improved to minimise them and increase the potential of finding leaks. To address some of these 
issues a simulation program has been written by the author which creates a high density (1 m 
spacing) large (1 x 1 km) grid populated with synthetic data that consists of background, 
coherently distributed, log-normal biogenic CO2 flux values onto which individual areas of 
geogenic gas leakage are superimposed. This matrix is subsampled using different spatial 
approaches and at different densities, with each sampling density being repeated 100 – 200 times 
to define the statistical probability of finding a leak or the statistical distribution of total leakage 
estimates compared to the “true” value of the entire synthetic data set. In addition, high density 
real data can also be imported into the program and similar simulations can be conducted to 
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verify that the trends observed in the simplified synthetic system are applicable in the real world; 
this was done using a dataset of 547 flux measurements collected on a 10 m spacing grid over a 
field in the Latera caldera that has various leakage points. The main objectives of this flux and 
modelling work were to better understand what sampling strategies and densities yield the best 
chances of finding CO2 leakage areas of different sizes and shapes, and to quantify the potential 
errors that may result during leakage estimates due to the chosen sampling density.  

Although leakage is not expected from well-constructed CCS sites (based also on the fact that 
numerous natural, non-leaking CO2 geological reservoirs have been discovered during deep 
hydrocarbon exploration drilling programs), concern has been raised regarding the potential risk 
that such industrial activities may pose to potable groundwater resources overlying storage 
reservoirs. As detailed in a number of recent review articles (Harvey et al., 2013; Lemieux et al., 
2011; Lions et al., 2014; Little et al., 2010), potential impact could occur via two primary 
mechanisms: i) the leakage of CO2 gas into a potable aquifer, which would cause in situ water-
rock reactions due to acidification and ii) the displacement of deep brines from the storage 
reservoir into an overlying aquifer, which could make the aquifer saline and increase the 
concentration of associated toxic elements. To date the majority of studies related to the former 
have used laboratory measurements (Humez et al., 2013; Kirsch et al., 2014; Wunsch et al., 
2014), geochemical modelling (Zheng et al., 2009; Darby et al., 2009; Navarre-Sitchler et al., 
2013), small scale field experiments (Cahill et al., 2013; Humez et al., 2014; Kharaka et al., 
2010; Trautz et al., 2013), or a combination of the three to estimate potential impacts, whereas 
those addressing the latter are typically conducted using physical flow models (Kirk et al., 2009; 
Birkholzer et al., 2011; Cihan et al., 2012; Walter et al., 2013). Although these approaches 
provide critical data needed to better understand these issues, laboratory measurements are 
limited by the fact that they cannot address geological complexity, scale, or slow kinetics, while 
modelling, by its very nature, requires simplifying assumptions that may not always be valid. For 
these reasons numerous researchers have recently started to study natural sites where these 
processes have been occurring (Choi et al., 2014; Keating et al., 2013a; Keating et al., 2013b; 
Keating et al., 2014; Lewicki et al., 2013, Lions et al., 2013), thus allowing for geochemical 
trends and processes to be defined for very long time periods (thousands to millions of years), 
over very large scales (hundreds to thousands of metres), and within complex and variable 
lithologies, structures, and hydrogeological systems. Whereas most of these recent studies have 
used natural springs and existing wells to examine these processes, the present work involved the 
unique approach of drilling six shallow boreholes along a transect which parallels the 
groundwater flow direction and which crosses a large CO2 gas leakage area. One well was drilled 
up-gradient in background conditions, two were drilled within the leakage area itself, and the 
remaining three were drilled progressively further down-gradient away from the leak. The main 
objectives of this work were to determine how groundwater chemistry changes as it flows 
through a CO2 leak, to understand the reactions and mineral phases which control how the 
groundwater chemistry is impacted, and to learn how the aqueous geochemistry continues to 
evolve as the impacted water migrates further down gradient out of the leakage zone. 

The thesis is organised as follows. Chapter 2 gives the theoretical background related to CO2 gas 
in terms of its multiple origins and the processes which control its migration through the 
lithosphere, giving an overview of issues that control leakage distribution and complicate its 
interpretation. This chapter also discusses the various difficulties associated with finding and 
quantifying geogenic (or potentially anthropogenic CCS) CO2 leakage, as well as the various 
approaches used in the literature to address these issues. Chapter 3 describes the Latera Caldera, 
the site where both CO2 flux and groundwater geochemistry studies were conducted for this 
research. The nature, origin, migration pathways, and surface leakage manifestations of the 
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geogenic CO2 is described, along with the general geology, structural geology, hydrogeology, 
and gas geochemistry of the site. This chapter gives an overview of the extensive work already 
conducted in this area, and helps define the context and the rationale behind the work reported 
here. Chapters 4, 5, and 6 present the new research results and interpretations resulting from this 
dissertation work. Chapter 4 describes detailed CO2 flux sampling conducted at the Latera site, 
data that is used to describe gas migration pathways and styles at the site and which is also used 
in the subsequent chapter as input for modelling purposes. Chapter 5 gives a detailed description 
of the simulation software developed by the author, followed by its use to simulate the influence 
of sampling strategy and density on the obtained results. These simulations look to quantify these 
effects in the hopes of improving survey design and success rates. Chapter 6 describes the 
groundwater work conducted at the Latera site, the first such detailed study to look at along-
gradient aqueous geochemical modifications as groundwater flows through a major CO2 leaking 
area. This chapter aims to determine impacts, as well as trying to understand if there are 
subsequent processes or reactions which can mitigate the impact down-gradient (e.g. natural 
attenuation). Each of Chapters 4-6 has a final sub-section which gives a summary of the results 
and some specific conclusions related to that work, while Chapter 7 discusses high-level 
conclusions for the entire research, and how the results may be used to move forward our 
understanding of the issues discussed.  
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2.2.1. Biogenic CO2 

A solid understanding of soil biogenic CO2 is critical for deep CO2 leakage detection and 
quantification because it forms the baseline “noise” in which a deep-origin anomaly would 
occur. Separation of the deep anomaly from this background is challenging but critical to avoid 
false positives (biogenic anomalies interpreted as leakage) and false negatives (leakage 
anomalies interpreted as being part of the background biogenic distribution), and for an accurate 
baseline subtraction and/or threshold determination when calculating total flux from natural or 
human-induced leaks (section 2.4.2). The production, accumulation, and migration in the soil, 
and the exchange rate between the soil and the atmosphere, of this biogenic gas depends on 
many factors, like plant type, soil parameters, rainfall, temperature, and land use. 

The biogenic CO2 produced in situ in the soil originates from either living plants or from the 
breakdown of soil organic matter (SOM) formed from dead plant material (litter, roots, etc.), and 
as such its 13C is a direct function of these original sources (Amundson et al., 1998). Based on 
the photosynthetic pathway that they use for energy production, the bulk of most plants can be 
subdivided into either C3 or the more recently evolved (since the mid-Miocene) C4 plants. Due 
to the fractionation processes inherent in the different photosynthetic pathways, the C3 plants 
have a more depleted 13C signature (-34 to -21‰) compared to the C4 plants (-19 to -8 ‰) 
(Smith and Epstein, 1971); these ranges are illustrated in Figure 2. Autotrophic root respiration 
will produce CO2 having a 13C signature that is directly related to the types of plants (C3 or C4) 
growing at that specific time, whereas heterotrophic breakdown of SOM will produce CO2 that 
has a 13C signature that is an average of the different types of plants that have grown in that soil 
over time (although enrichment and depletion can take place during the plant-to-SOM and SOM-
to-CO2 conversion steps (Nadelhoffer and Fry, 1988; Schweizer et al., 1999)). Rotating of C3 
and C4 crops over time can thus change and potentially widen the biogenic 13C signature in 
CO2 soil gas and flux (Fassbinder et al., 2012). Other processes that can modify the values of 
13C of biogenic soil CO2 include mixing with atmospheric CO2, diffusion fractionation, 
dynamic fractionation, and temporal variability in autotrophic respiration (Amundson et al., 
1998; Nickerson and Risk, 2009; Risk et al., 2012), with diurnal changes in the 13C-CO2 value 
of up to 3‰ (Fassbinder et al., 2012).   

Microbial and root respiration produces biogenic CO2 via the consumption of O2 in an almost 1:1 
stoichiometric ratio. This is represented by the simple formula (Stumm and Morgan, 1995): 

Eqn  1    ۱۶૛۽	 ൅	۽૛ 	↔ 		 ૛۽۱ 	൅	۶૛۽ 

where CH2O represents organic carbon as a simple carbohydrate; in essence, this formula is 
simply the reverse of photosynthesis. The comparison of CO2 with the other major soil gases can 
be useful to illustrate this process and to differentiate respiration from leakage, as the relative 
behaviour of these gases will vary depending on the controlling chemical / physical processes 
(Beaubien et al., 2004; Romanak et al., 2012a; Beaubien et al., 2013; Romanak et al., 2014). 
Figure 3 shows a scatter plot of CO2 versus N2 and O2+Ar, comparing the values obtained above 
the Weyburn CO2-EOR site and those from a shallow horizontal profile conducted across a CO2 
vent in the Latera caldera, together with the expected trends for both respiration and leakage 
(solid and dashed lines, respectively) (data from Beaubien et al., 2013). The Weyburn data 
clearly follows the shallow biogenic origin trend (implying no leakage), while the Latera results 
track along the leakage trend. This figure shows how the biogenic trend has a slope of about -1 
for O2+Ar versus CO2 while the slope of N2 versus CO2 is essentially zero (as N2 is not involved 
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re-wetted. While increased CO2 concentrations in association with significant rainfall events 
have been observed to a soil depth of at least 85 cm (Maier et al., 2010), this mechanism is more 
important for very shallow soil (DeSutter et al., 2008; Bowling et al., 2011) and CO2 flux 
(Barron-Gafford et al., 2011; Fierer and Schimel, 2003). The size and duration of an induced 
CO2 flux peak appears to be greater for larger rainfall events (Borken et al., 2003) and when the 
rain comes after a dry period (Fierer and Schimel, 2003; Bowling et al., 2011), and it has been 
shown that this effect is much more pronounced in the summer than the fall (Borken et al., 
2003). Regarding CO2 migration, rainfall will decrease the effective gas porosity and 
permeability of the surface soil (Maier et al., 2010), thus potentially leading to an increase in soil 
concentrations (i.e., accumulation) and a decrease in flux to the atmosphere. High rainfall may 
also raise the water table, which could in turn cause an upward shift of the CO2 depth-distribution 
curve (see Section 2.3.3). Such a shift was observed by Maier et al. (2010) at a site in SW 
Germany, where soil CO2 concentrations increased strongly and converged towards a similar 
value at 27, 55, and 85 cm depths after rainfall caused the water table to rise. 

The combined effects of temperature and precipitation are manifest in seasonal trends of 
biogenic CO2 production and flux. Flux has been found to be particularly influenced, with 
maximum values during the wet, hot summers of continental temperate climates that are 
typically 1 (sometimes 2) orders of magnitude greater than those measured in the late fall or 
winter (Beaubien et al., 2013; Mielnick and Dugas, 2000; Frank et al., 2002; Risk et al., 2002b; 
Gorczyca et al., 2003; Jassal et al., 2005). This seasonal effect is also observed in soil gas data 
(Hamada and Tanaka, 2001; Risk et al., 2002b; Drewitt et al., 2005; Bekele et al., 2007) and 
continuous data from soil gas CO2 monitoring probes (Beaubien et al., 2013; Hirano et al., 2003; 
Jassal et al., 2005; Arevalo et al., 2010; Maier et al., 2010; Barron-Gafford et al., 2011). In these 
studies minimum CO2 values were encountered during the winter while the timing of maximum 
values depended on the local climate and vegetative cover, in agreement with soil respiration 
modelling results (e.g., Moncrieff and Fang, 1999). It must be noted, however, that the majority 
of these studies were conducted in continental North America or northern Europe. In contrast, in 
a Mediterranean climate like that of Italy, the period of lowest biogenic CO2 values is often mid-
summer, as the very hot, dry conditions decrease soil moisture content, which limits biogenic 
production and increases gas permeability and exchange with the atmosphere; in contrast, winter 
conditions in this climate are wet, which can promote soil CO2 accumulation. 

Biogenic CO2 production and flux can also be highly spatially variable due to numerous factors. 
For example, different land-use practices (e.g. crop types, fertilizer use, tilling, etc.) have been 
shown to influence the spatial distribution of biogenic CO2 concentrations and flux (Arevalo et 
al., 2010, Brüggemann et al., 2011, Carbonell-Bojollo et al., 2011). Beaubien et al. (2014) 
showed how soil CO2 concentrations were significantly lower in forest soils than in the soils of 
cultivated or brush fields in central Denmark due to lower temperatures induced by the tree 
canopy. Lateral changes in soil type can influence in situ production based on the amount and 
reactivity of organic carbon, and can influence gas migration/accumulation based on soil 
properties like porosity and permeability. Finally some researchers have also found greater CO2 
respiration in low-lying, moist riparian areas compared to the adjacent hill slopes (Riveros-Iregui 
and McGlynn, 2009; Pacific et al., 2010).  This may be due to the fact that topography can 
control various parameters that are important for biogenic CO2 production in normal soils; for 
example depressed areas often have greater soil thickness and specific soil types (King et al., 
1983), greater organic carbon (Landi et al., 2004), and higher soil moisture content (Brocca et al., 
2007) than the higher grounds. This correlation has been used to distribute synthetic biogenic 
CO2 flux values in a spatially coherent manner (Section 5.2.2.1) for the modelling experiments 
described in Chapter 5. 
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2.2.2. Shallow inorganic CO2 

In addition to the primary organic source described above, a portion of CO2 flux can also come 
from inorganic sources in the soil. This can potentially impact both the amount of surface CO2 
flux and its carbon isotopic signature.  

Carbonates in the soil can be either primary “lithogenic” minerals that have a 13C equal to that 
of marine limestone (-2 to +2‰) or secondary “pedogenic” minerals that have 13C values 
between -10 to 0‰ (Ramnarine et al., 2012) (Figure 2). While lithogenic minerals are the result 
of protolith erosion, the pedogenic minerals are formed by in situ precipitation of mainly calcite 
due to vadose zone pore water over saturation. This occurs primarily by removal of water (i.e., 
resulting in a more concentrated solution) via soil drying or evapotranspiration (Serrano-Ortiz et 
al., 2010), meaning that this process is more important in arid to semi-arid climates. The 
bicarbonate ion necessary for calcite precipitation comes from both carbonate mineral dissolution 
(i.e. inorganic) and soil respired CO2 (i.e., organic), while the calcite ion comes primarily from 
carbonate minerals but with a secondary source being the slower dissolution of Ca/Mg silicates 
(Emmerich, 2003).  

According to the following two equations (Jin et al., 2009; Serrano-Ortiz et al., 2010), the 
dissolution of calcite (either primary or secondary) can be both a source and a sink for gaseous 
CO2:  

Eqn  2    ૛۶۽ۼ૜ 	൅	۱۽۱܉૜ 	→ ૛ା܉۱	 	൅	૛۽ۼ૜
ି 	൅	۶૛۽	 ൅   ૛۽۱

Eqn  3    ۱۽૛ 	൅	۶૛۽	 ൅	۱۽۱܉૜ 	→ ૛ା܉۱	 	൅	૛۶۱۽૜
ି	  

While the first formula represents the presence of other acids (such as via denitrificaiton or pyrite 
oxidation), the latter addresses only the carbonate system and the weaker carbonic acid. 
Considering only the second formula, many authors have pointed out that calcite precipitation 
(i.e. driving the reaction to the left) should be a source of CO2 (Serrano-Ortiz et al., 2010). This 
has been used to explain increased CO2 flux rates measured after rainfall events, with short term 
dissolution and subsequent re-precipitation of calcite causing a short-term release of inorganic 
origin CO2. The cycling of both inorganic and organic carbon via this reaction (in both 
directions) explains the range of pedolithic carbon isotope values mentioned above (i.e. -10 to 
0‰), as illustrated in the following formula for the dissolved organic carbon in the pore waters 
(Jin et al., 2009):  

Eqn  4    ૒૚૜۱۲۷۱ 	 ൌ 	 ሺ૒૚૜۱۶૛۱۽૜ ൅ 	૒
૚૜۱۱۽۱܉૜ሻ ૛⁄  

This process has been found to be most important in soils with higher carbonate mineral contents 
(Emmerich, 2003), with higher inorganic flux rates being observed during dry seasons due to soil 
drying (Emmerich, 2003) and after rainfall events where complex dissolution/precipitation 
processes (thus degassing) occur over relatively short time periods (Serrano-Ortiz et al., 2010).  

2.2.3. Geogenic CO2 

There are numerous inorganic, geological processes that can produce CO2 at depth, which can, 
given appropriate conditions, migrate towards the ground surface and leak to the atmosphere. 
Although each process has a relatively narrow distribution of 13C-CO2 values (Figure 2) which 
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should allow interpretation of its origin, it is more common that multiple processes are involved 
and/or that the rising gas mixes with other CO2 of a different origin, thus mixing the stable 
isotopic signature. Because this yields non-unique values, many authors have noted that 13C 
data by itself is insufficient to determine origin (Sano and Marty, 1995) and that it should be 
combined with other trace gases like He or Ne. In addition, the 14C of deep origin CO2, be it 
natural or anthropogenic from burning hydrocarbons, is zero due to the combination of the 14C 
half-life and the great age of the CO2 sources; for this reason 14C can be useful for separating 
shallow biogenic from deep geogenic CO2.  

The main processes / origins of deep CO2 include: 

 Mantle degassing. The 13C of this primordial CO2 is between -9 and -4 ‰ based on 
bubbles in quenched lava from Mid-Ocean Ridge Basalt (MORB) samples. Considering 
that the mantle is typically isolated deep below thick continental crust, CO2 from this 
source typically occurs only at locations of active crustal rifting or subduction, or mantle 
arching or upwelling. In areas of subduction there is a high probability of metasomatism 
or assimilation which will mix the mantle and crustal signatures. 

 Magma degassing. This source can be much more diverse because the composition of a 
magma will be highly site specific, being formed by the local tectonic, structural, 
lithological, fluid, and heat flow conditions, with the potential for mineral/volatile 
fractionation and host rock assimilation along the ascent pathway (Hoefs, 2009). The 
principle, original origin of the magma, such as mantle or crustal melting, plus the 
various mixing and contamination processes involved in its evolution, will determine the 
specific 13C value for each magma; this value may, however, change in time if 
conditions evolve at depth. Experimental petrology studies have also shown that the 
process of limestone assimilation causes precipitation of pyroxene and olivine 
(desilication of the melt, which renders it more carbon rich and buoyant) and the release 
of large quantities of CO2 (Iacono-Marziano et al., 2007). 

 Thermal decarbonation, metamorphism, and metasomatism. These three processes often 
overlap and can be difficult to separate. Thermal decarbonation involves the release of 
carbon (as CO2) from carbonate mineral phases due to elevated temperatures, 
metamorphism can involve high temperature deformation, while metasomatism (often 
associated with metamorphism) involves alteration via liberated fluids. The resultant 
stable isotopic signature of the CO2 produced from these processes will depend on that of 
the source, temperature, and involvement of fluids. In addition, isotopic fractionation 
between calcite and CO2 at temperatures above 900°C during thermal decarbonation has 
been shown to enrich the CO2 by up to c. 3‰ (Rosenbaum et al, 1994). Possible source 
material involved in these processes include: 

o Marine carbonates. These have a relatively narrow 13C range of -2 to +2 ‰. In 
localised geographical areas this range can be even narrower, such as typical 
values between 0 to +2 ‰ in the Apennine mountains; with fractionation this can 
increase to +1 to +5 ‰. 

o Hydrothermal calcite veins. These values will be more site specific, but are 
expected to be more depleted than the marine carbonates.  

o Organic-rich marine sediments. These include clays and siltstones, and because 
their carbon content is biogenic the 13C of this carbon is depleted, with a typical 
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range of -25 to -37 ‰. The conversion of this organic carbon to CO2 can take 
place via either oxidation and/or hydrolysis (Bergfeld et al., 2001b).  

Clearly the mixing of some of these processes and origins will have a significant impact on the 
resultant isotopic signature of the CO2 that may leak at the surface. There are many examples of 
inferred multiple, complex origins described in the literature, such as degradation of organic 
matter and dissolution of calcite veins at the Geyser geothermal area, USA (Bergfeld et al., 
2001a), magma degassing and limestone metamorphism at Santorini Island, Greece (Parks et al., 
2013), and magma degassing and limestone assimilation in the Alban Hills, Italy (Iacono-
Marziano et al., 2007). 

In addition to the obvious release of CO2 from active volcanic edifices, large volumes are also 
released to the atmosphere via more wide-spread, diffuse areas linked to faulting and fracturing. 
While a portion of this is still linked with volcanics via release along their flanks, the last 20 
years has shown the volumetric importance of what is referred to generically as “non-volcanic 
diffuse degassing”. These latter are typically found in active tectonic areas where thinned crust, 
deep faults, and/or high heat flow can produce (and allow to migrate) large volumes of CO2 via a 
number of the mechanisms listed above.  

The western part of central Italy represents a very large area over which diffuse CO2 degassing 
occurs locally at surface, given appropriate gas migration pathways (faults and fracture 
networks). This area extends from north of Florence to south of Naples and from the Tyrrhenian 
Sea to some unknown point within the Apennine mountains. The eastern limit in some way 
appears to be linked with the east-west geological/tectonic divide which defines central Italy, in 
that the western part has a high heat flow, thin crust, and a depth to Moho of about 25 km, 
whereas the eastern part (from the Apennine mountains to the Adriatic coast) has normal heat 
flow, thick crust, and a depth to Moho of about 35 km. The western gas emissions manifest as, or 
are associated with, groundwaters with elevated pCO2 values, thermal springs, bubbling pools, 
and/or dry gas emissions (“gas vents” or moffetes). Although this degassing area overlaps and is 
often associated with Quaternary volcanics (Roman Magmatic Province) and actual volcanism 
(e.g. Vesuvius), other non-volcanic manifestations are observed, for example, above geothermal 
fields (e.g. Lardarello; Minissale, 2000) and within “cold” intra-montane basins (e.g. the San 
Vittorino valley; Giustini et al., 2013).  

The origin of this widespread CO2 degassing in western Italy has been debated over the years, 
with theories including: metamorphic hydrothermal reactions of Mesozoic carbonates, based on 
travertine and gas isotopes (Panichi and Torgiori, 1975); mantle degassing, based on few 13C-
CO2 samples and coincidence with the shallow Moho (Minissale, 1991); magmatic and 
metamorphic sources, based on a re-interpretation of the same isotopic data (Marini and 
Chiodini, 1993); metamorphism and decarbonation of carbonate formations, based on 13C-CO2 
data (Chiodini et al., 1995); metamorphic alteration of carbonates and isotopically depleted 
organic carbon from Neogene basins (Minissale, 1997); crustally contaminated mantle, based on 
13C of dissolved inorganic carbon (DIC) in regional groundwater and the assumption that 
fractionation during carbonate metamorphism would produce higher 13C results (Chiodini et al., 
2000; Chiodini et al., 2004; Frondini et al., 2008); and limestone metamorphism triggered by 
mantle melting and intrusion, based on stable isotopes of carbon and helium (Minissale, 2004). 
This range of possibilities highlights the complexity of gas generation and migration in a 
tectonically active area like central Italy.  
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2.2.4. Atmospheric and Anthropogenic CO2 

There is a constant exchange between gases in the atmosphere and the soil, such that the 
composition of shallow soil gas is typically very similar to that of air (aside from higher water 
vapour and CO2). The concentration of CO2 in the atmosphere is about 380 ppm, while its 13C 
is about -7.5 ‰ (Amundson et al., 1998). In a natural system these parameters are at pseudo 
steady state via the balance between biogenic and geogenic inputs and consumption via rock 
weathering. As is well known, however, anthropogenic emissions linked to fossil fuel burning 
for energy production have upset this balance by introducing a new input term. As such 
concentrations have increased by about 100 ppm since the start of the industrial revolution, 
increasing the heat trapping capacity of the atmosphere, and contributing to human-induced 
climate change. 

Anthropogenic CO2 is in fact organic carbon, in the form of the fossil fuels that are burnt for 
energy production. Due to their organic origin they have a strongly depleted 13C signal (Figure 
2) which is imparted to the CO2 that is produced upon their burning. As described above, CCS 
involves the capture of fossil fuel emissions, primarily CO2, from point sources and their 
injection into the deep subsurface for permanent trapping within porous geological reservoirs. If 
CCS eventually obtains approval and moves forward from the present research stage to full 
industrial deployment world-wide, coal will likely be one of the first target applications due to its 
high CO2 emissions per unit energy produced and its significant global reserves. In theory the 
isotopic signature of coal, and more importantly of the CO2 produced upon its burning, could 
potentially be a useful tracer to define if a portion of the stored CO2 is leaking at surface. 
Unfortunately this is not the case, as the stable C isotopic signature of coal is very similar to that 
of CO2 produced by modern C3 plants, as recently illustrated by Beaubien et al. (2013); these 
authors had to use other techniques to prove that an alleged CCS leak was due instead to near-
surface biological processes.  

2.3. Gas migration 

2.3.1. Migration mechanisms 

A complete review of all mechanisms involved in the migration of CO2 from hundreds of metres 
depth towards the surface is beyond the scope of this work. The interested reader is referred to 
the literature for discussions on such topics as: migration of super critical CO2 in CCS storage 
reservoirs laterally via pressure differentials (Bickle et al., 2007) and vertically via buoyancy 
forces (Hesse et al., 2010); density-driven convective flow induced by the dissolution of CO2 in 
brines in fractures (Chen and Zhang, 2010) and saline aquifers (Neufeld et al., 2010); and 
dissolved phase CO2 migration in a CCS reservoir (Emberly et al., 2005) and in stacked aquifers 
above a natural CO2 reservoir (Kampman et al., 2013).  

Instead the following addresses the processes of advection and diffusion of CO2 in the 
unsaturated horizon, which, depending on the depth to the water table, generally encompasses 
the upper 1 to 100 m of the sub-surface. Due to conditions at the Latera study site this discussion 
will be limited to soil and unconsolidated sediments, and will not address unsaturated fractured 
rock. Typically sediments will consist of a three phase system made up of solid grains, water and 
gas. The porosity (of a sediment is defined as the volume of the pores (Vp) divided by the total 
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volume (VT), with the pore volume consisting of the sum of the water filled (VW) and gas-filled 
(VG) volumes: 

Eqn  5     ૎ ൌ ቀ
ܘ܄
܂܄
ቁ ൌ

ሺ۵܄ା܅܄ሻ

܂܄
	 

Gas saturation is defined by SG = VG/Vp and water saturation by SW = VW/Vp, such that SG + SW 
= 1. In this system water will be the wetting fluid, meaning that it will first occupy the smaller 
pores at low SW while gas will fill the larger pores. As SW increases (and SG decreases) the water 
will progressively fill the larger pores. This distribution impacts on the effective permeability of 
each of these two phases (and thus flux) at different water/gas saturation levels. 

Gas in the system described above partitions into each of the phases, such that: 

Eqn  6     ۱܂ ൌ 	ી۵۱۵ ൅ ીܔ۱ܔ ൅ ૉ܌܉۱܊	 

where CG, Cl, and Cad are the mass concentrations in the gas, liquid, and adsorbed phases, G is 
the volumetric gas content (G = VG/VT), l is the volumetric water content (l = VW/VT), and b 
is the bulk density of the sediment.  

Concentrations in the gaseous (CG) and liquid (Cl) phases are related via the Henry’s constant 
(CG = KHCl) and adsorption can be related to liquid concentration via an adsorption isotherm 
(e.g. Cad = KdCl). Adsorption is not important for CO2 because this gas is non-polar, however its 
reactivity related to precipitation and dissolution of carbonate minerals means that there is the 
potential for the solid phase to act as a sink or a source of CO2 in sediments and soil (see Section 
2.2.2). Clearly the phase in which the CO2 occurs will have a defining effect on its mobility. 

Recently a number of excellent reviews have addressed gas movement in the unsaturated zone 
(Scanlon et al, 2002; Webb, 2006a; Webb, 2006b; Kuang et al., 2013). The following is a brief, 
simplified summary based on these reviews, focussing primarily on Scanlon et al. (2002) and 
following the mathematical conventions used in that article (unless otherwise cited). Note that 
although here (and elsewhere) advection and diffusion are described separately as if they are 
completely independent, it must be noted that in a complex multicomponent gas system it is not 
possible to fully separate the effects of these processes due to the influence of one on the other 
(Scanlon et al., 2002); under certain conditions these interactions can be significant (Webb 
2006a).  

2.3.1.1. Advection 

Advection is movement induced by a pressure gradient. This gradient can be formed by near-
surface processes in the soil via strong winds, and by rapid changes in barometric pressure 
(“barometric pumping”) or the height of the water table (Kuang et al., 2013). Advection caused 
by these processes tend to occur, however, only when the changes are abrupt, the permeability of 
the soil is high, and, in the last case, the water table is shallow (Scanlon et al., 2002). While these 
processes will be intermittent, continual natural advection is observed at sites where large 
volumes of deep-origin gas are leaking to the surface (e.g. Annunziatellis et al., 2008). In 
addition, advection can also occur via human-induced forcing, such as soil vapour extraction 
methods used for the remediation of subsurface gasoline spills (e.g. Nguyen et al., 2013). 
Advective flux is termed “non-separative” because it does not separate the gas components or the 
component isotopes (e.g. Camarda et al., 2007), as does most forms of diffusion. 
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Because air is about 50 times less viscous than water (and CO2 is less viscous than air; Figure 
1b), significant gas flow can occur via advection at relatively small pressure gradients. Viscosity 
is included in Darcy’s Law, which is the most commonly used formulation to describe advective 
flow:  

Eqn  7     ۸۵ ൌ 	െ
۵ܓ
ૄ۵	
	સ۾ 

where	JG is volumetric flux, kG is the permeability, G is the dynamic gas viscosity, and P is the 
pressure gradient. In soil pores containing both gas and water, gas permeability (kG) must be 
expressed as the effective permeability at a given gas saturation level: 

Eqn  8     ۸۵ ൌ 	െ
۵ܓ۵ሻ܁۵ሺܚܓ

ૄ۵	
	ሺસ۾ሻ ൌ 	െ ۵ሻ܁ሺ	۵ܓ

ૄ۵	
	સ۾ 

where krG is the relative gas permeability at a given gas saturation (SG). The ideal gas law can be 
used to convert the volumetric flux JG into a molar flux NV, such that: 

Eqn  9     ܄ۼ ൌ	െ
۾

܂܀

۵ሻ܁ሺ	۵ܓ

ૄ۵	
	સ۾ 

Note that Darcy’s Law is an empirical formula developed for water flow in sediments. However, 
water is essentially incompressible while gas is compressible. If the pressure gradient is 
sufficiently small the gas compressibility can be ignored in the formulation of the governing 
equations, however if it is large this factor will have to be taken into account. Another important 
deviation from Darcy’s Law for gas flow is that while the water velocity is zero at the pore walls, 
the gas velocity is not zero (called the “slip velocity”). This additional “viscous slip flux” (also 
known as the “Klinkenberg effect”) means that Darcy’s Law tends to underestimate gas flux, 
with the deviation being most pronounced at low pressures and absent at high pressures where 
the gas behaves as a liquid. Finally, at high velocities the relationship between flux and the 
pressure gradient becomes non-linear, flow becomes turbulent, and inertial effects become 
important. Under these conditions Darcy’s Law overestimates gas flux, thus necessitating the use 
of an additional non-linear flow resistance term called the Forchheimer Extension (Webb, 
2006a). 

In addition to standard, pressure-driven advection, density-driven advection is also possible 
under certain conditions. Based on numerical simulations this mechanism should be most 
important in highly permeable sediments and depend on the density contrast between the gas of 
interest and the surrounding gas. Although often studied in terms of the movement of dense 
volatile organic contaminants, this process was also found to be important in explaining the 
movement of dense CO2 in the unsaturated zone at a natural geogenic gas leak at Mammoth 
Mountain, California (Altevogt and Celia, 2004). 

2.3.1.2. Diffusion 

Diffusion is movement induced by a concentration gradient. In normal soils diffusion is the main 
process that controls the primarily vertical movement of biogenic CO2 (produced in the soil by 
plants and microbes), and is important for lateral and vertical movement of geogenic CO2 once 
outside of the advective leak regime. In general diffusion is a “separative” process, in that 
differences in diffusion coefficients between heavier and lighter gases, and between heavier and 
lighter isotopes, result in a separation of these components along the path length. As an example, 
it has been shown that the 13C-CO2 of diffusing biogenic-origin CO2 can be depleted by up to 
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4.4‰ relative to its source organic matter due to fractionation between the faster 12C and the 
slower 13C (Amundson, 1998), while significant separation would be expected between a light 
gas like He (MW = 1 g) and a heavy one like CO2 (MW = 44 g). As discussed below, however, 
one diffusion mechanism (non-equimolar) is non-separative. Because gas molecular diffusion 
coefficients are about 4 orders of magnitude greater than those in water, gas diffusive fluxes are 
generally much greater than in water (Scanlon et al., 2002).  

Diffusion in the gas phase is more complicated than in the liquid phase, as it can include various 
types like molecular and non-equimolar diffusion (grouped together as “bulk diffusive flux”), 
and Knudsen diffusion. The distinction and mode of movement of these different forms of 
diffusion are often a function of the relationship between the pore size (p), which is the average 
distance between sediment particles, and the mean free path (), which is the average distance 
that a molecule travels before colliding with another molecule.  

Molecular diffusion occurs under isobaric, isothermal conditions in which equimolar gas pairs 
(e.g. CO and N2) counter-diffuse in a porous medium such that p. In this manner molecule-
molecule collisions dominate over molecule-wall collisions, thus minimising the effect of the 
solid phase and approaching, conceptually, free air diffusion. The effective gas diffusion 
coefficient in sediments is derived from that in free air by introducing variables that take into 
account the volume available for movement and the pathway length: 

Eqn  10     ۲ܑܒ
܍ ൌ ૌ	ી۵	۲ܑܒ 

where ܦ௜௝
௘  is the effective diffusion coefficient of gas i in gas j,  is the tortuosity (i.e. the length 

of the “tortuous” path in a porous media divided by the corresponding straight line length), ீߠ is 
the volumetric gas content, and ܦ௜௝ is the free-air diffusion coefficient. 

Non-equimolar diffusion is due to gas components having different molecular weights. Given 
that all gas molecules in an isothermal and isobaric setting must have the same kinetic energy, it 
follows that lighter molecules move more rapidly than heavier molecules. In a binary system the 
more rapid diffusion of the lighter molecules will result in an increase in the pressure, which in 
turn will result in a pressure induced flux known as non-equimolar flux or “diffusive slip flux” 
(some authors refer to this as a type of induced advection, rather than a type of diffusion; e.g. 
Webb 2006a). Because of the influence of pressure in this process, non-equimolar flux is non-
separative, unlike the other diffusion types. 

Knudsen diffusive flux (or “free-molecule flux”) occurs when p, such that molecule-wall 
collisions dominate over molecule-molecule collisions. This type of diffusion is important in 
fine-grained materials with small pore sizes, and depends on the molecular weight of the 
molecules but is not influenced by the presence of other gas species. 

Modelling of diffusive flux is typically conducted using Fick’s Law, however this is truly only 
valid for molecular equimolar diffusion under isobaric and isothermic conditions, predicting the 
movement of only one component. Originally it was developed empirically for molecular 
diffusion of solutes in a liquid, and has been applied in the gas phase to describe molecular 
diffusion of gas i in gas j: 

Eqn  11       ۸ܑۻ
ܕ ൌ 	െ۲ܑ۱ܒસܑܠ 

where ܬ௜ெ
௠  is the molar flux of gas i, ܦ௜௝ is the diffusion coefficient of gas i in gas j, C is the total 

molar concentration, and ݔ׏௜ is the mole fraction gradient; as stated by Webb (2006a), in this 
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form the mole flux is relative to the molar-average velocity, not to stationary coordinates. Other 
limitations of Fick’s Law include the necessity that the mole fraction of the diffusing gas should 
be low, the diffusion coefficients of the two gases should not differ by more than a factor of 2, 
and the flux of one component must not depend on the flux of the other components (Scanlon et 
al., 2002).  

A more rigorous approach to modelling gas diffusion in a porous medium is given by the Dusty 
Gas Model (DGM), which is not empirical but rather was developed based on the kinetic theory 
of gases. The name originates from the fact that the grains of the sediment are treated as giant 
molecules (“dust”) that constitute an immobile component of the gas phase. In contrast to Fick’s 
Law, the DGM considers all types of diffusion and can predict the flux of all components in a 
gas mixture; the DGM system of equations have been solved both analytically and numerically. 
The DGM is the only model that can couple advection and diffusion (Webb, 2006a) because it is 
the only one that considers Knudsen diffusion (Scanlon et al., 2000). Finally the Stefan-Maxwell 
equation (SME) can also be applied; this formulation can be obtained from the DGM in cases 
where Knudsen diffusion is negligible (i.e. no molecule-wall collisions).  

Because the DGM can predict the flux of all components its use in multicomponent systems is 
critical, as the improper use of Fick’s Law can result in attributing incorrect processes to 
secondary components (such as microbial degradation of oxygen) when the true process may be 
another (like physical displacement). Model application can be summarized, according to 
Scanlon et al. (2002), as follows: Fick’s law can be used for high permeability material under 
isobaric conditions and low diffusing gas concentration (although the DGM and SME can also 
be applied), while the SME should be used if the concentrations are high; the DGM should be 
used for low or high diffusing gas concentrations in low permeability material under isobaric 
conditions; the DGM coupled with Darcy’s Law for advection should be used for low or high 
diffusing gas concentrations in low permeability material under non-isobaric conditions (i.e., 
presence of a pressure gradient); and the DGM should be used for high diffusing gas 
concentrations in high permeability material under non-isobaric conditions while Fick’s law 
coupled with Darcy’s law can be used for the same situation for low diffusing gas 
concentrations.  

2.3.1.3. Attenuation or migration via dissolution 

As a result of the high solubility of CO2 in water, the interaction between these two phases can 
influence the migration and spatial distribution of this gas. If the water content distribution is 
relatively stable then gaseous and dissolved CO2 will equilibrate as a function of the Henry’s 
constant and the movement of the dissolved CO2 will be attenuated, because it is partitioned into 
an essentially immobile phase. As discussed earlier (see Section 2.2.2), based on mineral 
saturation levels, this CO2 may be re-released via calcite precipitation.  If, instead, water content 
changes as a result of the infiltration of meteoric water, the dissolution of CO2 into this 
downward migrating water can result in the transfer of shallow CO2 (e.g. biogenic CO2 produced 
in the root zone) deeper into the soil column. If this water reaches the water table, the dissolved 
CO2 can then be transported laterally with groundwater flow. 

In addition to this chemical dissolution effect, the presence of two fluid phases (water and gas) 
influences physical flow through the mutually dependant effective permeabilities for each phase 
(as a function of relative volumetric water and gas contents, and the fact that water is the wetting 
phase so gas will tend to occupy the larger pores). For example, although not reported here, 
Darcy’s law can be rewritten to address two phase, unsaturated flow, taking into account the 
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slip and dilational features are formed as a result of deformation and strain dissipation into the 
protolith (Caine et al., 1996). More complex geometries commonly occur, however, whereby 
multiple FCs branch and anastomose, associated DZs overlap, and protolith blocks are entrained 
into the fault structure (Figure 5b); in addition, at a larger scale, the linking of multiple, sub-
parallel faults along strike can form additional dilational and folding features (Faulkner et al., 
2010; Bense et al., 2013). Fault form, style, size, and permeability are all variable both spatially 
and temporally, with spatial changes occurring both along dip with depth and along strike; this 
variability and the factors that control it are discussed below. 

Vertical variations are controlled primarily by the combined effects of pressure and lithology, 
with lithology being sub-divided into the broad categories of competent, brittle rocks with low 
intrinsic porosity (e.g., crystalline, volcanic, and carbonates rocks) and unlithified, porous rocks 
(e.g., sands, clays, shales).  

The FC of brittle rocks vary markedly with depth, such that a uniform unit may produce fault 
gouge and/or breccia near surface that evolves into cataclasite, phyllite, and mylonite with 
increasing lithostatic pressure (Sibson, 2000). Gouge is fine grained material formed by either 
equant particles or phyllosilicates / clays and has a low intrinsic permeability, while breccia 
consists of angular fragments in a matrix of <30% fine grained material that can have low 
permeability if compacted or cemented or a moderate permeability if not (Bense et al., 2013; 
Uehara and Shimamoto, 2004). With increasing pressure fault movement breaks and crushes 
grains (comminution) to form fine grained, impermeable cataclasites. Finally the combined 
effects of increasing pressure and temperature causes ever more ductile deformation which 
results in phyllites and mylonites. With the exception of non-cemented breccias, these various 
FC styles are isotropically impermeable and if continuous tend to form effective barriers to both 
vertical and horizontal flow. 

In sharp contrast to the pore-scale-controlled low-permeability of FC rocks, permeability in the 
DZ of brittle rocks tends to be higher and fracture controlled (Caine et al., 1996) (Figure 5 c,d). 
The DZ, if present, is thought to first form during the initial stages of a new fault, with the 
creation of a band of dilational fractures and slip surfaces in the protolith during the period prior 
to failure along the proto-FC (e.g. Agosta and Kirschner, 2003). With subsequent movement the 
width of this interval can remain the same if strain is concentrated along the principle slip surface 
(“strain softening”) or can continue to enlarge if strain dissipation is more diffuse (“strain 
hardening”) (Gray et al., 2005). Conjugate fracture systems tend to form in these conditions, 
although examples have been found where orientations can be conditioned by pre-faulting 
discontinuities, such as cooling cracks in volcanic rocks (Riley et al., 2010). The size and number 
of fractures tend to decrease exponentially moving away from the FC and into the protolith 
(Bense et al., 2013). The level of lithostatic pressure can have a significant impact on the 
hydraulic characteristics of these features, with lessening pressure allowing for more open 
fractures. Field and modelling studies have shown the importance not only of the permeability of 
individual fractures, but also their three dimensional geometry, orientation, and how well they 
are inter-connected (Gudmundson et al., 2001; Bigi et al., 2013; Faulkner et al., 2010). Gas 
migration along fractures beneath the water table is a function of relative fluid input pressure, 
with low gas pressures resulting in individual bubble migration and high gas pressures causing 
the gas to move as a single continuous phase in the centre of the fracture while water flows along 
the fracture surface (annular flow) (Ranjith et al., 2006). In general, if not sealed by the 
precipitation of secondary mineral phases or completely closed by lithostatic pressure, brittle 
rock DZs tend to be highly permeable.  
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The hydraulic characteristics of a fault can also vary in time, as a function of the many processes 
that can open or seal a structural feature. For example there is a clear, even if scattered, 
relationship between throw and fault width, gouge development, smear thinning, cataclasis, and 
the relative proportion between FC and DZ (Bense et al., 2013). This increased fault maturity 
tends, on average, to focus strain within the fault core, often creating a progressively more 
effective barrier. If, instead of this strain softening, fault evolution results in the formation of 
progressively more rigid FC rocks, subsequent strain hardening could widen the DZ and increase 
fault-parallel permeability (Gray et al., 2005). Mineral precipitation is also a time-dependent 
process that can affect both fault permeability and fault strength in complex feed-back processes, 
particularly in carbonate rocks due to the higher mineral solubility (Polak et al., 2004). Increased 
DZ permeability may increase fluid flow, but secondary mineral precipitation of calcite or quartz 
can eventually seal those pathways and cause fluid pressures to increase. If minerals like calcite 
or quartz are precipitated, the resultant veins can contribute to a partial recovery of rock strength 
and make it more prone to further brittle deformation, whereas the formation of phyllosilicates 
(typically involving the breakdown of feldspars via hydrothermal reactions) can weaken a slip 
surface (Bense et al., 2013). In this sense one also has to consider the seismic cycle, whereby 
stress build-up, the formation of dilational microcracks, subsequent failure, and inter-seismic 
sealing all affect (and are all affected by) mineral precipitation, fluid flow, and permeability 
changes (Uehara and Shimamoto, 2004; Gartrell et al., 2004; Tenthorey and Fitz Gerald, 2006; 
Sibson, 2000).  

Taken together it is clear that in a natural 3D system, consisting of different lithologies at 
different depths exposed to different stress fields, the migration of fluids along faults can be 
highly complex and spatially variable, with the potential for channelled flow, accumulation in 
capped porous units (as in stacked oil reservoirs), fault cross-flow, lateral migration along strike 
(where it may exploit a barrier weakness) or complete sealing (Faulkner et al., 2010). 
Permeability along a fault will be highly heterogeneous and anisotropic, with the potential that 
fluid migration, especially for gas, will occur along a limited number of fractures (Bense et al., 
2013; Faulkner et al., 2010). This complexity makes modelling efforts of real-world situations 
highly challenging (Dockrill and Shipton, 2010).  

2.3.2.2. Boreholes 

Both active and abandoned wells could represent migration pathways for CO2 from CCS sites 
because they form a direct connection between the engineered CO2 storage reservoir and the 
surface, and because they are composed of man-made materials that may corrode over long 
periods of time (Figure 8). Not all boreholes are created using the same techniques, however, and 
thus newer wells are generally more secure than older ones while horizontal wells may be safer 
than vertical ones. Leakage along these pathways can be subdivided into 2 general categories 
based on the mechanism and potential rate of flow: i) blowouts during injection; and ii) long-
term, slower leakage along wells. Blowouts (i.e., uncontrolled flow of well and/or formation 
fluids from the borehole to the surface) are extreme and obvious emergencies that will require 
immediate remediation, and thus this type of leakage would not be studied using the techniques 
described in this research. As such, only the process of slow leakage will be discussed below. 

The various potential well leakage pathways / mechanisms can again be divided into two main 
groups: i) CO2-induced chemical reactions that compromise the integrity of the cement/casing 
barrier; and ii) direct migration of fluids along existing fractures in the cement or gaps at the 
cement-casing or cement-rock interfaces. Clearly these two processes, the first diffusion 
controlled and the second advection controlled, are closely linked, as cement corrosion could put 
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about 9 ml/minute. These authors observed very rapid, linear alteration which, for the 
carbonation layer, ranged from 300 mm over 30 years in the 20°C / pH 3.7 experiment up to 
almost 1000 mm in the 50°C / pH 2.4 experiment. The enormous difference compared to the 
diffusion controlled systems is due to constant elevated ionic and pH gradients causing the 
system to always be far from equilibrium. Flow-through experiments conducted by Carey et al. 
(2010) mimicked the narrow aperture gaps that may occur at the casing-cement interface by 
embedding standard-grade carbon steel with grooves in a 6 cm long cement plug. A 50:50 mix of 
supercritical CO2 and NaCl brine was passed through limestone (to simulate equilibrium in a 
carbonate reservoir) prior to passing through the steel-cement plug at 40°C and 14MPa for about 
16 days at a flow rate of 20 ml/h for the first 294 h and 10 ml/h for the remaining 120 h. At the 
end of the experiment the steel was corroded to a depth of about 25-30 m; in some locations 
scale formation along the steel surface appears to protect it from further corrosion, however at 
other locations it was still exposed. Instead, the cement was carbonated to a depth of 50 to 250 
m, with little evidence of erosion. Iron and calcium carbonate precipitates formed in all of the 
gaps, showing the potential importance of self-sealing processes along gaps and fractures (Carey 
et al., 2007; Viswanathan et al., 2008) and the chemical interaction of products from cement and 
steel alteration. Bachu and Bennion (2009) stress, however, that because well-related leakage is 
likely to be 1D vertical, the occurrence of a very well-sealed interval will impede fluid flow and 
reduce the effective permeability along the entire length of the well, even if some intervals 
experience increased corrosion and dissolution.  

The analysis of core from wells that have been exposed to CO2 for up to 30 years support the 
laboratory findings described above. For example Carey et al. (2007) show reaction front 
penetration rates in samples collected about 3 m above the reservoir-caprock contact at a CO2-
EOR field to be similar to those predicted by Kutchko et al. (2008), and evidence of interface 
flow with the precipitation of 0.1 to 0.3 cm thick layer of self-sealing carbonate minerals at the 
casing-cement contact (but no sign of casing corrosion itself). A more recent study (Crow et al., 
2010) sampled casing, cement and formation rock from a 30 year old well in a natural CO2 
production reservoir in the Dakota Sandstone in central USA. In this study there was evidence of 
diffuse carbonation but cement interfaces with the casing and formation rocks were tight with no 
significant calcite deposition and all casing samples were almost in pristine conditions.  

While the slow leakage mechanism will result in much smaller flow rates than that which could 
occur during a blowout, it would be more difficult to detect and thus could potentially release a 
significant volume of CO2 to the atmosphere (or an aquifer) if the leak is not recognised, located, 
and remediated within a reasonable length of time. For this reason near-surface gas geochemistry 
methods can give an important contribution to the monitoring of such sites (e.g., Beaubien et al., 
2013; Jones et al., 2011; Loizzo et al., 2011). 

2.3.3. Shallow pathways 

For simplicity, the term “shallow” is used here to describe that depth interval which includes un-
consolidated sediments and the soil, typically consisting of the upper 100 m. The discussion 
below has been divided into two main settings: i) free-phase CO2 gas beneath the water table 
caused by upwardly migrating deep-origin gas; and ii) CO2 gas movement in the unsaturated soil 
horizon. This subdivision has been chosen to highlight some processes that can affect CO2 
leakage at the ground surface (both in terms of location and rate), as well as any impact it may 
have on groundwater quality or ecosystem health. In addition, these processes can also influence 
the capabilities of various methods to locate and quantify leakage. 
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2.3.3.1. Free‐phase gas in sediments below the water table 

One issue linked to the leakage of deep-origin, geogenic or anthropogenic CO2 that has not 
received much attention in the literature is that of the entry of free-phase gas into shallow 
sediments from faults or leaking boreholes and the processes that control its subsequent lateral 
and vertical migration.  

For example, if faulted bedrock is overlain by water-borne sediments deposited after the last fault 
movement (i.e., the sediments themselves are not faulted), what is the behaviour and migration 
pathway of the gas after it exits the bedrock fault? The answer to this question is likely linked to 
the relative timing and duration of leakage and sedimentation. If leakage was continuous during 
the entire sedimentation process it is possible that bubble-induced turbulence would have 
maintained a constantly open vertical pathway through the newly forming sediments. If, instead, 
the leak is intermittent, or has newly formed due to such mechanisms as bleeding of over-
pressurised reservoir fluids (Sibson, 2000) or the sealing of one leak point and opening of 
another (Dockrill and Shipton, 2010), the leaking gas will encounter stratified sediments (below 
the water table) with a classic anisotropic permeability field (i.e., Kh>>Kv). If a permeable unit 
is first encountered, like a lacustrine sand or a fluvial gravel, the gas could accumulate within it 
and migrate laterally as a bubble at the base of an overlying impermeable strata. The 
groundwater would begin to dissolve a portion of this CO2, transporting it laterally in the 
dissolved phase along the groundwater flow direction. Over time this aquifer may become 
locally saturated with respect to CO2. If leakage rates are high relative to groundwater flow rates 
and recharge, dissolution would not be sufficient to balance CO2 input and thus the bubble would 
grow. If the boundary conditions of the permeable unit are open, groundwater will be displaced 
with no significant pressure build-up and the gas bubble will expand until a upward pathway is 
encountered. For example, if the contact is quasi horizontal the bubble may expand until a 
permeable fracture is encountered, or if the contact is dipping the bubble could migrate upwards 
and leak towards the atmosphere if the unit outcrops on surface or sub-crops in the unsaturated 
zone. Instead if the boundary conditions are closed, the continual addition of gas could increase 
over-pressuring within the aquifer; this may lead to fracturing if the unit is already subjected to a 
tectonic stress regime or to localised liquefaction. If one of these processes occurs, the leak may 
be able to propagate itself.  

For the case of leakage along a borehole, much of the processes are the same except for the issue 
of leakage during sedimentation. If a borehole is permeable only to a certain level in the shallow 
stratigraphy, the leaking CO2 may migrate vertically to that point and then laterally if it 
encounters a sufficiently permeable unit. Once in the permeable strata, the migration, 
accumulation, and leakage processes described above would be similar. 

Implicit in the above discussion of hypothetical leakage into and through recent, non-faulted 
overlying sediments is that the eventual release point at ground surface may not coincide 
vertically with the source (fault or leaking borehole), but rather may be offset due to the 
movement towards, or creation of, different leakage pathways in the shallow sediments. Another 
implication relates to the footprint of a potential CO2 source gas, as the gas bubble within an 
aquifer (and the associated CO2-saturated groundwater) could cover a much larger area than the 
original, spatially limited “point” source. This gas-charged aquifer could then feed multiple 
leakage areas if different pathways are intersected, or could feed wider-scale, lower-level 
diffusive flux given sufficient time and suitable geological conditions.  
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2.3.3.2. Gas movement and distribution in the unsaturated zone 

Various processes and mechanisms can influence the spatial distribution of biogenic and 
geogenic gas in the vadose zone, both in terms of total concentrations and isotopic values. The 
level of impact that any given process will have on eventual distribution will depend on the 
balance and inter-play between various site-specific characteristics, such as concentration and 
pressure gradients, soil permeability and organic matter content, source isotopic composition, etc.  

Biogenic CO2 concentrations typically increase with depth in normal agricultural or forest soils 
(Hamada and Tanaka, 2001; Risk et al., 2002b; DeSutter et al., 2008; Maier et al., 2010), due to 
the balance between the gradients of in situ biogenic CO2 production and gas diffusivity 
(Amundson et al., 1998; Risk et al., 2002b; Hashimoto and Komatsu, 2006). Although the vast 
majority of biogenic CO2 production (60 to 90%) occurs in the upper 5 to 20 cm of the soil 
column (Gaudinski et al., 2000; Risk et al., 2002b; Elberling, 2003; Hirano et al., 2003; Drewitt 
et al., 2005; Jassal et al., 2005) due to more labile carbon and the presence of roots (Gaudinski et 
al., 2000; Kuzyakov, 2006; Phillips et al., 2012), concentrations increase with depth due to the 
balance between this production curve and a decrease in diffusivity with depth caused by 
compaction and increased water content. In addition, infiltrating meteoric water can dissolve and 
transport shallow biogenic CO2 deeper in the soil column. 

The 13C of biogenic soil CO2 is a complex function of: i) the 13C of the living plants or 
decomposing organic matter; ii) the difference in the diffusion coefficient of 12C and 13C; and iii) 
the rate at which CO2 is produced by biological activity in the soil (Amundson and Davidson, 
1990). In most cases, the 13C decreases from atmospheric value (about -7.5‰) at the soil 
surface to more negative values, closer to that of decomposing organic matter with increasing 
soil depth. However, because of diffusive fractionation, the soil gas CO2 will be enriched by up 
to 4.4‰ while the CO2 fluxes at the soil surface, assuming steady state, should have an isotopic 
signature representative of the source biological production (Cerling et al., 1991; Davidson, 
1995; Admundson et al., 1998). 

In addition to the effects that water content (i.e., precipitation) can have on gas permeability and 
thus on CO2 flux to the atmosphere, as already described in Section 2.2.1, other atmospheric 
related parameters that can affect the rate and transfer of CO2 to the atmosphere include wind via 
the Bernoulli effect (Lewicki et al., 2007) and atmospheric pressure via “barometric pumping”; 
these processes can affect the pressure gradient and induce transient advection.  

For environments where deep CO2 is leaking, advection and concentration gradients have a 
significant influence on distribution. In a series of detailed soil gas and gas flux surveys across 
various gas vents at Latera, Annunziatellis et al. (2008) and Beaubien et al. (2008) highlighted 
the complex interplay between processes within the core of a gas leak, where advection 
dominates, and those within the surrounding halo, where diffusion dominates. Both studies show 
CO2 flux values in the centre of the gas vent of up to 3000 g m-2 d-1 and soil gas concentrations at 
a depth of about 70 cm that approach 100%; this high CO2 concentration results in essentially 
anoxic soil conditions in which reduced gas species like CH4 and H2S are stable and where 
sulphides are precipitated. Outside of this core, over a distance of less than a metre, flux values 
drop rapidly to below 500 g m-2 d-1 (even though soil gas CO2 concentrations are still high), CH4 
and H2S values decrease to background, He concentrations also decrease to background values, 
and O2 levels slowly start to increase. Moving further away, soil gas CO2 values gently decrease 
while O2 and N2 values increase in a constant ratio that indicates mixing between leaking CO2 
and atmospheric gases.  
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methods must be able to quantify this leakage and accurately separate it from baseline flux 
originating from biogenic processes. As natural, near-surface, biologically-produced CO2 flux 
can be both significant and highly variable (both spatially, as a function of soil type and 
underlying geology, topography, land-use, etc., and temporally, based on diurnal and seasonal 
effects of rainfall, temperature, etc.), great care must be taken to correctly subtract baseline fluxes 
so as to ensure that calculated leakage rates are not grossly over- or under-estimated. Although 
there is clearly overlap between these two arguments, they are separated below for convenience. 

The discussion that follows focuses on near surface gas geochemistry techniques because of the 
scope of the thesis and the fact that these are a direct, precise measurement of the parameter.  

2.4.1. Finding Leaks 

The problem of locating a specific leak is more closely related to CCS, because the goal of CCS 
monitoring is to ensure site safety and integrity.  In the unlikely event of a leak at surface from a 
geological CO2 storage reservoir, emission will be new and probably localised, and surveying 
will be conducted to ensure rapid discovery to minimise any impacts and plan remediation. 
Natural, geological leakage from geothermal or volcanic areas will, on the other hand, tend to 
occur from long-lived, multiple gas release points, with research focused more on quantifying 
total leakage rates over larger areas. That said, these latter studies may benefit from the leakage 
location methods developed for CCS because leakage quantification precision will depend on 
discovering (and delineating) as many leakage areas as possible.  

Because both soil gas and gas flux surveys are point measurements, the issue has been raised 
regarding the number of samples required to locate a leak (or leaks) of a given dimension in an 
area that could potentially be on the order of 1 to 100 km2. To illustrate this Oldenburg et al. 
(2003) present a statistical analysis that relates the probability (P) of finding a leak based on the 
size of the leak (x), the size of the total survey area (A), and the number of randomly selected 
sample points (n), assuming that the method used has 100% capability to distinguish a gas leak 
anomaly:  

Eqn  12        ۾ ൌ ૚ െ	ቂ૚ െ
ܠ

ۯ
ቃ
ܖ

 

Using this formula, the number of purely randomly collected samples that will be needed to 
locate at least one gas leak point at the 95% confidence level will be 30 at x/A = 0.1, 300 at x/A = 
0.01, and 3000 at x/A = 0.001. As discussed in section 5.3.1, different results can be obtained 
using different sampling strategies other than purely random.  

Another approach described by Oldenburg et al. (2003) calculates the number of samples (n) 
required to attain a required confidence level. For example, a low confidence level (e.g. 0.1) 
would be set in the case where there is a low possibility of a leak, resulting in n = 7, 70, 700, and 
7000 for x/A = 0.1, 0.01, 0.001, and 0.0001. In contrast a high confidence level (e.g. 0.9) would 
be required in the case where other information indicated that a leak likely exists, resulting in n = 
50, 500, 5000, and 50,000 for the same the same range of x/A values.  

These calculations assume that the method is 100% capable of detecting a CO2 leak anomaly. In 
reality, however, both false positives and negatives will likely occur due to the statistical 
distribution of both the background and anomaly populations (i.e., overlap between the two 
populations). Parameters can be included in the calculations that estimate probability 
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distributions (based on baseline studies and leakage modelling), and a threshold can be set above 
which a value is considered anomalous. Monte Carlo simulations that take into account these 
parameters, as well as x/A, can be used to estimate the number of measurements that will be 
required to determine with a desired confidence level whether a gas anomaly exists in the 
sampling area. Oldenburg et al. (2003) state that these examples highlight the importance of 
collecting site specific geological information to delineate the most probable gas leakage 
locations to minimise A, which will maximise the potential for successful location and 
quantification of a leak while at the same time minimising the number of samples and specialised 
analyses (i.e. costs). 

To address the issue of capability to recognise a leak during a survey, various additional 
geochemical methods can be used to help distinguish a biogenic anomaly from a leak anomaly. 
As discussed above the carbon stable isotopic signature of CO2 can give an indication of origin, 
however only if there is a significant difference between the deep leaking gas and the shallow 
biogenic gas. For instance, 13C can be very useful to distinguish biogenic CO2 (typically 
between -8 to -35‰) from geogenic CO2 (often between -10 to +2‰) in natural diffuse 
degassing studies (e.g. Chiodini et al., 2008), however the similar values of biogenic (particularly 
of the C3 photosynthetic pathway) and anthropogenic CO2 (originating from burning coal or 
petroleum products) often precludes its use in CCS monitoring (e.g. Beaubien et al., 2013). 
Examples where stable isotopes were successfully used to map leakage from controlled release 
experiments, in which injected and background biogenic CO2 had significantly different 13C 
signatures, include Krevor et al. (2010), Moni and Rasse (2014), and Jones et al. (2014). Another 
option is the radiogenic carbon isotope, 14C, of CO2. This isotope is a measure of age, with higher 
values indicating a more modern carbon source; for example Δ14CCO2 of atmospheric air is 
around 70‰ and CO2 of a typical forest soil is about 128‰, whereas geogenic or anthropogenic 
CO2 is basically free of 14C (Oldenburg et al., 2003). Other tracer gases that can be associated 
with deep-origin gas (and absent or very low in shallow gases) have also been proposed, such as 
noble gas ratios like Ar/Kr and He/Kr (Rouchon et al., 2010) and noble gas isotopes of species 
like Xe (Nimz and Hudson, 2005) for geogenic gas, or man-made gases added to anthropogenic 
CO2 prior to injection such as perfluorocarbons and sulphur hexafluoride (Wells et al., 2007; 
Strazisar et al., 2009).  

A number of researchers have proposed different sampling soil gas / flux strategies to improve 
leak detection success rates. For example, Cortis et al. (2008) describe a dynamic sampling 
campaign of soil gas or gas flux measurements directed via an artificial neural network (ANN) 
model coupled with particle swarm optimisation (PSO). The ANN defines a regression 
correlation between the baseline CO2 point measurements conducted prior to injection and 
various easily measured system properties (e.g. topography or vegetation), with points lying 
outside this regression being defined as anomalous. The PSO is then used to dynamically 
manage a sampling campaign, with subsequent sampling points (direction and distance) for 
multiple technicians in the field being directed by their current direction and by minimising the 
regression coefficient between their previous measured values and the ANN model at both the 
local (individual) and global (group or “swarm”) level. Computer testing of this approach was 
conducted on simulated data for a hypothetical site having variable topography, vegetation, and 
an average background CO2 flux of about 10 g m-2 d-1. On this baseline distribution a 20 times 
CO2 flux anomaly was superimposed in one area within the grid. Multiple PSO simulations were 
conducted with different random initialisations, with the majority being capable of finding the 
anomaly. Unfortunately, however, the authors do not state the average number of iterations (i.e. 
sampling points) that were required for the various simulations.  
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Another approach involves multiple measurement campaigns combined with spatial and 
temporal filters to both locate and subsequently quantify a leakage (Lewicki et al., 2005a; 
Lewicki et al., 2006). This approach is based on the assumption that: i) shallow background 
processes like soil respiration are generally spatially heterogeneous and controlled by 
meteorological and biological processes that operate on diurnal or seasonal time scales; ii) 
leakage anomalies are relatively coherent in space and constant in time; and iii) both baseline and 
leakage signals are modified by near-surface processes on predictable time scales. To test the 
idea that these differences can be exploited to locate a leak, the authors conducted multiple 
simulations on synthetic data consisting of a log-normal background CO2 flux distribution and 
local leakage values created as a scaled Gaussian distribution. Results indicate that the approach 
has potential to find a leak given favourable conditions. 

Finally, ground surface CO2 concentration or isotope mapping, based on the concept of near 
surface gas accumulation described above in Section 2.3.4, has been proposed as a potential 
leakage mapping technique. In this approach measurements are made continuously at a fixed 
height above the ground surface while constantly moving over the area of interest. By keeping 
track of analysis location via coupled GPS measurements, results can be mapped and leakage-
associated anomalies can be delineated. The advantage of this approach is that it is rapid and 
continuous along the surveyed lines, however it may be limited by a lower sensitivity compared 
to point flux and / or soil gas measurements. Published examples of this approach include the use 
of cavity ring-down spectroscopy (WS-CRDS) for the analysis of 13C-CO2 at a height of about 
9 cm above the ground surface (Krevor et al., 2010), CO2 concentration mapping at a height of  
between 30 to 60 cm using a mobile open path infrared laser (Jones et al., 2009), and CO2 
concentration just at ground surface using an infrared sensor (Jones et al., 2009; Annunziatellis et 
al., 2008). Jones et al. (2009) show how a gas vent having a flux rate of 200 g m-2 d-1 was clearly 
visible with the measurements made at ground level (Figure 12) but that no anomaly was 
observed for this vent at the subsequent height of 10 cm (for the given sensitivity and response 
time of the sensor system used). These results indicate that continuous ground surface CO2 
measurements may be a viable method for reconnaissance leakage mapping given sufficiently 
high enough flux rates above background (probably >100 g m-2 d-1) and good ground conditions. 

 

Figure 12. Plot showing the CO2 concentrations at four different heights along a transect crossing two gas 
vents (Jones et al., 2009); the surveys were performed at the pace of a slow walk. Note that only 
the survey performed at ground surface was able to define the second, lower-flux gas vent. 

Other, more large-scale methods that have been suggested for leakage detection, like Eddy 
Covariance (Leuning et al., 2008; Lewicki et al., 2012) and remote sensing (Bateson et al., 2008; 
Verkerke et al., 2014) are beyond the scope of the present study. 
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2.4.2. Quantifying Leaks 

Leakage quantification has been applied to both CCS and natural leakage studies, with primary 
challenges being the separation of deep-origin flux from shallow biogenic flux, and the size of 
the leakage area with respect to the sample spacing and survey area (e.g. interpolation between 
measurement points). Four main approaches have been discussed in the literature: i) single 
survey of flux measurements; ii) multiple flux surveys; iii) monitoring of soil gas tracers; iv) 
combined flux and soil gas measurements. Approach (i), which can be further subdivided based 
on data processing methodologies (as discussed below), is the most commonly used approach 
and is the method which is applied in the present research. 

2.4.2.1. Single survey of flux measurements 

This method involves a single CO2 flux survey over the area of interest, with sample spacing 
being chosen based on target size, total area size (i.e. time and money available to conduct the 
survey), logistics, experience, etc. Based on how the resultant data is treated (i.e., for calculating 
total flux and for estimating the biogenic and deep flux contributions) this approach can be 
further sub-divided into “dataset averaging”, “population averaging”, and “area calculating” 
(with some overlap between the techniques). Note that because flux data is typically log-
normally distributed, appropriate statistical methods must be used. 

For dataset averaging, the entire dataset is processed to calculate the simple arithmetic mean 
(which is valid for normal distributions) (Bergfeld et al., 2001; Lewicki et al., 2005; Bergfeld et 
al., 2006; Evans et al., 2009), the mean flux using a minimum variance unbiased estimator 
(MVUE) on log-transformed data (Bergfeld et al., 2006; Lewicki et al., 2005), or the declustered 
mean (Lewicki et al., 2007). These average values (in g m-2 d-1) are then multiplied by the total 
survey surface area (m2) to yield a total flux (i.e. undifferentiated in terms of origin) for the study 
site (g d-1). To separate biogenic from leaking flux, an estimate of the average or maximum 
biological flux rate is multiplied by the total surface area, and this value is subtracted from the 
total flux to estimate the portion of leaking flux. Note that this approach implicitly assumes that 
biological production continues at essentially the same rate whether deep leakage is present or 
not; this assumption has not been proven, as soil biological processes could be affected by both 
low (plant fertilization) and high (soil anoxia) CO2 flux. The biogenic flux can be estimated 
based on a visual assessment of the lowest population in a log-normal cumulative distribution 
plot of all data (Bergfeld et al., 2001), on a sub-set of samples collected at the same time in a 
non-leaking area (Lewicki et al., 2007; Chiodini et al., 2007), or ignored completely if most 
sampling is conducted in an area of elevated flux and little vegetation (Evans et al., 2009). Note 
that all the referenced studies were conducted on natural sites except for Lewicki et al. (2007), 
which instead was performed at an experimental site where CO2 was injected into the shallow 
subsurface via a horizontal borehole equipped with packers. Because the actual injection rate of 
this study was known, which is not possible on natural sites, these authors were able to show that 
the estimated steady-state leakage flux rates were very close to the actual injection rates of 0.1 t 
CO2 d

-1 (Lewicki et al., 2007) and 0.3 t CO2 d
-1 (Lewicki et al., 2010). This gives confidence in 

the method, provided that sample density is sufficient to capture spatial variability, although the 
small size and limited variables in this controlled experiment would be very difficult to duplicate 
in a more regional, natural-leakage study. 

The population averaging approach, better known in the literature as Graphical Statistical 
Analysis (GSA) (Chiodini et al., 1998; Lewicki et al., 2005) involves the definition of more than 
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one population in a log-normal distribution using the graphical methods defined in Sinclair 
(1991). This approach is based on the fact that a log-normal distribution (i.e., a single population) 
will plot as a straight line on such a graph, whereas multiple populations will result in a graph 
that has straight intervals (one for each population) connected by inflection points (due to overlap 
between the populations). The mean and proportion are calculated for each population, the 
proportion is multiplied by the total survey area to define the surface area of that population, and 
then that number is multiplied by the mean flux for that population to calculate the total flux due 
to that population. In the simpler case where two populations are defined, one can assign the 
lower population to background biogenic flux and the upper population to deep leakage flux. In 
contrast to the previous, this approach separates the two mechanisms and thus all flux in a 
leakage area is assumed to be of deep origin. Note that GSA has also been used to define 
background populations to assist in the sequential Gaussian simulation approach described below 
(e.g. Fridriksson et al., 2006). It should be pointed out, however, that multiple background 
populations (e.g. Mazot et al., 2013), spatial/temporal variations in background distributions 
(Leon et al., 2014), and the broad overlap of background and leakage populations can complicate 
data interpretation. 

Area calculating involves the use of contouring algorithms to calculate total flux rates, with the 
most common being kriging and the newly applied stochastic method called sequential Gaussian 
simulation (sGs).  

Kriging uses a weighted linear combination of neighbouring observations to estimate a value at 
an unsampled location. Based on a minimised least squares approach it provides the “best” fit for 
the available dataset, however it does not take into consideration the statistical (histogram) 
distribution of the original data, nor does the interpolated dataset match the spatial (variogram) 
distribution of the original dataset. This approach tends to produce maps that are “smoothed”, 
such that high and low values are under- and over-estimated, respectively. Two approaches have 
be used to quantify leakage using the kriging method. One is to calculate the arithmetic mean of 
the interpolated dataset and multiply it by the total area (Lewicki et al., 2005), similar to the 
procedure described above under dataset averaging. The second is to use the volume and area 
integration algorithms on the interpolated grids to calculate total flux, with area (m2) of the 
survey being multiplied by the Z values of the grid (i.e., flux in g m-2 d-1 for each grid cell. 
(Gerlach et al., 2001; Annunziatellis et al., 2007); this is the approach applied in this study (see 
section 5.2.2.3). Subtraction of the biogenic background, as described above, can be applied to 
these approaches. 

The newest approach is sequential Gaussian simulation (sGs), a stochastic method (Deutsch and 
Journel, 1998) first applied to flux quantification by Cardellini et al. (2003) and recently applied 
by numerous researchers (Lewicki et al., 2005; Fridriksson et al., 2006; Chiodini et al., 2007; 
Evans et al., 2009; Padrón et al., 2009; Bergfeld et al., 2012; Hernandez et al., 2012; Rissman et 
al., 2012). This stochastic method has kriging at its core, with the additional advantage that the 
resultant interpolated data respects the histogram and variogram of the original dataset. The 
method works as follows. First the typically skewed flux data is transformed into a normal 
distribution. A grid of a user defined cell size is created over the survey area and a random 
pathway is created which passes through each node on the grid. The first point is calculated using 
kriging, according to the semivariogram model for the original dataset, to estimate a mean and 
variance for that node based on the surrounding points, and then randomly selecting a value from 
that “conditional cumulative distribution” and applying it to that node. The new data point 
becomes part of the total dataset, such that each successive node calculation takes into account 
not only the original measured points but also all points calculated sequentially to that stage in 
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2.4.2.2. Multiple flux surveys 

The multiple-campaign approach described above (Lewicki et al., 2005a; Lewicki et al., 2006), 
which automatically filters out the spatial and temporal variability of the baseline CO2 flux field 
for a direct quantification of the leakage flux, has been proposed based on modelling results. In 
these articles, strategy success was evaluated based on the fraction mis-estimation of the 
calculated leakage rate versus the model-imposed synthetic leakage rate. These simulations 
showed that for a fixed AS/AT (leak versus total surface area) and FS/FB (leak versus baseline 
CO2 flux), the error of the leakage rate estimate decreases non-linearly with increasing number of 
sampling campaigns, becoming relatively insensitive after a certain number depending on the 
used parameters. It was also found that leakage estimates improve with a large leakage area 
relative to the total area or a high flux rate compared to background, but not necessarily both 
together. This implies that judicious selection of sampling areas for CCS monitoring based on 
known geology and structure will decrease the total measurement area (i.e. AT), thus increasing 
the potential for leak detection and quantification.  

2.4.2.3. Monitoring of soil gas tracers 

Perfluorocarbon tracers (PFTs) have many advantages for CO2 leakage monitoring, including 
being soluble in CO2, non-reactive and mobile, having very low natural concentrations, and 
being detectable at very low concentrations. Disadvantages include the fact that sampling points 
can be easily contaminated because of their high mobility and low concentrations, and the 
uncertainty regarding whether they migrate at the same velocity (and along the same pathways) 
as the host CO2. PFT tracer experiments at the West Pearl Queen depleted oil formation in south-
eastern New Mexico (Wells et al., 2007) has yielded the most successful results thus far. This 
study involved the injection of about 2,090 tonnes of CO2 into the reservoir over a 53 day period, 
together with slugs of three different PFTs. The PFTs were monitored using capillary adsorption 
tubes (CATs) that were deployed for extended time periods in a number of shallow boreholes 
(max 1.5 m deep) arranged in a radial pattern up to 300 m away from the injection well. Results 
showed NW and SW aligned “hot spot” anomalies within 100 m of the injection well. The PFT 
data was used to quantify leakage from the site as follows. The monitoring matrix was divided 
into 9 equal sized areas. Within each section, background concentrations were subtracted from 
points with anomalous values, an average calculated, and this value was projected for the entire 
section. The values for all sections with observed anomalies were then summed and this PFT 
leakage rate was converted to a CO2 leakage rate by multiplying by the injected CO2/PFT ratio. 
With this procedure a total CO2 leakage rate of 2.82 x 103 g CO2 yr-1 was calculated for one of 
the three tracers, which corresponds to 0.014% of the total injected CO2. Possible errors in the 
quantification calculations, as discussed by the authors, include the use of the average tracer 
concentration rather than a spatially distributed one, enhanced dilution of the tracer in the CO2 
over time during migration in the reservoir compared to the original injected ratio, and the 
possibility that “chromatographic” separation could have occurred as the tracer is far less water-
soluble and reactive than the CO2.    

2.4.2.4. Combined flux and soil gas measurements 

Klusman (2003) used both stable and unstable carbon isotopic data, combined with CO2 flux and 
other measurements, to estimate the amount of CO2 leaking at surface from the Rangely CO2-
EOR project in Colorado, USA. Approximately 23 million metric tonnes of inorganic geological 
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CO2 were injected into the Weber Unit from 1986 to 2003 over the 78 km2 area of the field. The 
geogenic CO2 used has an isotopic signature that is significantly different from that of biogenic 
CO2, with δ13C values near –4‰ and 14C (expressed as Percent Modern Carbon, PMC) near 
zero, thus rendering it a clearly recognisable tracer compared to the background CO2. Work 
consisted of a limited number of initial measurement points (41 above the oil field and 16 in the 
control area) being sampled for soil gas along shallow vertical profiles at 30, 60, and 100 cm 
depths and triplicate CO2 and CH4 flux measurements. The results were then used to choose 5 
locations to install deep multilevel boreholes (possible because of the 60m deep water table), 
with sampling intervals at 1, 2, 3, 5 m and end-of-hole depths (typically 7-8 m). Soil gas samples 
were analysed for CO2, CH4 and other alkanes, δ13C in CO2 and CH4, and 14C in CO2. Through 
the combination of CO2 flux measurements, δ13CCO2 results from the flux chambers, modelling 
of CH4 distributions in the deep boreholes (to define methanotrophic rate constants of CH4 
consumption and its eventual control on CH4 and CO2 concentrations), and the ratio of ancient vs 
modern carbon in the deep boreholes, Klusman (2003) estimated that less than 170 t CO2 yr-1 is 
leaking from the reservoir. This value may over-estimate the actual amount of CO2 leakage, as 
the high CH4 values in the deep wells (from 1-10%) and the modelled oxidation rates in the soil 
may indicate that much of the observed CO2 is the product of CH4 oxidation rather than leakage 
of the injected CO2. 
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3.1. Geology 
The geology of the west-central Italian peninsula is the product of two main tectonic events, a 
compressive phase during the Eocene to Late Miocene and a subsequent extensional phase from 
the Late Miocene through the Quaternary (Carmignani and Kligfield, 1990).  

The regional substratum of the study area consists of metamorphic phyllites and micaschists, 
onto which a series of “tectonic units” were placed during the initial compressive period via 
thrusts that trend primarily N-S. In the area of the Latera caldera, and throughout central Italy, 
these units are mainly formed by the Mesozoic “Tuscan nappe” and the Cretaceous to Eocene 
“Ligurian flysch”. The Tuscan nappe consists primarily of carbonates and some siliciclastic 
successions; because of high secondary permeability in the carbonates, this unit forms a regional 
aquifer and locally hosts the geothermal reservoir beneath the Latera caldera. The overlying 
Ligurian flysch is made up of various units, including impermeable shales and siltstones which 
act as a regional aquitard and which locally form the caprock for the geothermal reservoir and 
associated CO2.  

The subsequent extensional regime, which was related to the opening of the Tyrrhenian Sea, 
resulted in the formation of a series of NW-SE to N-S trending grabens and normal fault systems 
which dissected the previous compressional fold and thrust belt (Di Filippo et al., 1999; 
Funiciello and Parotto, 1978). The extensional phase also caused crustal thinning, resulting in 
significant volcanic activity during the Quaternary. The Vulsini volcanic district, consisting of 
the three main eruptive centres of Latera, Bolsena, and Montefiascone, was formed during this 
period, starting about 0.8 Ma ago (Evemden and Curtis, 1965; Nicoletti et al., 1979).  

The Latera Volcanic complex (Figure 14) developed in the western part of the Vulsini district 
between 0.3-0.1 Ma (Palladino and Simei, 2006; Simei et al., 2006; Vezzoli et al., 1987). 
Although the Latera caldera has a relatively simple topography, its eruptive history is complex, 
with multiple depocentres and a close link to Quaternary extensional tectonics (Annunziatellis et 
al., 2008). The explosive nature of this volcano resulted in a polygenic collapse caldera which 
has been dated at 0.3 Ma (Palladino and Simei, 2006; Vezzoli et al., 1987), followed by recurrent 
Plinian activity 0.28-0.23 Ma which formed a central volcanic edifice. The subsequent Sovana 
eruption resulted in pyroclastic flow activity (around 0.19 Ma) and is related to the main collapse 
of the Latera caldera. The largest volume of volcanic products was then erupted during the 
Onano eruption (0.17 Ma) (Freda et al., 1990; Nappi, 1969; Vezzoli et al., 1987), whereas the 
final phases of activity were characterised by the migration of emission epicentre from east to the 
northwest, where the Pitigliano eruption took place at 0.16 Ma and generated the small Vepe 
caldera (Nappi et al., 1991).  

Two magmatic series have been defined in this area, a potassium (K) and a high-potassium (HK) 
series. The HK rocks are strongly to mildly silica under-saturated, ranging from leucitites to 
phonolitic trachytes (Holm, 1982); the more mafic products are slightly porphyritic lavas, with 
phenocrysts of clinopyroxene, olivine and leucite, while the intermediates have no olivine and 
scarce plagioclase. The K series are nearly silica-saturated trachybasalts, latites and trachytes; 
porphyritic mafic lavas of this series contain olivine, clinopyroxene and minor plagiclase 
phenocrysts, while the pyroclastic products are dominantly trachytes with sanidine, plagioclase, 
biotite and titano-magnetite phenocrysts (Nicoletti et al., 1981).   
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Due to anomalously high heat flow beneath the caldera floor a number of geothermal exploration 
wells (up to 3000 m deep) were drilled during the 1970’s. These boreholes provide valuable 
information regarding the geology, structure, and geochemistry of the caldera (Barberi et al., 
1984). The geothermal reservoir is located within a structural high of Tuscan limestones (Barberi 
et al., 1984; Palladino and Simei, 2006), a feature which may represent a recumbent fold 
(Bertrami et al., 1984), an ancient caldera rim (Barberi et al., 1984), or a series of superimposed 
thrust sheets (Annunziatellis et al., 2008). This structural high is bounded laterally by sealed 
faults and thermo-metamorphosed carbonates, below by the metamorphic basement, and above 
by low permeability Ligurian flysch and volcanic pyroclastics. The reservoir limestones are 
heavily fractured and folded, and locally re-sealed with a composite hydrothermal assemblage 
(Cavarretta et al., 1985). Maximum permeability within the reservoir occurs along the major, 
NNE-SSW-trending axis of the structure (Sabatelli and Mannari, 1995).  

The CO2 that leaks at the surface (see Section 3.3) is likely the product of metamorphic alteration 
of the reservoir limestones, driven by the water-dominated system and the high heat flow of the 
geothermal reservoir (presently ranging from 170 to 230°C) linked to the original magma 
intrusion (Chiodini et al., 1995; Duchi et al., 1992; Minissale, 2004), although a portion may also 
come from a deeper mantle component (Chiodini et al., 2007). Because the geothermal system is 
water dominated the majority of gas samples collected from the deep wells are dissolved gases 
that exsolve at the lower pressures at surface. In general, most reservoir waters contain 3 to 6% 
“Non Condensable Gases” (NCG) (Sabatelli and Mannari, 1995), with well L2 having a 
representative composition of 98.35% CO2, 0.05% CH4, 1.22% H2S, 0.4% N2 and trace levels of 
H2 (Bertrami et al., 1984). One well (L11) did intersect a gas-only reservoir having 98% CO2 
(Lombardi, 1993).  

Normal faults related to edifice collapse, combined with thrusts, regional normal faults, and 
extensive fracturing associated with the volcanic eruptions themselves, became conduits for 
upwardly migrating hydrothermal fluids and CO2. Secondary minerals observed in the deep 
geothermal cores from Latera show that the area has likely undergone three alteration phases, 
including a self-sealing episode. This self-sealing process has made much of the overlying flysch 
and volcanic units impervious, except where gas is locally escaping (see Section 3.3), and helped 
to partially isolate the underlying geothermal reservoir.  

At the surface the central part of the Latera caldera is characterised by a NE-SW to N-S trending 
hydrothermally-altered area, with silica, alunite, and kaolinite formed in the vicinity of several 
gas vents and thermal / cold springs (Gianelli and Scandiffio, 1989; Lombardi and Mattias, 1987; 
Lombardi, 1993); at least 3 kaolinite quarries were once active in this area. These two directions 
have also been observed by Buonasorte et al. (1991) in a geomorphological study of the 
dominant morphological elements located throughout the Vulsini mountains, while a recent 
structural study in various caldera quarries yielded primary fracture directions of N10E and 
N45E (Annunziatellis et al., 2008). 

Surface lithology throughout the caldera floor is dominated by alluvial sediments and fertile soils 
derived from erosion of the alkali-potassic units of the Latera volcanic complex (Figure 14). Soil 
sampling to a depth of 70 cm (Beaubien et al., 2008) indicates that the shallow soils are 
predominantly made up of clay sized particles. The major minerals found in this study were 
quartz, K-feldspar, and pyroxene (augite), with minor amounts of hematite and albite, and trace 
amounts of cristobalite, mica, and pyrite. The clay minerals were primarily halloysite with 
typically less than 20% illite, while a significant proportion of amorphous, non-crystalline 
material was also observed which is most likely volcanic glass. Low-permeability, 
unconsolidated volcanic sediments also represent the main lithologies encountered in 20m deep 
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boreholes drilled in the same field for a shallow gas injection experiment (Annunziatellis et al., 
2006). This work did observe, however, a highly fractured, incompetent interval from about 6 to 
9 m at one location in a borehole drilled near a gas leakage area. 

3.2. Hydrogeology 
The various hydrogeological units in this area basically follow the geological units 
described above, as the permeability and self-sealing capacities of the dominant lithologies 
in each genetic/structural unit controls groundwater flow through that horizon. Therefore in 
a simplified sense the hydrogeological units can be considered as follows: metamorphic 
basement – aquitard; Tuscan limestones – regional aquifer and geothermal reservoir; 
Ligurian flysch – regional aquitard; volcanic flows – local aquifer; volcanic pyroclastics – 
local aquitard; and post orogenic sediments – local aquitard or aquifer.  As described 
earlier the local hydrogeology is greatly complicated by folds and faults (which allow for 
cross-unit flow, mixing, and complex flow patterns) as well as by changes in primary 
porosity and permeability. Geochemistry has defined three main water types in the above 
aquifers: a hot NaCl geothermal fluid in the confined reservoir within the Tuscan 
limestone; a Ca-SO4-HCO3 water in the regional Tuscan limestone aquifer; and a Ca-HCO3 
water in the very shallow leucite and K-feldspar bearing volcanics.  

3.2.1. Geothermal fluids 

The Latera geothermal reservoir is water dominated, with temperatures in the range of 210 to 
230°C.  In general the reservoir waters are Na-Cl type with high concentrations of HCO3 and 
SO4 (with the latter coming from either late stage magmatic volatiles like H2S or SO2, or from 
sedimentary sources). Most wells have high Li, B, Cs and As values and very high Cl/Br ratios 
(750-2000).  The 18O values are quite positive with respect to the groundwaters in the area (on 
the order of 18O = -0.2‰).  Most geothermal fluids are at equilibrium with alteration minerals 
that indicate interaction with igneous rocks, such as muscovite, microcline and Mg/Ca 
montmorillonite, while being under-saturated with such mineral phases as anhydrite and calcite 
(Gianelli and Scandiffio, 1989). Results show that almost all hydrothermal waters could have 
resulted from large scale mixing of two end-members, well L3D water and the Ca-SO4-HCO3 
water of the regional aquifer.  The origin of the end-member brine found in L3D is a matter of 
debate, however modelling indicates that inflow of hydrothermal or magmatic brine into the 
sedimentary rocks and cooling may be most likely (as the fluid becomes acidic and progressively 
depleted in SiO2, Fe, SO4, H2S, Na, and K). 

3.2.2. Springs and Groundwaters 

A number of studies have sampled springs throughout the western Mount Vulsini area to better 
understand regional flow and water origin (e.g. Barberi et al. 1984; D'Amore et al., 1979; 
Checcucci et al., 1988). As stated, it is believed that there are two primary aquifers in the Latera 
region – a shallow one in the volcanics and a more-regional, deeper one in the fractured 
limestones of the Mesozoic Tuscan nappe. Geochemical data generally supports this 
interpretation, however results indicate the existence of 4 sub-types within this general 
classification. Types A and B are thought to be shallow waters while types C and D likely 
originate from the deep aquifer system.   
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Type A water is the most common type in the area, as it represents approximately 75% of the 
measured springs.  These cold, HCO3-Ca-Mg waters have low total dissolved solid (TDS) values 
of <700 ppm and are believed to circulate within, and be involved in the alteration of, the shallow 
volcanic units; this latter is shown by their low Na/K ratios, which indicate reaction with K-rich 
vitreous volcanics or dissolution of leucite (Gianelli and Scandiffio, 1989). They are under-
saturated with respect to calcite, dolomite and anhydrite, and instead fall in the stability field for 
kaolinite.  In addition Checcucci et al. (1988) state that their elemental composition is quite 
variable (due to different flow paths in the various volcanic lithologies), their dissolved CO2 
content shows a bimodal distribution (with the higher mode interpreted as deep CO2 input) and 
higher SO4 values are correlated with anomalous pCO2 (possibly due to addition of H2S with 
deep CO2). Type B chemistry is similar to that of Type A, but is distinguished by higher SO4 
content (approaching gypsum solubility), a lower pH, generally higher temperatures and higher 
TDS values (500-2000 ppm); this water is thought to circulate in deeper volcanics.  The origin of 
the sulphate in these waters is a matter of debate, as Bertrami et al. (1984) state that it arises from 
dissolution of sulphates in the volcanics whereas Checcucci et al. (1988) believe it to be the result 
of the addition of H2S gas.   

Types C and D have not been encountered in wells in the Latera caldera. Type C springs occur in 
the Viterbo, Canino and Pitigliano areas and likely originate from the deep regional limestone 
aquifer. Type C comprises thermal, Ca-SO4-HCO3 waters with high TDS values (2000-3000 
ppm) that are saturated with respect to calcite, dolomite and albite and weakly oversaturated with 
respect to anhydrite. Regionally the SO4 in these waters is believed to come from interaction with 
anhydrites in the Tuscan nappe (e.g. Minissale et al., 2000). However, as evaporites were not 
encountered in the deep Latera drill holes, Gianelli and Scandiffio (1989) suggest that the SO4 
originates from remobilisation of secondary anhydrite that was precipitated during a previous 
hydrothermal episode. Type D are deep, weakly-thermal Na-Cl waters with high TDS values 
(2000-7000 ppm) and Na - K values which are very close to equilibrium with albite and 
microcline at high temperatures. Occurring in the Tuscania and Canino areas, this is the only 
type which is at all similar to the geothermal reservoir waters described above, although they are 
located a great distance away.  Although leakage from these reservoirs is one explanation, 
another is that these waters are fed by descending fossil seawater from the Neogene sediments 
(Duchi et al., 1992). 

Isotope analyses of these water types show that they all lie on the meteoric water line for the area, 
indicating that recharge is precipitation falling in the surrounding hills. Trace element analyses 
were also conducted on all types, however these results do not show any strong trends, other 
than, perhaps, the enrichment of Li, Cs and H3BO4 in the weakly thermal waters of the caldera 
(Type B) and those of Tuscania (Type D).  Both thermal and cold springs seem to have SiO2 
values in equilibrium with chalcedony (Minissale et al., 1997).   

Considering the maximum sampling depth of about 3 m attained in this study using a hand-
auger, the installed observation wells likely do not intersect even the most shallow of these 
aquifers. That said, because the intersected alluvial/fluvial surface sediments were formed 
by the erosion of the surrounding volcanic rocks, it is expected that background samples 
collected in this study would be most similar to those of the shallow volcanic aquifers (i.e. 
Type A), although those samples impacted in the CO2 leaking area could, in theory, show 
signs of mixing with one of the other, deeper waters, if water and gas co-migration is 
occurring at this particular study site (see section 6.4.3). 
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Chiodini et al. (2007). Although the major leakage areas are observed in both surveys, such as at 
Puzzolaie, on the SE side of the road between wells L3 and L4, at S. Martino, and at the sulphur 
mine, the gas flux map defines much wider anomalies as well as some additional anomalous 
areas that are not observed in the soil gas data. These differences could be due to:  

i) different sampling locations and sample spacing (relative to target size), as these 
parameters will determine what leakage points are sampled and how the final results are 
contoured. One example is located to the immediate NW of P. Santa Luce, where a 
number of flux anomalies were observed but where very few soil gas samples were 
collected;  

ii) the regional flux data was collected in October while all the soil gas samples were 
collected during the hot summer months. It is possible that cooler, moister conditions in 
October may have influenced baseline biological CO2 production compared to the hot, 
dry summer; 

iii) thresholds to separate background CO2 from leaking CO2 were chosen in both studies 
using the cumulative distribution plot method of Sinclair (1991), however different 
thresholds could have influenced the extent of the defined anomalous areas;  

iv) the flux data were all collected during a single campaign whereas the soil gas data 
represent a composite of various campaigns. Although unlikely, there is a small 
possibility that leakage changed between the sampling periods;  

v) the different data processing approaches (sGs for flux and ordinary kriging for soil gas) 
may have influenced the final plot appearance. Numerous authors have shown, however, 
that while sGs can give more heterogenous distributions compared to the more smoothed 
output from kriging, the overall anomaly trends and extents produced with the two 
methods are typically quite similar (e.g. Lewicki et al, 2005).  

While many differences are subtle and could be explained by the points listed above, a number of 
strong differences between the two maps are more difficult to explain. For example, the large 
flux anomaly located between well L4 and L3/3d (with extension to the NW) is marked by quite 
low soil gas CO2 values.  

Gas leakage within the caldera can take many forms on the ground surface, depending on the 
flux rate, the surface vegetation, and if the flow is concentrated or diffused. Some examples of 
visible impacts are given in Figure 16, showing photos of the strongest leakage area at Puzzolaie 
(a), a single isolated gas vent with a bare-soil core surrounded by a halo of impacted vegetation 
located 100 m south of well L4 (known as gas vent A, “GVA”, in the literature; Beaubien et al., 
2008), and a series of smaller, elongate leakage areas defined by taller yellow grass, located in 
the same field as GVA. Based primarily on the assumption that leaking CO2 will have an impact 
on plant health, like that observed in Figure 16c, remote sensing (RS) surveys were conducted by 
plane and helicopter across the Latera caldera to try and map leakage on a large scale. Using such 
techniques as plant stress indicators in multi-spectral data, scores were assigned for areas 
showing anomalous values for one or more techniques and then checked by conducting soil gas 
and CO2 flux measurements (Bateson et al., 2008). A significant number of gas leakage areas 
were defined within this study, however many false positives were identified (i.e., remote 
sensing anomalies that were not due to CO2 leakage) and a certain number of false negatives also 
occurred (i.e., leakage areas not recognised by the remote sensing methods). Clearly in its present 
state remote sensing is not capable of delineating, with enough sensitivity and enough reliability, 
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Chapter 4. The leakage of CO2 at Latera 

4.1. Introduction 
The reasons for studying the leakage of non-biogenic gas from the soil, both in terms of spatial 
distribution and total mass flux, can be subdivided into three main groups.  

i) Resource exploration. This includes the search for hydrocarbons, mineral deposits, 
and geothermal energy sources, and is based on the fact that certain tracer gases 
associated with these resources can migrate towards the surface where their 
anomalous concentrations or fluxes can help (together with other geological and 
geophysical methods) focus further exploration.  

ii) Geochemical cycling and mass balance research. The exchange between the solid 
(rock), liquid (groundwater), and gaseous phases regulate (and are regulated by) 
many geological, chemical and biological processes, and their study can give 
important information regarding large-scale processes. One of the most important of 
these is global climate, as controlled by the sources and sinks of various greenhouse 
gases. In addition to man-made pollution and well-known natural sources, like 
biological production and volcanic eruptions, the leakage of CO2 from geothermal 
fields or the flanks of quiescent volcanos may be significant (Chiodini et al., 2004) 
and thus it requires accurate quantification. Another area where mass balance is 
important regards the monitoring of CO2 capture and storage (CCS) sites, as any 
leakage to the atmosphere of originally stored CO2 has to be accurately quantified to 
offset any carbon credits originally awarded for the storage of that gas. 

iii) Health and safety. The leakage from the soil and accumulation in enclosed areas on 
the surface of certain gases can represent both a health and environmental risk, both 
from natural and man-made sources. An example of a natural source is once again 
the flux of large volumes of CO2 in geothermal / volcanic areas, while man-made 
systems include the potential for leakage from CCS sites, hydro-fracturing petroleum 
recovery activities, natural gas storage reservoirs, or buried pipelines. For natural 
sites where leakage is relatively constant, gas flux and soil gas measurements can be 
used to define high risk areas for zoning bylaws and building permits (e.g. Beaubien 
et al., 2003). For man-made sites, where leakage may never occur, monitoring is 
needed to ensure that the public is safeguarded if it does. In this regard the 
development and testing of monitoring methods that are both sensitive and capable 
of separating leakage from near-surface biogenic anomalies is fundamental.  

The work presented in this chapter primarily addresses the latter two points, looking at issues 
related to finding and quantifying leakage (e.g., sample density, background subtraction) and 
migration processes and pathways (e.g., faults, sediment control) via the measurement of CO2 
flux over a detailed grid in a field in the centre of the Latera caldera. In addition, another critical 
goal of this work was to obtain a real-world dataset of spatially distributed CO2 flux 
measurements on which sub-sampling simulations could be conducted using the software 
developed during this research (Chapter 5), to compare with the results obtained applying the 
same software to purely synthetic data. 
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spots defined in Figure 21, the origin of the values between 9 and 70 g m-2 d-1 is less clear. One 
possible explanation is that the smaller convex inflection point at about 40 g m-2 d-1 separates two 
different populations, with the lower one (grey line) being of shallow biogenic origin and the 
upper one (green line) being low level diffusive leakage. An alternative is that this is essentially 
all one population linked with biogenic production and that the minor inflection at 40 g m-2 d-1 
separates populations due to other processes (such as, for example, diurnal variability during the 
sampling) or artefacts of the sub-sampling statistics (see section 5.3.2.1 and Figure 42); such 
multiple background populations have also been observed by Mazot et al. (2013), which they 
attributed to differences in soil permeability and productivity. As discussed below, determining 
which interpretation is correct for the present data set and, by association, what the average 
biological CO2 flux actually is, has a significant influence on the eventual estimate of the overall 
leakage flux rate (see also section 2.4.2).  

 

Figure 22. Normal Probability Plots (NPP) of the entire July 2014 grid CO2 flux dataset plotted on a log scale. 
The three coloured lines mark possible different populations based on similar trends. 

Whereas values of 70 g m-2 d-1 are on the high side for biogenic soil respiration, such values and 
higher have been observed in the literature (e.g. Beaubien et al., 2013). In this regard, the positive 
correlation between CO2 soil respiration and water content and temperature is well known (e.g. 
Lloyd and Taylor, 1995; Barron-Gafford et al., 2011), and thus the anomalously wet summer 
experienced in central Italy during 2014 may have increased biogenic flux. To examine this 
possibility the contour grid in Figure 21 was sliced to produce a plot of CO2 flux data along the 
same line as a transect performed in July of 2006 (grey dashed line in Figure 17), a year with 
more normal, low rainfall. The sliced data (this work) and the transect data (re-processed from 
Annunziatellis et al., 2008) both show three main peaks associated with leakage points (Figure 
23a), with slight horizontal offsets due to positional accuracy. The transect is more irregular 
because it is made from individual measurement points spaced 4 to 6 m apart, thus highlighting 
spatial variability, whereas the data sliced from the contoured grid is more smoothed because of 
the nature of the contouring algorithm.  

Despite these differences the maximum values of the two smaller peaks are quite similar in 
amplitude for the two campaigns. In sharp contrast, however, the baseline values between the 
peaks are very different, with the July 2006 transect showing values in the range of 5 – 15 g m-2 
d-1 and the July 2014 grid data showing values of around 50 g m-2 d-1 (Figure 23a). These results 
imply an overall rise in the background CO2 flux values throughout the entire field during the 
2014 campaign. A comparison of the statistical distribution of all the 2006 profile data collected 
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These hotspots are located within a background field that ranged from 9 to 70 g CO2 m
-2 d-1. A 

statistical analysis of the entire dataset shows that although there is a clear distinction between 
high flux hotspot values and the rest of the measured values, it is difficult to determine the cut-off 
level between low level flux resulting from purely near-surface biogenic origins compared to that 
which is biogenic plus varying levels of low-level geogenic leakage. Compared to the newly 
collected grid data during the wet summer of 2014, historical data collected during much dryer 
periods in 2006 and 2007 show much lower CO2 flux levels away from the main hot spots, 
implying a strong biogenic control in the background areas linked to different environmental 
conditions. Soil gas sampling, involving isotopic analyses and vertical profiles, would greatly aid 
in better determining the balance of these two sources in the areas outside the leakage hotspots. 

Average background values must be subtracted from the total measured flux to estimate the 
leakage flux rates. Based on the statistical distribution of the data, two different average 
“biogenic” flux rates were calculated and used to show how they can influence the final 
estimated leakage flux rate. An average background (applied to the entire surveyed area, 
including those areas with known geogenic CO2 leakage) of 35 g m-2 d-1 yielded a leakage 
estimate of 2.2 t d-1 while 53 g m-2 d-1 yielded 1.2 t d-1. This difference, where one estimate is 
almost double the other, illustrates the importance of an accurate estimate of the biological near 
surface flux when calculating leakage flux rates. Clearly this issue is critical for both the 
estimation of natural leakage for geological or atmospheric mass balance studies as well as for 
carbon credit auditing above CCS sites.  

The obtained results can be used to address various issues related to these types of studies: 

 The chosen sample approach (offset grid) and sample spacing (10 m) may potentially 
have missed leakage points that have a diameter less than about 12 m, however 
considering that smaller vents have smaller leakage rates (e.g., vent 6 in Figure 21) any 
such missed features would probably not have a significant effect on the overall leakage 
estimate. For example a 100 m2 vent (i.e., 10x10 m) with an average flux of 200 g m-2 d-1 
would contribute a total of 20,000 g d-1, which only represents about 1.5% of the lower 
leakage rate of 1.2 t d-1.  

 A more significant error can come from the chosen level of the background biogenic 
flux, with the present example showing a 100% difference between two estimates due 
strictly to the chosen average background value.  

 The present results appear to support the theory that the bulk of leakage within this field 
occurs from individual leakage points (or hotspots), where a preferential pathway has 
been created via pressure-driven advective flow in the sediments above a gas permeable 
fault. Although diffusion of geogenic gas is important outside the vent cores, it appears to 
be more related to lateral movement in the unsaturated zone rather than a constant diffuse 
flow from below. That said, more detailed work involving isotopes and vertical soil gas 
profiles would be needed to better quantify the ratio between geogenic and biogenic flux, 
and over what surface area it is significant.  

 Due to the natural variability of different fields in terms of land use, soil type, water 
content, etc., the use of a different field distant from the studied site as an estimate of 
baseline values risks to under- or over-estimate the biogenic background, thus impacting 
on the eventual leakage flux calculations.  
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Chapter 5. Modelling of sampling density 

5.1.  Introduction 
A major focus of the present research was to develop a new computer code capable of examining 
the effects of different sampling strategies and sampling densities on the end results of gas flux 
surveys aimed at CCS monitoring or quantification of natural geological CO2 terrestrial diffuse 
emissions. The program creates a highly detailed (1 m node spacing) original dataset of synthetic 
data (or imports real CO2 flux data from a grid), which is in turn randomly sub-sampled N times 
for each of M different sample densities using one of four different sample strategies. Various 
calculations and monitoring of different parameters permits one to determine, under the 
simulation conditions and sampling settings, the number of samples needed to find a leakage 
point and the range of leakage flux values calculated compared to the “true” original value. In the 
following, section 5.2 outlines the functioning of the program, section 5.3 describes the results of 
simulations conducted on synthetic datasets, while section 5.4 discusses the simulation results 
obtained using real data from the Latera test site. The program was written by the author in 
Visual Basic 6 and the complete code is provided in APPENDIX I. 

5.2. Program architecture  

5.2.1. Data Input 

Each simulation is run by choosing various options and input files via the Graphical User 
Interface (GUI) shown in Figure 25. A general introduction and overview of the various options 
available to the user are presented below, making reference to this figure and the highlighted 
numbers for each frame, whereas the actual workings of the program are discussed in Section 
5.2.2. 

The program is started in 1 – Initial Settings, where clicking on the Activate and Confirm path 
buttons loads the default program settings and file paths. Here the maximum number of X and Y 
grid points can be chosen based on a fixed 1 metre spacing, with the total number of points in the 
grid matrix being calculated automatically. Note that “X max” and “Y max” can be user defined 
when synthetic data is used, but they are set externally if real data are read into the program. A 
description of the simulation can be written in 8 – Description of the simulation, and this 
information, together with all settings chosen on this window, is saved in a log file for future 
reference. The type of data is chosen in 2 – Data Type, which can be either simulated data or real 
data that is read into the program.  

If simulated data is chosen a background dataset of biologically produced CO2 flux is generated 
and distributed spatially on the X-Y grid and artificial gas leakage points (“vents”) are added to 
this background distribution at defined points. For this option, two types of background data are 
available under 4 – Background Flux Rate, either a random normal distribution calculated by the 
program itself (“calculate”) and randomly distributed over the grid, or the importation of an 
external file (“import”) having a chosen statistical distribution (e.g. log-normal) and a non-
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5.2.2. Algorithm description 

A flowchart showing the basic structure of the program is given in Figure 26, which can be 
briefly summarised as follows (with specific details given in subsequent sub-sections). 
Simulations can be conducted on either synthetic or real data. Synthetic data consists of a random 
background flux field that is either generated by the program or imported from an external file, 
onto which are superimposed gas leakage areas; the total flux of both the background and 
background plus leakage grids are calculated using Surfer9. If, instead, real data is used, it is read 
in from an external file and again the total flux for this dataset is calculated using Surfer9.  

Sub-sampling is conducted on these detailed, original grids, using one of four options, purely 
random, uniform random, regular grid, and offset grid. The program loops until the grid has been 
completely sub-sampled using the “sampling density” criteria of the chosen method (sample 
spacing or fixed number of samples) and then the sub-sampled dataset is processed using 
Surfer9. These two steps (i.e. subsampling the complete matrix and Surfer9 processing) are 
repeated N times based on the number of simulations chosen by the user. Once completed the 
program checks if other “sampling density” values have been specified, and repeats the above 
loop with the new value if there are. Once all simulations for all sample densities are complete 
the program exports a series of summary files and ends. 

5.2.2.1. Synthetic versus Real Data 

As stated, there are two different ways to generate synthetic data. The first is to have the program 
itself create an array of random, normally-distributed flux values based on user-defined average 
and standard deviation values; these flux values are then distributed randomly on the grid, 
meaning that there is no spatial relationship between points (Figure 27a). This option was 
developed in an early version of the program because Visual Basic 6 only provides the normal 
random number generator, however it is not considered a realistic representation of the 
background flux field and thus was not used in any of the simulations reported here.  

Instead the option of importing externally produced synthetic background data was added to 
permit the use of other, third-party programs that have a wider choice of random number 
generators. Of particular importance was to be able to create log-normal datasets, considering 
that most authors believe that CO2 flux datasets typically follow this type of distribution. For the 
present work the free EXCEL add-on “PopTools” (Hood, 2010) was used. Although PopTools 
has a wide range of functions focused on the analysis of matrix population models and 
simulation of stochastic processes, it was used here exclusively to create random, log-normal 
distributions based on average and standard deviation values chosen by the user (within 
PopTools) and considered realistic for background CO2 flux datasets.   

The use of an external background file also allowed for additional data processing prior to 
importing into the program, specifically to order the dataset such that some form of spatial 
continuity could be created (i.e., a non-random spatial distribution). To this end topographic data 
was used to spatially distribute the synthetic CO2 data, based on the fact that soil biogenic CO2 
production can be enhanced in local, low-lying areas due to greater moisture content and 
potentially higher organic matter content with respect to more well drained high ground (see 
section 2.2.1). Although a slight oversimplification in the case of CO2 flux, which does not 
always correlate well with soil gas CO2 concentrations due to surface soil effects (e.g. low 
permeable surface soil), it does allow for the creation of spatially coherent data.  
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Figure 26. Flowchart showing the general algorithm and control logic of the GasGrid program. 
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array?
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points?

Call Surfer 9 objects – contour, calculate total flux, subtract background flux from total flux to get leakage flux
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simulations for that sample spacing 

or fixed number of samples?
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Export summary files and 
End Program

Call Surfer 9 objects – contour, calculate background flux

Call Surfer 9 objects – contour, calculate total flux

Read in fixed  background average
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surrounding background values. This is important, as “anomalous” background and leakage 
values may be combined during the contouring of low-resolution subsampling thus falsely 
uniting anomalies of different origins and potentially over-estimating the size and total flux of a 
leakage area.  

If real data, instead of synthetic data, is chosen, an external file is read into the program. This file 
must be a single column text file containing only the flux data, ordered sequentially for each X 
point along progressive Y lines. As this is real data there is no need to generate a background 
distribution. Instead only the fixed average option is available, which is a number selected prior 
to simulations based on population definition using normal probability plots. Within the 
program, this value is multiplied by the entire surface area of the grid to give an estimate of the 
total background flux, following the approach taken by Chiodini et al. (2007) and others. Clearly 
for real data there is also no need to generate artificial gas vents, and as such the Vent Setting 
form in the input window is disabled. As it is not feasible to collect real data at a 1m sample 
spacing for a large area, in the present study samples were collected at a 10 m spacing (see 
section 4.4), a square grid was created by assigning background values outside of the actual 
sampled polygon, and then a 1 m grid of values was created using simple Kriging interpolation 
within the program Surfer9 prior to import in the program. 

5.2.2.2. Sub‐sampling approaches 

As stated above, four different sampling approaches have been included within GasGrid, purely 
random, uniform random, regular grid, and off-set grid. These different approaches and how they 
are implemented are described below. 

The purely random case uses the random number generator within Visual Basis 6 to sequentially 
select a fixed number of samples from the total array. As each point is selected it is marked to 
ensure that it is not sampled a second time. Being purely random, each point has equal possibility 
of being selected, and as such there is no control over spatial distribution or distance between 
samples. Figure 31a shows how this can result in significant clustering of points and can leave 
other areas with no samples at all.  

The uniform random approach again sequentially selects a random point from the entire array, 
however once chosen all the points in the “sample spacing” radius defined for that simulation are 
cancelled from the array, eliminating the possibility that they can be chosen in subsequent 
iterations of the code. The program loops until all points in the grid are either selected or 
cancelled. In this way the resultant points chosen are completely random, but they are forced to 
be relatively uniformly distributed over the entire sample grid (Figure 31b), with no clustering 
and no sample gaps. Although the “sample spacing” parameter is used in this process, it may be 
more correct to refer to it as a minimum sample spacing. This is explained with reference to 
Figure 32, where three points have been chosen by the program based on a “sample spacing” of 
10 m. In this example, the first point at X=50, Y=50 is chosen and the surrounding points are 
cancelled. The next point at X=50, Y=60 is located at the edge of the first cancelled area, and 
thus the distance between points 1 and 2 is equal to the 10 m sample spacing. However the third 
point, at X=70, Y=50, results in very little overlap between the cancelled areas around points 1 
and 3, thus ensuring that no points can be selected in this interval and that the distance between 
these points will be 20 m. As such the average sample distance is likely on the order of (r + 2r)/2. 
For a given “sample spacing” value, each simulation will select a similar, but not necessarily 
equal, number of samples. 
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using this approach will be limited by (sample spacing)2, such that a maximum of 100 unique 
simulations can be conducted with a sample spacing of 10 m, 400 for 20 m, 900 for 30 m, etc. 
Compared to the other two approaches, the regular grid method gives a fixed sample spacing and 
the number of samples for each simulation at a given sample spacing will typically yield 2 or 
three values (depending on how close to the boundary the sampling grid is). Finally the off-set 
grid option uses the same algorithm as the regular grid, with the only difference being the 
shifting laterally by (sample spacing / 2) on every second row. 

5.2.2.3. Data contouring and flux calculations using Surfer 9 

Four contouring / interpolation methods were included as options within GasGrid, each being 
applied by calling Surfer 9 objects:  

1) The Inverse Distance to a Power gridding method is a weighted average interpolator that 
can be either exact or smoothing. With this interpolation method, data are weighted such 
that the influence of one point relative to another declines with distance from the grid 
node. Weighting is assigned to data through the use of a user-defined weighting power 
that controls how this factor drops off further from a grid node. One of the characteristics 
of this method is that it tends to produce "bull's-eyes" surrounding the grid observation 
points, which can be reduced by adjusting the smoothing parameter.  

2) Natural Neighbour (NN) interpolation finds the closest subset of input samples to a query 
point and weights them according to proportionate areas to interpolate a value. This 
method is local as it only uses the subset of samples that surround the grid point, such 
that interpolated values will be within the range of the samples used. The natural 
neighbours of any point are those associated with what are known as the neighbouring 
Thiessen polygons. The resultant surface passes through the input samples and is smooth 
everywhere except at locations of the input samples. It adapts locally to the structure of 
the input data, works well with regularly and irregularly distributed data, and requires no 
user input for search radius, sample count, or shape.  

3) Radial Basis Function interpolation is a diverse group of data interpolation methods, all 
of which are exact interpolators (i.e., they attempt to honour the original data). This 
method is conceptually like a rubber membrane that is fitted to each of the measured data 
points while minimizing the total curvature of the surface. There are five different basis 
functions that can be chosen, including multilog, inverse multiquadric, multiquadric, 
natural cubic spline, and thin plate spline.  

4) Kriging, a common geostatistical gridding method, is an optimal interpolation based on 
regression against observed z values of surrounding data points, weighted according to 
spatial covariance values. These covariance values are represented by the variogram, 
which is a function that describes the spatial variation of the gridded parameter. The 
default linear variogram often provides acceptable results, although data-specific 
variograms can be constructed. The kriging equation is essentially the same as that used 
for inverse distance weighted interpolation, except that rather than using weights based 
on an arbitrary function of distance, the weights used in Kriging are based on the 
variogram. Kriging tends to result in more smoothed contour results, is very flexible, and 
allows a variety of map outputs including predictions, prediction standard errors, 
probability, etc. 
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The GasGrid program uses Surfer9 to interpolate three different types of datasets, including the 
complete synthetic background dataset, the complete synthetic background plus gas vents dataset 
(or real data), and the various sub-sampled datasets of the synthetic background plus vent data 
(or real data). At each stage the total flux for the survey area is calculated using a function in 
Surfer9 called GridVolume. This method is typically applied to calculate the volume of 
geological unit, multiplying each grid cell (in units of m2) by the height difference (m) between 
upper and lower bounding surfaces. Instead, by setting the lower boundary as a constant flat 
surface equal to zero and the upper boundary as the contoured grid of flux values in g m-2 d-1, the 
calculating formula becomes ∑ ሺܣ௖ ∗ 	߮௖ሻ

௡
ଵ , where n is the total number of grid cells, Ac is the 

surface area of each cell (m2), and ߮௖ is the CO2 flux calculated for cell n (g m-2 d-1), thus 
yielding the total flux for the entire grid area (g d-1). For these calculations the trapezoidal rule 
option was used. 

Table 1. Cross-validation parameters monitored during the gridding of the sub-sampled datasets; “array 
index” refers to the array of statistical results generated by the Surfer9 Cross.Validate command. 

Category Array index Explanation 

Estimation Error Statistics srfCV_R_RootMeanSquare   root mean square 

Spatial Regression Statistics for 
Estimation Error 

srfCV_R2   coefficient of multiple determination 
error 

Inter-Variable Correlations srfCV_ZE_Correlation correlation between Z and estimated 
statistics 

 srfCV_ZR_Correlation   correlation between Z and estimation 
error 

Elevation / Estimation Statistics / 
Estimation Error Rank Correlations 

srfCV_ZE_RankCorrelation   rank correlation between Z and E 

 srfCV_ZR_RankCorrelation   rank correlation between Z and R 

Finally, each time that a sub-sampled dataset is generated and contoured, the quality of the 
gridding of that dataset is assessed by performing a cross-validation. Cross-validation, which in 
Surfer9 can be used with all gridding methods, involves the sequential removal of each 
individual point from the original dataset and interpolation of a value for that point using all 
remaining data and the specified interpolation algorithm. The interpolation error is then 
calculated for that point as “interpolated value – original value”. By repeating this procedure N 
times for the N points in the grid array (i.e., removing only one point, performing the 
interpolation, replacing the point, repeat for next point), a total of N interpolation errors are 
generated. Various statistics computed for the errors can be used as a quantitative, objective 
measure of quality for the gridding method. These statistical values are saved in a Surfer9 array 
called srfCVResults which contains 62 parameters. For the present work six of these parameters 
(Table 1) were chosen for output by the GasGrid program. 

5.2.2.4. Boundary effects 

Initial testing of the program using the contouring and flux calculation option highlighted a 
potential source of error in the automatic approach needed for the creation of large numbers of 
simulations. Under the conditions of a vent close to a boundary, a sub-sample within the vent, 
and no samples between the vent sample and the grid boundary (most common in low sample 
density simulations), the contouring algorithm extended the area of the high flux values over a 
large, completely un-realistic area along the edge of the boundary (e.g. Figure 33a). Although 
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Table 2. Number of samples needed to intersect at least once, at the 95% confidence level, an anomaly having a 
surface area of 10,000 m2 in a total 1 km2 survey area, comparing different anomaly shapes and 
different sampling strategies. 

 Offset grid Regular grid Uniform random Purely random 

Circular vent 99 117 149 300 

N64°E alignment 115 113 221 300 

N45°E alignment 109 276 236 300 

NS alignment 140 575 231 300 

EW alignment 560 563 206 300 

Results for all simulations using the four sampling strategies on the five different leakage areas 
are summarised in Figure 37, with the results for the circular gas vent given in Figure 35 reported 
again to facilitate comparison with the other tests. In addition the number of samples needed to 
intersect the studied anomalies, at the 95% confidence level, using the various sampling 
strategies given in Table 2.  

As expected, the purely random sampling approach yielded exactly the same results in all five 
tests because the leakage surface area was the same for all 5 anomalies (Table 2), despite the 
different leakage shapes and orientations. In contrast, the uniform random method gave much 
better results than the purely random approach for the circular vent (149 vs 300 samples, 
respectively, at the 95% probability level) (Figure 37a), whereas for all the aligned anomaly tests 
it gave slightly poorer success rates (Figure 37b - e) that were still consistently higher than the 
purely random approach (typically requiring 65 to 95 samples fewer at the 95% level; Table 2). 
The fact that the uniform random method consistently requires fewer samples to obtain the same 
results is because this method does not allow for data clustering, which can cause gaps in the 
areas sampled. 

The two grid sampling approaches often yielded the highest success rates, although these 
approaches are much more affected by the orientation of elongated anomalies. For the circular 
vent the offset grid method gives very slightly better results than the regular grid, due to the 
geometry of the anomaly relative to the gaps in the two different grids. This is illustrated in 
Figure 38, where the 56 m radius vent used in the simulations above is plotted together with 
hypothetical sample point distributions for the regular (a) and offset (b) grids, both having the 
same horizontal sample spacing. In this example, the regular grid would miss the anomaly 
whereas the offset grid would have one point within the anomaly. Based on this sample spacing, 
the smallest vent that would be intersected with 100% certainty is a function of the diagonal 
distance “c”. For the regular grid method, assuming that x=y, this value corresponds to ܿ ൌ
	ඥ2ሺݔሻଶ, whereas for the offset grid approach it corresponds to ܿ ൌ 	ඥሺ2/ݔሻଶ ൅	ሺݕሻଶ. 
Substituting an 80 m sample spacing in the regular grid equation yields c = 113 m, which 
corresponds to the diameter of the smallest vent that could be observed with 100% certainty at 
this sample spacing. Instead, substituting the same value in the offset grid equation yields c = 90 
m, which corresponds to a vent radius of about 97 m. This means that with the same sample 
spacing (and thus number of samples), the offset grid method is capable of locating circular gas 
leakage areas that are about 14% smaller in diameter. For a 10 m offset grid, like that used at 
Latera, this would correspond to a vent diameter of about 12 m.  

Re-writing the respective equations in terms of the sample spacing (“x” or “y”) and using a vent 
diameter equivalent to that in the above simulations (i.e., radius of 56 m, diameter of 112 m), we 
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5.3.2. Leak quantification 

As discussed in section 2.4.2, the quantification of deep gas leakage from the ground surface has 
many important applications in which the resultant estimates can influence decisions made. For 
example, it has been proposed that “diffuse degassing” of natural CO2 in volcanic or geothermal 
areas may contribute almost as much CO2 to the atmosphere as emissions from the more obvious 
plumes released from volcanic calderas (Chiodini et al., 2004). Diffuse degassing values thus 
may represent a small but not insignificant contribution to the atmospheric carbon cycle and thus 
should be considered in climate modelling. Another example is for carbon credit auditing at an 
active or decommissioned CCS site, because if a portion of the sequestered CO2 leaks to the 
atmosphere the credits originally assigned to the operator for that volume of leaked CO2 must be 
re-paid.  

As outlined in section 2.4.2.1 the most common approach is to conduct a single survey (based on 
a regular or random sampling strategy) and to use either statistical or interpolation approaches to 
calculate the total flux, and to calculate and subtract the estimated background flux to estimate 
the leakage flux. The flux grid and data interpretation given in Chapter 4 addressed some of the 
difficulties that may be encountered with this approach, particularly related to an accurate 
estimate of biogenic flux rates over the measured area. One of the few attempts to estimate how 
many samples are needed to obtain an accurate estimate of this leakage flux was given by 
Cardellini et al. (2003), who obtained an empirical relationship between the standard deviation of 
sequential Gaussian simulations (sGs) on sub-sampling of real datasets and the number of 
samples lying within a circle range area (CRA) having a radius equal to the range of the CO2 flux 
variogram for the entire original dataset. These authors showed a good correlation that defined a 
minimum of 90 samples needed in the CRA to obtain an estimated sGs error of <10%, based on 
sampling densities (samples km-2) at 5 different study sites equal to: 296 (Solfatara), 3235 
(Vesuvius), 239 (Poggio dell’Olivo), 1442 (Nisyros caldera), and 2408 (Horseshoe lake). 

Instead, the present research is the first to take a purely statistical modelling approach to address 
the question of how sampling density influences estimated leakage flux rates. This approach sub-
samples known synthetic data (both background and leakage flux rates) which allows one to: i) 
remove uncertainties that can arise in studies of incompletely known real data; ii) test different 
scenarios related to size, shape, and spatial distribution of the leakage areas; iii) perform a 
statistically valid number of simulations at any desired sample density over any desired total 
surface area; and iv) test the influence of different sampling strategies (purely random, uniform 
random, grid, and offset grid), different statistically and spatially distributed background datasets, 
and different contouring algorithms. The methods used by the developed program for calculating 
total, background, and leakage flux rates, and for subsampling the total synthetic dataset are 
described in detail in section 5.2.  

Three different modelling scenarios using synthetic data are presented below to examine the 
influence of different settings or parameters on potential errors and uncertainties in total, 
background, and leakage flux rates:  

i) no leakage, to understand possible errors in background flux estimation; 
ii) a single circular leakage area having a surface area of 10,000 m2, to examine the 

impact of different sampling strategies on leakage estimates; 
iii) three circular vents aligned along a N45E direction, at progressively greater 

distances from each other, to study if isolated anomalies may be merged by the 
contouring procedure. 
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four quadrants (Figure 45a) and the statistical distribution of 100 randomly selected points in 
each quadrant was plotted together with the entire dataset in a log-normal probability plot (Figure 
45b); the corresponding statistics are given in Table 3.  

Table 3. Statistical parameters describing the entire dataset as well as randomly sub-sampled datasets from 
each of the four quadrants shown in Figure 45. 

 Samples Mean Median Min. Max. Up. 
quart. 

Low. 
quart. 

Variance St. 
Dev. 

all data 1000000 20.0 19.4 5.9 62.7 16.4 22.9 25.0 5.0 

quadrant 1 106 20.2 19.7 13.6 34.1 17.3 22.2 15.6 3.9 

quadrant 2 107 17.5 17.2 10.4 25.5 14.8 19.8 11.8 3.4 

quadrant 3 115 23.7 23.7 12.2 37.2 20.1 26.8 28.4 5.3 

quadrant 4 103 17.6 17.3 10.3 26.9 15.0 19.8 12.3 3.5 

The four quadrants yield different statistical populations compared to the original total dataset, 
such that the calculated arithmetic mean values range from the “true” value of 20 g m-2 d-1 to a 
minimum of 17.5 for quadrant 2 and a maximum of 23.7 for quadrant 3. For the example used, 
this could result in an over- or under-estimation of c. 3 tonnes CO2 km-2 d-1 for a related leakage 
flux calculation, however it is conceivable that other situations could yield more extreme 
differences; the importance of such a potential error will depend on its magnitude relative to that 
of the actual true leak. In addition, it should be remembered that this error will combine with the 
error induced by the contouring of any observed leakage anomalies (see scenario 2 below), 
which will either add or cancel depending on the signs of the two values. In addition to this 
purely spatial effect, which could result, for example, from different areas having different soil 
types, water contents, or land uses (e.g. Beaubien et al., 2014), there could also be a temporal 
effect caused by general or localised events (occurring before or after specific areas are sampled) 
that influence CO2 flux rates. These could include, amongst other things, fertilization, tillage, or 
rainfall, all of which could cause a relatively short-lived increase or decrease in CO2 soil flux 
rates (see discussion in Beaubien et al., 2013). 

5.3.2.2. Scenario 2 – single vent 

A single gas vent with a maximum flux rate of 1000 g m-2 d-1, in an area surrounded by a log-
normal background flux distribution having an average of 20 g m-2 d-1 (Figure 46), was created to 
examine the range of flux rates calculated at different sampling densities for a simple system. 
Note that the algorithm adds the leakage to the existing background value; while this effect is 
small when the leakage flux is high, the background value can make a significant contribution to 
the total flux when the leakage rate is low (i.e., on the outer edge of the vent).  

The modelled vent has a radius of 56 m and an approximate surface area of 10,000 m2. See 
Figure 29c for a comparison of the trend of flux values for the vent, and Figure 30 c,d to see how 
the vent relates to the surrounding background along a profile (“slice”) through the gridded data. 
Only the offset grid and random sampling strategy results are presented here.  
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5.5. Summary  
This chapter documents the development of a computer program in Visual Basic, “GasGrid”, 
and its application to goals related to monitoring of Carbon Capture and Storage (CCS) sites and 
carbon mass balance studies. The program subsamples highly detailed synthetic or real data at 
different densities, multiple times, and uses different spatial distribution approaches to obtain a 
measure of the probability of finding a leak or the possible range of CO2 leakage rates that could 
be obtained by modifying these two variables. In theory any spatially variable parameter can be 
modelled, however for the scope of this research the flux of CO2 from the soil (originating from 
both shallow biological soil sources and from CO2 leaking from the deep subsurface) was chosen 
for study. 

When synthetic data is used, a user defined grid of points (in this case 1km x 1 km) with a 1 m 
spacing is created and populated with a log-normal background biological CO2 flux that is 
spatially distributed based on topography (i.e. low lying areas associated with higher flux due to 
potential for higher moisture and nutrient content in the soil). Onto this background, leakage 
point(s) of user defined maximum flux and anomaly width (with decreasing trends defined based 
on real leakage areas) are superimposed. When real data is used, a grid as detailed as logistically 
feasible should be collected over an area with both background and leakage areas, results of 
which are then imported into the program. The program is then used to sub-sample the created / 
imported dataset using either a grid, offset grid, uniform random, or random approach. The user 
defines a list of multiple sample densities and the program performs a user defined number of 
unique simulations for each of those densities, thus producing a statistical dataset of potential 
results for a given sampling density and approach. Two main issues can be addressed with the 
program. First, how many samples must be collected to find a leakage point of a given size and 
shape at a given confidence level (“leak detection”), and second, how does sampling density 
affect the overall estimate of CO2 leakage flux from an area (“leak quantification”). For the 
former, the program keeps track every time the leakage area is intersected and various plots and 
statistics are used to interpret the results. For the latter, the sub-sampled data for each simulation 
is contoured and total flux calculated using algorithms within the program Surfer 9, then 
background estimates are subtracted to obtain the estimated total leakage flux.  

Leak detection was first studied by performing simulations of each sampling approach on five 
different anomalies having the same surface area and ratio of anomaly to total surface area, but 
different shapes or orientations (one circular vent and four elongate belts oriented NS, EW, 
N45°E, and N64°E). The interpretation of initial tests performed with 500 simulations for each 
experiment showed that most sampling approaches produced statistically stable results after 
about 200 simulations, and thus this number was used for all subsequent work to reduce 
computational times. Whereas the random sampling approach yielded the same results (300 
samples to find the anomaly at the 95% confidence level) for each anomaly shape because the 
ratio between anomaly and total surface area was constant, the efficiency of the other methods 
was affected by the shape and orientation of the anomaly. Of all the methods, the offset grid 
sampling approach performed best, for example requiring anywhere from a third to a half as 
many samples (100 – 140 samples at the 95% confidence level) as that needed for the random 
approach for most shapes. The exception to this was the EW alignment, where 80% more 
samples were needed (560 samples) due to the narrow geometry of the anomaly often laying 
between grid node rows. The uniform random approach yielded intermediate results between the 
offset grid and random approaches and gave a relatively stable number of samples for each 
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anomaly shape, however the difficulty of applying this approach in the field means that it may 
not be a feasible alternative.  

Based on these tests the offset grid approach was found to yield the best overall results, however 
if there is the potential for long narrow anomalies it is best to align the grid offset direction 
perpendicular to the strike of the anisotropy. A power law was developed for the offset grid 
approach which estimates the number of samples required to find a circular anomaly (at the 95% 
confidence level) having a specific anomaly area to total survey area ratio (for example, 72 
samples would be needed to locate a vent with a 40 m radius in an area of 1 km2 or to locate a 
vent with a radius of 4 m in an area of 10,000 m2). 

Three scenarios using synthetic data were studied for the leakage quantification applications of 
this model, including: i) no leakage to understand possible errors in background flux estimates; 
ii) a single circular gas vent to examine the effect of sampling approach and sample density; and 
iii) three circular vents aligned along a NE direction to look at the potential for the merging of 
individual vents via the contouring process. For this work only the random and offset grid results 
were presented as they represent the two extremes; in contrast to the leak detection simulations, 
only circular vents were modelled to maintain the number of tests at a reasonable level. 
Subsequent to this work on synthetic data, sub-sampling simulations were also conducted on real 
data from the Latera Caldera. Although not reproducing all data processing aspects that may 
occur in a real, single survey (such as variogram analysis, survey flexibility based on researcher 
experience, etc.) the automated, “brute-force” approach used here can give useful general 
indications on possible problems and inaccuracies, and can help improve survey planning. 

The no leakage scenario was examined because of the importance of accurately estimating the 
biological background CO2 production, as this value must be subtracted from the total measured 
flux to calculate the leakage flux. In the first test the 1 million point synthetic grid was 
subsampled at different densities, and the statistical distributions compared. Although the trends 
and average values are generally similar, the range of potential arithmetic mean values produced 
for a given sample density become wider with increased sample spacing. At its most extreme this 
can result in a range of ± 10% around the true value despite the fact that it is the same large 
dataset that is being subsampled, although the quartile range is typically closer to the much lower 
value of ± 1.5%. In the second test different quadrants were subsampled and their statistical 
distributions compared, as some researchers use non-leaking background areas to estimate 
biological flux. In the scenario modelled here a variability of about ± 15% was observed relative 
to the true total background flux. Conceivably even higher differences could occur depending on 
the actual site conditions (land use, water content, topography, or changing conditions during 
sampling like rainfall events or fertilization), and thus this approach could potentially introduce 
significant errors, especially if the estimated leakage rate is relatively small compared to the 
biogenic flux estimate error. 

The single vent scenario was studied to look at sampling density and sampling approach and the 
effect that these two parameters have on the estimated leakage flux. As observed previously for 
leakage detection, the offset grid approach yielded much better leakage quantification results 
compared to the random approach, especially at the high to medium sample densities. Detailed 
examination of the statistical distribution of the various datasets using probability plots shows 
how members of one population can plot within the field of the other population when they occur 
in the transition zone. This fact is important when defining the different populations, especially 
as related to background flux estimates. 
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Results show how at high sample densities the statistical distribution of the simulation results are 
almost normal with average values close to the true value and quartile values within a small 
percentage. At lower sampling densities the interquartile range widens, the average value 
decreases below that of the true value, and the outlier values become progressively larger and 
more skewed. The lower average values are due to the vent being less likely to be sampled (thus 
sampling is almost exclusively of the background), while the high outliers are due to the 
extrapolation of the intersected vent well beyond its actual size. Regarding the offset grid 
approach, quartile ranges are about ±15% of the true value for the 30 m spacing, ± 25% for 50 m, 
and + 20% and – 70% for 100 m, while maximum estimated values (i.e., greatest outliers) are 
+180%, +390%, and +1200% for the same sample spacings. It is shown that limited additional 
“in-fill” sampling around found anomalies, to constrain their spatial extent during the contouring 
procedure, can greatly improve final leakage estimates.  

The three vent scenario, which actually consisted of tests on three different distances between 
those vents, looked at the potential merging of anomalies during the contouring process and how 
it may affect final leakage estimates. While many of the behaviours observed in the previous 
single vent simulations were again noted, an additional aspect that influenced the obtained results 
was the interaction of sample distribution geometry, vent size, and distance. For example, some 
sample spacings using the offset grid approach were able to intersect all three vent centres or no 
vents at all, whereas other spacings tended to hit at least one vent, meaning that the former 
resulted in a lower average but with higher outliers compared to a higher average with lower 
outliers for the latter. The random sampling approach tended to merge the three vents more than 
the offset grid approach, as there was more potential for sample gaps between the vents. 

Finally the detailed grid of CO2 flux measurements conducted in a single field within the Latera 
caldera were input into the program and sub-sampling simulations were conducted to see the 
range of leakage flux estimates that would be possible at different sample densities. Similar to 
that observed above, the lower the sampling densities resulted in the average leakage estimates 
decreasing but with outlier values becoming progressively larger. Based on the estimated average 
background flux rate used for these simulations, equal to 45 g m-2 d-1, the true leakage rate was 
estimated to be about 1.6 t d-1. The average leakage estimate was around this value up to a 
sampling spacing of about 50 m, with extreme estimates equal to about double the actual value. 
At wider spacing the average value drops towards half that of the true value, while maximum 
estimates were about 4 times the true value. Finally, as observed above in the three vent synthetic 
data simulations, a relationship was found between the average diameter of the leakage areas and 
the sample spacing, which influenced how often the vents were intersected, where, and if the 
multiple vents were defined as individual entities or merged during the contouring process. 
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Chapter 6. Impact of CO2 on groundwater quality 

6.1. Introduction 
Although a well-chosen and well-engineered geological CO2 storage site is not expected to leak, 
all potential risks must be addressed to ensure human health and safety and ecosystem integrity 
and to comply with regulations, such as the EU Directive on CO2 storage (Directive 2009/31/EC 
of 23rd April 2009). One issue that has received much attention, and raised concern amongst 
regulators, some NGOs, and the public at large, is the impact that geological carbon capture and 
storage (CCS) may have on potable groundwater resources. This potential impact could come 
about through two main mechanisms: i) by leakage of a portion of the injected CO2 gas into an 
overlying aquifer, resulting in acidification and in situ chemical reactions that change water 
quality; or ii) by the migration of deep reservoir brines into an overlying aquifer that changes its 
water quality, both by the addition of high concentrations of the elements dissolved in the brine 
itself and by in situ reactions induced by the different pH or Eh conditions of the leaking brine 
relative to the aquifer. Clearly these two mechanisms could also be combined, with the leakage 
of both injected CO2 and brine together. In addition to the many research papers that have been 
published on various aspects of potential groundwater impacts due to CCS, some review articles 
have recently summarized the processes involved, the present state of the art, and potential 
knowledge gaps (Harvey et al., 2012; IEAGHG, 2011; Lemieux, 2011; Lions et al. 2013). 

Of the two potential mechanisms, in situ reactions caused by the addition of CO2 has received the 
most research attention. This work can be grouped based on the different approaches taken, 
including geochemical and transport modelling (Apps et al., 2010; Birkholzer et al., 2008; 
Romanak et al., 2012; Zheng et al., 2009; Zheng et al., 2013), laboratory batch experiments 
(Carroll and Knauss, 2005; Humez et al., 2013; Little and Jackson, 2010; Mickler et al., 2013; 
Montes-Hernandez et al., 2013; Wunsch et al., 2013b), field experiments involving the injection 
of CO2 gas or CO2 charged water (Cahill and Jakobsen, 2013; Kharaka et al., 2010; Mickler et 
al., 2013; Trautz et al., 2013; Yang et al., 2013; Zheng et al., 2012), and the study of natural 
analogues (Keating et al., 2013a); many of these studies also combine approaches, such as the 
geochemical modelling of field experimental results. In addition to these studies on potential 
impacts, the chemistry and isotope chemistry of potable aquifers have been monitored above 
sites where CO2 is actively injected (or produced from deep reservoirs) to look for signs of 
leakage and impact (Caritat et al., 2013; Lions et al., 2013; Romanak et al., 2012); to date none of 
these sites have shown any signs of leakage or impact. 

All of these studies have highlighted the site specific nature of any potential impact, and how a 
detailed characterisation and baseline hydrogeological and hydrogeochemical survey of any 
potable aquifer above the injection reservoir is paramount for understanding any potential risk.  
Site specific parameters will include, amongst others: 

 Aquifer mineralogy. The types of minerals will control the pH and Eh buffering capacity 
of the aquifer, while the chemical composition of the minerals (and their solubility under 
the given pH-Eh conditions) will control the availability for potential major and trace 
element release into the dissolved phase. 
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 Confined versus unconfined aquifer. In an unconfined aquifer system the leaking gas is 
able to migrate into the unsaturated horizon and eventually into the atmosphere, meaning 
that it will not accumulate (other than directly along the flow path) and that the amount 
of CO2 dissolved in the water, and its eventual impact, will be more limited. In contrast, 
leakage into a confined aquifer will result in “pooling” of a separate gas phase at the top 
of the aquifer and the creation of a long-term source over a much wider area.  

 Leakage rate versus groundwater flow rate. The balance between these two parameters 
(together with the previous point) will greatly influence the spatial extent of impact, and 
will also influence the resultant chemical changes (e.g. dilution, etc.)  

 Chemical composition of leaking gas. The impact of only CO2 on an aquifer will 
principally be in the area of a lowering of the pH, however if a significant percentage of 
the leaking gas consists of reduced gases like CH4 or H2S there is also the potential to 
change the Eh of the system. This will impact on the stability of various mineral phases, 
making them more or less soluble and changing the potential for trace element release. 

The principal concern regarding this type of impact is the potential increase of various trace 
element concentrations above accepted drinking water standards, often quoted as the Maximum 
Contaminant Level (MCL) for each regulated element. The concentration of any given trace 
element in the dissolved phase (and its mobility) will be controlled by two main mechanisms: i) 
mineral dissolution or precipitation; and ii) adsorption or desorption on mineral surfaces like 
clays, oxides, or oxyhydroxides. Both of these processes are controlled by pH and Eh, and by the 
overall chemistry of the water (e.g. presence of competing ions, complexing agents, etc.). While 
both are important, it should be noted that the latter tends to have more rapid kinetics. 

As conditions tend to change down-gradient, due to mixing with the background water and 
various reactions, a plume of impacted water within an aquifer will ususally be zoned, with some 
conservative elements (like Cl) migrating essentially at the same velocity as the groundwater 
flow rate, while those elements affected by solubility and/or sorption processes will tend to 
migrate much more slowly (often being released in one zone but then newly immobilized in 
another). As such the issue of “impact” must be considered not only in terms of chemical 
changes, but also on the spatial extent and distribution of such changes for each individual 
chemical species of interest.  

The second impact mechanism, that is the leakage of brine associated with the storage reservoir, 
is of concern because the pressure gradient induced by the CO2 injection process (i.e. the driving 
force that could potentially cause the brine to migrate upwards) will occur much faster and cover 
a much wider area than that occupied by the injected CO2 itself. This implies, especially in a 
multi-well injection field, that initial site characterisation will have to ensure storage integrity 
also in the far field and that monitoring of groundwater resources may have to cover a wider 
area. Some researchers contend that this mechanism has a greater potential to impact the water 
quality of an overlying aquifer (e.g., Keating et al., 2013a). This topic has received less focus 
than the gas-only leakage scenario, possibly due to the greater difficulty of realistically 
simulating this process in laboratory or field-based experiments. In fact most of the literature on 
this item tends to focus on groundwater modelling (Birkholzer et al., 2011; Bricker et al., 2012; 
Cihan et al., 2012; Noy et al., 2012) and natural analogues (Keating et al., 2013; Kirk et al., 2009; 
Wigley et al., 2013), while known brine chemistries (Wunsch et al., 2013) or reacted reservoir 
rocks (Karamalidis et al., 2013) have been used to examine possible source input characteristics.  

While most of the processes described above regarding the mechanisms that control element 
mobility will also play an important role in this second type of impact, there are some additional 
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features that should be considered. The most important of these differences is the fact that any 
leaking brine will have a chemistry that is potentially very different from that which could be 
developed via in situ reactions in the aquifer. In other words, whereas the potential for eventual 
maximum dissolved concentrations of a given trace metal or other inorganic pollutant for the 
CO2-only leakage case will be a function of what is available in the aquifer minerals, brine 
leakage can transport elevated concentrations of major (e.g. nuisance chemicals like Cl) or trace 
(toxic elements like As) components that may be present in the aquifer in only very low 
concentrations. Other important issues for this type of scenario include the potential for the brine 
to have a more significant impact (chemically and spatially) on the redox conditions of an aquifer 
compared to the gas-only scenario, the importance of brine leakage rate versus groundwater flow 
rate, and the potential impact that the brine may have not only on water quality for potable 
resources but also on water used for irrigation (Wunsch et al., 2013).  

The present research addresses a number of the issues raised above through the study of the 
Latera natural laboratory site in central Italy. This site consists of deep carbonate units that are 
overlain by volcanic lithologies and surface alluvial and fluvial sediments formed from the same 
volcanic rocks. At this location gas (>95% CO2) is leaking over a wide area, however there is no 
clear indication of co-migration of deep water, meaning that any observed changes in chemistry 
may be due to gas-induced in situ reactions only. A series of boreholes were augered by hand 
along a transect parallel to the groundwater flow direction, with sampling points located up 
gradient, within, and down gradient of the leakage area. Samples were analysed in the laboratory 
for major and trace elements, whilst some physical-chemical parameters, such as pH and 
temperature, were measured in the field.  

The goal of this work was to determine the chemical and spatial impact of CO2 leakage on the 
groundwater quality of this volcanic terrain, both in terms of better understanding such natural 
hydrogeological systems as well as using this site to predict the potential of a hypothetical CO2 
leak from a CCS reservoir on potable groundwater resources. 

6.2. Study site 
The Latera groundwater study site was chosen based on a groundwater flow direction that passes 
through a CO2 leakage area (to observe potential chemical impacts caused by the leak) and on 
the occurrence of a relatively shallow water table (to facilitate field logistics, considering that all 
holes were hand augered). As shown in Figure 14, this site is located in the centre-south of the 
caldera near a large CO2 leakage area. The site is at the intersection of two roads, thus easily 
accessible, and is crossed by a 2-3m deep creek gulley which shows water table depth, water 
flow direction, and which exposes outcrops of the surface geology of the area. 

Some examples of the lithologies exposed in the gulley walls are shown in Figure 60. Units are 
principally recent alluvial deposits formed by erosion of the surrounding volcanic rocks. Fine 
grained clayey sediments are most common, sometimes in multi-coloured bands of 10-20 cm 
thickness (Figure 60a) but most often as finely laminated, grey beds (Figure 60b), although 
poorly sorted units with gravel clasts supported in a silt matrix (Figure 60c) and higher energy 
river bottom deposits (Figure 60d) can also be observed. In terms of ground water flow and 
hydrogeology, at the local scale the dominant fine-grained material will represent aquitards while 
the more gravel-rich layers can be considered “low-permeability” aquifers that are likely 
discontinuous and irregular in space. 
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Both hydrogen sulphide and silicate were analysed using colorimetric methods. For hydrogen 
sulphide analyses, 10 ml of colorant (400 mg N,N-Dimethyl-1,4-phenylenediamine-
dihydrochloride dissolved in 100 ml 6N HCl ) and 10 ml of catalyst (1.6 g FeCl3 * 6 H2O 
dissolved in 100 ml 6N HCl) were added to the stabilised 1 ml of sample, shaken, and left for 
one hour to develop the colour. Samples were transferred into micro-volume (1 ml) disposable 
PS cuvettes and analysed at a wavelength of 670 nm. For silicate, 0.1 ml of heptamolybdate 
solution (6.3 g ammoniumheptamolybdate-tetrahydrate dissolved in 50 ml pure water added to 
50 cm3 of 4.5M H2SO4) was added to 5ml of sample. This was shaken and left for 30 minutes. 
0.1 ml oxalic acid (10 g oxalic acid in 100 ml pure water) and 0.1 ml ascorbic acid (2.8 g 
ascorbic acid in 100 ml pure water) were then added, the vials shaken again and left for another 
30 minutes.  Absorbance was measured at a wavelength of 810 nm. 

6.4. Latera groundwater results and discussion 

6.4.1. Borehole log and piezometric surface results 

Boreholes were typically augered to about 2.5 to 3.5 m to intersect the water table. Impermeable 
clayey units were encountered in all holes above the water bearing interval, thus the sampled unit 
can be considered confined. A short description of each hole follows (see Figure 64a for 
locations). 

Hole P1. Located within the gas leakage area (see photo Figure 62a) on a site with no vegetation, 
exposed grey soil, and the smell of H2S in the air. Lithology: grey clay from 0 to 55 cm; very 
dark grey to black, compact clay from 55 to 202 cm; end of hole at 202 cm. First sign of water at 
165 cm. Initial water was black. At the end of sampling the hole was re-filled with unaltered, 
brown- to grey-coloured sandy sediments from the creek bed. One week later the hole was re-
excavated and this material was found to be completely black, indicating the highly reducing 
nature of the system, the impact of H2S and, possibly, the precipitation of iron sulphides (such as 
amorphous iron (II) monosulfide (FeSam), mackinawite (FeS) or greigite (Fe3S4)). 

Hole P2. Located about 30 m south of the non-vegetated leakage area, on the boundary between 
an agricultural field and scrub brush. The vegetation appears healthy and there is no visual 
indication of gas leakage or impact on surface. Lithology: grey soil from 0 to 50 cm; grey clay 
with red stringers (that increase in amount with depth) from 50 to 140 cm; red clay from 140 to 
200 cm; red sand- to gravel-sized fragments in clay matrix from 200 to 278 cm; end of hole at 
278 cm. End of hole very resistant to augering, possibly top of volcanic bedrock. First sign of 
water at 183 cm. Initial water was red.  

Hole P3. Located 5 m from the creek, with creek gulley giving a good exposure of the lithology 
of the first c. 2.5 m (see photos in Figure 60a and Figure 65a), and normal vegetation in this 
pasture field (see photo in Figure 62b). Lithology: dark brown clay from 0 to 100 cm; compact 
black clay from 100 to 138 cm; red clay from 138 to 180 cm; grey clay from 180 to 230 cm; grey 
clay with lithoid fragments from 230 to 310 cm; end of hole at 310 cm. First sign of water at 220 
cm. Initial water was brown. 

Hole P4. Located at the northern end of the same field as P3, chosen as an intermediate point 
between the highly anomalous P2 and the more normal P3. Lithology: brown soil from 0 to 143 
cm; brown clay with red inclusions and stringers from 143 to 209 cm; grey to brown, wet clay 
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from 209 to 230 cm; dry, compact black clay from 230 to 233 cm; end of hole at 233 cm. First 
sign of water at 209 cm. Initial water was black to dark brown. 

Hole P5. Located 40 m south of P3 in the same pasture field, 10 m from the creek gulley. 
Lithology: brown soil from 0 to 90 cm; plastic grey clay with intervals with red stringers from 90 
to 282 cm; grey sandy clay with lithoid fragments from 282 to 294 cm; grey clay from 294 to 
300 cm; end of hole at 300 cm. First sign of water at 270 cm. Initial water was grey to brown. 

Hole P6. Located about 250 m north of the known gas leakage area, chosen as a background, up-
gradient site. 5 m west of a shallow, dry creek bed. Lithology: dark brown clayey soil from 0 to 
120 cm (note that a tube was lowered to 120 cm and CO2 was measured directly using a field 
instrument – a value of 3.6 % was observed, which is higher than the 1-2% that might be 
expected in a normal soil at that depth); light grey clay from 120 to 198 cm; compact grey clay 
with small intervals with lithoid fragments from 198 to 225 cm; grey sandy clay from 225 to 280 
cm; gravel in sandy-clay matrix from 280 to 290 cm; end of hole at 290 cm. First sign of water at 
242 cm. Initial water was grey, after being left for the rest of the day it was clear.  

All wells were purged 2 to 3 times then left overnight prior to measuring the piezometric surface, 
followed by an additional single purge prior to sampling. Note that all wells had a very slow 
recharge rate indicating the low permeability of the measured hydrological units. 

 

Figure 67. Ground surface and piezometric surface along a central line through the study area onto which the 
various sample points are projected. See Figure 64a for location. 

Figure 67 shows the piezometric surface along a central projection line crossing the study area 
from NE to SW (see Figure 64a for location). In agreement with the initial interpretation of 
groundwater flow direction based on topography, the borehole data indicates a general NE to SW 
hydraulic gradient that flows through the main gas leakage area. The gradient from P1 to P5 is on 
the order of 0.007. Note that because of the highly variable nature of the surface lithologies it was 
not possible to create a geological cross-section. 

6.4.2. Data Statistics 

A correlation matrix for all collected data is given in Table 4. The colour coding clearly shows 
the strong negative correlation between many parameters and pH that is typically on the order of 
about -0.7. Strong (0.7 to 0.9) and very strong (>0.9) positive correlations are observed for 
numerous other parameters, including SiO2, SO4, K, Hg, and Fe.  It must be noted that part of the 
reason for such a good correlation is the very wide range of values along the transect, especially 
due to the very high values occurring in the gas leakage area, as discussed below. 
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Table 4. Correlation matrix of r2 values for all chemical - physical parameters measured on the Latera samples. Note legend for explanation of colour coding. 

 

pH El. Cond. Alk. Ionic Str. Ag Al As B Ba Ca Cd CH4 Cl CO2 Cr Cs Cu Fe H2S HCO3 Hg K Li Mg Mn Na Ni NO3 Pb Rb SiO2 SO4 Sr Zn U Be V Co Sb Ga Mo
pH 1.00

El. Cond. ‐0.74 1.00

Alk. 0.63 ‐0.17 1.00 Legend

Ionic Str. ‐0.76 1.00 ‐0.23 1.00 0.9 to 1.0

Ag ‐0.50 0.88 0.05 0.89 1.00 0.7 to 0.9

Al ‐0.72 0.96 ‐0.30 0.98 0.92 1.00 ‐0.7 to 0‐.9

As 0.11 0.41 0.82 0.33 0.48 0.23 1.00 ‐0.9 to ‐1.0

B ‐0.77 0.38 ‐0.45 0.39 0.35 0.41 ‐0.16 1.00

Ba 0.55 ‐0.19 0.98 ‐0.26 ‐0.03 ‐0.35 0.82 ‐0.35 1.00

Ca ‐0.66 0.94 0.04 0.90 0.75 0.80 0.59 0.24 0.05 1.00

Cd ‐0.62 0.85 ‐0.09 0.86 0.97 0.91 0.35 0.58 ‐0.13 0.68 1.00

CH4 ‐0.74 0.82 ‐0.42 0.81 0.47 0.73 0.11 0.16 ‐0.41 0.83 0.42 1.00

Cl ‐0.58 0.45 0.12 0.40 0.42 0.34 0.44 0.78 0.25 0.49 0.55 0.15 1.00

CO2 ‐0.75 0.83 ‐0.40 0.82 0.48 0.74 0.14 0.17 ‐0.38 0.85 0.43 1.00 0.19 1.00

Cr ‐0.71 0.96 ‐0.33 0.98 0.85 0.97 0.20 0.29 ‐0.39 0.83 0.80 0.83 0.21 0.83 1.00

Cs ‐0.71 0.98 ‐0.19 0.99 0.95 0.99 0.35 0.44 ‐0.23 0.85 0.93 0.70 0.44 0.72 0.95 1.00

Cu 0.00 ‐0.39 ‐0.39 ‐0.33 ‐0.14 ‐0.17 ‐0.62 0.52 ‐0.39 ‐0.64 0.06 ‐0.57 0.07 ‐0.58 ‐0.32 ‐0.21 1.00

Fe ‐0.76 0.95 ‐0.36 0.96 0.73 0.92 0.21 0.26 ‐0.38 0.88 0.69 0.94 0.24 0.94 0.97 0.90 ‐0.45 1.00

H2S ‐0.42 0.26 ‐0.35 0.23 ‐0.22 0.09 ‐0.08 ‐0.12 ‐0.27 0.42 ‐0.27 0.75 ‐0.06 0.74 0.25 0.06 ‐0.64 0.48 1.00

HCO3 0.61 ‐0.16 1.00 ‐0.23 0.03 ‐0.30 0.83 ‐0.44 0.99 0.05 ‐0.10 ‐0.41 0.13 ‐0.38 ‐0.34 ‐0.20 ‐0.41 ‐0.35 ‐0.32 1.00

Hg ‐0.71 0.99 ‐0.21 1.00 0.91 0.99 0.34 0.34 ‐0.26 0.88 0.87 0.79 0.34 0.80 0.98 0.99 ‐0.33 0.95 0.18 ‐0.21 1.00

K ‐0.80 0.95 ‐0.32 0.94 0.70 0.88 0.27 0.31 ‐0.31 0.92 0.66 0.95 0.35 0.96 0.93 0.88 ‐0.49 0.99 0.53 ‐0.31 0.92 1.00

Li ‐0.83 0.80 ‐0.43 0.83 0.80 0.87 0.05 0.79 ‐0.42 0.60 0.92 0.50 0.61 0.51 0.77 0.87 0.23 0.70 ‐0.09 ‐0.43 0.81 0.70 1.00

Mg ‐0.52 0.85 0.17 0.80 0.63 0.67 0.68 0.06 0.19 0.98 0.52 0.80 0.41 0.82 0.73 0.72 ‐0.79 0.81 0.50 0.19 0.78 0.86 0.41 1.00

Mn ‐0.34 0.30 0.35 0.24 0.34 0.18 0.57 0.64 0.48 0.38 0.45 ‐0.04 0.96 0.00 0.03 0.29 0.05 0.06 ‐0.19 0.37 0.19 0.17 0.44 0.34 1.00

Na ‐0.34 0.73 0.47 0.66 0.64 0.54 0.89 0.12 0.51 0.87 0.55 0.51 0.62 0.54 0.52 0.64 ‐0.66 0.58 0.21 0.48 0.64 0.65 0.38 0.90 0.63 1.00

Ni ‐0.50 0.04 ‐0.35 0.05 0.10 0.10 ‐0.26 0.93 ‐0.24 ‐0.10 0.35 ‐0.19 0.70 ‐0.18 ‐0.06 0.13 0.73 ‐0.09 ‐0.32 ‐0.35 0.00 ‐0.05 0.58 ‐0.26 0.62 ‐0.10 1.00

NO3 0.47 ‐0.77 ‐0.20 ‐0.71 ‐0.57 ‐0.60 ‐0.69 ‐0.15 ‐0.26 ‐0.87 ‐0.50 ‐0.69 ‐0.55 ‐0.72 ‐0.60 ‐0.67 0.65 ‐0.71 ‐0.42 ‐0.22 ‐0.68 ‐0.78 ‐0.44 ‐0.89 ‐0.51 ‐0.92 0.10 1.00

Pb ‐0.32 0.05 0.10 0.02 0.14 0.01 0.19 0.79 0.24 0.04 0.34 ‐0.27 0.89 ‐0.24 ‐0.16 0.10 0.46 ‐0.17 ‐0.35 0.11 ‐0.03 ‐0.08 0.43 ‐0.05 0.90 0.24 0.88 ‐0.16 1.00

Rb ‐0.72 0.98 ‐0.17 0.99 0.93 0.98 0.38 0.44 ‐0.20 0.87 0.92 0.73 0.47 0.74 0.95 1.00 ‐0.25 0.91 0.11 ‐0.18 0.99 0.90 0.87 0.76 0.33 0.68 0.13 ‐0.72 0.12 1.00

SiO2 ‐0.89 0.90 ‐0.56 0.92 0.66 0.89 0.01 0.47 ‐0.55 0.79 0.69 0.91 0.33 0.91 0.92 0.87 ‐0.23 0.96 0.47 ‐0.55 0.89 0.96 0.81 0.67 0.11 0.45 0.14 ‐0.63 ‐0.02 0.88 1.00

SO4 ‐0.79 0.97 ‐0.38 0.98 0.86 0.99 0.17 0.42 ‐0.42 0.82 0.85 0.81 0.33 0.82 0.99 0.97 ‐0.22 0.96 0.22 ‐0.38 0.98 0.93 0.86 0.70 0.14 0.52 0.10 ‐0.62 ‐0.02 0.97 0.95 1.00

Sr 0.51 ‐0.25 0.61 ‐0.26 0.16 ‐0.17 0.37 0.02 0.58 ‐0.32 0.18 ‐0.72 0.22 ‐0.70 ‐0.35 ‐0.11 0.40 ‐0.49 ‐0.88 0.59 ‐0.23 ‐0.50 ‐0.02 ‐0.34 0.41 0.06 0.24 0.10 0.46 ‐0.12 ‐0.51 ‐0.30 1.00

Zn ‐0.54 0.12 ‐0.42 0.15 0.20 0.22 ‐0.30 0.94 ‐0.34 ‐0.07 0.45 ‐0.12 0.66 ‐0.11 0.05 0.23 0.76 0.00 ‐0.34 ‐0.43 0.11 0.03 0.67 ‐0.25 0.56 ‐0.11 0.98 0.06 0.82 0.23 0.24 0.21 0.25 1.00

U 0.34 0.04 0.93 ‐0.04 0.20 ‐0.12 0.91 ‐0.15 0.96 0.25 0.11 ‐0.27 0.45 ‐0.23 ‐0.19 0.01 ‐0.38 ‐0.19 ‐0.28 0.94 ‐0.04 ‐0.11 ‐0.17 0.35 0.65 0.68 ‐0.11 ‐0.44 0.37 0.04 ‐0.34 ‐0.20 0.59 ‐0.18 1.00

Be ‐0.75 0.46 ‐0.47 0.49 0.50 0.55 ‐0.16 0.97 ‐0.41 0.25 0.71 0.17 0.71 0.18 0.40 0.56 0.57 0.34 ‐0.24 ‐0.47 0.45 0.36 0.89 0.05 0.56 0.11 0.89 ‐0.16 0.71 0.55 0.53 0.54 0.11 0.93 ‐0.20 1.00

V ‐0.61 0.85 ‐0.35 0.86 0.61 0.81 0.15 0.01 ‐0.40 0.81 0.51 0.94 ‐0.03 0.94 0.92 0.78 ‐0.57 0.96 0.56 ‐0.34 0.86 0.92 0.50 0.77 ‐0.20 0.47 ‐0.35 ‐0.60 ‐0.45 0.78 0.87 0.86 ‐0.61 ‐0.25 ‐0.27 0.09 1.00

Co ‐0.46 ‐0.06 ‐0.31 ‐0.05 ‐0.03 ‐0.02 ‐0.26 0.89 ‐0.18 ‐0.15 0.22 ‐0.22 0.71 ‐0.21 ‐0.17 0.01 0.69 ‐0.17 ‐0.24 ‐0.31 ‐0.11 ‐0.11 0.47 ‐0.28 0.64 ‐0.11 0.99 0.10 0.89 0.02 0.07 ‐0.02 0.20 0.95 ‐0.07 0.81 ‐0.42 1.00

Sb ‐0.34 0.77 0.26 0.77 0.97 0.80 0.61 0.31 0.19 0.67 0.93 0.27 0.47 0.30 0.70 0.85 ‐0.12 0.56 ‐0.38 0.24 0.79 0.54 0.71 0.57 0.45 0.67 0.12 ‐0.53 0.24 0.84 0.47 0.71 0.37 0.19 0.40 0.45 0.43 ‐0.01 1.00

Ga ‐0.81 0.77 ‐0.33 0.78 0.78 0.82 0.13 0.84 ‐0.30 0.59 0.91 0.43 0.73 0.45 0.70 0.84 0.24 0.64 ‐0.13 ‐0.33 0.76 0.65 0.99 0.41 0.58 0.44 0.65 ‐0.47 0.56 0.84 0.74 0.80 0.07 0.72 ‐0.04 0.91 0.40 0.55 0.72 1.00

Mo 0.11 0.40 0.30 0.43 0.76 0.54 0.38 0.00 0.16 0.21 0.70 ‐0.10 0.04 ‐0.09 0.43 0.55 0.13 0.23 ‐0.69 0.27 0.49 0.14 0.43 0.12 0.09 0.27 ‐0.05 ‐0.14 0.01 0.52 0.13 0.42 0.62 0.06 0.27 0.22 0.17 ‐0.19 0.83 0.41 1.00
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Figure 70. pH and major ion trends along the measured transect. Note the gas leakage area in dark grey and the 
presumed groundwater flow direction from left to right. 
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may occur as a fracture filling material. Instead the slight decrease from background to leakage area 
concentrations for Na is curious, as one would expect this element to increase if albite (Table 5) was 
an important constituent. 

The saturation indices (SI) of various potential “primary” mineral phases and “secondary” alteration 
products are plotted along the transect in Figure 72. Saturation indices for the Latera dataset were 
calculated using the program PHREEQC (Version 3; Parkhurst and Appelo, 2013) with the 
associated PHREEQC.dat thermodynamic database. 

The rapid decrease of all major elements down gradient from the leakage area implies a removal 
mechanism from the dissolved phase, either via mineral precipitation and/or adsorption. Table 6 
gives the chemical formula of various mineral phases whose solubility may control equilibrium 
concentrations within the leakage area and decrease dissolved concentrations down gradient.  

Table 5. Types and formulas of mineral phases that likely form the volcanic-origin alluvial sediments in the study 
area, prior to leaking gas - induced impact. 

mineral name type chemical formula 

halloysite clay mineral Al2Si2O5(OH)4  4H2O 

sanidine K-feldspar KAlSi3O8 

augite clinopyroxene (Ca, Na)(Mg, Fe2+, Al)(Si, Al)2O6 

albite plagioclase NaAlSi3O8 

leucite feldspathoid KAlSi2O6 

hematite oxide Fe2O3 

pyrite sulfide FeS2 

Table 6. Types and formulas of mineral phases that may represent alteration products formed within or down-
gradient from the leaking gas area. 

mineral name type chemical formula 
alunite hydroxide KAl3(SO4)2(OH)6 

gibbsite hydroxide Al(OH)3 

kaolinite clay Al2Si2O5(OH)4 

smectite clay R0.33Al2Si4O10  2H2O, where  
R = Na+, K+, Mg2+ and/or Ca2+ 

illite clay Ky(Al4Fe4Mg10)(Si8-yAly)O2(OH)4 

ferrihydrite oxide Fe10O15  9H2O 

hematite oxide Fe2O3 

magnetite oxide Fe3O4 

goethite hydroxide FeO(OH) 

iron hydroxide hydroxide Fe(OH)3 amorphous 

greigite sulfide Fe3S4 

Regarding the alumino-silicate mineral phases, one can see that albite, anorthite, and K-feldspar are 
all in equilibrium with the surrounding groundwater, all are under-saturated in the leakage area, and 
then all show increasing values that return to near equilibrium values at the farthest sampled point at 
P5. This indicates, at least from a thermodynamic point of view, that these minerals can be dissolved 
in the leakage area but not at the two extremes of the transect.  
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Figure 72. Saturation indices of various mineral phases along the measured transect. Note the gas leakage area in 
dark grey and the presumed groundwater flow direction from left to right. 
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For Al the most likely minerals are alunite (considering the high SO4 concentrations), gibbsite, 
kaolinite, smectite, and illite, for K it would be alunite, smectite, and illite, for Si it could be any of 
the clay minerals, while for other cations it would be smectite. In addition, cation adsorption on the 
surfaces of newly formed clays and/or hydroxides is also possible. A plot of the saturation indices of 
these minerals (Figure 72) shows that kaolinite and gibbsite are over-saturated outside of the leakage 
area but near saturation within it. In contrast alunite is under-saturated outside the leakage area but 
over-saturated within it (note that unlike the other mineral SI values, that for alunite was calculated 
with the LLNL database, as the PHREEQC database shows relatively constant, positive values 
across the entire transect, which seemed un-realistic considering the changes in chemistry. Down 
gradient from the leakage area the solubility indices of all modelled clay and hydroxide minerals 
increase towards over saturation conditions, showing that all or some of these phases could 
contribute to the observed decreases in the other cation species. 

Figure 70 also compares the trends of Na and Cl, as well as the ratio between them (plot “f”). The 
higher Na concentrations relative to Cl are an indication that the Na results from reaction with Na-
bearing silicate mineral phases. The low Cl concentrations combined with the high Na/Cl ratio 
within the centre of the gas leakage area indicates that geothermal reservoir brine is not co-migrating 
with the leaking gas at this site, as discussed in Section 6.4.3. The only point outside of this trend is 
P4 at ~ 500 m, where the Cl concentration, while still low, is closer to that of Na, resulting in a ratio 
value closer to 1. The cause of this slight increase is unknown.  

A number of redox sensitive species are plotted in Figure 73, including SO4 and H2S (b), Fe (c), Mn 
(d), and CH4 (e). The overall trends of SO4, Fe, and CH4 are relatively similar to each other (and 
similar to those of Al, K, and Si; Figure 70), with low values up gradient, very high concentrations 
within the leakage area, and low, decreasing concentrations down gradient from the leak. The source 
of the Fe is likely the dissolution of pyrite and hematite (Table 5), with the latter being near or 
slightly below saturation within the leakage area (Figure 72e). Decreasing Fe concentrations down 
gradient may be controlled by precipitation of hematite, magnetite, or goethite (Table 6, Figure 
72e,f). The high concentrations of SO4 in the leakage area are probably caused by oxidation of the 
dissolved H2S that is migrating with the CO2 (for example, note that only P1 had high H2S 
concentrations, whereas all other points were below detection; Figure 73b) or by dissolution of 
pyrite.  

The rapid decrease in SO4 concentrations down gradient cannot be explained by precipitation by 
common sulphate phases like gypsum and anhydrite, as these are under saturated along the entire 
transect with progressively more negative values moving away from the leakage area (Figure 72b). 
Instead, barite is at saturation levels throughout, however the low Ba concentrations preclude 
significant SO4 removal. Alunite (Table 6) may be a possible removal mechanism for both Al and 
SO4, given its over-saturation state within the leakage area (see above), however as stated, different 
SI values were observed using different thermodynamic databases. Simple dilution / spread of the 
plume may also explain this rapid decrease, although the slow flow rate does not, perhaps, support 
this hypothesis. Finally CH4, like H2S, originates in the leaking gas; it is only observed in the leakage 
area and apparently is rapidly oxidised beyond its borders. 
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Figure 73. The trends of redox sensitive parameters along the measured transect. Note the gas leak area in dark 
grey and presumed groundwater flow direction from left to right. 

The results of many of the trace elements analysed at this site are reported in Figure 74, grouped into 
three separate plots based on the general trend of the data. Note that despite the different behaviours 
of the three groups, all trace elements reported in this figure have down gradient concentrations that 
decrease towards, or below, the concentrations observed in the up gradient background sample, 
despite elevated concentrations in the leakage area.  
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Figure 74. Trace element trends along the measured transect. Note the gas leakage area in dark grey and the 

presumed groundwater flow direction from left to right. 

The trace elements in Figure 74a show a general decreasing trend along the entire transect, with 
background values higher than leakage area values. Uranium will occur as U(VI) under reducing 
conditions and will likely precipitate out as the oxide uraninite. The uraninite stability field occurs 
over a wide pH range, helping to explain why concentrations continue to decrease down gradient to 
0.2 ppb in the furthest sample (P5), where pH values approach neutral. In addition, the low 
concentrations of complexing agents in this interval (such as bicarbonate) that could potentially 
increase U mobility, may contribute to the lower concentrations. Decreasing As concentrations could 
also be linked to redox conditions, with the possible precipitation of orpiment. Ba is the only element 
which goes from a high background value (>1200 ppb), to almost 0 in the leakage area (<30 ppb), 
and then a slight increase down gradient (c. 130 ppb). This behaviour could be explained by barite 
saturation conditions along the entire transect combined with the fact that of all divalent cations, Ba 
has the highest affinity for adsorption. 

The trace elements given in Figure 74b show relatively low values in the first leakage point (P1), 
anomalously high values in the second leakage point (P2), and the highest values in the point 
sampled directly down gradient from the leakage area (P4), before rapidly decreasing in the last two 
points down gradient (P3, P5). P4 is noteworthy for the fact that it has quite a low pH (c. 4) but 
relatively low dissolved CO2 (98 ppm) and essentially no bicarbonate, as well as being the only point 
where the Na/Cl ratio approaches 1. The reason for this point having the highest values for these 
trace elements is not clear, but it could be linked to the combined effects of pH, limited carbonate 
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complexing agents, Eh, and mineral phases present. pH appears to be particularly important, as the 
last two points along the transect have pH values that are approaching neutral. 

Finally the trace elements plotted in Figure 74c show values that increase slightly from the 
background site to the first leakage sample point, increase sharply to the highest concentrations 
observed at the second leakage sample point, and then decrease smoothly (Cs, Cd) or irregularly (Cr, 
Li) in the down gradient part of the transect. This trend is very similar to that observed for Fe, SO4, 
Al, Si, and K, and thus it is assumed that these four trace elements are linked with the mineral phases 
described above to explain the behaviour and spatial distribution of these major elements. 

6.4.5. Spatial distribution of surface water chemistry 

As described above in Section 6.3.1, field-based water-quality measurements were made at 50 m 
intervals along the creek that passes through the gas leakage area to ascertain the spatial impact of 
the leaking CO2 on surface water quality and to look for indications of possible co-migration of 
deep-origin water with the gas. Because only in situ measurements were conducted these results can 
only be considered as a preliminary assessment of the potential impact.  

The creek flow rate was small during the sampling period (see, for example, the photo in Figure 66a) 
and, although not measured, it is estimated to have been < 1 l/s during the very dry summer sampling 
period (i.e. mid-July). The observed results could thus represent an extreme, as higher surface water 
flow rates (for example, during the rainy winter season) would result in greater dilution. 

 

Figure 75. N-S transect along the creek where it crosses the gas leakage area (see Figure 64b for location). Points 
are spaced c. 50 m apart and water flow direction is from NE to SW. 

The impact of the gas leakage area is clear on all three field-measured parameters presented in 
Figure 75; this figure shows surface water flowing from left (NE) to right (SW) through the interval 
where gas bubbling was directly observed within the creek water (marked in dark grey). Trends are 
different, however, in regards to how each parameter behaves beyond the leakage area. For example, 
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whereas pH and dissolved O2 decrease in the leakage area but then recover relatively quickly to near 
background values down-stream, conductivity values rise in the leakage area and then remain stable 
and elevated even 200m beyond the southern boundary of the leakage area.  

The pH trend can be explained by the dissolution and subsequent exsolution of CO2 along the flow 
path. O2 likely decreases due to the leakage of small amounts of reduced gases like H2S and CH4 
together with the CO2, which would consume oxygen, followed by subsequent re-equilibration with 
atmospheric O2 down-stream. In contrast, the conductivity trend indicates that the increased 
dissolved ions acquired within the leakage area do not decrease rapidly despite the return to near-
neutral pH values down-stream. This is likely due to the appropriate mineral phases always being 
under-saturated and thus not precipitating out of solution. This increase in conductivity could be due 
to either water-rock interaction in the stream bed caused by CO2-induced acidity or to a small 
amount of co-migrating deeper water, although there is no evidence of the latter in the groundwater 
samples collected nearby. Understanding the actual source, and understanding if this impact on 
water quality is significant, would require subsequent chemical (and possibly) isotopic analyses.  

6.5. Summary  
Data at the Latera site were collected along a 600 m long transect that parallels groundwater flow 
and crosses a large and significant gas leakage area to observe changes in groundwater chemistry, 
looking for potential impacts on, and evolution of, the near-surface groundwater as it flows through 
the zone of high CO2. Boreholes were hand augered to a depth of about 2.5 to 3.2 m in highly 
variable alluvial volcaniclastic sediments dominated by a aluminum-silicate mineralogy. Water was 
sampled for various physical-chemical parameters in the field (e.g., temperature, pH, conductivity) 
and for laboratory analysis of dissolved gases and major and trace elements. The water bearing 
horizon was encountered at a depth of about 2.8 to 3.0 m, with the piezometric surface typically 
occurring about 50 cm above this unit. The water bearing horizon in some locations appeared to be 
associated with a sediment - “bedrock” contact, while in others with a sandier fluvial unit. The 
hydraulic gradient along the transect was about 0.007 m/m.  

The present study, like all field studies in which natural complexity can make interpretation 
challenging, has some limitations. These include: i) the sampled units are not “aquifers”, as defined 
as a geological unit that can provide useable volumes of water, but rather are thin permeable 
horizons through which water flows relatively slowly; ii) this natural leaking site is long-lived and 
therefore is more likely to be at equilibrium, something that will likely not be the case should a leak 
occur and be discovered shortly afterwards; and iii) although a hydraulic gradient was observed 
along the transect, pumping tests were not conducted to determine if the various wells are 
hydraulically connected. Despite these issues, the obtained results are unique in their scope.  

Data from the profile was compared with regional data from the literature, showing that all values 
plot within the field of the volcanic aquifers of the area. In addition, comparison of the collected 
samples with chemistry of deep brines associated with the geothermal reservoir at >2000 m shows 
no similarity, implying that no deep waters are migrating upwards with the leaking gas. This means 
that the observed results are likely due to only in situ reactions caused by the introduction of CO2 

(and associated H2S).  
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Due to the predominately silicate mineralogy occurring at this site, carbonate minerals have little 
influence on the resulting impact. The buffering capacity of the carbonate system is exceeded and 
minimum pH values are on the order of 3.5. Whereas dissolved CO2 reaches almost saturation 
values within the leakage area, HCO3

- values decrease to almost 0 due to the extremely low pH (i.e. 
almost all DIC is in the form H2CO3°). Concentrations of Ca and Mg do not increase much moving 
from background to vent samples, however K, Al, and Si all increase significantly. All of these 
major elements decrease (and pH increases) rapidly down gradient, typically attaining values at <100 
m that are less than or equal to the concentrations measured in the up gradient sample.  

Examination of the saturation indices of numerous mineral phases shows how carbonates are always 
under saturated, and sulphates are always under saturated but with highest values in the venting area. 
The silicate minerals are at saturation up gradient, most under saturated within the venting area, and 
rise towards saturation levels in the down gradient samples. Finally clay minerals, oxides, and 
hydroxides are generally highly over saturated up gradient, saturated or slightly under saturated in 
the vent, and then increasingly over saturated moving down gradient. These results imply that the 
dominant reactions in the vent area involve dissolution of the main potassium aluminium silicates 
known to occur in the surface sediments (e.g. K-feldspar, leucite), with possible precipitation of clay 
minerals like kaolinite and smectite, oxides like hematite, and hydroxides like goethite and gibbsite 
controlling the decreasing concentrations down gradient (together with adsorption onto these newly 
formed mineral phases). 

The overall trend of redox sensitive species is similar to that of, for example, silica, with sharp 
increases in SO4, CH4, and Fe in the vent area followed by rapidly decreasing values down gradient; 
H2S, in contrast, is only high in one vent sample and essentially absent in all other samples. While 
SO4 is likely formed by the oxidation of co-migrating H2S, and CH4 is also a co-migrating gas, 
elevated Fe concentrations are likely due to the dissolution of pyrite and hematite. The rapid 
decrease of these species is linked to the over saturation conditions of various mineral phases beyond 
the leak area. 

Trace metal behaviour can be sub-divided into three groups, those that decrease along the flow path 
(U, Ba, As), those that increase in the leak area, have the highest concentration just outside the leak 
area, and then decrease to background levels further down gradient (Zn, Pb, Be, B), and those that 
have a general distribution that is very similar to that of Si and Al, with the highest values within the 
leakage area and rapidly decreasing values down gradient (Cd, Cr, Cs, Li). Again the individual 
behaviour of each trace element would need to be studied with detailed geochemical modelling and 
mineralogical analyses, however the similar behaviour within each of the three groups indicates that 
the principle mechanisms are probably controlled by a limited number of precipitation and 
adsorption processes. In any case, regardless of the mechanisms, there is a clear decrease of all 
measured trace elements to at or below background concentrations within 50 to 100 m of the gas 
leakage area. These values are typically below the drinking water limits. 
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Chapter 7. Conclusions 
The present study has focussed on the phenomenon of CO2 leakage from the deep subsurface 
towards the atmosphere. Work involved modelling surface flux measurement strategies and 
sampling densities (using synthetic and real data) to understand the influence that these parameters 
have on finding and quantifying leaks, as well as sampling groundwater along a transect through a 
major CO2 leakage area to examine the potential impact of a leak on groundwater quality. This work 
relates to both natural leaking systems as well as to man-made systems where leakage may 
hypothetically occur (such as carbon capture and storage, CCS, projects). As a detailed summary of 
the results is given at the end of each research chapter (i.e., Chapters 4 – 6), to which the interested 
reader can refer, only high-level implications are discussed below. 

A new model was developed and applied to determine what sampling strategies yield the greatest 
potential for finding a leak and how leak shape and orientation can influence success rate. Of the 
four sampling strategies tested, the offset grid approach was the most efficient at finding a circular 
anomaly, followed closely by the regular grid and uniform random approaches; instead the purely 
random approach required a much larger number of samples to attain the same probability of 
success. It was found that the diameter of the smallest circular anomaly guaranteed to be found at the 
95% confidence interval using the offset grid approach is about 20% greater than the grid spacing 
itself, although the work conducted at the Latera field site showed that smaller anomalies can be 
located by chance (i.e., at a lower probability) or by selective additional sampling based on visual 
clues and other information. A power law was developed to estimate the number of samples needed 
to find a circular anomaly of a given size using the offset grid approach, providing a valuable tool for 
the planning of surveys and site monitoring. Tests examining the influence of anomaly shape and 
direction showed that while the random method always required the same, relatively high, number of 
samples for different anomalies of the same size, the responses of the other methods were influenced 
by anomaly orientation. The offset grid consistently gave the best results for most tests, however it 
gave the worst results (together with the standard grid approach) when the anomaly was aligned 
parallel to the offset direction. Based on these results the offset grid method is recommended for leak 
detection, however if elongate features are expected (e.g., along fault traces) it is best to align the 
offset direction so that it is not parallel to the anomaly anisotropy. Preliminary studies combining 
other sources of information, such as structural geology, remote sensing, and reconnaissance surface 
mapping, can greatly improve sample strategy and spacing decisions. 

The same model was used to examine the effect of sample strategy and spacing on the estimate of 
total leakage flux. In a comparison of the offset grid and random sampling approaches, the former 
yields much better results at high sampling densities but only marginally better or equivalent results 
at lower densities. This boundary occurs where the grid spacing exceeds the average diameter of the 
anomalies present. This work also highlighted various potential sources of error during the leakage 
flux estimation process, as outlined below.  

The estimation of the average background biological flux is critical, as this value must be subtracted 
from total flux measurements to determine the leakage flux. Several approaches can be taken, each 
having the potential to introduce errors. It was found that different sub-sampling of the same 
background population can yield a range of average values, although this was found to be small 
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(error of only a couple of percentage points). The use of a separate, distant area where leakage is 
known to not occur as a “background surrogate” has, instead, the potential to introduce a much 
larger error. If, for example, the surrogate area has different characteristics (such as water content, 
organic matter content, or vegetation type) or was sampled under different conditions than the 
leakage area (such as after a heavy rainfall or tillage), the two areas may have significantly different 
background flux rates. This was illustrated with the developed program by sub-sampling different 
quadrants of a single synthetic background population distributed over the entire grid. In this 
example the range of calculated difference was about 15%, however much more significant 
differences are quite feasible. Even when the statistical distribution of all samples collected only over 
the survey area are used to separate leakage from background populations, the spatial complexity of 
background distributions as well as the overlap between these two populations can also lead to 
potential errors. This was shown in the interpretation of the highly detailed grid performed at the 
Latera site, where a clear boundary in the log probability plot defined high leakage flux but 
complexity in the lower level distribution made it difficult to classify these samples as being purely 
biogenic or a mix of biogenic and geogenic flux (although the comparison with historical samples 
collected under different environmental conditions helped in the interpretation). In this example the 
use of different average background values, both based on the statistical distribution, yielded 
estimates of the leakage flux rate that differed by 100%.  

A theoretical example can be used to highlight the need for an accurate background estimate. If the 
background flux is estimated to be 10 g m-2 d-1 when in reality it is 20 g m-2 d-1, the difference will be 
incorrectly attributed to leakage flux. This would result in an error of 10 t d-1 for a 1 km2 area and 
100 t d-1 for a 10 km2 area. While difficult to address, various possible approaches could be used to 
improve this estimate: subdivide large areas and treat them separately, as each may have different 
background populations; characterise the different soils over the study area in terms of their content 
(e.g. organic matter), water retention capacity, and their ability to respire CO2 (i.e., incubation 
experiments); use vertical profiles of soil gas concentrations, isotopes, and seasonal / temporal 
monitoring to separate biogenic from geogenic gas fluxes. 

Another potential source of error relates to the sampling density and how interpolation of the 
collected data into data gaps can extend leakage anomalies far beyond their actual physical extents, 
or merge anomalies that are in reality separate entities. While at higher sampling densities this is less 
of an issue, as sample spacing increases so does the potential for this effect to result in total leakage 
flux estimates that are much larger than the real flux, as seen in simulations using both synthetic and 
real data (for example, > 10x more in some outlier simulations). While this effect has the potential to 
introduce the largest error, it is actually the one that is simplest to address. Modelling examples have 
shown how limited infill sampling around found anomalies, such as 5 to 10 samples around an 
anomaly to delineate a leakage area or a profile between anomalies to separate them, can greatly 
improve leakage estimates for a small investment of time. This requires, however, flexibility in the 
sampling strategy, real-time data analysis during the sampling campaign, and allocation of additional 
time (perhaps a day or two) at the end of the campaign to allow this work to be done. The use of new 
technologies that rapidly measure CO2 concentrations at the ground surface may also be used as a 
rapid reconnaissance tool prior to the flux survey, or as a spot verification tool after it is complete. 

Although developed specifically to examine CO2 flux, the GasGrid program now has the potential, 
with minor modifications, to be applied to other geological parameters that have a spatial distribution 
with localized anomalies. 
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Groundwater sampling along a transect parallel to the inferred flow direction and crossing a large 
CO2 gas leak was used to better understand possible changes in water quality due to water-rock-gas 
reactions induced by CO2 leakage. Within the leakage area itself pH values decreased to very low 
values due to the lack of significant carbonate buffering capacity in these silicate volcanic rocks. 
Within this interval very elevated values of Al, K, and Si were observed due to dissolution of 
mineral phases such as leucite and potassium feldspar, as well as redox sensitive compounds like 
CH4 (co-leaking gas), SO4 (due to oxidation of co-leaking H2), Fe (due to dissolution of pyrite) and 
various trace elements likely occurring as trace components in the dissolving mineral phases. Down 
gradient over a distance of 50 – 100 m all anomalous parameters return to essentially up-gradient, 
non-impacted levels, likely due to secondary precipitation and adsorption processes. Additional 
work is needed, however, to verify these results given the uncertain hydraulics of the studied system. 

Based on the present study, some observations can be made regarding the potential impact of CO2 
leakage on groundwater chemistry. First, redox conditions were seen to be as important as pH in 
controlling the evolution of the groundwater and the associated mobility of various major and trace 
elements. These are controlled not only by the Eh and pH buffering capacity of the aquifer itself (i.e., 
its mineralogy), but also the leakage rate, the leakage type (gas only versus gas plus deep water), and 
the composition of the leaking gas (CO2 +/- H2S, CH4, etc.). Samples collected immediately down 
gradient, and further along the flow path, show how trace element concentrations decrease to 
background levels. This shows that the impact at this site is relatively limited, however other sites 
(with, for example, greater leakage rates, greater aquifer permeability and flow, higher 
concentrations in co-migrating water, etc.) could result in a wider impact area. Similar studies at 
different leakage sites are recommended to understand the potential range of impacts that may occur. 

Some observations can also be made regarding groundwater monitoring at industrial sites (such as 
CCS) where there is concern about the potential for leakage from deep reservoirs and impact on 
overlying potable groundwater resources. As shown here, there will potentially be a significant 
difference in the types of parameters that should be monitored based on: i) whether the leak is gas 
only, water / brine only, or both phases together; ii) leakage rate; and iii) ph-Eh buffering capacity of 
the impacted aquifer. For example if brine is leaking one would expect high Cl concentrations; 
considering that this species is conservative and flows essentially at the groundwater flow rate, it 
could be a potential early warning parameter compared to more attenuated (and more harmful) 
elements like As or Pb. In addition, as Cl contributes to free ion concentrations, conductivity could 
be used as a simple, robust monitoring tool. Depending on background aquifer conditions, Eh 
measurements would also be useful. If instead only CO2 gas is leaking, Cl and Eh may not change 
significantly, while increases in other major elements will depend on aquifer mineralogy and related 
dissolution kinetics; on the other hand trace metal concentrations may increase due to more rapid 
desorption processes. Considering that trace element measurements are prone to sample 
contamination and are expensive, in this case pH and dissolved CO2 would be good parameters to be 
monitored, as would DIC; as pointed out by some authors conductivity may not be a good indicator 
in this case as DIC at lower pH values will be primarily in the neutral form H2CO3°, which does not 
contribute to conductivity. The advantage of using pH and pCO2, as opposed to DIC, is that sensors 
can be installed for continuous in situ monitoring, and together with temperature these parameters 
can be used to calculate carbonate alkalinity. Implicit in this is the need for an accurate 
characterisation of the baseline conditions, both spatially to integrate aquifer heterogeneity and 
temporally to address potential seasonal variability, for the correct identification of a leakage signal. 
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APPENDIX I  

GasGrid	7.5	code	

 

 

Dim path As String 
 
Option Explicit 
 
Private Sub Cmd_cancel_Click() 
End 
End Sub 
 
Private Sub Cmd_make_grid_Click() 
 
Randomize 
 
Frm_initial_settings.Enabled = False 
Frm_data_type.Enabled = False 
Frm_bkg_flux.Enabled = False 
Frm_vents.Enabled = False 
Frm_sampling_settings.Enabled = False 
Frm_contour.Enabled = False 
Frm_run.Enabled = False 
 
PauseIt 
 
'************************************************************** 
'*****************      file name variables     *************** 
'************************************************************** 
 
Dim BkgInputFile As String 'imported file from BG_Format program 
Dim BkgPlusVentFile As String 
Dim BkgPlusVentGridFile As String 
Dim SampleDataFile As String 
Dim SampleGridFile As String 
Dim SummaryFile As String 
Dim vent_info_file As String 
Dim sample_spacing_file As String 
Dim fixed_num_sample_file As String 
Dim BackgroundFluxFile As String 
Dim BackgroundGridFile As String 
Dim RealFieldDataFile As String 'imported file of real field data 
Dim SimulationDescriptionFile As String 'file summarising simulation settings 
Dim sim_dir As String 'used to create new root directory for series of simulations 
Dim sim_path As String 'used to number simulation directory 
Dim ss_dir As String 'sample spacing directory 
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'****************************************************** 
'*******************      variables     *************** 
'****************************************************** 
 
Dim anomalies As Integer 
Dim avg_bkg_flux As Double 
Dim bkg_max As Double 
Dim circle_X_min As Integer 
Dim circle_X_max As Integer 
Dim circle_Y_min As Integer 
Dim circle_Y_max As Integer 
Dim count_loop As Long 'used to see how many loops are needed before sample point is NOT "" 
Dim ContourType As String 
Dim core_radius As Integer 
Dim CVResults As Variant 
Dim distance As Double 
Dim EqnVariable As Double 
Dim ExtraPoints As Integer 
Dim flux As Double 
Dim grid_pt_seq_num As Long 
Dim grid_X_max As Long 
Dim grid_Y_max As Long 
Dim num_samples As Long 
Dim num_simulations As Integer 
Dim num_sample_spacings As Long 
Dim fixed_num_samples As Long 
Dim num_of_fixed_samples As Long 
Dim Num_of_vents As Long 
Dim OddEven As Integer 
Dim point_to_sample As Variant 
Dim random_number As Long 
Dim remaining_pts As Long 
Dim sample_pt As Variant 
Dim sample_pt_X As Integer 
Dim sample_pt_Y As Integer 
Dim sample_spacing As Integer 
Dim SampleSpacingTitle As String 
Dim sampling_density As Long 
Dim sigma_bkg_flux As Double 
Dim starting_point As Long 
Dim TotalFlux As Variant 'total flux calculated ONCE using all data (simulated=BG+vent; realdata=realdata) 
Dim TotalFluxBackground As Variant 'total flux calculated ONCE for BG 
Dim TotalFluxVents As Variant 'total vent flux calculated ONCE using all data: TotalFlux - TotalFluxBackground 
Dim TotalFluxSim As Variant 'total flux calculated for each simulation 
Dim TotalFluxVentsSim As Variant 'total flux from vents calculated for each simulation 
Dim total_num_pts As Long 
Dim ventloop As Integer 
Dim Vent_Radius_x_title As String 'used to make title of simulation directory 
Dim X_length As Integer 
Dim X_coord As Integer 
Dim X_samples As Integer 
Dim Y_length As Integer 
Dim Y_coord As Integer 
Dim Y_samples As Integer 
Dim StartTime As Date 'stores starting time of simulation 
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'*************************************************** 
'*****************      counters     *************** 
'*************************************************** 
 
Dim counter_1 As Long 
Dim counter_2 As Long 
Dim count_samples As Long 
Dim Count_Row As Integer 
Dim Count_Column As Integer 
Dim dir_count As Integer 
Dim grid_array_counter As Long 
Dim grid_check_array_counter As Long 
Dim i As Long 
Dim j As Long 
Dim k As Long 
Dim l As Long 
Dim m As Long 
Dim o As Long 
Dim p As Long 
Dim s As Long 
Dim y As Long 
Dim z As Integer 
 
'************************************************************ 
'*****************       arrays     *************** 
'************************************************************ 
 
Dim CV(1, 6) As Variant 
Dim grid_array() As Variant 
Dim grid_check_array() As Variant 'used as "parallel" array for random selection of sample points (or for first point for 
grid sampling) 
Dim sample_array() As Variant 
Dim vent_info() As Variant 
Dim Results() As Double 
Dim sample_spacing_array() As Variant 
Dim fixed_num_sample_array() As Variant 
Dim Imported_BG_array() As Variant 
Dim Imported_RealData_array() As Variant 
 
'***************************************************************** 
'*****************      collect info from form     *************** 
'***************************************************************** 
 
StartTime = Time() 
 
num_simulations = CInt(Txt_num_simulations) 
avg_bkg_flux = CDbl(Txt_BG_avg.Text) 
grid_X_max = CInt(Txt_X_max.Text) 
grid_Y_max = CInt(Txt_Y_max.Text) 
total_num_pts = CLng(Txt_num_grid_pts.Text) 
 
ReDim grid_check_array(1, total_num_pts) 
 
Dim fso As New Scripting.FileSystemObject ' Get instance of FileSystemObject. 
If fso.FolderExists(Txt_path.Text) = False Then 
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    fso.CreateFolder (Txt_path.Text) 
End If 
path = Txt_path.Text 
 
If Opt_contour.Item(0).Value = True Then ContourType = "srfKriging" 
If Opt_contour.Item(1).Value = True Then ContourType = "srfNaturalNeighbor" 
If Opt_contour.Item(2).Value = True Then ContourType = "srfInverseDistance" 
If Opt_contour.Item(3).Value = True Then ContourType = "srfRadialBasis" 
 
'************************************************************************** 
'*****************      create folder for these simulations   ************* 
'************************************************************************** 
 
sim_path = CStr(path) & "output\sim" 
sim_dir = sim_path 
dir_count = 1 
Do Until fso.FolderExists(sim_dir) = False 
    sim_dir = sim_path & CStr(dir_count) 
    dir_count = dir_count + 1 
Loop 
 
fso.CreateFolder (sim_dir) ' Create a new folder with the FileSystemObject object. 
 
'**************************************************************** 
'** import fixed number of samples for purely random sampling  ** 
'**************************************************************** 
 
If Opt_fixed_num_samples(0).Value = True Then 
    fixed_num_samples = 1 
    ReDim fixed_num_sample_array(1, 1) 
    fixed_num_sample_array(1, 1) = CInt(Txt_single_fixed_num_samples.Text) 
ElseIf Opt_fixed_num_samples(1).Value = True Then 
    Txt_message.Text = "import fixed number of samples for random sampling" 
    PauseIt 
    fixed_num_sample_file = Txt_fixed_sample_number_file.Text 
    fixed_num_samples = Txt_fixed_num_samples.Text 
    ReDim fixed_num_sample_array(1, fixed_num_samples) As Variant 
    Call ImportIntoArray(fixed_num_sample_array, 1, fixed_num_samples, fixed_num_sample_file, 1) 
End If 
 
'*********************************************************************** 
'* import "minimum" sample spacings for systematic random sampling ***** 
'* MAYBE import sample spacings for regular grid sampling        ******* 
'*********************************************************************** 
 
If Opt_sample_spacing(0).Value = True Then 
    num_sample_spacings = 1 
    ReDim sample_spacing_array(1, 1) 
    sample_spacing_array(1, 1) = CInt(Txt_singlespacing.Text) 
ElseIf Opt_sample_spacing(1).Value = True Then 
    Txt_message.Text = "import sample spacings" 
    PauseIt 
    sample_spacing_file = Txt_sample_spacing_file.Text 
    num_sample_spacings = Txt_num_sample_space.Text 
    ReDim sample_spacing_array(1, num_sample_spacings) As Variant 
    Call ImportIntoArray(sample_spacing_array, 1, num_sample_spacings, sample_spacing_file, 1) 
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End If 
 
'**************************************************************** 
'******      import vent locations and characteristics     ****** 
'**************************************************************** 
 
Txt_message.Text = "import vent locations" 
PauseIt 
 
If Opt_vents(0).Value = True Then 
    ReDim vent_info(5, 1) 
    Num_of_vents = Txt_num_of_vents.Text 
    vent_info(1, 1) = CInt(Txt_singlevent_X.Text) 
    vent_info(2, 1) = CInt(Txt_singlevent_Y.Text) 
    vent_info(3, 1) = CInt(Txt_MaxVentFlux.Text) 
    vent_info(4, 1) = CInt(Txt_core_radius.Text) 
    vent_info(5, 1) = CInt(Txt_vent_radius.Text) 
ElseIf Opt_vents(1).Value = True Then 
    vent_info_file = Txt_vent_info_file.Text 
    Num_of_vents = Txt_num_of_vents.Text 
    ReDim vent_info(5, Num_of_vents) As Variant 
    Call ImportIntoArray(vent_info, 5, Num_of_vents, vent_info_file, 1) 
End If 
 
'**************************************************************** 
'******      create file with description of simulation     ***** 
'**************************************************************** 
 
SimulationDescriptionFile = sim_dir & "\Simulation Description.txt" 
Open SimulationDescriptionFile For Append As #1 
Print #1, Txt_comments.Text 
Print #1, "X max = " & Txt_X_max.Text 
Print #1, "Y max = " & Txt_Y_max.Text 
Print #1, "total number of pts = " & Txt_num_grid_pts.Text 
If Opt_data_type(0) = True Then 
    Print #1, "Simulated data" 
ElseIf Opt_data_type(1) = True Then 
    Print #1, "real data" 
    Print #1, "imported real data file = " & Txt_field_data_file.Text 
End If 
If Opt_Sim_Type(0) = True Then 
    Print #1, "simulation type - find anomaly" 
ElseIf Opt_Sim_Type(1) = True Then 
    Print #1, "simulation type - calculate flux" 
End If 
If Opt_BG(0) = True Then 
    Print #1, "fixed average = " & Txt_BG_avg.Text 
ElseIf Opt_BG(1) = True Then 
    Print #1, "calculated normal distribution background, average = " & Txt_BG_avg.Text & ", sigma = " & 
Txt_BG_sigma.Text 
ElseIf Opt_BG(2) = True Then 
    Print #1, "imported log-normal distribution background, average = " & Txt_BG_avg.Text & ", sigma = " & 
Txt_BG_sigma.Text 
    Print #1, "imported background file = " & Txt_BG_File.Text 
End If 
If Opt_vents(0) = True Then 
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    Print #1, "single vent, X" & Txt_singlevent_X.Text & " Y" & Txt_singlevent_Y.Text & ", vent radius = " & 
Txt_vent_radius.Text 
ElseIf Opt_vents(1) = True Then 
    For z = 1 To Num_of_vents 
        Print #1, "multiple vents - X" & vent_info(1, z) & " Y" & vent_info(2, z) & " max flux = " & vent_info(3, z) & " vent 
core diameter = " & vent_info(4, z) & " vent radius = " & vent_info(5, z) 
    Next 
End If 
Print #1, "number of simulations per sample spacing = " & Txt_num_simulations.Text 
If Opt_sampling_strategy(0) = True Then 
    Print #1, "sampling strategy is purely random" 
ElseIf Opt_sampling_strategy(1) = True Then 
    Print #1, "sampling strategy is distributed random" 
ElseIf Opt_sampling_strategy(2) = True Then 
    Print #1, "sampling strategy is systematic random (grid)" 
End If 
If Opt_sample_spacing(0) = True Then 
    Print #1, "single sample spacing = " & Txt_singlespacing.Text 
ElseIf Opt_sample_spacing(1) = True Then 
    For z = 1 To num_sample_spacings 
        Print #1, "multiple sample spacing - " & sample_spacing_array(1, z) 
    Next 
End If 
If Opt_fixed_num_samples(0) = True Then 
    Print #1, "single fixed number of samples = " & Txt_single_fixed_num_samples.Text 
ElseIf Opt_fixed_num_samples(1) = True Then 
    For z = 1 To CInt(Txt_fixed_num_samples.Text) 
        Print #1, "multiple fixed number of samples - " & fixed_num_sample_array(1, z) 
    Next 
End If 
If Opt_contour(0) = True Then 
    Print #1, "Kriging, anisotropy ratio = " & Txt_AnisotropyRatio & ", Anisotropy angle = " & Txt_AnisotropyAngle 
ElseIf Opt_contour(1) = True Then 
    Print #1, "Natural Neighbour, anisotropy ratio = " & Txt_AnisotropyRatio & ", Anisotropy angle = " & 
Txt_AnisotropyAngle 
ElseIf Opt_contour(2) = True Then 
    Print #1, "Inverse distance to a power, anisotropy ratio = " & Txt_AnisotropyRatio & ", Anisotropy angle = " & 
Txt_AnisotropyAngle & "inverse distance power = " & Txt_IDPower.Text & "inverse distance smoothing = " & 
Txt_IDSmoothing.Text 
ElseIf Opt_contour(3) = True Then 
    Print #1, "Radial Basis Function, anisotropy ratio = " & Txt_AnisotropyRatio & ", Anisotropy angle = " & 
Txt_AnisotropyAngle & "radial basis function r2 = " & Txt_RBRSquared.Text & "radial basis function type = " & 
Cbo_RBType.Text 
End If 
Close #1 
 
'**************************************************************** 
'***********        import background dataset        ************ 
'**************************************************************** 
 
Txt_message.Text = "import background dataset" 
PauseIt 
 
If Opt_BG(2).Value = True Then 
    BkgInputFile = Txt_BG_File.Text 
    ReDim Imported_BG_array(1, total_num_pts) As Variant 
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    Call ImportIntoArray(Imported_BG_array, 1, total_num_pts, BkgInputFile, 2) 
End If 
 
'**************************************************************** 
'*************        import real field data       ************** 
'**************************************************************** 
 
Txt_message.Text = "import real field data" 
PauseIt 
 
If Opt_data_type(1).Value = True Then       'real data 
    RealFieldDataFile = Txt_field_data_file.Text 
    ReDim Imported_RealData_array(1, total_num_pts) As Variant 
    Call ImportIntoArray(Imported_RealData_array, 1, total_num_pts, RealFieldDataFile, 2) 
End If 
 
'************************************************************************* 
'*** Create background grid with calculated or imported distribution ***** 
'*** ----- OR ----- input real data into grid ----------------------****** 
'************************************************************************* 
 
If Opt_BG(0).Value = True Then 
    Txt_message.Text = "populate grid with real data" 
ElseIf Opt_BG(1).Value = True Then 
    Txt_message.Text = "populate grid with calculated BG normal random flux" 
ElseIf Opt_BG(2).Value = True Then 
    Txt_message.Text = "populate grid with imported BG random flux" 
End If 
PauseIt 
 
ReDim grid_array(5, total_num_pts) 
grid_pt_seq_num = 1 
X_coord = 1 
Y_coord = 1 
bkg_max = avg_bkg_flux 
BackgroundFluxFile = sim_dir & "\" & "background data.txt" 
Open BackgroundFluxFile For Output As #1 
 
For Y_coord = 1 To grid_Y_max 
    For X_coord = 1 To grid_X_max 
        grid_array(1, grid_pt_seq_num) = X_coord 
        grid_array(2, grid_pt_seq_num) = Y_coord 
        If Opt_BG(0).Value = True Then 'fixed avg BG = import real data 
            grid_array(3, grid_pt_seq_num) = Imported_RealData_array(1, grid_pt_seq_num) 'populate grid w imported BG 
dataset 
        ElseIf Opt_BG(1).Value = True Then 'calculate BG 
            sigma_bkg_flux = CDbl(Txt_BG_sigma.Text) 
            grid_array(3, grid_pt_seq_num) = Round(Normal(sigma_bkg_flux, avg_bkg_flux), 3) 'populate grid w normally-
distributed random flux values based on input average and sigma 
            If bkg_max < grid_array(3, grid_pt_seq_num) Then bkg_max = grid_array(3, grid_pt_seq_num) 
        ElseIf Opt_BG(2).Value = True Then 'import BG 
            grid_array(3, grid_pt_seq_num) = Round(Imported_BG_array(1, grid_pt_seq_num), 3) 'populate grid w imported 
BG dataset 
            If bkg_max < grid_array(3, grid_pt_seq_num) Then bkg_max = grid_array(3, grid_pt_seq_num) 
        End If 
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        grid_array(4, grid_pt_seq_num) = grid_pt_seq_num 'sequential number used to select random points and to filter out 
pts that have been cancelled within sampling radius 
        grid_array(5, grid_pt_seq_num) = grid_array(3, grid_pt_seq_num) 'used later to see if pt's BGflux has been over-
written with vent value 
        If Opt_BG(0).Value = False Then 'ie if simulated data because fixed avg BG = import real data 
            Write #1, grid_array(1, grid_pt_seq_num), grid_array(2, grid_pt_seq_num), grid_array(3, grid_pt_seq_num) 
        End If 
        grid_pt_seq_num = grid_pt_seq_num + 1 
    Next X_coord 
Next Y_coord 
Close #1 
 
'******************************************************************* 
'*** Grid Background Data using Surfer to calculate BG flux using ** 
'***(imported file or normal distribution created by program ******* 
'** OR calculate BG flux for real data using input average BG flux * 
'******************************************************************* 
If Opt_Sim_Type(1).Value = True Then 'if calculate flux and NOT find anomaly 
    BackgroundGridFile = sim_dir & "\backgroundgrid.grd" 
    Txt_message.Text = "grid background data" 
    PauseIt 
    '++Surfer calculation for simulated data; simple calculation for realdata+ 
    If Opt_data_type(0).Value = True Then       'simulated data 
        Call SurferGrid(BackgroundFluxFile, ContourType, CInt(Txt_AnisotropyRatio.Text), 
CInt(Txt_AnisotropyAngle.Text), BackgroundGridFile, grid_X_max, grid_Y_max, 2, TotalFluxBackground) 
    ElseIf Opt_data_type(1).Value = True Then       'real data 
        TotalFluxBackground = avg_bkg_flux * (grid_X_max * grid_Y_max) 'average times total surface area 
    End If 
End If 
 
'************************************************************************* 
'** Opt_data_type(0) - add vents to simulated background grid   ********** 
'***Opt_data_type(1) - if real data, the array is not touched   ********** 
'************************************************************************* 
 
If Opt_data_type(0).Value = True Then 'ie for simulated data 
If Opt_vents(2).Value = False Then 'skip if no vents added to synthetic data 
 
    Txt_message.Text = "create vents" 
    PauseIt 
     
    For ventloop = 1 To Num_of_vents 
         
        EqnVariable = 0.065 * Log(vent_info(3, ventloop)) - 0.1525 'used to calculate flux at a vent point 
                                                     'created empirically in EXCEL - vent_info(3,ventloop) is MaxVentFlux 
     
        circle_X_min = vent_info(1, ventloop) - vent_info(5, ventloop) 'vent_info(5, ventloop)=vent_radius 
        If circle_X_min < 1 Then circle_X_min = 1 
        circle_X_max = vent_info(1, ventloop) + vent_info(5, ventloop) 
        If circle_X_max > grid_X_max Then circle_X_max = grid_X_max 
        circle_Y_min = vent_info(2, ventloop) - vent_info(5, ventloop) 
        If circle_Y_min < 1 Then circle_Y_min = 1 
        circle_Y_max = vent_info(2, ventloop) + vent_info(5, ventloop) 
        If circle_Y_max > grid_Y_max Then circle_Y_max = grid_Y_max 
         
        X_length = (circle_X_max - circle_X_min) + 1 
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        Y_length = (circle_Y_max - circle_Y_min) + 1 
         
         
        counter_1 = ((circle_Y_min - 1) * grid_X_max) + circle_X_min 
         
        For i = 1 To Y_length 
            For j = 1 To X_length 
                distance = (((vent_info(1, ventloop) - grid_array(1, counter_1)) ^ 2) + ((vent_info(2, ventloop) - grid_array(2, 
counter_1)) ^ 2)) ^ 0.5 
                If distance <= vent_info(5, ventloop) Then 'vent_info(5, ventloop)=vent_radius 
                    'fixed max vent flux or calculated flux decrease - for find anomaly or calculate flux options 
                    If Opt_Sim_Type(0).Value = True Then 'for "Find Anomaly" option 
                        flux = vent_info(3, ventloop) 
                    ElseIf Opt_Sim_Type(1).Value = True Then 'for "Calculate Flux" option 
                        'equation based on GVA with 20m radius, therefore the ratio 
                        'of (20m / specified vent radius) is used to scale the equation 
                        flux = Round(Exp(-EqnVariable * ((20 / vent_info(5, ventloop)) * distance)) * vent_info(3, ventloop), 3) 
'vent_info(3,1)=MaxVentFlux; vent_info(5, 1)=vent_radius 
                    End If 
                    'the following adds vent flux to BGflux if flux at that point has never been changed 
                    'or if the flux had been changed (ie adjacent vent) but is lower than new value 
                    ' - instead if flux had been changed and is higher than new flux, nothing is changed 
                    If grid_array(3, counter_1) = grid_array(5, counter_1) Then 
                        grid_array(3, counter_1) = grid_array(5, counter_1) + flux 
                    Else 
                        If grid_array(3, counter_1) < flux Then 
                            grid_array(3, counter_1) = grid_array(5, counter_1) + flux 
                        End If 
                    End If 
                End If 
                counter_1 = counter_1 + 1 
            Next j 
            counter_1 = counter_1 + (grid_X_max - X_length) 
        Next i 
          
    Next ventloop 
End If 
End If 
 
'**************************************************************************** 
'******   copy coord and sample-space files to simulation directory   ******* 
'**************************************************************************** 
 
If Opt_vents(0).Value = True Then 
    Open (sim_dir & "\vent coordinates.txt") For Output As #1 
    Write #1, CInt(Txt_singlevent_X.Text), CInt(Txt_singlevent_Y.Text) 
    Close #1 
ElseIf Opt_vents(1).Value = True Then 
    fso.CopyFile vent_info_file, sim_dir & "\", True 
End If 
 
If Opt_sample_spacing(0).Value = True Then 
    Open (sim_dir & "\sample spacings.txt") For Output As #1 
    Write #1, CInt(Txt_singlespacing.Text) 
    Close #1 
ElseIf Opt_sample_spacing(1).Value = True Then 
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    fso.CopyFile sample_spacing_file, sim_dir & "\", True 
End If 
 
If Opt_fixed_num_samples(0).Value = True Then 
    Open (sim_dir & "\fixed_num_sample_spacing.txt") For Output As #1 
    Write #1, CInt(Txt_single_fixed_num_samples.Text) 
    Close #1 
ElseIf Opt_fixed_num_samples(1).Value = True Then 
    fso.CopyFile fixed_num_sample_file, sim_dir & "\", True 
End If 
 
'************************************************************* 
'*****************      output "true grid"     *************** 
'************************************************************* 
 
If Opt_data_type(0).Value = True Then 
    Txt_message.Text = "output complete background plus vent data" 
    PauseIt 
    BkgPlusVentFile = sim_dir & "\" & "background plus vent data.txt" 
ElseIf Opt_data_type(1).Value = True Then 
    Txt_message.Text = "output complete real field data" 
    PauseIt 
    BkgPlusVentFile = sim_dir & "\" & "real field data.txt" 
End If 
 
Open BkgPlusVentFile For Output As #1 
For k = 1 To total_num_pts 
    Write #1, grid_array(1, k), grid_array(2, k), grid_array(3, k) 
    grid_check_array(1, k) = k      ' populate array used to select random sample points; 
                                    'this array is condensed when needed to decrease the random selection of points that no longer have 
values 
Next k 
Close #1 
 
'********************************************************************* 
'**** Grid BG+vent or RealData using Surfer to calculate ************* 
'**** total flux using all data for simulated BG+vent **************** 
'**** OR all RealData. An estimate of "true" vent leakage ************ 
'**** is calculated for either by subtracting BG from total flxu ***** 
'********************************************************************* 
 
If Opt_Sim_Type(1).Value = True Then 'if calculate flux and NOT find anomaly 
    If Opt_data_type(0).Value = True Then       'simulated data 
        BkgPlusVentGridFile = sim_dir & "\BkgPlusVentGrid.grd" 
    ElseIf Opt_data_type(1).Value = True Then       'real data 
        BkgPlusVentGridFile = sim_dir & "\RealFieldData.grd" 
    End If 
    Txt_message.Text = "grid total dataset" 
    PauseIt 
     
    Call SurferGrid(BkgPlusVentFile, ContourType, CInt(Txt_AnisotropyRatio.Text), CInt(Txt_AnisotropyAngle.Text), 
BkgPlusVentGridFile, grid_X_max, grid_Y_max, 2, TotalFlux) 
    TotalFluxVents = TotalFlux - TotalFluxBackground 
End If 
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'******************************************************************* 
'***********     create arrays for exporting summary tables     ***** 
'******************************************************************* 
If Opt_sampling_strategy(0).Value = True Then 
    ReDim TotalFlux_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
    ReDim TotalVentFlux_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
    ReDim R_RootMeanSquare_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
    ReDim R2_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
    ReDim ZE_Correlation_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
    ReDim ZR_Correlation_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
    ReDim ZE_RankCorrelation_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
    ReDim ZR_RankCorrelation_Array(1 To fixed_num_samples, 1 To num_simulations) As Variant 
Else 
    ReDim TotalFlux_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
    ReDim TotalVentFlux_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
    ReDim R_RootMeanSquare_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
    ReDim R2_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
    ReDim ZE_Correlation_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
    ReDim ZR_Correlation_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
    ReDim ZE_RankCorrelation_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
    ReDim ZR_RankCorrelation_Array(1 To num_sample_spacings, 1 To num_simulations) As Variant 
End If 
 
Txt_sim2.Text = num_simulations 
Txt_ss2.Text = num_sample_spacings 
PauseIt 
 
'++++ put headers for summary file +++++++++ 
SummaryFile = sim_dir & "\" & "simulation summary.txt" 
Open SummaryFile For Output As #5 
    Write #5, "simulation number", "number of samples", "sample spacing", "sampling density (samp/km2)", "anomalous 
samples", "Total Flux (all data)", "Total Flux background (all data)", "Total Vent Flux (all data)", "Simulated Total Flux 
(sub-sampled data)", "Simulated Vent Flux  (sub-sampled data)", "Estimation Error Statistics - Root Mean square", 
"Spatial Regression Statistics for Estimation Error - Error Coefficient of multiple determination", "Inter-Variable 
Correlations - correlation between Z and estimated statistics", "Inter-Variable Correlations - correlation between Z and 
estimation error", "Rank correlation between Z and E", "Rank correlation between Z and R" 
Close #5 
 
'******************************************************************* 
'*****************      sub-sampling simulations     *************** 
'******************************************************************* 
 
If Opt_sampling_strategy(0) = True Then 'purely random point selection based on a fixed number of points 
    Txt_ss2.Text = fixed_num_samples 
    For y = 1 To fixed_num_samples 
        num_of_fixed_samples = fixed_num_sample_array(1, y) 
        ' Create a new sub-folder for each fixed number of samples for this simulation 
        ss_dir = (sim_dir & "\SN_" & CStr(num_of_fixed_samples) & "\") 
        fso.CreateFolder (ss_dir) 
 
        For s = 1 To num_simulations 
            Txt_message.Text = "simulations" 
            Txt_ss1.Text = y 
            Txt_sim1.Text = s 
            PauseIt 
            SampleDataFile = ss_dir & "sampledata" & CStr(s) & ".txt" 
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            ExtraPoints = ((2 * (CInt(grid_X_max / 20) + 1)) + (2 * (CInt(grid_Y_max / 20) + 1))) 
            ReDim sample_array(3, num_of_fixed_samples + ExtraPoints) 'formula to put boundary pts around 4 sides 
            num_samples = 0 
            anomalies = 0 
            Open SampleDataFile For Output As #3 
             
            For count_samples = 1 To num_of_fixed_samples 
                sample_pt = grid_array(4, ((UBound(grid_array, 2) - 1) * Rnd + 1)) 
                If sample_pt = "" Then 
                    Do Until sample_pt <> "" 
                        sample_pt = grid_array(4, grid_array(1, Int((UBound(grid_array, 2) - 1) * Rnd + 1))) 
                    Loop 
                End If 
                sample_array(1, count_samples) = grid_array(1, sample_pt) 'X 
                sample_array(2, count_samples) = grid_array(2, sample_pt) 'Y 
                sample_array(3, count_samples) = grid_array(3, sample_pt) 'flux 
                Write #3, sample_array(1, count_samples), sample_array(2, count_samples), sample_array(3, count_samples) 
                If sample_array(3, count_samples) > bkg_max Then anomalies = anomalies + 1 
            Next count_samples 
                 
'***NEW***  'adds a value of 20 g/m2/d at 50m intervals around edge to define boundary value 
            'to avoid problem of contouring beyond the boundary 
            For k = 0 To grid_X_max Step CInt(grid_X_max / 20) 
                Write #3, k, 0, avg_bkg_flux 
                Write #3, k, (grid_Y_max + 1), avg_bkg_flux 
            Next k 
            For k = 0 To grid_Y_max Step CInt(grid_Y_max / 20) 
                Write #3, 0, k, avg_bkg_flux 
                Write #3, (grid_X_max + 1), k, avg_bkg_flux 
            Next k 
'***NEW*** 
            Close #3 
             
            sampling_density = CLng(num_of_fixed_samples / ((grid_X_max * grid_Y_max) / 1000000)) 
             
            '+++++++++ IF stmt for "find anomaly" vs "calculate flux". For "find anomaly", Surfer is bypassed 
            If Opt_Sim_Type(0) = True Then 
                '+++++++++++ output results for simulation 
                Open SummaryFile For Append As #5 
                    Write #5, s, num_of_fixed_samples, sample_spacing, sampling_density, anomalies 
                Close #5 
            ElseIf Opt_Sim_Type(1) = True Then 
                '+++++++grid sub-sampled data for each simulation 
                SampleGridFile = ss_dir & "samplegrid" & CStr(s) & ".grd" 
                Txt_message.Text = "grid simulated data - simulation " & CStr(s) 
                PauseIt 
                Call SurferGrid2(SampleDataFile, ContourType, CInt(Txt_AnisotropyRatio.Text), 
CInt(Txt_AnisotropyAngle.Text), SampleGridFile, grid_X_max, grid_Y_max, 5, TotalFluxSim, CV) 
                TotalFluxVentsSim = TotalFluxSim - TotalFluxBackground 
                '+++++++++++ output results for simulation 
                Open SummaryFile For Append As #5 
                    Write #5, s, num_samples, sample_spacing, sampling_density, anomalies, TotalFlux, TotalFluxBackground, 
TotalFluxVents, TotalFluxSim, TotalFluxVentsSim, CV(1, 1), CV(1, 2), CV(1, 3), CV(1, 4), CV(1, 5), CV(1, 6) 
                Close #5 
                '+++++++put various parameters in arrays for later export into summary files 
                TotalFlux_Array(y, s) = TotalFluxSim 'total flux of sub-sampled data 
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                TotalVentFlux_Array(y, s) = TotalFluxVentsSim 'total flux (minus Background) of sub-sampled data 
                R_RootMeanSquare_Array(y, s) = CV(1, 1) 
                R2_Array(y, s) = CV(1, 2) 
                ZE_Correlation_Array(y, s) = CV(1, 3) 
                ZR_Correlation_Array(y, s) = CV(1, 4) 
                ZE_RankCorrelation_Array(y, s) = CV(1, 5) 
                ZR_RankCorrelation_Array(y, s) = CV(1, 6) 
            End If 
        Next s 
    Next y 
ElseIf Opt_sampling_strategy(1) = True Then 'distributed random sampling based on a minimum sampling distance 
    SampleSpacingTitle = "simulation number" 
    For y = 1 To num_sample_spacings 
     
        sample_spacing = sample_spacing_array(1, y) 
        SampleSpacingTitle = SampleSpacingTitle & "," & CStr(sample_spacing) 
         
        ' Create a new sub-folder for each sampling spacing for this simulation 
        ss_dir = (sim_dir & "\SS_" & CStr(sample_spacing) & "\") 
        fso.CreateFolder (ss_dir) 
         
        For s = 1 To num_simulations 
     
            Txt_message.Text = "simulations" 
            Txt_ss1.Text = y 
            Txt_sim1.Text = s 
            PauseIt 
         
            SampleDataFile = ss_dir & "sampledata" & CStr(s) & ".txt" 
            remaining_pts = total_num_pts 
            ExtraPoints = ((2 * (CInt(grid_X_max / 20) + 1)) + (2 * (CInt(grid_Y_max / 20) + 1))) 
            ReDim sample_array(3, total_num_pts + ExtraPoints) 'formula to put boundary pts around 4 sides 
            num_samples = 0 
                 
            Do Until remaining_pts < 2 
                'select random point and test if that point in the array has a value or has already been sampled/removed (ie "") 
                count_loop = 1 
                sample_pt = grid_array(4, grid_check_array(1, Int((UBound(grid_check_array, 2) - 1) * Rnd + 1))) 
                If sample_pt = "" Then 
                    Do Until sample_pt <> "" 
                        sample_pt = grid_array(4, grid_check_array(1, Int((UBound(grid_check_array, 2) - 1) * Rnd + 1))) 
                        count_loop = count_loop + 1 
                    Loop 
                End If 
                 
                'if the previous loop loops too many times to look for a value, the check array is condensed 
                grid_check_array_counter = 0 
                If count_loop > 5000 Then 
                    For grid_array_counter = 1 To total_num_pts 
                        If grid_array(4, grid_array_counter) <> "" Then 
                            grid_check_array_counter = grid_check_array_counter + 1 
                            grid_check_array(1, grid_check_array_counter) = grid_array(4, grid_array_counter) 
                        End If 
                    Next 
                ReDim Preserve grid_check_array(1, grid_check_array_counter) 
                End If 
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                num_samples = num_samples + 1 
                 
                'put selected sample in array of sampled points 
                sample_array(1, num_samples) = grid_array(1, sample_pt) 'X 
                sample_array(2, num_samples) = grid_array(2, sample_pt) 'Y 
                sample_array(3, num_samples) = grid_array(3, sample_pt) 'flux 
                 
                sample_pt_X = grid_array(1, sample_pt) 
                sample_pt_Y = grid_array(2, sample_pt) 
                 
                'define block to be erased around the sample point, based on sample spacing 
                'and on whether the point is near a border of the grid 
                circle_X_min = sample_pt_X - sample_spacing 
                If circle_X_min < 1 Then circle_X_min = 1 
                circle_X_max = sample_pt_X + sample_spacing 
                If circle_X_max > grid_X_max Then circle_X_max = grid_X_max 
                circle_Y_min = sample_pt_Y - sample_spacing 
                If circle_Y_min < 1 Then circle_Y_min = 1 
                circle_Y_max = sample_pt_Y + sample_spacing 
                If circle_Y_max > grid_Y_max Then circle_Y_max = grid_Y_max 
                 
                X_length = (circle_X_max - circle_X_min) + 1 
                Y_length = (circle_Y_max - circle_Y_min) + 1 
                 
                counter_1 = ((circle_Y_min - 1) * grid_X_max) + circle_X_min 
                 
                'cancel all points in a radius (ie sample distance) around the sampled point 
                For l = 1 To Y_length 
                    For m = 1 To X_length 
                        distance = (((sample_pt_X - grid_array(1, counter_1)) ^ 2) + ((sample_pt_Y - grid_array(2, counter_1)) ^ 
2)) ^ 0.5 
                        If distance <= sample_spacing Then 
                            If grid_array(4, counter_1) <> "" Then 
                                grid_array(4, counter_1) = "" 
                                remaining_pts = remaining_pts - 1 
                            End If 
                        End If 
                        counter_1 = counter_1 + 1 
                    Next m 
                    counter_1 = counter_1 + (grid_X_max - X_length) 
                Next l 
            Loop 
     
            anomalies = 0 
            Open SampleDataFile For Output As #3 
            For o = 1 To num_samples 
                Write #3, sample_array(1, o), sample_array(2, o), sample_array(3, o) 
                If sample_array(3, o) > bkg_max Then anomalies = anomalies + 1 
            Next o 
             
'***adds a value of 20 g/m2/d at 50m intervals around edge to define boundary value 
            'to avoid problem of contouring beyond the boundary 
            For k = 0 To grid_X_max Step CInt(grid_X_max / 20) 
                Write #3, k, 0, avg_bkg_flux 
                Write #3, k, (grid_Y_max + 1), avg_bkg_flux 
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            Next k 
            For k = 0 To grid_Y_max Step CInt(grid_Y_max / 20) 
                Write #3, 0, k, avg_bkg_flux 
                Write #3, (grid_X_max + 1), k, avg_bkg_flux 
            Next k 
‘*** 
 
            Close #3 
             
            sampling_density = CLng(num_samples / ((grid_X_max * grid_Y_max) / 1000000)) 
             
            'get grid_array ready for next simulation by resetting sampled/not sampled control column 
            'get grid_check_array ready for next simulation by resetting values to sequential numbers 
            ReDim grid_check_array(1, total_num_pts) 
            For p = 1 To total_num_pts 
                grid_array(4, p) = p 
                grid_check_array(1, p) = p 
            Next p 
             
            '+++++++++ IF stmt for "find anomaly" vs "calculate flux". For "find anomaly", Surfer is bypassed 
            If Opt_Sim_Type(0) = True Then 
                '+++++++++++ output results for simulation 
                Open SummaryFile For Append As #5 
                    Write #5, s, num_samples, sample_spacing, sampling_density, anomalies 
                Close #5 
            ElseIf Opt_Sim_Type(1) = True Then 
                '+++++++grid sub-sampled data for each simulation 
                SampleGridFile = ss_dir & "samplegrid" & CStr(s) & ".grd" 
                Txt_message.Text = "grid simulated data - simulation " & CStr(s) 
                PauseIt 
                Call SurferGrid2(SampleDataFile, ContourType, CInt(Txt_AnisotropyRatio.Text), 
CInt(Txt_AnisotropyAngle.Text), SampleGridFile, grid_X_max, grid_Y_max, 5, TotalFluxSim, CV) 
                TotalFluxVentsSim = TotalFluxSim - TotalFluxBackground 
                '+++++++++++ output results for simulation 
                Open SummaryFile For Append As #5 
                    Write #5, s, num_samples, sample_spacing, sampling_density, anomalies, TotalFlux, TotalFluxBackground, 
TotalFluxVents, TotalFluxSim, TotalFluxVentsSim, CV(1, 1), CV(1, 2), CV(1, 3), CV(1, 4), CV(1, 5), CV(1, 6) 
                Close #5 
                '+++++++put various parameters in arrays for later export into summary files 
                TotalFlux_Array(y, s) = TotalFluxSim 'total flux of sub-sampled data 
                TotalVentFlux_Array(y, s) = TotalFluxVentsSim 'total flux (minus Background) of sub-sampled data 
                R_RootMeanSquare_Array(y, s) = CV(1, 1) 
                R2_Array(y, s) = CV(1, 2) 
                ZE_Correlation_Array(y, s) = CV(1, 3) 
                ZR_Correlation_Array(y, s) = CV(1, 4) 
                ZE_RankCorrelation_Array(y, s) = CV(1, 5) 
                ZR_RankCorrelation_Array(y, s) = CV(1, 6) 
            End If 
        Next s 
    Next y 
ElseIf Opt_sampling_strategy(2) = True Then 'gridded sampling 
    SampleSpacingTitle = "simulation number" 
    For y = 1 To num_sample_spacings 
        sample_spacing = sample_spacing_array(1, y) 
        SampleSpacingTitle = SampleSpacingTitle & "," & CStr(sample_spacing) 
        ' Create a new sub-folder for each sampling spacing for this simulation 
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        ss_dir = (sim_dir & "\SG_" & CStr(sample_spacing) & "\") 
        fso.CreateFolder (ss_dir) 
             
        'create array from which to select first point_to_sample 
        Dim Temp_file As String 
        Temp_file = ss_dir & "start_pt_block_spacing_" & sample_spacing & ".txt" 
        Open Temp_file For Append As #5 
        ReDim grid_check_array(1, (CLng(sample_spacing)) ^ 2) 
         
        counter_1 = 1 
        counter_2 = 1 
        For o = 1 To sample_spacing 
            For p = 1 To sample_spacing 
                grid_check_array(1, counter_2) = counter_1 
                Write #5, counter_2, counter_1, grid_array(1, counter_1), grid_array(2, counter_1) 
                counter_1 = counter_1 + 1 
                counter_2 = counter_2 + 1 
            Next p 
            counter_1 = counter_1 + (grid_X_max - sample_spacing) 
        Next o 
        Close #5 
         
        If CInt(Txt_num_simulations.Text) > (sample_spacing ^ 2) Then 
            num_simulations = (sample_spacing ^ 2) 
        Else 
            num_simulations = CInt(Txt_num_simulations.Text) 
        End If 
         
        For s = 1 To num_simulations 
            Txt_message.Text = "simulations" 
            Txt_ss1.Text = y 
            Txt_sim1.Text = s 
            Txt_sim2.Text = num_simulations 
            Txt_ss2.Text = num_sample_spacings 
            PauseIt 
             
            'select random point and test if that point in the array has a value or has already been sampled/removed (ie "") 
            count_loop = 1 
            point_to_sample = "" 
            If point_to_sample = "" Then 
                Do Until point_to_sample <> "" Or count_loop > 1000 
                    random_number = Int((UBound(grid_check_array, 2) - 1) * Rnd + 1) 
                    point_to_sample = grid_check_array(1, random_number) 
                    If point_to_sample <> "" Then grid_check_array(1, random_number) = "" 
                    count_loop = count_loop + 1 
                Loop 
            End If 
             
            If count_loop > 1000 Then 
                count_loop = 1 
                Do Until point_to_sample <> "" Or count_loop > (sample_spacing ^ 2) 
                    point_to_sample = grid_check_array(1, count_loop) 
                    If point_to_sample <> "" Then grid_check_array(1, count_loop) = "" 
                    count_loop = count_loop + 1 
                Loop 
            End If 
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            Dim Temp_file_2 As String 
            Temp_file_2 = ss_dir & "start_pts_" & sample_spacing & ".txt" 
            Open Temp_file_2 For Append As #5 
                Write #5, grid_array(1, point_to_sample), grid_array(2, point_to_sample) 
            Close #5 
             
            starting_point = point_to_sample 
            point_to_sample = point_to_sample - sample_spacing 
         
            SampleDataFile = ss_dir & "sampledata" & CStr(s) & ".txt" 
            remaining_pts = total_num_pts 
             
            X_samples = Int(grid_X_max / sample_spacing) 
            Y_samples = Int(grid_Y_max / sample_spacing) 
            If (grid_array(1, starting_point) + (X_samples * sample_spacing)) < grid_X_max Then 
                X_samples = X_samples + 1 
            End If 
            If (grid_array(2, starting_point) + (Y_samples * sample_spacing)) < grid_Y_max Then 
                Y_samples = Y_samples + 1 
            End If 
            ExtraPoints = ((2 * (CInt(grid_X_max / 20) + 1)) + (2 * (CInt(grid_Y_max / 20) + 1))) 
            ReDim sample_array(3, (X_samples * Y_samples) + ExtraPoints) 'formula to put boundary pts around 4 sides 
            num_samples = 0 
            OddEven = 2 
            For Count_Row = 1 To Y_samples 
                For Count_Column = 1 To X_samples 
                    point_to_sample = point_to_sample + sample_spacing 
                    num_samples = num_samples + 1 
                    'put selected sample in array of sampled points 
                    sample_array(1, num_samples) = grid_array(1, point_to_sample) 'X 
                    sample_array(2, num_samples) = grid_array(2, point_to_sample) 'Y 
                    sample_array(3, num_samples) = grid_array(3, point_to_sample) 'flux 
                Next Count_Column 
                point_to_sample = (starting_point + (Count_Row * sample_spacing * grid_X_max)) - sample_spacing 
 
                'shifts every second row by 1/2 sample spacing for offset grid option 
                If chk_grid_offset.Value = 1 Then 
                    If OddEven = 2 Then 
                        If grid_array(1, starting_point) > (sample_spacing / 2) Then 
                            point_to_sample = point_to_sample - (sample_spacing / 2) 
                        ElseIf grid_array(1, starting_point) <= (sample_spacing / 2) Then 
                            point_to_sample = point_to_sample + (sample_spacing / 2) 
                        End If 
                        OddEven = 1 
                    ElseIf OddEven = 1 Then 
                        OddEven = 2 
                    End If 
                End If 
 
            Next Count_Row 
             
            anomalies = 0 
            Open SampleDataFile For Output As #3 
            For o = 1 To num_samples 
                Write #3, sample_array(1, o), sample_array(2, o), sample_array(3, o) 



153 
 

                If sample_array(3, o) > bkg_max Then anomalies = anomalies + 1 
            Next o 
             
'***adds a value of 20 g/m2/d at 50m intervals around edge to define boundary value 
            'to avoid problem of contouring beyond the boundary 
            For k = 0 To grid_X_max Step CInt(grid_X_max / 20) 
                Write #3, k, 0, avg_bkg_flux 
                Write #3, k, (grid_Y_max + 1), avg_bkg_flux 
            Next k 
            For k = 0 To grid_Y_max Step CInt(grid_Y_max / 20) 
                Write #3, 0, k, avg_bkg_flux 
                Write #3, (grid_X_max + 1), k, avg_bkg_flux 
            Next k 
'*** 
 
            Close #3 
             
            sampling_density = CLng(num_samples / ((grid_X_max * grid_Y_max) / 1000000)) 
             
            '+++++++++ IF stmt for "find anomaly" vs "calculate flux". For "find anomaly", Surfer is bypassed 
            If Opt_Sim_Type(0) = True Then 
                '+++++++++++ output results for simulation 
                Open SummaryFile For Append As #5 
                    Write #5, s, num_samples, sample_spacing, sampling_density, anomalies 
                Close #5 
            ElseIf Opt_Sim_Type(1) = True Then 
                '+++++++grid sub-sampled data for each simulation 
                SampleGridFile = ss_dir & "samplegrid" & CStr(s) & ".grd" 
                Txt_message.Text = "grid simulated data - simulation " & CStr(s) 
                PauseIt 
                Call SurferGrid2(SampleDataFile, ContourType, CInt(Txt_AnisotropyRatio.Text), 
CInt(Txt_AnisotropyAngle.Text), SampleGridFile, grid_X_max, grid_Y_max, 5, TotalFluxSim, CV) 
                TotalFluxVentsSim = TotalFluxSim - TotalFluxBackground 
                '+++++++++++ output results for simulation 
                Open SummaryFile For Append As #5 
                    If Opt_sampling_strategy(0) = True Then 'random 
                        Write #5, s, num_of_fixed_samples, sample_spacing, sampling_density, anomalies, TotalFlux, 
TotalFluxBackground, TotalFluxVents, TotalFluxSim, TotalFluxVentsSim, CV(1, 1), CV(1, 2), CV(1, 3), CV(1, 4), 
CV(1, 5), CV(1, 6) 
                    ElseIf Opt_sampling_strategy(1) = True Then 'distributed random 
                        Write #5, s, num_samples, sample_spacing, sampling_density, anomalies, TotalFlux, 
TotalFluxBackground, TotalFluxVents, TotalFluxSim, TotalFluxVentsSim, CV(1, 1), CV(1, 2), CV(1, 3), CV(1, 4), 
CV(1, 5), CV(1, 6) 
                    ElseIf Opt_sampling_strategy(2) = True Then ' systematic random (grid) 
                        Write #5, s, num_samples, sample_spacing, sampling_density, anomalies, TotalFlux, 
TotalFluxBackground, TotalFluxVents, TotalFluxSim, TotalFluxVentsSim, CV(1, 1), CV(1, 2), CV(1, 3), CV(1, 4), 
CV(1, 5), CV(1, 6) 
                    End If 
                Close #5 
                '+++++++put various parameters in arrays for later export into summary files 
                TotalFlux_Array(y, s) = TotalFluxSim 'total flux of sub-sampled data 
                TotalVentFlux_Array(y, s) = TotalFluxVentsSim 'total flux (minus Background) of sub-sampled data 
                R_RootMeanSquare_Array(y, s) = CV(1, 1) 
                R2_Array(y, s) = CV(1, 2) 
                ZE_Correlation_Array(y, s) = CV(1, 3) 
                ZR_Correlation_Array(y, s) = CV(1, 4) 
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                ZE_RankCorrelation_Array(y, s) = CV(1, 5) 
                ZR_RankCorrelation_Array(y, s) = CV(1, 6) 
            End If 
        Next s 
    Next y 
End If 
 
 
'******************************************************************* 
'*****************      export summary files         *************** 
'******************************************************************* 
 
If Opt_Sim_Type(1) = True Then 
 
    Dim f As Integer 
    Dim g As Integer 
    Dim e As Integer 
    Dim EachLine As String 
    Dim FileName As String 
     
    For e = 1 To 8 
        If e = 1 Then FileName = sim_dir & "\TotalFluxSummary.txt" 
        If e = 2 Then FileName = sim_dir & "\TotalVentFluxSummary.txt" 
        If e = 3 Then FileName = sim_dir & "\R_RootMeanSquareSummary.txt" 
        If e = 4 Then FileName = sim_dir & "\R2Summary.txt" 
        If e = 5 Then FileName = sim_dir & "\ZE_CorrelationSummary.txt" 
        If e = 6 Then FileName = sim_dir & "\ZR_CorrelationSummary.txt" 
        If e = 7 Then FileName = sim_dir & "\ZE_RankCorrelationSummary.txt" 
        If e = 8 Then FileName = sim_dir & "\ZR_RankCorrelationSummary.txt" 
        Open FileName For Append As #6 
        Print #6, SampleSpacingTitle 
            For g = 1 To num_simulations 
                EachLine = g 
                For f = 1 To num_sample_spacings 
                    If e = 1 Then EachLine = EachLine & "," & TotalFlux_Array(f, g) 
                    If e = 2 Then EachLine = EachLine & "," & TotalVentFlux_Array(f, g) 
                    If e = 3 Then EachLine = EachLine & "," & R_RootMeanSquare_Array(f, g) 
                    If e = 4 Then EachLine = EachLine & "," & R2_Array(f, g) 
                    If e = 5 Then EachLine = EachLine & "," & ZE_Correlation_Array(f, g) 
                    If e = 6 Then EachLine = EachLine & "," & ZR_Correlation_Array(f, g) 
                    If e = 7 Then EachLine = EachLine & "," & ZE_RankCorrelation_Array(f, g) 
                    If e = 8 Then EachLine = EachLine & "," & ZR_RankCorrelation_Array(f, g) 
                Next f 
                Print #6, EachLine 
            Next g 
        Close #6 
    Next e 
End If 
MsgBox "start time is " & StartTime & "; end time is " & Time() 
End 
 
Frm_initial_settings.Enabled = True 
Frm_data_type.Enabled = False 
Frm_bkg_flux.Enabled = False 
Frm_vents.Enabled = False 
Frm_sampling_settings.Enabled = False 
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Frm_contour.Enabled = False 
Frm_run.Enabled = False 
 
End Sub 
Private Sub PauseIt() 
Dim PauseTime, Start 
PauseTime = 0.01   ' Set duration. 
Start = Timer   ' Set start time. 
Do While Timer < Start + PauseTime 
    DoEvents   ' Yield to other processes. 
Loop 
End Sub 
 
Private Sub Cmd_activate_Click() 
Txt_path.Enabled = True 
Frm_data_type.Enabled = False 
Frm_bkg_flux.Enabled = False 
Frm_vents.Enabled = False 
Frm_sampling_settings.Enabled = False 
Frm_contour.Enabled = False 
Frm_run.Enabled = False 
Cmd_confirm_path.Enabled = True 
     
End Sub 
 
Private Sub Cmd_confirm_path_Click() 
Txt_root_length.Text = Len(Txt_path.Text) 
path = Txt_path.Text 
Txt_path.Enabled = False 
Frm_data_type.Enabled = True 
Frm_bkg_flux.Enabled = True 
Frm_vents.Enabled = True 
Frm_sampling_settings.Enabled = True 
Frm_contour.Enabled = True 
Frm_run.Enabled = True 
Frm_Sim_Type.Enabled = True 
     
End Sub 
 
Private Sub Form_Load() 
Cbo_RBType.AddItem "Inverse MultiQuadric" 
Cbo_RBType.AddItem "MultiLog" 
Cbo_RBType.AddItem "MultiQuadric" 
Cbo_RBType.AddItem "Natural cubic spline" 
Cbo_RBType.AddItem "Thin plate spline" 
 
Cbo_RBType.Text = "MultiQuadric" 
 
Opt_contour.Item(0).Value = True 
End Sub 
 
Private Sub Opt_contour_Click(Index As Integer) 
If Opt_contour(0).Value = True Then 
    Txt_IDPower.Enabled = False 
    Txt_IDSmoothing.Enabled = False 
    Cbo_RBType.Enabled = False 
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    Txt_RBRSquared.Enabled = False 
ElseIf Opt_contour(1).Value = True Then 
    Txt_IDPower.Enabled = False 
    Txt_IDSmoothing.Enabled = False 
    Cbo_RBType.Enabled = False 
    Txt_RBRSquared.Enabled = False 
ElseIf Opt_contour(2).Value = True Then 
    Txt_IDPower.Enabled = True 
    Txt_IDSmoothing.Enabled = True 
    Cbo_RBType.Enabled = False 
    Txt_RBRSquared.Enabled = False 
ElseIf Opt_contour(3).Value = True Then 
    Txt_IDPower.Enabled = False 
    Txt_IDSmoothing.Enabled = False 
    Cbo_RBType.Enabled = True 
    Txt_RBRSquared.Enabled = True 
End If 
End Sub 
 
Private Sub Opt_data_type_Click(Index As Integer) 
If Opt_data_type(0).Value = True Then      'data simulated by program 
    Frm_vents.Enabled = True 
    Txt_singlevent_X.Enabled = False 
    Txt_singlevent_Y.Enabled = False 
    Txt_MaxVentFlux.Enabled = False 
    Txt_core_radius.Enabled = False 
    Txt_vent_radius.Enabled = False 
    Txt_vent_info_file.Enabled = False 
    Opt_vents(0).Value = False 
    Opt_vents(1).Value = False 
    Txt_X_max.Enabled = True 
    Txt_Y_max.Enabled = True 
    Txt_field_data_file.Text = "" 
    Txt_field_data_file.Enabled = False 
    Opt_BG(0).Enabled = False 
    Opt_BG(1).Enabled = True 
    Opt_BG(2).Enabled = True 
 
ElseIf Opt_data_type(1).Value = True Then  'real data imported from field data 
    Frm_vents.Enabled = False 
    Txt_singlevent_X.Text = "" 
    Txt_singlevent_Y.Text = "" 
    Txt_MaxVentFlux.Text = "" 
    Txt_core_radius.Text = "" 
    Txt_vent_radius.Text = "" 
    Opt_vents(0).Value = False 
    Opt_vents(1).Value = False 
    Txt_vent_info_file.Text = "" 
    Txt_X_max.Enabled = False 
    Txt_Y_max.Enabled = False 
    Txt_field_data_file.Enabled = False 
    Opt_BG(0).Value = True 
    Opt_BG(0).Enabled = True 
    Opt_BG(1).Enabled = False 
    Opt_BG(2).Enabled = False 
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    'select file (ie path and file name) for real data input 
    '++++++++ file name format - e.g. abcdef_x1234y1234.dat +++++++++++ 
    Dim fso As New FileSystemObject ' Get instance of FileSystemObject. 
    CommonDialog1.FileName = "" 
    CommonDialog1.InitDir = path & "field_data\" 
    CommonDialog1.DialogTitle = "Select real data file" 
    CommonDialog1.ShowOpen 
    Txt_X_max.Text = CInt(Mid(CommonDialog1.FileTitle, 9, 4)) 
    Txt_Y_max.Text = CInt(Mid(CommonDialog1.FileTitle, 14, 4)) 
    Txt_field_data_file.Text = CommonDialog1.FileName 
    Txt_num_grid_pts.Text = Txt_X_max.Text * Txt_Y_max.Text 
 
End If 
End Sub 
 
Private Sub Opt_fixed_num_samples_Click(Index As Integer) 
 If Opt_fixed_num_samples(0).Value = True Then 
    Txt_single_fixed_num_samples.Enabled = True 
    Txt_single_fixed_num_samples.Text = 100 
    Txt_fixed_num_samples.Text = 1 
    Txt_fixed_sample_number_file.Text = "" 
    Txt_fixed_sample_number_file.Enabled = False 
 ElseIf Opt_fixed_num_samples(1).Value = True Then 
    Txt_fixed_num_samples.Text = "" 
    Txt_single_fixed_num_samples.Enabled = False 
    Txt_single_fixed_num_samples.Text = "" 
    Dim fso As New FileSystemObject ' Get instance of FileSystemObject. 
    CommonDialog1.FileName = "" 
    CommonDialog1.InitDir = path 
    CommonDialog1.DialogTitle = "Select sample spacing file" 
    CommonDialog1.FileName = "fixed number of samples.txt" 
    CommonDialog1.ShowOpen 
    Txt_fixed_sample_number_file.Text = CommonDialog1.FileName 
    Txt_fixed_sample_number_file.Enabled = False 
 
    ' count number of sample spacings 
    Dim num_fixed_sample_numbers As Integer 
    Dim DataLine As String 
    Open CommonDialog1.FileName For Input As #1 
    num_fixed_sample_numbers = 0 
    Do Until EOF(1) 
        Line Input #1, DataLine 
        num_fixed_sample_numbers = num_fixed_sample_numbers + 1 
    Loop 
    Close #1 
    Txt_fixed_num_samples.Text = num_fixed_sample_numbers 
 End If 
 
End Sub 
 
Private Sub Opt_sample_spacing_Click(Index As Integer) 
If Opt_sample_spacing(0).Value = True Then   'single sample spacing 
    Txt_sample_spacing_file.Enabled = False 
    Txt_sample_spacing_file.Text = "" 
    Txt_singlespacing.Enabled = True 
    Txt_singlespacing.Text = 50 
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    Txt_num_sample_space.Text = 1 
ElseIf Opt_sample_spacing(1).Value = True Then   'import file with multiple sample spacings 
    Txt_sample_spacing_file.Enabled = False 
    Txt_singlespacing.Enabled = False 
    Txt_singlespacing.Text = "" 
     
    'select file (ie path and file name) for sample spacing list 
    '++++++++ file name - "sample spacings.txt" +++++++++++ 
    Dim fso As New FileSystemObject ' Get instance of FileSystemObject. 
    CommonDialog1.FileName = "" 
    CommonDialog1.InitDir = path 
    CommonDialog1.DialogTitle = "Select sample spacing file" 
    CommonDialog1.FileName = "sample spacings.txt" 
    CommonDialog1.ShowOpen 
    Txt_sample_spacing_file.Text = CommonDialog1.FileName 
    Txt_sample_spacing_file.Enabled = False 
     
    ' count number of sample spacings 
    Dim num_sample_spacings As Integer 
    Dim DataLine As String 
    Open CommonDialog1.FileName For Input As #1 
    num_sample_spacings = 0 
    Do Until EOF(1) 
        Line Input #1, DataLine 
        num_sample_spacings = num_sample_spacings + 1 
    Loop 
    Close #1 
    Txt_num_sample_space.Text = num_sample_spacings 
     
     
End If 
End Sub 
 
Private Sub Opt_sampling_strategy_Click(Index As Integer) 
If Opt_sampling_strategy(0).Value = True Then   'random 
    Opt_sample_spacing(0).Enabled = False 
    Opt_sample_spacing(1).Enabled = False 
    Opt_fixed_num_samples(0).Enabled = True 
    Opt_fixed_num_samples(1).Enabled = True 
    Txt_singlespacing.Text = "" 
    Txt_num_sample_space.Text = "" 
    Txt_sample_spacing_file.Text = "" 
ElseIf Opt_sampling_strategy(1).Value = True Then   'systematic random 
    Opt_sample_spacing(0).Enabled = True 
    Opt_sample_spacing(1).Enabled = True 
    Opt_fixed_num_samples(0).Enabled = False 
    Opt_fixed_num_samples(1).Enabled = False 
    Txt_fixed_sample_number_file.Text = "" 
    Txt_fixed_sample_number_file.Enabled = False 
    Txt_single_fixed_num_samples.Text = "" 
    Txt_single_fixed_num_samples.Enabled = False 
    Txt_fixed_num_samples.Text = "" 
    Txt_fixed_num_samples.Enabled = False 
    Opt_sample_spacing(0).Value = False 
    Opt_sample_spacing(1).Value = False 
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ElseIf Opt_sampling_strategy(2).Value = True Then   'regular grid 
    Opt_sample_spacing(0).Enabled = True 
    Opt_sample_spacing(1).Enabled = True 
    Opt_fixed_num_samples(0).Enabled = False 
    Opt_fixed_num_samples(1).Enabled = False 
    Txt_fixed_sample_number_file.Text = "" 
    Txt_fixed_sample_number_file.Enabled = False 
    Txt_single_fixed_num_samples.Text = "" 
    Txt_single_fixed_num_samples.Enabled = False 
    Txt_fixed_num_samples.Text = "" 
    Txt_fixed_num_samples.Enabled = False 
    Opt_sample_spacing(0).Value = False 
    Opt_sample_spacing(1).Value = False 
    chk_grid_offset.Enabled = True 
End If 
End Sub 
 
Private Sub Opt_vents_Click(Index As Integer) 
If Opt_vents(0).Value = True Then    'single vent location and strength 
    Txt_vent_info_file.Enabled = False 
    Txt_singlevent_X.Enabled = True 
    Txt_singlevent_Y.Enabled = True 
    Txt_MaxVentFlux.Enabled = True 
    Txt_core_radius.Enabled = True 
    Txt_vent_radius.Enabled = True 
    Txt_singlevent_X.Text = 50 
    Txt_singlevent_Y.Text = 50 
    Txt_MaxVentFlux.Text = 1000 
    Txt_core_radius.Text = 5 
    Txt_vent_radius.Text = 20 
    Txt_vent_info_file.Text = "" 
    Txt_num_of_vents.Text = 1 
 
ElseIf Opt_vents(1).Value = True Then   'import file with multiple vents 
    Txt_vent_info_file.Enabled = True 
    Txt_singlevent_X.Enabled = False 
    Txt_singlevent_Y.Enabled = False 
    Txt_MaxVentFlux.Enabled = False 
    Txt_core_radius.Enabled = False 
    Txt_vent_radius.Enabled = False 
    Txt_singlevent_X.Text = "" 
    Txt_singlevent_Y.Text = "" 
    Txt_MaxVentFlux.Text = "" 
    Txt_core_radius.Text = "" 
    Txt_vent_radius.Text = "" 
 
    'select file (ie path and file name) for vent locations and strength 
    '++++++++ file name - "vent coordinates.txt" +++++++++++ 
    Dim fso As New FileSystemObject ' Get instance of FileSystemObject. 
    CommonDialog1.FileName = "" 
    CommonDialog1.InitDir = path 
    CommonDialog1.DialogTitle = "Select vent coordinate file" 
    CommonDialog1.ShowOpen 
    Txt_vent_info_file.Text = CommonDialog1.FileName 
    Txt_vent_info_file.Enabled = False 
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    Dim Num_of_vents As Integer 
    Dim DataLine As String 
     
    Open CommonDialog1.FileName For Input As #1 
    Num_of_vents = 0 
    Do Until EOF(1) 
        Line Input #1, DataLine 
        Num_of_vents = Num_of_vents + 1 
    Loop 
    Close #1 
    Txt_num_of_vents.Text = Num_of_vents 
     
End If 
End Sub 
 
Private Sub Opt_BG_Click(Index As Integer) 
If Opt_BG(0).Value = True Then 'a fixed value is chosen for BG average - multiplied by grid area to calculate total BG 
flux 
        Txt_BG_Dist_Type.Text = "fixed average" 
        Txt_BG_avg.Text = 20 
        Txt_BG_sigma.Text = "" 
        Txt_BG_File.Text = "" 
        Txt_BG_Dist_Type.Enabled = False 
        Txt_BG_avg.Enabled = True 
        Txt_BG_sigma.Enabled = False 
        Txt_BG_File.Enabled = False 
        Txt_X_max.Enabled = True 
        Txt_Y_max.Enabled = True 
ElseIf Opt_BG(1).Value = True Then 'program will calculate normal distribution for background distribution 
        Txt_BG_Dist_Type.Text = "normal" 
        Txt_BG_avg.Text = 20 
        Txt_BG_sigma.Text = 5 
        Txt_BG_File.Text = "" 
        Txt_BG_Dist_Type.Enabled = False 
        Txt_BG_avg.Enabled = True 
        Txt_BG_sigma.Enabled = True 
        Txt_BG_File.Enabled = False 
        Txt_X_max.Enabled = True 
        Txt_Y_max.Enabled = True 
ElseIf Opt_BG(2).Value = True Then 'program will import external file with background distribution 
        Txt_BG_Dist_Type.Text = "" 
        Txt_BG_avg.Text = "" 
        Txt_BG_sigma.Text = "" 
        Txt_BG_File.Text = "" 
        Txt_BG_Dist_Type.Enabled = False 
        Txt_BG_avg.Enabled = False 
        Txt_BG_sigma.Enabled = False 
        Txt_BG_File.Enabled = False 
        Txt_X_max.Enabled = False 
        Txt_Y_max.Enabled = False 
 
        'select file (ie path and file name) for background input 
        'the file name is read to determine a(average) s(sigma) x (metres along x axis) y (metres along y axis) t(type of 
statistical distribution) 
        '++++++++ file name format - e.g. d123a123s123x1234y1234tLL.txt +++++++++++ 
        Dim fso As New FileSystemObject ' Get instance of FileSystemObject. 
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        CommonDialog1.FileName = "" 
        CommonDialog1.InitDir = path & "background\" 
        CommonDialog1.DialogTitle = "Select background data file" 
        CommonDialog1.ShowOpen 
        Txt_BG_File.Text = CommonDialog1.FileName 
        If Txt_BG_File.Text <> "" Then 
            Txt_BG_avg.Text = CInt(Mid(CommonDialog1.FileTitle, 6, 3)) 
            Txt_BG_sigma.Text = CInt(Mid(CommonDialog1.FileTitle, 10, 3)) 
            Txt_X_max.Text = CInt(Mid(CommonDialog1.FileTitle, 14, 4)) 
            Txt_Y_max.Text = CInt(Mid(CommonDialog1.FileTitle, 19, 4)) 
            Txt_BG_Dist_Type.Text = Mid(CommonDialog1.FileTitle, 24, 2) 
            Txt_num_grid_pts.Text = Txt_X_max.Text * Txt_Y_max.Text 
        End If 
End If 
 
End Sub 
 
Private Function Normal(Optional Sigma As Double = 1, Optional Mean As Double = 0) As Double 
  Normal = GetGausse * Sigma + Mean 
End Function 
 
 
Private Function GetGausse() As Double 
   ' This Function returns a standard Gaussian random number 
   ' based upon the polar form of the Box-Muller transform. 
    
   ' since this calc is capable of returning two calculations per 
   ' call, it's been set up to save the second calc for the next 
   ' pass through the function, saving some time. 
    
   ' Call the randomize function once (and ONLY once) in the life of the project. 
    
   Static blReturn2 As Boolean  ' Flag to calc new values, or return 
                                ' previously calculated value.  It defaults 
                                ' to False on the first pass. 
   Static dblReturn2 As Double  ' Second return value 
    
   Dim Work1 As Double, Work2 As Double, Work3 As Double 
    
   Const Two = 2#, One = 1# 
    
   If blReturn2 Then  ' On odd numbered calls 
    GetGausse = dblReturn2 
   Else 
    Work3 = Two 
    Do Until Work3 < One 
        Work1 = Two * Rnd - One 
        Work2 = Two * Rnd - One 
        Work3 = Work1 * Work1 + Work2 * Work2 
    Loop 
    Work3 = Sqr((-(Two) * Log(Work3)) / Work3) 
    GetGausse = Work1 * Work3 
    ' a second valid value will be returned by Work2 * Work3. 
    ' Calculate it for the next pass.  This will save some processing 
    dblReturn2 = Work2 * Work3 
   End If 
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   blReturn2 = Not blReturn2 ' and toggle the return value flag 
    
End Function 
 
Private Sub ImportIntoArray(TempArray As Variant, numcolumns, numrows As Long, InputFileName As String, 
VarType As Integer) 
 
Dim DataLine As String 
Dim Countletter As Integer 
Dim Field As String 
Dim letter As String 
Dim countcolumn As Integer 
Dim countrow As Long 
 
Open InputFileName For Input As #1 
For countrow = 1 To numrows 
    Line Input #1, DataLine 
    Countletter = 1 
    For countcolumn = 1 To numcolumns 
        Field = "" 
        letter = Mid(DataLine, Countletter, 1) 
            Do Until letter = "," Or letter = "" 
                Field = Field & letter 
                Countletter = Countletter + 1 
                letter = Mid(DataLine, Countletter, 1) 
            Loop 
             
            If VarType = 1 Then '1 = integer 
                TempArray(countcolumn, countrow) = CInt(Field) 
            ElseIf VarType = 2 Then '2 = single 
                TempArray(countcolumn, countrow) = Round(CSng(Field), 3) 
            End If 
            
        Countletter = Countletter + 1 
'        Debug.Print TempArray(countcolumn, countrow) 
    Next countcolumn 
Next countrow 
Close #1 
End Sub 
 
Private Sub Txt_X_max_Change() 
Txt_num_grid_pts = Txt_X_max * Txt_Y_max 
End Sub 
 
Private Sub Txt_Y_max_Change() 
Txt_num_grid_pts = Txt_X_max * Txt_Y_max 
End Sub 
 
Private Sub SurferGrid(DataFileIn As String, AlgorithmType As String, RatioAnisotropy As Integer, AngleAnisotropy As 
Integer, OutPutGrid As String, Max_X As Long, Max_Y As Long, node_space As Integer, TotalCalcFlux As Variant) 
 
Dim Results() As Double 
Dim SurferApp As Object 'Declares SurferApp as an object 
Set SurferApp = CreateObject("Surfer.Application") 'Creates an instance of the Surfer Application object and assigns it to 
the variable named "SurferApp" 
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SurferApp.GridData(DataFile:=DataFileIn, xCol:=1, yCol:=2, _ 
zCol:=3, Algorithm:=AlgorithmType, AnisotropyRatio:=RatioAnisotropy, _ 
AnisotropyAngle:=AngleAnisotropy, ShowReport:=False, _ 
OutGrid:=OutPutGrid, xMin:=1, xMax:=Max_X, yMin:=1, yMax:=Max_Y, _ 
NumCols:=(Max_X / node_space), numrows:=(Max_Y / node_space)) = True 
 
SurferApp.GridVolume(Upper:=OutPutGrid, Lower:=0, pResults:=Results, ShowReport:=False) = True 
TotalCalcFlux = Results(srfGVTrapVol) 
 
SurferApp.Quit 
 
End Sub 
Private Sub SurferGrid2(DataFileIn As String, AlgorithmType As String, RatioAnisotropy As Integer, AngleAnisotropy 
As Integer, OutPutGrid As String, Max_X As Long, Max_Y As Long, node_space As Integer, TotalCalcFlux As Variant, 
CV As Variant) 
 
Dim Results() As Double 
Dim CVResults As Variant 
Dim SurferApp As Object 'Declares SurferApp as an object 
Set SurferApp = CreateObject("Surfer.Application") 'Creates an instance of the Surfer Application object and assigns it to 
the variable named "SurferApp" 
 
SurferApp.GridData(DataFile:=DataFileIn, xCol:=1, yCol:=2, _ 
zCol:=3, Algorithm:=AlgorithmType, AnisotropyRatio:=RatioAnisotropy, _ 
AnisotropyAngle:=AngleAnisotropy, ShowReport:=False, _ 
OutGrid:=OutPutGrid, xMin:=1, xMax:=Max_X, yMin:=1, yMax:=Max_Y, _ 
NumCols:=(Max_X / node_space), numrows:=(Max_Y / node_space)) = True 
 
SurferApp.GridVolume(Upper:=OutPutGrid, Lower:=0, pResults:=Results, ShowReport:=False) = True 
TotalCalcFlux = Results(srfGVTrapVol) 
 
SurferApp.CrossValidate(DataFile:=DataFileIn, ShowReport:=False, pResults:=CVResults) = True 
            CV(1, 1) = CVResults(srfCV_R_RootMeanSquare) 
            CV(1, 2) = CVResults(srfCV_R2) 
            CV(1, 3) = CVResults(srfCV_ZE_Correlation) 
            CV(1, 4) = CVResults(srfCV_ZR_Correlation) 
            CV(1, 5) = CVResults(srfCV_ZE_RankCorrelation) 
            CV(1, 6) = CVResults(srfCV_ZR_RankCorrelation) 
 
 
SurferApp.Quit 
 
End Sub 
 
 
 


