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A spider conducts operations that resemble those of a weaver, and a bee puts to
shame many an architect in the construction of her cells. But what distinguishes the
worst architect from the best of bees is this, that the architect raises his structure in
imagination before he erects it in reality.

KARL MARX (1818´ 1883)

Imagination is more important than knowledge. For knowledge is limited to all we
now know and understand, while imagination embraces the entire world, and all there
ever will be to know and understand.

ALBERT EIN ST EIN (1879´ 1955)
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Abstract

Recent advances in empirical finance has seen a considerable amount of research in

network econometrics for systemic risk analysis. The network approach aims to iden-

tify the key determinants of the structure and stability of the financial system, and

the mechanism for systemic risk propagation. This thesis contributes to the literature

by presenting a Bayesian graphical approach to model cause and effect relationships

in observed data. It contributes specifically to model selection in moderate and high

dimensional problems and develops Markov chain Monte Carlo procedures for effi-

cient model estimation. It also provides simulation and empirical applications to

model dynamics in macroeconomic variables and financial networks.

The contributions are discussed in four self contained chapters. Chapter 2 reviews

the literature on network econometrics and the Bayesian approach to graph struc-

tural inference with potential applications. Chapter 3 proposes a Bayesian graphical

approach to identification in structural vector autoregressive models. Chapter 4

develops a model selection to multivariate time series of large dimension through

graphical vector autoregressive models and introducing sparsity on the structure of

temporal dependence among the variables. Chapter 5 presents a stochastic frame-

work for financial network models by proposing a hierarchical Bayesian graphical

model that can usefully decompose dependencies between financial institutions into

linkages between different countries financial systems and linkages between banking

institutions, within and/or across countries.
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Chapter 1

General Introduction

The functioning of a system is an emergent consequence of the actions of the individ-

uals that constitute it. To analyze systemic action with quantitative data, however,

requires a formal theoretical model that relates individual actions to systemic func-

tioning (Coleman, 1986). The global financial crisis of 2007-2009 has stressed the

need to understand the world financial system as a network of interconnected insti-

tutions, where financial linkages play a fundamental role in the spread of contagion.

In trying to measure and address this interconnectedness, researchers have recently

proposed network models, that can help model the systemic risk in financial systems

which display complex degrees of connectedness.

The thesis contributes to address inferential difficulties in network models by

advancing the application of Bayesian graphical models; developing efficient Markov

Chain Monte Carlo algorithms for moderate and high-dimensional model selection;

and providing simulation and empirical applications to understand modern economic

and financial systems.

The contributions are presented in four chapters.

In Chapter 2, we survey the state of the arts for statistical inference and applica-

tion of networks from a multidisciplinary perspective, and specifically in the context

of systemic risk. We contribute to the literature on network econometrics by relating
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network models to multivariate analysis with potential applications in econometrics

and finance.

In Chapter 3, we propose a Bayesian graphical approach suitable for identifica-

tion in structural vector autoregression by modeling cross-sectional and temporal

dependence in multivariate time series. The novelty of the approach is its ability to

handle the restrictions directly on the structural model.

In Chapter 4, we develop a graphical approach to model dependence in high

dimensional multivariate time series and to address over-parametrization in large

vector autoregressive models. The methodology discussed in this chapter is based on

combining graphical model notion of causality with a new sparsity prior distribution

on the graph space, able to deal with model selection problems in multivariate time

series of large dimension.

Chapter 5 presents a stochastic framework for financial network models by propos-

ing a hierarchical Bayesian graphical model that can usefully decompose dependen-

cies between financial institutions into linkages between different countries financial

systems and linkages between banking institutions, within and/or across countries.

Chapter 2 is currently under revision for submission. Chapter 3 has been accepted

for publication as: Ahelegbey, D. F., Billio, M. and Casarin, R. (2015). Bayesian

Graphical Models for Structural Vector Autoregressive Processes, Journal of Applied

Econometrics, forthcoming. Chapter 4 is a joint work with Monica Billio and Roberto

Casarin and has been submitted to Journal of Econometrics. Chapter 5 has been

published as: Ahelegbey, D. F. and Giudici, P. (2014). Bayesian Selection of Systemic

Risk Networks, Advances in Econometrics: Bayesian Model Comparison, vol. 34,

117–153.
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Chapter 2

The Econometrics Aspects Networks: A
Review

2.1 Introduction

With an increase in globalization, the concept of networks has become an integral

part of every human activity and forms a backbone of our modern society. In recent

times, actions of economic agents in some local economies have had great impacts on a

global scale due to strong connections among individuals, institutions and markets.

These connections play a fundamental role in the spread of information and risk.

Many authors have come to the same conclusion that the actions of major financial

institutions have significant consequences on the stability or public confidence in the

entire system (see, e.g. Billio et al., 2012; Battiston et al., 2012; Acharya et al., 2010;

Brunnermeier and Pedersen, 2009).

Network models have become a center of attraction for modeling dependencies in

real world phenomena due to simplicity in presentation, and their ability to provide

an intuitive way to visualize and interpret complex relationships. For introduction

to these models, (see Pearl, 2000; Whittaker, 1990; Edwards, 2000; Lauritzen, 1996;

This chapter is based on: Ahelegbey (2015). The Econometrics Aspects Networks: A Review.
(Working Paper).
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Spirtes et al., 2000). This paper surveys the state of the arts for inference on networks

from a multidisciplinary perspective, as motivated by applications in forensic science,

genetics, machine learning, etc.

The financial crisis of 2007-2009 has prompted new research interests on the

need to understand the structure of the financial system and its risk propagation

mechanisms. In providing a framework for strengthening financial stability, policy

makers are currently not only refining the regulatory and institutional set-up, but

also looking for analytical tools to better identify, monitor and address systemic risk.

According to Bernanke (2013), the 2007-2009 crisis was triggered by losses suffered

by holders of subprime mortgages and amplified by the vulnerabilities (structural

weaknesses) in the financial system. He pointed out that in the absence of these

vulnerabilities, the triggers might produce sizable losses to certain firms, investors,

or asset classes but would generally not lead to full-blown financial crises. Many

authors have found the complex interconnectedness among financial institutions and

markets as the potential channels that magnified the initial shocks to the system

(see, Bernanke, 2010; Billio et al., 2012; Diebold and Yilmaz, 2014).

To understand the vulnerabilities in the financial system, the idea of network anal-

ysis has been shown to be a promising tool with the potential to help in monitoring

the interconnectedness of financial institutions and markets. This has led to consid-

erable increase in research on statistical properties of network measures for systemic

risk analysis (see Battiston et al., 2012; Billio et al., 2012; Diebold and Yilmaz, 2014;

Barigozzi and Brownlees, 2014; Hautsch et al., 2014). While interconnectedness have

been widely studied, only few papers review network analysis in finance and they

do not focus on the econometrics aspects. This paper contributes to the recent and

expanding stream of literature on network econometrics (e.g. Diebold and Yilmaz,

2014), by reviewing the methodological and applied aspects of networks specifically

in the context of systemic risk. We present potential applications of networks to
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econometrics and financial time series.

Despite the advancement in research tools for network analysis, issues of infer-

ential difficulties has not been adequately addressed. In many real world problems,

relationships among variables of interest are more complex than pairwise. In a sys-

tem characterized by complex interactions, the standard practice of identifying a

single model that summarize relationships among variables often ignore the problem

of model uncertainty. It is well known that inference of a network is a model de-

termination problem where the number of candidates increases super-exponentially

with the number of variables (Chickering et al., 2004). Therefore, selecting a single

model from these set of candidates is a challenging problem.

We present the Bayesian approach to network inference that takes into account

the model uncertainty problem, which also allows us to incorporate prior information

where necessary and to perform model averaging. The approach discussed in this

paper is closely related to the use of Gaussian graphical models in time series analysis

by Carvalho et al. (2007); Carvalho and West (2007); Wang and Li (2012); Dahlhaus

and Eichler (2003). This paper is related to Eichler (2007) and Zou and Feng (2009),

who present the network approach as a valid alternative to the Granger concept

for causality identification and it extensions in the econometrics literature (Granger,

1969; Diks and Panchenko, 2005; Hoover, 2001).

We demonstrate the effectiveness of the Bayesian inference to network identifica-

tion to analyze the interconnectedness of the return indexes of the major financial

sectors considered by (Billio et al., 2012), and the volatility connectedness in the Eu-

ropean stock market. Our result corroborate the findings of Billio et al. (2012), with

evidence of a higher vulnerability in the financial system between 2001-2008 that

amplified the crisis in 2007-2009. We also find evidence that Banks and Insurers are

central in the “fear connectedness” (Diebold and Yilmaz, 2014) expressed by market

participants in the financial sector of the Euro-area.
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This paper proceed as follows. In Section 2.2, we survey the state of the arts on

network models from a multidisciplinary perspective. In Section 2.3, we review the

literature on networks in financial systemic risk. In Section 2.4, we relate network

models to multivariate analysis with potential applications in econometrics and fi-

nance. In Section 2.5, we present the Bayesian approach to network inference. In

Section 2.6 and 2.7, we illustrate applications of the Bayesian inference to network

identification to analyze return and volatility connectedness respectively.

2.2 A Review of Graphical Models

Network (graphical) modeling is a class of multivariate analysis that uses graphs to

represent statistical models. The graph displays explicitly the conditional indepen-

dencies among variables. We introduce the essential concepts of graphical models,

and review the state of the arts for statistical inference and application of networks

from a multidisciplinary perspective.

Graphical models are represented by pG, θq P pG ˆΘq, where G is a graph struc-

ture, θ is the model parameters, G is the space of the graphs and Θ is the parameter

space. The graph consists of nodes (or vertices) as variables and edges (or links) as

interactions.

A graph whose edges are without directions is an undirected graph. They are often

referred to as Markov networks. They produce a class of models commonly known as

undirected graphical models suitable for modeling similarity and correlated behaviors

among variables.

A graph with directed edges is a directed graph and a directed graph without

cycles is a directed acyclic graph (DAG). DAGs are typically based on the concept

of family ordering. For instance in AÑ B Ñ C, A is a parent of B and C is a child

of B, A and B are ancestors of C, and B and C are descendants of A. C Ñ A is

illegal since a descendant cannot be his/her own ancestor. This type of ordering is
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suitable for expressing causal relationships.

A partially directed acyclic graph is a type of DAG that allows for undirected or

bi-directed edges. They are often referred to as essential or chain graphs and are

suitable for applications where a unique direction of influence cannot be ascribed

to interactions among some variables. They represent a class of Markov equivalent

DAGs. Two or more DAGs are said to be Markov equivalent if they depict the same

set of conditional independence relationships. For example, A Ñ B Ñ C, A Ð

B Ñ C and A Ð B Ð C are Markov equivalent, since they all represent A and C

conditionally independent given B.

A bipartite graph is an undirected graph whose variable are categorized into two

sets, such that nodes in one set can only interact with those in the other set, and no

two nodes in the same set are connected. This type of graphs belongs to the class

of color graphs where each variable is assigned a color such that no edge connects

identically colored nodes. Thus a bipartite graph is equivalent to a two-colored graph.

A factor graph is a bipartite graph whose nodes are categorized into variables and

factors and represented by different shapes. Variables nodes are often represented

by circles and factor nodes by squares.

A graph is complete if all vertices are connected. A clique is a subsect of vertices

that are completely connected. Let V be the set of vertices and VA Ď V , then GA

is defined as a subgraph on nodes in VA. The triple (VA, VB, VC) Ď V forms a

decomposition of a graph G if V “ VA Y VB Y VC and VC “ VA X VB such that GC

is complete and separates GA and GB. The subgraph GC is called a separator. The

decomposition is proper if VA “ H and VB “ H. A sequence of subgraphs that

cannot be further properly decomposed are the prime components of a graph. A

graph is decomposable if it is complete or if every prime component is complete.
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2.2.1 Statistical Inference

Statistical inference of the graph structure is central to the model estimation. The

common methods are; (i) constraint-based, (ii) score-based and (iii) hybrid approach.

Constraint-based approach to graph selection involves the use of statistical tests

to identify conditional independence relationships among variables. The outcome

of these tests are used to constrain the graph selection process to identify the most

plausible graph that is consistent with those constraints obtained. The widely applied

constraint-based inference is the PC algorithm based on Fisher’s Z-test (Spirtes et al.,

2000).

Score-based approach to graph selection is typically based on assigning a score

to each candidate graph. The score represents the goodness of fit of the graph given

the data. This approach involves a search over the set of candidates which minimizes

a penalized likelihood score. Another aspect of this approach is Bayesian in nature

which usually involves priors and posterior computations taking advantage of model

averaging to address the model uncertainty problem. Example of algorithms in

this framework are greedy search, simulated annealing, Markov chain Monte Carlo,

genetic algorithms (Friedman and Koller, 2003; Madigan and York, 1995; Giudici

and Green, 1999).

The Hybrid approach combines techniques from constraint-based and score-based

inference for graph selection. The hybrid method is designed to adopt the constraint-

based reasoning as an initial step to restrict the search space for the application of

the score-based scheme. The application of regularization methods such as the Least

Absolute Shrinkage and Selection Operator (LASSO) and its variants can also be

classified under this approach Tibshirani (1996); Meinshausen and Bühlmann (2006).
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2.2.2 Applications and Developments

Graphical models have contributed to modeling challenging and complex real world

phenomena in several fields. We review some of the recent developments.

They have been applied in forensics to provide tools to aid in reasoning under

uncertainty. For example, Bayesian networks has been identified as a suitable tool

for analyzing evidence in complex legal and crime cases (Wright, 2007; Dawid, 2003).

The study of gene interactions has become increasingly important because such

information can be used as a basis for treating and diagnosing diseases which con-

tributes to human understanding of biological processes. Several researchers have

applied graphical models to model gene interactions to detect conditional depen-

dencies (Friedman et al., 2000; Hensman et al., 2013). Many authors have studied

the estimation of high-dimensional gene expressions by relaxing the assumption of

normality. This is motivated by the observation that gene data are typically charac-

terized with heavy tails or more outliers. The active research in this area focus on

a generalized framework to account for non-normality and outliers (Miyamura and

Kano, 2006; Sun and Li, 2012).

Several studies in biological network have revealed a complex hierarchical organi-

zation of cellular processes which poses great challenge to researchers. This has led

to an active area of research with focus on designing algorithms to detect hierarchi-

cal modularity (Hao et al., 2012; Ravasz, 2009), latent variable models (Choi et al.,

2011; Liu and Willsky, 2013), and hubs (Tan et al., 2014; Akavia et al., 2010).

Many real world phenomena, such as images, speech and human activities often

exhibit regularities though characterized with uncertainty. Graphical models have

been applied for structural representation of patterns in these phenomena. Many

research works have advanced state of the arts algorithms to track structural patterns,

image processing, speech and handwritten recognition and other wide variety of
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applications. See Koller and Friedman (2009); Bishop (2006).

Graphical models have been advanced in multivariate analysis specifically in mul-

tiple regression problems. To deal with high dimensional problems, parsimony of the

model is critical in achieving reasonable performances with limited sample size. Dif-

ferent research directions have been considered for building a parsimonious model.

Several authors approach the problem by considering sparsity (Yuan and Lin, 2006;

Fan and Peng, 2004). Others consider the reduced-rank approach (Bunea et al., 2011;

Chen et al., 2013b) and for some other, the sparse reduced-rank approach (Chen and

Huang, 2012; Lian et al., 2015).

Developing efficient large-scale algorithms for big data and high-dimensional

problems has increasingly become an active area of in machine learning and statis-

tics. A common approach to inference of graphical models is a centralized learning

algorithm which is often hindered by restrictive resource constraints such as lim-

ited local computing, limited memory and expensive computational power especially

when dealing with high dimensional problems. An active area of machine learn-

ing is the development of a decentralized system of distributed algorithms for high

dimensional problems (see Liu and Ihler, 2012; Meng et al., 2013).

2.3 A Review of Network Aspect of Systemic Risk

Systemic risk as defined by Billio et al. (2012) is “any set of circumstances that threat-

ens the stability or public confidence in the financial system”. The European Central

Bank (ECB) (2010) defines it as a risk of financial instability “so widespread that

it impairs the functioning of a financial system to the point where economic growth

and welfare suffer materially”. A comprehensive review is discussed in (Brunnermeier

and Oehmke, 2012; De Bandt and Hartmann, 2000; Acharya et al., 2010). Several

authors have come to the same conclusion that the likelihood of major financial sys-

temic crisis is related to the degree of correlation among the holdings of financial
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institutions, how sensitive they are to changes in market prices and economic con-

ditions, how concentrated the risks are among those financial institutions, and how

closely linked they are with each other and the rest of the economy (Battiston et al.,

2012; Brunnermeier and Pedersen, 2009).

Several systemic risk measures are discussed in the literature. Among them

are: Banking System’s Portfolio Multivariate Density (BSPMD) by Segoviano and

Goodhart (2009); Conditional Value-at-Risk (CoVaR) by Adrian and Brunnermeier

(2010); Absorption Ratio (AR) by Kritzman et al. (2010); Marginal Expected Short-

fall (MES) by (Acharya et al., 2010; Brownlees and Engle, 2011); Distressed Insurance

Premium (DIP) by Huang et al. (2012); Dynamic Causality Index (DCI) and Princi-

pal Component Analysis Systemic (PCAS) risk measures by Billio et al. (2012); Net-

work Connectedness Measures (NCM) by Diebold and Yilmaz (2014). The BSPMD

embed banks’s distress inter-dependence structure, which captures distress depen-

dencies among the banks in the system; CoVaR measures the value-at-risk (VaR)

of the financial system conditional on an institution being under financial distress;

AR measures the fraction of the total variance of a set of (N) financial institutions

explained or “absorbed” by a finite number (K ă N) of eigenvectors; MES mea-

sures the exposure of each individual firm to shocks of the aggregate system; DIP

measures the insurance premium required to cover distressed losses in the banking

system; DCI capture how interconnected a set of financial institutions is by comput-

ing the fraction of significant Granger-causality relationships among their returns;

PCAS captures the contribution of an institution to the multivariate tail dynamics

of the system; NCM aggregates the contribution of each variable to the forecast error

variance of other variables across multiple return series.

As to whether systemic risk can be reliably identified in advance, the chairman

of Board of Governors of the Federal Reserve System, Ben Bernanke, distinguished

between triggers and vulnerabilities as two set of factors that led to and amplified
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the crisis of 2007-2009, and only by understanding the factors can we hope to guard

against a repetition (Bernanke, 2013). The triggers are considered as the particular

events or factors that touched off the crisis, i.e., the proximate causes. Accord-

ing to Bernanke (2010), the most prominent triggers of the crisis was the prospect

of significant losses on residential mortgage loans to sub-prime borrowers that be-

came apparent shortly after house prices began to decline. The vulnerabilities are

attributed to structural weaknesses in the financial system and in regulation and

supervision that amplified the initial shocks. Examples of such factors include high

levels of leverage, interconnectedness, and complexity, all of which have the potential

to magnify shocks to the financial system (Bernanke, 2010).

In the absence of vulnerabilities, triggers might produce sizable losses to certain

firms, investors, or asset classes but would generally not lead to full-blown financial

crises (Bernanke, 2013). For example, the collapse of the relatively small market

for sub-prime mortgages would not have been nearly as consequential without pre-

existing fragilities in securitization practices and short-term funding markets which

greatly increased its impact. This assertion somehow corroborates the findings of

Billio et al. (2012) who found that triggers of both the 1998 Long Term Capital

Management (LTCM) crisis and the Financial Crisis of 2007-2009 were associated

with liquidity and credit problems. In their analysis of the state of the financial

system during the periods, the authors found that the 2007-2009 period experienced

the largest number of interconnections compared other time periods. This suggests

that the vulnerability of the system was much higher in 2007-2009 than in 1998 and

hence the severity in the impact of the latter event which affected a much broader

aspect of financial markets and threatened the viability of several important financial

institutions, unlike the former.

To monitor and guard against a repetition of the 2007-2009 crisis, the attempt

is to identify and address vulnerabilities in the financial environment to ensure ro-
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bustness of the system. To this end, network analysis is a promising tool with the

potential to help us better monitor the interconnectedness of financial institutions

and markets (Bernanke, 2013). Many empirical studies have shown that networks

reflect the architecture of interactions that arise among financial institutions and can

provide insight into the structure and stability of the system. Some of the applica-

tions of the network tools include measuring the degree of connectivity of particular

financial institutions to determine systemic importance, forecasting the likely con-

tagion channels of institutional default or distress, and visualizing the “risk map”

of exposure concentrations and imbalances in the system (Bisias et al., 2012). To

ensure a robust system and to guard against risks that threatens the stability of

the financial system, it is of crucial importance to: (a) identify systemically impor-

tant institutions, (i.e. individual institutions posing threats to financial stability);

(b) identify specific structural aspects of the financial system that are particularly

vulnerable; (c) identify potential mechanisms for shock propagation in the financial

system. These indicators can provide early signals to help regulators design appro-

priate policy responses.

The idea of network metrics for systemic risk has led to many discussions around

the need for financial theory to absorb lessons from other disciplines like biostatistics,

bio-informatics, machine learning, etc., to model the complex financial system. This

has prompted many research with considerable increase in the number of empirical

papers on the contribution of networks to existing theoretical result on systemic risk

and contagion.

To learn networks from data, several statistical and econometric methods have

been advanced to model interconnectedness and to represent sources of contagion

and spillover effects. The commonly discussed approaches are: Granger-Causality

Networks (Billio et al., 2012); Partial Correlation Networks (Barigozzi and Brownlees,

2014); Variance Decomposition Networks (Diebold and Yilmaz, 2014); and Tail Risk
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Networks (Hautsch et al., 2014). Most of the above mentioned paper also consider

the application of shrinkage methods like the LASSO for selecting relevant drivers

to model sparsity in large datasets.

The different networks described in the above mentioned papers have contributed

significantly to identifying the complex nature of interconnectedness in the financial

system and possible mechanisms for risk propagation. The approaches of these papers

however follow the standard practice of identifying a single model that summarize

dependence in the observed data and often ignore the problem of model uncertainty.

This can affect the estimated network and a cost in the generalization of the results.

In this paper, we discuss a Bayesian approach to network inference which allows

us to address the problem of model uncertainty.

2.4 Graphical Models in Multivariate Analysis

Graphical models have become a center of attraction for modeling big data due to

simplicity in presentation and ability to provide an intuitive way to visualize and

interpret complex relationships. The graph visualization a deeper understanding of

the relationships among variables by distinguishing direct and indirect interactions.

The idea of connecting the multivariate time series literature (which has matured

overtime) and graphical models is gradually becoming a vibrant field of research

in econometrics, economics and finance. We relate graphical models to multivari-

ate statistical analysis specifically in multivariate regression problems with potential

applications in econometrics and finance.

2.4.1 Multivariate (Multiple) Regression

A typical multivariate multiple regression model is given by;

Y “ BX ` U (2.1)
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where X and Y are vector of exogenous and response variables respectively, B is a

coefficient matrix and U is a vector of errors. The common approach in many empir-

ical research is to fit the above model and to test for restrictions. In testing for the

statistical significance of each of the estimated coefficients, we typically specify an

acceptable maximum probability of rejecting the null hypothesis when it is true, i.e.

committing a Type I error. In multiple hypothesis testing, the Type I errors commit-

ted increases with the number of hypotheses which may have serious consequences

on the conclusions and generalization of the results. Several approaches have been

proposed to deal with this problem. See Shaffer (1995); Drton and Perlman (2007)

for review and discussion on multiple hypothesis testing.

Graphical models provide a convenient framework for exploring multivariate de-

pendence patterns. By considering (2.1) as a causal (dependency) pattern of elements

in Y on elements in X, the results of the coefficients matrix under a null hypothesis

of single restrictions is, Bij “ 0 if yi does not depend on xj, and Bij ­“ 0 other-

wise. Here we can define a binary connectivity matrix, G, such that Gij “ 1 implies

xj Ñ yi ðñ Bij ­“ 0. Thus G can be interpreted as a (directed) graph of the

conditional dependences between elements in X and Y . From the above description,

B can be represented as

B “ pG ˝ Φq (2.2)

where Φ is a coefficients matrix and the operator p˝q is the element-by-element

Hadamard’s product (i.e., Bij “ Gij Φij). There is a one-to-one correspondence

between B and Φ conditional on G, such that Bij “ Φij, if Gij “ 1; and Bij “ 0,

if Gij “ 0. Thus, Φ can be interpreted as the unconstrained regression coefficient

matrix and B as the constrained regression coefficients matrix. For example:
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y1 “

y2 “

y3 “

1.3x1 `0.5x3 `u1
0.9x1 `0.5x5 `u2
x2 `0.7x4 `u3

B “

x1 x2 x3 x4 x5
˜ ¸

y1 1.3 a1 0.5 a2 a3
y2 0.9 a4 a5 a6 0.5
y3 a7 1 a8 0.7 a9

(2.3)

G “

x1 x2 x3 x4 x5
˜ ¸

y1 1 0 1 0 0
y2 1 0 0 0 1
y3 0 1 0 1 0

Φ “

x1 x2 x3 x4 x5
˜ ¸

y1 1.3 a1 0.5 a2 a3
y2 0.9 a4 a5 a6 0.5
y3 a7 1 a8 0.7 a9

(2.4)

where ai P R, i “ 1, . . . , 9, are expected to be statistically not different from zero by

definition. The expression (2.4) presents some interesting alternative for modeling

(2.3). Instead of estimating the unconstrained coefficients matrix, Φ, and performing

multiple hypothesis testing, a more efficient alternative is to infer G as a variable

selection matrix to estimate only the relevant coefficients in B. Thus, non-zero

elements in B corresponds to non-zero elements in G. Inference of G taking into

account all possible dependence configurations automatically handles the multiple

testing problems in multivariate multiple regression models.

In most regression models, the parameters of the model are given by tB,Σuu,

where Σu is the covariance matrix of the errors. In graphical models, inference of

the graph structure is central to the model estimation, and the set of parameters, θ,

consists the strength of the dependence among variables. Thus, applying graphical

models in the context of regression models means that, θ must be equivalent to the

regression parameters, i.e, θ ” tB,Σuu.

Let Y denote a ny ˆ 1 vector of dependent variables, X a nx ˆ 1 vector of

explanatory variables. Let Z “ pY 1, X 1q1 be n “ pny ` nxq ˆ 1 vector of stacked

Y and X. Suppose the joint, Z, follows the distribution, Z „ N p0,Ω´1q, where

Σ “ Ω´1 is nˆ n covariance matrix. The joint distribution of Z can be summarized

with a graphical model, pG, θq, where G is of dimension ny ˆ nx and consists of
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directed edges from elements in X to elements in Y . Thus, estimating the model

parameters associated with G is equivalent to estimating Ω, i.e θ “ Ω. Given Ω, the

parameters of model (2.1) can be estimated from Σ “ Ω´1 as

B “ ΣyxΣ´1
xx , Σε “ Σyy ´ ΣyxΣ´1

xxΣxy (2.5)

where Σxy is nx ˆ ny the covariances between X and Y , Σyy is ny ˆ ny covariances

among Y and Σxx is nxˆnx covariances among X. For further computational aspects

of graphical models (see Lenkoski and Dobra, 2011; Heckerman and Geiger, 1994).

2.4.2 Applications in Econometrics and Finance

We present potential applications of graphical models in econometrics and finance.

Structural Model Estimation

VAR (Sims, 1980) have been widely used in macro-econometric models. It is widely

discussed in the literature that such models do not have direct economic interpre-

tations. However, due to their performance to forecast dynamics in macroeconomic

variables, such limitation is overlooked. The structural VAR (SVAR) on the other

hand is considered as a model with direct economic interpretation. They are however

not directly estimable due to identification issues. The standard approach involves

estimating a reduced form VAR, and identifying the relationships among shocks as a

means of providing economic intuition on the structural dynamics. Based on (2.2),

a SVAR model can be expressed in a graphical model form as

Yt “
p
ÿ

i“0
BiYt´i ` εt “

p
ÿ

i“0
pGi ˝ ΦiqYt´i ` εt (2.6)

where pG0 ˝ Φ0q and pGs ˝ Φsq, s ě 1, are the graphical models representing the

cross-sectional and temporal dependences, respectively. See Ahelegbey et al. (2015)

for application of graphical models for identification restrictions in SVAR. See also
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Corander and Villani (2006); Demiralp and Hoover (2003); Swanson and Granger

(1997); Moneta (2008); Dahlhaus and Eichler (2003) for discussions on estimating

causal structures in time series and VAR models.

Time Varying Model Estimation

A standard application in most empirical works is fixed/time varying parameter

models. These approaches to modeling real world phenomena implicitly assumes that

interactions among variables is stable over time and only the parameters are fixed or

varying. This assumption may have consequences on the performance of estimated

models. Some empirical works have shown that financial networks, especially, exhibit

random fluctuations over various time scales, (see Billio et al., 2012), which must be

incorporated in modeling dynamics in observed data. A typical time varying model

of equation (2.1) is given by

Yt “ BtXt´1 ` Ut (2.7)

Based on our expression in (2.2), the coefficients matrix of (2.7) can be expressed as

Bt “ G ˝ Φt, Bt “ Gt ˝ Φ, Bt “ Gt ˝ Φt (2.8)

The first expression of equation (2.8) follows the typical time varying parameter

models commonly discussed in most empirical papers where the graph is invariant

over time. The other two expression in equations (2.8) present cases of time varying

structure of dependence. The state of the world is not constant overtime, hence,

devoting much attention to modeling dynamics of the structure of interaction seems

to be a more interesting line of research to understand the ever transforming modern

economic and financial system. See Bianchi et al. (2014) for a new graphical factor

model with Markov-switching graphs and parameters for modeling contagion and

systemic risk. See Carvalho and West (2007) for graphical multivariate volatility

modeling induced by time varying variances and covariances across series.
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High Dimensional Model Estimation

There is an increasing interest in high-dimensional models and big data analysis.

This has become necessary since many researchers have shown that information

from large dataset enrich existing models and produces better forecasts for VAR

models and also reveals the connectedness of the financial system. Graphical models

are therefore relevant for high dimensional modeling by offering interpretation on

information extracted from large datasets. See Ahelegbey et al. (2014) for discussions

on modeling sparsity in graphical VAR models of large dimension and dealing also

with uncertainty in the lag order. See also Jones et al. (2005); Scott and Carvalho

(2008) for several discussions on approaches and priors to penalize globally or locally

“dense” graphs when estimating high dimensional models.

The graphical approach can be used to build models alternative to the factor

methods when dealing with large datasets. In factor augmented VAR models, in-

formation is extracted from a large number of variables to build factors to augment

the VAR. Following the justification of this approach, (see Bernanke et al., 2005),

graph search algorithms can be applied to select relevant predictors from a large set

of exogenous variables which can be used to augment the VAR. This method will

provide a more interpretable model than the factor approach.

CAPM-Like Model Estimation

A fundamental model in financial theory is the Capital Asset Pricing Model (CAPM)

by Sharpe (1964) as an extension of Markowitz (1952) portfolio theory. This approach

has received many criticism due to problems of empirical evidence. Fama and French

(2004) summarize the popularity of the CAPM as follow: The CAPM’s empirical

problems may reflect theoretical failings, the result of many simplifying assumptions.

But they may also be caused by difficulties in implementing valid tests of the model.

Graphical models can be applied to decompose asset return correlations into mar-
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ket specific and idiosyncratic effects, as in the classical CAPM models. See Ahelegbey

and Giudici (2014) for discussions on Bayesian hierarchical graphical models that al-

low correlations to be decomposed, into a country (market) effect plus a bank-specific

(idiosyncratic) effect.

Portfolio Selection Problem

Portfolio risk analysis is typically based on the assumption that the securities in the

portfolio are well diversified. A well-diversified portfolio is one that is exposed only

to market risk within asset classes and includes a variety of significantly different

asset classes. Precisely, asset classes that are not highly correlated and are thus

considered to be complementary. The lesser the degree of correlation, the higher

the degree of diversification and the lower the number of asset classes required to

be well-diversified. Portfolios that contain securities with several correlated risk

factors do not meet the well-diversified criteria. Despite an unprecedented access to

information, it is evident that some portfolios by construction contain a predominant

factor, and most risk modeling techniques are unable to capture these contagion.

To measure diversification more accurately, the graphical approach can be applied

to study the structure of interconnection among the various asset classes. Since the

Arbitrage Pricing Theory (APT) model of (Roll, 1977; Ross, 1976) and the return-

based style model of Sharpe (1992) are regression models, the graphical approach

provides useful technique for portfolio selection by modeling explicitly the depen-

dence of the factors or asset classes in the form of networks. See Shenoy and Shenoy

(2000) and Carvalho and West (2007) for applications of graphical models in the

context of financial time series for predictive portfolio analysis.

Risk Management Style Assessment

Sharpe (1992) introduced a return-based analysis to measure management style and
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performance. The analysis is based on the idea that a manager builds a portfolio

according to a specific investment philosophy and investments reflect a style. The

approach is based on a style regression model to determine the “effective mix”, given

by the estimated model which represents the return from the style and the residuals

reflect the performance due to the “selection” (active management).

Suppose we are interested in modeling the annual return on an investment. Cer-

tainly, this will depend on factors like the amount invested in a fund, the annual

stock market increase and the experience or style of the fund manager. A simple

network to model this interaction is displayed in Figure 2.1, where R “ fpE, S, Y q,

the returns is a function of the amount invested (Y ), the annual stock market in-

crease (S) and the experience (or style) of the manager (E). This network can serve

SE Y

R

Figure2.1: Network for modeling returns on investment and style measurement. Y is the amount
invested in the fund, S - the annual stock market increase, E - measures the experience (or style)
of the fund manager and R - the annual return on the investment.

as a benchmark to assess the performance of fund managers. For instance, since the

fund managers experience may be unknown and cannot be quantified, a qualitative

measure can be applied to rank the experience, and a probabilistic inference can be

obtained on the likely level of experience given information on the other variables

in the network. See Ammann and Verhofen (2007) for application of networks to

analyze the behavior of mutual fund managers.

2.5 Bayesian Inference Procedure

Graphical models presents a framework to deal with multiple testing problems in

multivariate regression models. This involves exploring all candidate structures and
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parameters of the model which poses a challenge since the space of possible struc-

tures increases super-exponentially (Chickering et al., 2004). The standard practice

of identifying a single model that summarize the relationships often ignores the model

uncertainty problem. The Bayesian approach however provides a way to handle this

problem through prior information and model averaging. From a Bayesian perspec-

tive, the joint prior distribution over (Ω, G) is P pG,Ωq “ P pGqP pΩ|Gq. We focus

on the inference of graph structure of the model.

2.5.1 Prior Distribution

In the absence of genuine prior knowledge on the dependence structure, the common

approach is to assume the prior for G, i.e., P pGq91. For discussions on other graph

priors, (see, Jones et al., 2005; Scott and Carvalho, 2008; Friedman and Koller, 2003).

There are two main approaches to define parameter priors for graphical models,

however a common feature to these approaches is that both are graph conditional pa-

rameter priors. On one hand is a vast work on Gaussian DAG models discussing a list

of conditions that permits an unconstrained precision matrix Ω (see, e.g. Heckerman

and Geiger, 1994; Heckerman and Chickering, 1995; Geiger and Heckerman, 2002;

Consonni and Rocca, 2012). On the other hand is a vast publication on Gaussian

decomposable undirected graphical (UG) models with constraints on the precision

matrix Ω, i.e. ΩG (see, e.g. Roverato, 2002; Carvalho and Scott, 2009; Wang and

Li, 2012; Lenkoski and Dobra, 2011). Note that, an unconstrained Ω characterizes a

complete Gaussian DAG or UG model, i.e. a graph with no missing edges. The stan-

dard parameter prior for Gaussian DAG models with zero expectations is a Wishart

distribution for Ω, whereas that of UG models is a G-Wishart distribution for ΩG

(or hyper-inverse Wishart distribution for Ω´1
G ).
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2.5.2 Posterior Approximation

The likelihood function of a random sample D “ pZ1, . . . , ZT q „ N p0,Ω´1q is

P pD|Ω, Gq “ p2πq´ 1
2nT |Ω| 1

2T exp
!

´
1
2xΩ, Ŝy

)

(2.9)

where Ŝ “
řT
t“1 ZtZ

1
t is n ˆ n sum of squared matrix, xA,By “ trpA1Bq denotes

the trace inner product, ν ą n ` 1 is the degree of freedom parameter. Following

Geiger and Heckerman (2002) that Ω conditional on G is Wishart distributed, we

can integrate out Ω from (2.9)

P pD|Gq “
ż

P pD|Ω, Gq P pΩ|GqdΩ “ p2πq´ 1
2nT

Knpν ` T, S ` Ŝq

Knpν, Sq
(2.10)

where S is a symmetric positive definite matrix, Knpν ` T, S ` Ŝq and Knpν, Sq

are the normalizing constants of the Wishart posterior and prior distribution on Ω

respectively, with

Knpν, Sq “

ż

|Ω| 1
2 pν´n´1q exp

!

´
1
2xΩ, Sy

)

dΩ “ 2 1
2νn|S|´

1
2νΓn

´1
2ν

¯

(2.11)

with Γnpaq “ π
1
4npn´1qśn

i“1 Γ
´

a´ i`1
2

¯

as the multivariate gamma function and Γp¨q

the gamma function. The expression (2.10) is the marginal likelihood of the data, D

given G expressed as ratio of the normalizing constants of the Wishart posterior and

prior. Let S “ S ` Ŝ and ν “ ν ` T . The graph posterior distribution is therefore

given by

P pG|Dq “ P pGqP pD|Gq « p2πq´ 1
2nT

Knpν, Sq

Knpν, Sq
(2.12)

Under some conditions outlined by Geiger and Heckerman (2002), the marginal like-

lihood function (2.10) can be factorized into product of local terms as

P pD|Gq “
ny
ź

i“1
P pD|Gpyi, πiqq “

ny
ź

i“1

P pDpyi,πiq|Gq

P pDpπiq|Gq
(2.13)
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where πi “ tj “ 1, . . . , nx : Gij “ 1u, ny is the number of equations, Gpyi, πiq is the

sub-graph with dependent variable yi and explanatory variables πi, Dpyi,πiq and Dpπiq

are sub-matrices of D consisting of pyi, πiq and πi respectively. The closed form of

(2.13) is:

P pDk
|Gq “ pπq

´nkT

2
|Sk,k|

´ 1
2ν

|Sk,k|
´ 1

2ν

śnk
i“1 Γ

´

1
2pν ` 1´ iq

¯

śnk
i“1 Γ

´

1
2pν ` 1´ iq

¯ (2.14)

where k P
 

pyi, πiq, πi
(

is of dimension nk, Dk is a sub-matrix of D associated with

k, |Sk,k| and |Sk,k| are the determinants of the prior and posterior sum of squared

matrices of elements in k.

2.5.3 Graph Sampling Scheme

We sample the graph following the Markov Chain Monte Carlo (MCMC) algorithm

in Madigan and York (1995). The scheme is such that, at the r-th iteration, given

Gpr´1q, the sampler proposes a new graph Gp˚q based on a proposal distribution

QpGp˚q|Gpr´1qq with acceptance probability

ApGp˚q|Gpr´1q
q “ min

"

P pD|Gp˚qq
P pD|Gpr´1qq

P pGp˚qq

P pGpr´1qq

QpGpr´1q|Gp˚qq

QpGp˚q|Gpr´1qq
, 1
*

(2.15)

where QpGp˚q|Gpr´1qqq and QpGpr´1q|Gp˚qq are the forward and reverse proposal distri-

bution respectively. For a single edge operation, the proposal distribution assigns a

uniform probability to all possible graphs in the neighborhood of Gpr´1qq, i.e., the set

of graphs that can be reached from the current state (Gpr´1qq) by adding or deleting

a single edge. If the new graph Gp˚q is accepted, then the graph at the r-th iteration

is set to Gprq “ Gp˚q, otherwise Gprq “ Gpr´1q.

After RT total iterations, we average the draws, Gprq and estimate the posterior

probability of the edge by êij “ 1
RT´R0

řRT
r“R0`1G

prq
ij , where R0 is the burn-in sample,

G
prq
ij is the edge from xj to yi in the graph G at the r-th iteration. We define Ĝij
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based on a one sided posterior credibility interval for the edge posterior distribution,

and find the interval lower bound Ĝij “ 1, if êij ´ zp1´αq

b

êijp1´êijq
ESS

ą 0.5, where

zp1´αq is the z-score of the normal distribution at the p1´αq significance level, ESS

is the effective sample size obtained by ESS “ M{p1 ` 2
ř8

l“1 ρlq, where M is the

number of MCMC samples of the graph, and ρl is the autocorrelation of lag l. We

find a cutoff point s is obtained at which ρs ă 0.05, and then sum all the ρs up to

that point.

2.6 Financial System Interconnectedness

We illustrate the graphical approach for modeling financial system interconnected-

ness by considering the dataset of the four financial sectors in Billio et al. (2012).

The data is monthly return indexes for hedge funds (HF ), banks (BK), brokers

(BR) and insurance (IN) companies in the US from January 1994 to December

2008. See the above paper for details on the construction of the indexes. We focus

on the temporal dependence and consider a vector autoregressive (VAR) model with

specification of the lag order (p “ 1) based on testing the appropriate lag length us-

ing the BIC criterion. Following Billio et al. (2012), we consider two sample periods

1994-2000 and 2001-2008 for both network analysis.

Table 2.1 shows the posterior probabilities of the presence of edges in the four-

variable network model of hedge funds, brokers, banks, and insurers. The left (right)

panel shows the edge posterior probabilities in the network for the sample 1994-2000

(2001-2008). Bold values indicate links whose posterior probabilities are greater than

0.5 under a 95% credibility interval. The edges are directed from column labels (at

t´ 1) to row labels (at t).

We see from the table that the probabilities in the first period (1994-2000) are very

low compared to the second (2001-2008). The latter record six edges with bold values
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and one of them indicates an autoregressive effect, i.e., P pHFt´1 Ñ HFt|Dq “ 0.95.

On the interconnection among the institutions, we find in the second sample, strong

evidence of the effect of Insurance companies on Brokers, P pINt´1 Ñ BRt|Dq “ 0.98;

on Banks, P pINt´1 Ñ BKt|Dq “ 0.82; and on Hedge funds, P pINt´1 Ñ HFt|Dq “

0.71. Also, we find strong effects of Banks on Brokers, P pBKt´1 Ñ BRt|Dq “ 0.75,

and effects of Brokers on Insurance companies, P pBRt´1 Ñ INt|Dq “ 0.64.

HFt´1 BRt´1 BKt´1 INt´1 HFt´1 BRt´1 BKt´1 INt´1

Jan 1994 - Dec 2000 Jan 2001 - Dec 2008

HFt 0.23 0.21 0.19 0.19 0.95 0.23 0.29 0.71
BRt 0.18 0.18 0.18 0.19 0.16 0.18 0.75 0.98
BKt 0.26 0.20 0.30 0.19 0.33 0.31 0.50 0.82
INt 0.18 0.20 0.27 0.20 0.33 0.64 0.34 0.42

Table 2.1: Marginal posterior probabilities of connectedness of the institutions between 1994-2000
and 2001-2008. Bold values indicate links with probabilities greater than 0.5 under a 95% credibility
interval.

HF

BRBK

IN

(a) 1994-2000

HF

BRBK

IN

(b) 2001-2008

Figure2.2: Network of hedge funds pHF q, brokers pBRq, banks pBKq and insurance pINq between
1994-2000 and 2001-2008. Links are lagged dependencies and the blue (red) represent positive
(negative) effects.

A representation of the results of Table 2.1 is shown in Figure 2.1. To visualize the

dependencies, the edges of the network are presented in colors which depict the signs

of the conditional dependencies. We find no connection in the first sample. In the

second sample, we find a negative effect of Banks on Brokers, a bi-directional positive

link between Insurance companies and Brokers, and a positive effect of Insurance

companies on Banks and Hedge funds.

Our result corroborate the findings of Billio et al. (2012), with evidence of a

higher vulnerability in the financial system between 2001-2008 which amplified the
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2007-2009 crisis. We also find evidence that insurers played a central role in the

interconnectedness leading to the crisis.

2.7 Volatility Connectedness in the Euro-Area

Volatility networks have gained attention lately due to their ability to track the fear

of investors and to reflect the extent to which markets evaluate arrival of information.

(Diebold and Yilmaz, 2014). In monitoring systemic risk, volatility connectedness

referred to as “fear connectedness” has become increasingly important to identify

risk transmission mechanisms in the financial system. As pointed out by Diebold

and Yilmaz (2014), “the link between volatility connectedness and long-term rates

is directly a result of the choices of investors. Rising long-term interest rates reflect

optimism about future economic performance. As they expect the growth to pick

up, investors sell more defensive stocks such as financial stocks and instead invest in

manufacturing, energy and airlines sector stocks that are likely to benefit most from

an economic recovery”.

In this application, we analyze systemic risk in the European stock market by fo-

cusing on the volatility connectedness of the Euro Stoxx 600 super-sectors. The

dataset consists of intra-day high-low price indexes from September 1, 2006 to

September 19, 2014 from Datastream (see Table 2.2). The super-sectors represent

the largest Euro area companies by the Industry Classification Benchmark (ICB) and

covers countries like Austria, Belgium, Finland, France, Germany, Greece, Ireland,

Italy, Luxembourg, the Netherlands, Portugal, and Spain.

Let phi,t and pli,t denotes the highest and lowest price of stock i on day t. Following

Parkinson (1980) and Barigozzi and Brownlees (2014), we obtain the intra-day price

range as a measure of the volatilities given by

σ̃2
i,t “

1
4 logp2q

`

logpphi,tq ´ logppli,tq
˘2 (2.16)
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Several estimators of volatility have been applied in the financial network literature.

See for example Diebold and Yilmaz (2014) and Barigozzi and Brownlees (2014) for

discussions and references of papers on other estimators of volatility in empirical

financial models.

No. Name ID No. Name ID
1 Banks˚ BK 11 Media MD
2 Insurance companies˚ IN 12 Travel & Leisure TL
3 Financial Services˚ FS 13 Chemicals CH
4 Real Estates˚ ` RE 14 Basic Resources BR
5 Construction & Materials CM 15 Oil & Gas OG
6 Industrial goods & services IGS 16 Telecommunication TC
7 Automobiles & Parts AP 17 Health Care HC
8 Food & Beverage FB 18 Technology TG
9 Personal & Household Goods PHG 19 Utilities UT
10 Retail RT

Table 2.2: Description of Euro Stoxx 600 super-sectors. ˚ - The financial sector variables.

We present the connectedness of the log volatilities of the super-sectors as the

dependence pattern from a VAR(1) model, with lag order based on testing the appro-

priate lag length using the BIC criteria and the available dataset. We characterize

the dynamics of the connectedness using a rolling estimation with window size of

100-days. We compare the pairwise (Granger-causality) estimation against a joint

estimation based on the Bayesian graphical approach.

0

10

20

30

40

50

60

70

1/23/2007

6/18/2007

11/5/2007

4/1/2008

8/20/2008

1/14/2009

6/8/2009

10/26/2009

3/19/2010

8/10/2010

12/28/2010

5/19/2011

10/6/2011

2/24/2012

7/17/2012

12/4/2012

5/1/2013

9/18/2013

2/10/2014

7/2/2014

T
o

ta
l 
C

o
n

n
e

c
te

d
n

e
s
s
 I

n
d

e
x
 (

in
 %

)

 

 

Pairwise Estimation

Joint Estimation

(a) Total Connectedness Index

−6000

−5500

−5000

−4500

−4000

−3500

−3000

1/2
3/2

007

6/1
8/2

007

11/5
/2

007

4/1
/2

008

8/2
0/2

008

1/1
4/2

009

6/8
/2

009

10/2
6/2

009

3/1
9/2

010

8/1
0/2

010

12/2
8/2

010

5/1
9/2

011

10/6
/2

011

2/2
4/2

012

7/1
7/2

012

12/4
/2

012

5/1
/2

013

9/1
8/2

013

2/1
0/2

014

7/2
/2

014

N
e
tw

o
rk

 B
IC

 

 

Pairwise Estimation

Joint Estimation
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Figure2.3: Dynamics of total connectedness index and network BIC scores over the period 2007-
2014 obtained from a rolling estimation with windows size of 100-days. The index of Granger-
causality (pairwise estimation) is in blue and the Graphical model (joint estimation) is in green.

We present in Figure 2.3, the dynamics of the total connectedness index of the
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Granger-causality (in blue) and the graphical model (in green) and their BIC scores

over the sample period. See Billio et al. (2012) and Diebold and Yilmaz (2014) for dis-

cussions on network-based measures of connectedness. We see a significant difference

in the total connectedness index of the two algorithms (see Figure 2.3a). We observe

from the figure that the pairwise estimation procedure tends to over-estimate the

linkages in periods of higher connectedness. This is typical of the standard Granger-

causality approach. The BIC of the network (Figure 2.3b) favors the joint estimation

approach over the pairwise scheme. This shows that the graphical approach performs

relatively better than the Granger-causality at estimating the connectedness.
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Figure2.4: Correlations of centrality rank metric from the pairwise and joint estimation networks.

Our main interest in this comparison is to focus on the centrality ranks of the

two estimation procedures. To this end, we consider a correlation analysis of the

eigenvector centrality ranks obtained by the two approaches over the sample period.

The eigenvector centrality metric is a measure of the importance of a variable in a

network. It assigns relative scores to all variables in the network, based on the prin-

ciple that connections to few high scoring variables contribute more to the score of

the variable in question than equal connections to low scoring variables. The eigen-

vector centrality measure has been extensively applied in financial network modeling

to identify agents or institutions that are central to the spread of risk in the system.

See Billio et al. (2012), Dungey et al. (2012), Barigozzi and Brownlees (2014) for

29



2.7. VOLATILITY CONNECTEDNESS IN THE EURO-AREA

further discussions.

Figure 2.4 shows the dynamics of the Spearman rank correlations of the eigen-

vector centrality rank metrics of the two schemes. We see that on average, the rank

by two schemes show a low positive correlation (ρ “ 0.203). The distribution of the

correlations seems negatively skewed with a mass of concentration on the positive.

Furthermore, we notice that the extreme negatively correlated ranks is captured for

the period ending November 12, 2008.
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(b) Joint Estimation (BIC = -4547.9)

Figure2.5: Volatility network for period ending November 12, 2008. Edges are lagged dependen-
cies.

Next, we compares the predicted network of the two estimation approaches for

the identified period with the extreme negative rank correlation (see Figure 2.5).

We notice from the figure that the predicted network structure of the pairwise ap-

proach has more dense connectedness than the joint estimation approach. This is

not surprising since (pairwise) Granger-causality deals only with bivariate time series

and it is unable to distinguish between direct and mediated causal influences in the

multivariate settings. The joint estimation through the graphical approach instead

consider single and multiple testing possibilities to infer the dependence among the
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variables in a given data. Thus, the latter is able to distinguish between direct and

mediated causal effects leading to a more sparse and parsimonious model. We no-

tice from the figure that the BIC score favors the joint estimation over the pairwise

scheme. Table 2.3 shows the top and bottom 5 super-sectors ranked by eigenvector

centrality of the two estimation approaches for the period ending November 12, 2008.

We see that the Utilities, Chemicals and Basic Resources which seems to be ranked

low by the pairwise are rather ranked higher by the joint estimation. On the other

hand Food & Beverage is highly ranked by the pairwise but lowly ranked by the joint

estimation.
Pairwise Estimation Centrality Joint Estimation Centrality

Rank ID Name Eigen In-D Out-D ID Name Eigen In-D Out-D

1 RT Retail 0.3811 16 0 CH Chemicals 0.4189 6 3
2 FB Food Beverage 0.3219 14 15 HC Health Care 0.3639 4 2
3 IN Insurance 0.2940 13 2 UT Utilities 0.2971 4 3
4 CM Const & Mat 0.2940 13 4 TC Telecom 0.2821 5 1
5 MD Media 0.2688 12 7 BR Basic Resource 0.2714 4 8
...

...
...

15 TG Technology 0.1591 8 15 AP Auto. & Parts 0.1531 2 10
16 UT Utilities 0.1591 8 16 RE Real Estates 0.1531 2 0
17 CH Chemicals 0.0859 5 18 PHG Person H. Gds 0.0947 2 0
18 BR Basic Resource 0.0711 4 17 FB Food Beverage 0.0731 1 4
19 OG Oil & Gas 0.0414 2 18 TL Travel Leisure 0.0731 1 0

Table 2.3: Top and bottom 5 super-sectors ranked by eigenvector centrality of the pairwise and
joint estimation approaches for the period ending November 12, 2008. Note: Eigen - eigenvector
centrality, In-D means in-degree, Out-D means out-degree.

Finally, we focus our attention on the financial variables to analyze the dynamics

of the centrality of the financial sector of the European stock market. We extract

and analyze the differences between the eigenvector centrality rank of the individual

financial super-sectors by the pairwise and the joint estimation schemes. We also

compare the most central financial variable identified by the pairwise and the joint

estimation approach . The dynamics of the rank differences and the most central fi-

nancial institution is presented in Figure 2.6a and 2.6b respectively. Figures 2.6c and

2.6d depict the frequency of the sign of the institutional rank differences and the most

central institution respectively over the sample period. We remind the reader that
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2.7. VOLATILITY CONNECTEDNESS IN THE EURO-AREA

in rank terms, 1 means a higher centrality and 4 means a lower centrality. Further-

more, by computing the rank difference as the pairwise minus the joint estimation

rank of each institution, a negative rank difference connotes a higher centrality by

the pairwise and a lower centrality by the joint estimation.

−2

0

2

B
K

−2

0

2

IN

−2

0

2

F
S

−2

0

2

R
E

1/2
3/2

007

7/3
0/2

007

2/1
/2

008

8/6
/2

008

2/1
1/2

009

8/1
7/2

009

2/1
9/2

010

8/2
4/2

010

2/2
2/2

011

8/2
5/2

011

2/2
4/2

012

8/2
8/2

012

3/4
/2

013

9/4
/2

013

3/1
0/2

014

9/1
0/2

014

(a) Institutional Rank Differences

BK

IN

FS

RE

1/2
3/2

007

7/3
0/2

007

2/1
/2

008

8/6
/2

008

2/1
1/2

009

8/1
7/2

009

2/1
9/2

010

8/2
4/2

010

2/2
2/2

011

8/2
5/2

011

2/2
4/2

012

8/2
8/2

012

3/4
/2

013

9/4
/2

013

3/1
0/2

014

9/1
0/2

014

Pairwise Estimation − Most Central Institution

BK

IN

FS

RE

1/2
3/2

007

7/3
0/2

007

2/1
/2

008

8/6
/2

008

2/1
1/2

009

8/1
7/2

009

2/1
9/2

010

8/2
4/2

010

2/2
2/2

011

8/2
5/2

011

2/2
4/2

012

8/2
8/2

012

3/4
/2

013

9/4
/2

013

3/1
0/2

014

9/1
0/2

014

Joint Estimation − Most Central Institution

(b) Most Central Institution

BK IN FS RE
0

20

40

60

80

100

120

140

160

180

 F
re

q
u
e
n
c
y
 o

f 
S

ig
n
 i
n
 R

a
n
k
 D

if
fe

re
n
c
e
s

 

 

Negatives Positives

(c) Frequency in Sign Rank Differences
BK IN FS RE

0

20

40

60

80

100

120

140

 F
re

q
u

e
n

c
y
 o

f 
M

o
s
t 

C
e

n
tr

a
l 
In

s
ti
tu

ti
o

n
  

 

 

Pairwise Estimation

Joint Estimation

(d) Frequency of Most Central Institution

Figure2.6: Centrality rank in the financial sector of European stock market over the sample period.
Rank value 1 (4) means highest (lowest) centrality. A negative (positive) sign of rank difference
means a higher (lower) centrality by the pairwise estimation and a lower (higher) centrality by the
joint estimation.

The dynamics of the rank differences in Figure 2.6a shows quite many deviations

from the reference line (in blue) for all four institutions. The reference line indicates

equal ranks of institutions by the two estimations. We see from the figure what seems

to be an opposite dynamics for Banks and Real Estates. Most periods of positive rank

differences for Banks often experience negative rank differences for Real Estate and

vice versa. The dynamics in Figure 2.6b also shows many periods of differences in the
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most central financial institution predicted by the two estimations. For instance the

pairwise approach found Real Estates as more central in the volatility connectedness

than Banks in most part of 2007-2009. However, the joint estimation indicates the

opposite.

The frequency of the signs from the rank differences as shown in Figure 2.6c

indicates a completely opposite observation by the two estimation approaches. In

most part of the sample period, the centrality rank of Banks and Insurance is lower

in the pairwise estimation and higher in the joint estimation. The opposite is true

for Financial services and Real Estates. For the most central financial institution,

a researcher applying Granger-causality will identify Financial services as a major

player in most part of the sample period, followed by Real Estates, with Banks as the

least central. However, the graphical joint estimation shows Banks as more central,

followed by Insurance, with Real Estates as the least.

In many real-world problems, interactions among random variables are more com-

plex than pairwise. The graphical approach presented in this paper is designed

to handle joint estimations and large scale multiple testing problems, and thus,

more suitable to model the complex relationships in real world phenomena than the

Granger-causality. Therefore, the estimated structure from the graphical approach

seems more appropriate and reliable than that of the Granger-causality. It can be

concluded from the above results that, over the sample period considered, Banks

and Insurance companies are more central in the “fear connectedness” expressed by

market participants in the financial sector of the Euro-area.

2.8 Conclusion

This paper surveys the state of the arts on graphical (network) models from a mul-

tidisciplinary perspective and in the context of systemic risk. It relates graphical

models to multivariate analysis with potential applications in econometrics and fi-
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nance. We demonstrate the effectiveness of the Bayesian approach to network in-

ference to analyze vulnerabilities in the financial system. Using the return indexes

of Billio et al. (2012), we find evidence of a higher vulnerability between 2001-2008

that amplified the 2007-2009 crisis. The evidence also suggests that insurers played

a central role in the vulnerability of the system during the period. Using data on

the European stock market, we find that Banks and Insurers are more central in the

“fear connectedness” (Diebold and Yilmaz, 2014) expressed by market participants

in the financial sector of the Euro-area. The result shows that the graphical (joint es-

timation) method allows us to extract a dependence patterns more suitable to model

the complex relationships than the Granger-causality (pairwise estimation).
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Chapter 3

Bayesian Graphical Models for SVAR
Processes

3.1 Introduction

Since the seminal paper of Sims (1980), vector autoregressive (VAR) models have

been widely used to estimate and forecast multivariate time series in macroeconomics.

Despite the success of the VAR model, two of the challenges of econometricians are

the problems of over-parametrization and identification of the VAR models. Various

solutions to these problems have been discussed and criticized in many papers (e.g.,

Cooley and Leroy, 1985; Bernanke, 1986; King et al., 1991; Rubio-Ramirez et al.,

2010; Doan et al., 1984). In particular, for structural VAR (SVAR) model iden-

tification, the standard approach relies on shocks for the dynamic analysis of the

model through impulse response functions. To achieve this, some researchers impose

structures provided by a specific economic model in which case the empirical results

will be only as credible as the underlying theory (Kilian, 2013). Moreover, in many

cases, there are not enough credible exclusion restrictions to achieve identification.

This chapter is based on: Ahelegbey, D. F., Billio, M. and Casarin, R. (2015). Bayesian
Graphical Models for Structural Vector Autoregressive Processes, Journal of Applied Econometrics,
forthcoming.
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3.1. INTRODUCTION

In this paper, we propose an identification approach for SVAR models based

on a graph representation of the conditional independence among variables (see

Pearl, 1988; Lauritzen and Wermuth, 1989; Whittaker, 1990; Wermuth and Lau-

ritzen, 1990). The graph inference discussed in this paper is in the spirit of Corander

and Villani (2006), but differs substantially from it. A first relevant difference is that

our approach considers acyclic graphs, whereas in Corander and Villani (2006), the

dependence structures are not acyclic and cannot be used to achieve identification.

A second major difference is that we propose a joint inference of the graphs and the

parameters, whereas they focus only on the causal structures. Furthermore, Coran-

der and Villani (2006) apply a fractional Bayes approach, which is a questionable

methodology for a variety of models (e.g., see Berger and Pericchi, 1998; Santis and

Spezzaferri, 1999). Finally, it is not at all clear in general, how one should define

the factorization of the likelihood, or which fractions should be used for each com-

ponent. Thus, in this paper we follow Madigan and York (1995) and Grzegorczyk

and Husmeier (2008) and apply an efficient MCMC algorithm.

The SSVS of George et al. (2008) is, perhaps, the closest approach to the model

inference discussed in this paper. The authors use two separate sets of restrictions

for the contemporaneous and lagged interactions, as in our BGVAR model. How-

ever, the SSVS procedure and the BGVAR model differ substantially in the way

the restrictions are introduced. The BGVAR handles the restrictions directly on

the structural model, whereas the SSVS deals with the reduced-form model. This

represents one of the most important contributions of our paper, since we are able to

solve the identification problem of the SVAR using the natural interpretation of the

graph structures and the acyclic constraints on the contemporaneous relationships.

Consequently, the BGVAR model provides a convenient framework for policy anal-

ysis, as the contemporaneous graph reveals the presence and direction of the effects

of policy actions. Moreover, the BGVAR model allows the researcher to learn about
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relationships among variables in the absence of indications from economic theory.

Another major difference between the BGVAR model and the SSVS regards the

algorithm used for the posterior approximation. The algorithm proposed in George

et al. (2008) for the SSVS inference is a single-move Gibbs sampler, whereas our

MCMC sampler for BGVAR is a collapsed and multi-move Gibbs sampler that has

been proven to be more efficient both in the MCMC literature (e.g., see Liu, 1994;

Roberts and Sahu, 1997) and in our simulation comparisons.

We provide some applications of our approach to well-known data sets studied

in macroeconomics and finance. The macroeconomic application focuses on model-

ing and forecasting US-macroeconomic time series following the moderate-dimension

VAR approach in Stock and Watson (2008) and Koop (2013). Our BGVAR approach

provides a data-driven identification of the structural relationships among economic

variables, thus offering a useful tool for policy analysis. The financial application

focuses on the empirical investigation of the linkages among economic sectors in the

Euro-zone. The use of graphical models in financial time series analysis have been in-

vestigated in Carvalho and West (2007) and Carvalho et al. (2007), and receives a lot

of attention in the recent years (e.g., see Billio et al., 2012; Diebold and Yilmaz, 2014,

2015). In our application, the BGVAR produces a better representation of the link-

ages between the financial and non-financial super-sectors than the Granger-causal

(GC) inference approach previously used in the literature.

The paper is organized as follows: Section 3.2 presents BGVAR models. Section

3.3 discusses the model inference scheme. Section 3.4 provides an illustration of BG-

VAR on synthetic datasets, and a comparison with alternative approaches. Section

3.5 and 3.6 present macroeconomic and financial applications, respectively.
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3.2 Bayesian Graphical Vector Autoregression

In a SVAR model, the dynamics of the variable of interest Yt is

Yt “ B0Yt `
p
ÿ

i“1
BiYt´i `

p
ÿ

i“1
CiZt´i ` εt, (3.1)

t “ 1, . . . , T , where Yt is ny vector of response variables, Zt is nz vector of predic-

tor variables, εt is ny vector of structural error terms, independent and identically

normal, i.e., εt iid„ N p0,Σεq, p is the maximum lag order; B0 is nyˆny matrix of struc-

tural contemporaneous coefficients, with zero diagonals; Bi and Ci, with 1 ď i ď p,

are ny ˆ ny and ny ˆ nz matrices of structural coefficients, respectively.

The identification problem of SVAR is that, (3.1) is not directly estimable from

which to derive the ‘true’ model parameters. This is because, a set of values exists

for the coefficient matrices such that the likelihood function takes the same value at

all points of this set. Thus, the true values for the coefficient matrices cannot be

directly estimated from the data.

3.2.1 Over-Parametrized VAR Models

A general approach to model and forecast dynamics in multivariate time series is the

reduced-form VAR model. Let Xt “ pYt, Ztq
1 be a pn “ ny ` nzq-dimensional vector

of observed variables at time t, and B˚i “ pBi, Ciq, 1 ď i ď p, the ny ˆ n matrices of

unknown coefficients for the response and predictor variables. The reduced form of

(3.1) can be expressed as

Yt “
p
ÿ

i“1
AiXt´i ` A

´1
0 εt (3.2)

for t “ 1, . . . , T , where A0 “ pIny ´B0q is a nyˆny matrix, Iny is the ny-dimensional

identity matrix, Ai “ A´1
0 B˚i , 1 ď i ď p are the reduced-form lag coefficient matrices

such that Ai, 1 ď i ď p, is of dimension ny ˆ n and ut “ A´1
0 εt is a ny-dimensional
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vector of reduced-form errors independent and identically normal, ut iid
„ N p0,Σuq.

Alternatively, equation (3.2) can be rewritten in a matrix form as:

Y “ X 1A1` ` U (3.3)

where Y is stacked Y 1p`1, . . . , Y
1
T´p, such that Y is of dimension pT ´ pq ˆ ny, X 1

is stacked X 1
p`1´s, . . . , X

1
T´s, 1 ď s ď p, such that X 1 is of dimension pT ´ pq ˆ np,

A` “ pA1, A2, . . . , Apq is of dimension nyˆnp and U is stacked u1p`1, . . . , u
1
T´p, such

that U is of dimension pT ´ pq ˆ ny.

Estimating (3.3) with a full, lagged dependence structure across equations and a

high lag order may result in a very large number of parameters relative to the number

of data points at hand. This phenomenon is referred to as over-parametrization and

could lead to a loss of degrees of freedom that affects the reliability of predictions.

To deal with an over-parametrized VAR model, several approaches have been

discussed in the econometric literature. Early works by Doan et al. (1984) proposed

a prior distribution (e.g., the Minnesota prior) to shrink the coefficients toward a

random walk model. George et al. (2008) proposed the SSVS prior distribution to

identify the relevant variables for predicting the response variables. The SSVS incor-

porates a latent variable, γ, which is an indicator matrix with elements interpreted

as and indicator of whether to include or exclude a variable from the model.

Although the Minnesota prior distribution has proved efficient in handling over-

parametrized VAR models, its effectiveness is limited (e.g. McNees, 1986; Kadiyala

and Karlsson, 1993; George et al., 2008). The SSVS has also proved efficient in select-

ing relevant variables in over-parameterized VAR models. However, the estimated

SSVS coefficient matrix often consists of elements with values significantly different

from zero, whereas the rest concentrate around zero but are not ignored. Parsimony

is, therefore, not guaranteed.
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3.2.2 Identification of Structural Dynamics

The reduced-form does not offer much information regarding the structural dynamics

of the VAR model. The challenging problem of econometricians relates to learning

about the structural dynamics from the reduced-form estimates. A standard ap-

proach to this problem relies on the role of shocks for the dynamics of the model.

This approach is done through impulse response functions. Consider the covariance

matrix of the errors related to (3.3)

Σu “ EpA´1
0 εtε

1
tpA

´1
0 q

1
q “ A´1

0 ΣεpA
´1
0 q

1 (3.4)

then, the identification problem relies on estimating A0 and Σε. The standard SVAR,

however, assumes the covariance matrix of the structural errors is diagonal (normal-

ized), Σε “ Iny . This means that the main challenge lies in estimating A0 or B0.

Thus, in the SVAR framework, B0 is interpreted as a contemporaneous relationship

among shocks rather than the observed variables. To have an identifiable model,

some researchers impose the structure provided by a specific economic model, al-

though in that case, the empirical results will be only as credible as the underlying

theory (Kilian (2013)). Moreover, in many cases, there are not enough credible exclu-

sion restrictions to achieve identification. Various approaches to this problem have

been discussed and criticized (e.g., Cooley and Leroy, 1985; Bernanke, 1986; King

et al., 1991; Rubio-Ramirez et al., 2010; Kilian, 2013).

The inability to provide convincing and enough credible exclusion restrictions and

to achieve identification has stimulated interest in alternative identification methods

(Kilian, 2013). Swanson and Granger (1997) argued that contemporaneous corre-

lation among errors is not appropriate for the impulse response studies. Stock and

Watson (2001) also pointed out that the identification problem relates to differenti-

ating between correlation and causation. As an alternative to imposing restrictions

on B0, Demiralp and Hoover (2003) showed that the application of graph-theoretic
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methods and stochastic search algorithms can reduce or even eliminate the need for

prior information or to appeal to restrictions from an economic theory when identi-

fying the causal order of structural models. In their SSVS prior, George et al. (2008)

also incorporate a latent variable, ω, as an indicator matrix to learn about the con-

temporaneous correlations among shocks. Identification of the structural dynamics

using shocks is subject to the specification of the reduced-form residuals or the con-

temporaneous covariance matrix of the residuals alone. Although reliance on shocks

for the structural dynamics proves useful, it is limited in some ways. A possible

limitation is based on the assumption that the VAR is correctly estimated. Even the

variable selection of the SSVS does not totally ignore irrelevant variables. Therefore,

misspecification of the model can affect the estimation of the reduced-form error

covariance matrix that may affect the relationship identification. Moreover, pol-

icy actions are not necessarily shocks and, therefore, the idea of structural analysis

from the assessment of reduced-form residuals may affect conclusions on dependence

among the response variables.

3.2.3 Graphical Models and Structural VAR

Graphical models are statistical models that summarize the marginal and condi-

tional independences among random variables by means of graphs (Brillinger, 1996).

Specifically, a graph is characterized by nodes and edges, where the nodes represent

variables and the edges depict the nature of the interaction among variables. For

instance, the relationship P Ñ Q means the variable P causes the variable Q. The

node P from which a directed edge originates is the parent (explanatory variable),

and its end Q is the child (response variable).

One of the appealing features of the graphical approach to multivariate time

series analysis is the possibility of giving a graphical representation of the logical

implications of models as well as the conditional independence relationships. As an
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example, assume P Ñ Q Ñ R, then P and R would be probabilistically dependent

in the absence of Q; but conditional on Q, they would be independent. Such kind

of dependence is common in structural models, and a graphical approach provides

a simple framework to represent and estimate these relationships. In this paper, we

employ directed graphs, which present an unambiguous direction of causation among

the variables. Using such class of models provides information on the structural

dynamics among the variables by means of the directed edges.

Let Xt “ pX
1
t , X

2
t , . . . , X

n
t q, where X i

t is realization of the i-th variable at time

t. Equation (3.1) can be represented as a graphical model with a one-to-one corre-

spondence between the coefficient matrices and a directed acyclic graph (DAG):

Xj
t´s Ñ X i

t ðñ B˚s,ij ­“ 0 0 ď s ď p (3.5)

where B˚0 “ B0, for s “ 0, and B˚s “ pBs, Csq, for 1 ď s ď p. By considering the

structural dynamics as a causal dependence, the relationship in (3.5) for 1 ď s ď p

can be referred to as lagged (temporal) dependence, and as contemporaneous depen-

dence for s “ 0. Temporal dependence is based on the time flow and relies on the

assumption that causes precede effects in time. Contemporaneous causal relation-

ships are based on distinguishing between instantaneous causation from correlations.

Let X “ pX1, . . . , XT q be a time series of n variables and length T . The joint

distribution of the variables in X can be described by a graphical model pG, θq P

tG,Θu, where G is a graph representing the structural relationships, θ is a vector of

structural parameters, G is the space of the graphs, and Θ is the parameter space. We

represent G P G as a DAG composed of directed edges defining the contemporaneous

and temporal dependence among the variables, θ P Θ is the structural parameters,

θ ” tµ,Σxu ” tµ,B
˚,Σεu, where µ is n vector of means of Xt “ pX

1
t , . . . , X

n
t q, @t; Σx

is the covariance matrix of the observed time series that decomposes into tB˚,Σεu,

where B˚ “ pB0, B1, . . . , Bp, C1, . . . , Cpq, is the matrix of structural coefficients and

42



3.2. BAYESIAN GRAPHICAL VECTOR AUTOREGRESSION

Σε is the structural error covariance matrix. Without loss of generality, we assume

the data is generated by a stationary process and that µ “ 0.

3.2.4 Bayesian Graphical VAR Models

Following the representation in equation (3.5), we define:

B˚s “ pGs ˝ Φsq, 0 ď s ď p (3.6)

where for s “ 0, B˚0 “ B0 is ny ˆ ny structural coefficients of contemporaneous

dependence, G0 is ny ˆ ny, binary connectivity matrix and Φ0 is a ny ˆ ny matrix of

coefficients. For 1 ď s ď p, B˚s “ pBs, Csq is a ny ˆ pny ` nzq matrix of structural

coefficients of temporal dependence, Gs is a nyˆpny`nzq binary connectivity matrix

and Φs is a ny ˆ pny ` nzq matrix of coefficients. The operator p˝q is the element-

by-element Hadamard’s product (i.e., B˚s,ij “ Gs,ij Φs,ij). We refer to G0 as the

connectivity matrix of contemporaneous dependence and to Gs, 1 ď s ď p, as the

matrix of the temporal dependence. Elements in Gs, 0 ď s ď p, are such that

Gs,ij “ 1 ðñ Xj
t´s Ñ X i

t and 0 otherwise. Elements in Φs, 0 ď s ď p, are

structural coefficients, such that Φs,ij P R represents the value of the effect of Xj
t´s

on X i
t . There is a one-to-one correspondence between Φs and B˚s conditional on Gs:

B˚s,ij “

#

Φs,ij if Gs,ij “ 1
0 if Gs,ij “ 0

(3.7)

Based on our notation in (3.6), equation (3.1) can be expressed as:

Yt “ pG0 ˝ Φ0qYt `
p
ÿ

i“1
pGi ˝ ΦiqXt´1 ` εt (3.8)

where pGj ˝ Φjq are the graphical model structural coefficient matrices whose non-

zero elements describe the value associated with the contemporaneous and temporal

dependences, respectively. We assume the prior distribution for B˚ is normal, i.e.,
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B˚ „ N pB˚, V Bq. Estimating (3.8) involves specification of the lag order, p, in-

ference of the causal structure, G “ pG0, G1, . . . , Gpq, and the set of parameters,

tB˚0 , B
˚
1 , . . . , B

˚
p ,Σεu that are estimated from Σx. In this paper, specification of p

is based on testing the appropriate lag order using the sample data and the BIC.

Following Madigan and York (1995), we assume that the prior on G is uniform,

P pGq91, and that given a complete graph, the prior on Ωx “ Σ´1
x is a conjugate

Wishart. See A.1 for details.

The objective of this paper is twofold. First, we provide insight into the structural

VAR dynamics by inferring G from the observed time series. This step is necessary to

handle the identification issues of SVAR. To achieve this, we follow the conventional

Bayesian graphical model approach of integrating the likelihood with respect to the

unknown random parameters θ and obtaining the marginal likelihood function over

the graphs P pX |Gq. See Heckerman and Geiger (1994) for details on the marginal

likelihood of Gaussian graphical models. The second objective is to contribute to

solving the problem of over-parameterization in VAR models. To achieve this, we

incorporate the inferred structural relationships to select the relevant variables to

estimate a reduced-form VAR. Following (3.2), (3.3), (3.6), and (3.8), the reduced-

form parameters of the standard VAR model can be mapped to that of the Bayesian

graphical model as follows:

A0 “ Iny ´ pG0 ˝ Φ0q, Ai “ pIny ´G0 ˝ Φ0q
´1
pGi ˝ Φiq, i “ 1, . . . , p (3.9)

where A0 is nyˆny coefficient matrix conditional on G0, and Ai is a stacked reduced-

form coefficient matrix. Let B˚` is a stacked form of B˚1 , . . . , B˚p . The connectivity

matrix associated with B˚` can be expressed as G`, a stacked form of G1, . . . , Gp,

and the graph associated with A` in equation (3.3) can be represented as G˚` “

pIny ´ G0q
´1G`, such that G` and G˚` are of dimension ny ˆ np. We note that

Σu “ pIny ´G0 ˝ Φ0q
´1ΣεpIny ´G0 ˝ Φ0q

´11.
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Following the general concept of the SVAR model, we assume the structural errors

are a priori independent, which means Σε is a diagonal matrix. By normalizing Σε

to an identity matrix, the identification problem reduces to estimating B˚0 whose

structure of dependence is given by G0. The inference of G0 from the observed time

series offers insight into the contemporaneous dependence of the response variables.

Based on the assumption that B˚0 follows a normal density, we can estimate the signs

of the contemporaneous relationships from the partial correlations of the observed

time series. The inference on the sign, together with the inferred contemporaneous

structure, G0, offers some insight into the presence and causal directions of policy

actions on key variables of the system. We shall notice that following the Markov

equivalence principle of contemporaneous directed graphs (see Andersson et al. (1997)

two or more graphs with similar correlation structures, but different edge directions,

may have the same marginal likelihood. As suggested in Andersson et al. (1997),

the modeller should focus his attention on the class of essential graphs rather than

DAGs. In this case, our graphical approach is not able to provide a unique solution

to the SVAR identification problem and the researcher should choose between one

of the graphs in the equivalent classes, by using other arguments, from economic

theory, or sources of informations.

In estimating A`, non-zero (zero) entries in G˚` can be interpreted as indicators of

relevant (not-relevant) variables to be included (excluded) in (from) the model. These

zero restrictions allow us to avoid estimating all the coefficients in the VAR model.

It presents an automatic way to achieve dimension reduction and variable selection.

An advantage of this approach to VAR inference is that by combining G0 and G`

to obtain G˚`, we are able to identify relevant variables with a causal interpretation.

The prior distributions and the posterior computation for the parameters of our

reduced-form VAR are discussed in Section 3.3.
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3.2.5 Statistical Inference on Graphical VAR Models

Statistical inference on graphical models can be a challenging goal as shown in the

following. Let Yt and Zt be the ny and nz vectors of the response and predictor

variables of the SVAR, respectively. The structural dynamics can be decomposed

as contemporaneous and temporal dependences. For directed graphs, the number of

possible structures of the temporal dependence, F pp, ny, nq, is a function of p, the

lag order, ny, the number of response variables, and n “ ny`nz, the total number of

explanatory variables, while the contemporaneous dependence, Hpnyq, is a recursive

function of only ny (Robinson, 1977):

F pp, ny, nq “ 2pnyn, Hpnyq “

ny
ÿ

i“1
p´1qi`1

ˆ

ny
i

˙

2ipny´iq Hpny ´ iq

where
`

ny
i

˘

is the binomial coefficient and Hp0q “ 1, Hp1q “ 1. Following Fried-

man et al. (1998), we represent the contemporaneous and temporal dependences

separately because the learning processes of the two structures are distinct. Based

on this assumption, the number of possible structures for a SVAR of order p, with

ny responses, and nz predictors, can be expressed as Gpp, ny, nq “ HpnyqF pp, ny, nq.

Figure 3.1 shows that the number of possible structures increases super-exponentially
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Figure3.1: Logarithmic estimates of the number of possible structures for a SVAR model of order
p, 0 ď p ď 3, with the number of response variables ny equal to the number of nodes n, (0 ď n ď 20),
and no predictors (nz “ 0).

with the number of variables, and lag order (different lines). This challenge has been
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discussed extensively as a model determination problem (see Chickering et al., 2004;

Corander and Villani, 2006). We follow the Bayesian paradigm of Madigan and York

(1995), Giudici and Green (1999), and Dawid and Lauritzen (2001), that allows us

to take into account structure and parameter uncertainty.

3.3 Efficient Model Inference Scheme

Under the Bayesian framework of Geiger and Heckerman (2002), the structural pa-

rameters can be integrated out analytically to obtain a marginal likelihood function

over graphs. This allows us to apply an efficient Gibbs sampling algorithm (e.g.,

Casella and Robert, 2004) to sample the graph structure and the model parameters

in blocks (e.g., Roberts and Sahu, 1997). At the iteration t, the resulting collapsed

Gibbs sampler (Liu, 1994) consists of the following steps:

1. Sample the structural relationships Gptq0 and G
ptq
` from the full conditional dis-

tribution P pG0, G`|X q, by using a Metropolis-Hastings (MH) algorithm with

random walk proposal distribution QpG
ptq
0 , G

ptq
` |X , G

pt´1q
0 , G

pt´1q
` q

2. Sample the reduced-form parameters Aptq` and Σptqu directly from the full condi-

tional distribution P pA`,Σu|G
ptq
0 , G

ptq
` ,X q

Sampling pG0, G`q, from the joint distribution is computationally intensive, since the

number of possible structures, as shown in Figure 3.1, increases super-exponentially

with the number of nodes and lags. In addition, the acyclic constraint on the con-

temporaneous structure requires a verification scheme, which is not required in the

temporal structure and can negatively affect the mixing of the MCMC.

Following Friedman et al. (1998), we collapse further the Gibbs sampler, drawing

the the temporal structure, G` and G0, from their approximate marginal posterior

distributions. Thus, the first step of the Gibbs sampler is:
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1.1 Sample Gptq0 from P pG0|X q by a random walk MH

1.2 Sample Gptq` from P pG`|X q by a random walk MH

We will refer to G` as the multivariate autoregressive (MAR) graph and to G0 as the

multivariate instantaneous (MIN) graph. To sample the graph structures, we use a

modified and more efficient version of the MCMC algorithm proposed by (Madigan

and York, 1995; Grzegorczyk et al., 2010). See A.2 for further details of our MCMC

scheme. In the following we describe the different steps of the Gibbs sampler.

3.3.1 Sampling the MAR Structure

The likelihood of the MAR structure is given by the probability density function of

the normal distribution N p0,Σx,`q, where Σx,` is the temporal covariance matrix.

Specification of the maximum lag order, p, is based on the BIC. Based on the specifi-

cation of p, we estimate G` “ pG1, . . . , Gpq, a single structure of dimension ny ˆ np,

that comprises all the temporal structures stacked together.

The sampling approach is such that at each iteration, we randomly draw a candi-

date explanatory variable for each of the response variables and either add or delete

an edge between them and account for potential interactions among the explanatory

variables. Since edges flow only forward and not backward, edge addition or removal

results in an acyclic graph. The probability of selecting a node is strictly positive for

all nodes, therefore, this guarantees irreducibility, since it is possible to reach other

configurations in finite time regardless of the present state. Furthermore, with a pos-

itive probability, the chain remains in the current state, which satisfies aperiodicity.

Hence, this proposal guarantees ergodicity of the MCMC chain. See A.2 for details.

3.3.2 Sampling the MIN Structure

To learn the MIN structure from the observed time series, we assume the stationarity

of the VAR model and denote with N p0,Σy,0q, the distribution of the contempora-
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neous variables, with Σy,0 as the covariance matrix. We allow for acyclic constraints

to identify the causal directions in the system and to produce an identifiable model.

To sample acyclic graphs, we modify the concept of Giudici and Castelo (2003) by

exploiting the following condition. Let X i
t and Xj

t be two nodes in a MIN structure.

Xj
t Ñ X i

t is legal if and only if the intersection between the descendants of X i
t and

the ancestors of Xj
t is empty. For example, assume P Ñ . . . Ñ Q Ñ . . . Ñ R, then

P and Q are ancestors of R, and Q and R are descendants of P . We see that adding

an edge R Ñ P is illegal since it produces a cycle. Our proposal of a directed edge

Xj
t Ñ X i

t can be implemented in two steps. First, we verify if there is a directed edge

from X i
t to Xj

t . If such relationship exists, we remove the link. Secondly, we add the

directed edge Xj
t Ñ X i

t only if a directed path from X i
t to Xj

t , pX
i
t Ñ . . . Ñ Xj

t q

does not exist. This can be verified using the reachability matrix (see e.g., Wasser-

man, 1994). Alternatively, the second step can be handled by adding Xj
t Ñ X i

t and

testing whether the resulting structure is a directed acyclic graph.

3.3.3 Estimating Reduced-Form Graphical VAR

After sampling the structures (G0, G`) from the observed data, we proceed to sample

the parameter of the associated reduced-form VAR model. Following the expression

in (3.9), we notice that the graph structure associated with the reduced-form coeffi-

cients matrix A` is given by G˚` “ pIny ´G0q
´1G`. Thus, we incorporate the MIN

and MAR structures to obtain the graph structure of the reduced-form VAR pG˚`q.

Clearly, if G0 is empty (no contemporaneous dependencies), then the reduced-form

coincides with the structural dynamics. We select the non-zero elements of G˚`, to in-

dicate the relevant variables of the model. We estimate pA`,Σuq by considering two

typical prior distributions applied in the Bayesian VAR literature, i.e., the Minnesota

(MP) and the normal-Wishart (NW) prior.
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Minnesota Prior

The MP prior was proposed by Doan et al. (1984) to shrink the VAR model toward a

random walk model. Here, the diagonal elements of A1 were shrunk toward one and

the remaining coefficients in A` “ pA1, . . . , Apq toward zero. The basic idea is that

more recent lags provide more reliable information than distant ones and that one’s

own lags should explain more of the variation of a given variable than the lags of the

other variables. The prior expectation, ErpAkqijs, is equal to δ if j “ i and k “ 1,

and takes value 0 otherwise. The variance of the coefficient matrices is VrpAkqijs “

ασ2
i k
´2σ´2

j . The coefficients in A` are assumed to be a-priori independent and

normally distributed, A` „ N pA, V q. Conditional on G˚`, we estimate the posterior

mean (Ai) and variance pV iq of the coefficient of relevant variables in each equation

by Ai “ V ipV
´1
i Ai ` σ´2

i W 1
iY

iq and V i “ pV ´1
i ` σ´2

i W 1
iWiq

´1, where Ai and V i,

i “ 1, . . . , ny, are the prior mean and variance of the relevant variables in each

equation, and Wi P X
1 is the set of variables that influence the response Y i. The

covariance matrix of the residuals, Σu, is assumed to be diagonal, fixed, and known;

Σu “ diagpσ2
1, . . . , σ

2
nyq. Here, σ2

i , i “ 1, . . . , ny, is the estimated variance of the

residuals from a univariate AR model of order p for variable Y i (see Banbura et al.,

2010; Karlsson, 2013). Following the recent literature, we set δ “ 0.9 and α “ 0.5.

Normal-Wishart Prior

The independent NW is the commonly used prior distribution in the estimation of

seemingly unrelated regression (SUR) models. This prior assumes: A` „ N pA, V q

and Σ´1
u „ Wpν, S´1

q, where S is the prior sum of squares and ν is the associated de-

grees of freedom. In this application, we deviate slightly from the standard approach

of estimating the posterior mean and variance of A` by considering coefficient up-

dates similar to the Minnesota approach. Conditional on G˚`, we select the relevant
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variables, Wi, i “ 1, . . . , ny, of each equation by Ai “ V ipV
´1
i Ai ` σ´2

i W 1
iY

iq and

V i “ pV
´1
i `σ

´2
i W 1

iWiq
´1, where σ2

i , is the variance of residuals from the posterior of

Σu. The posterior of Σ´1
u is Wishart distributed with S “ S`pY 1´XA

1
q1pY ´XA

1
q

and ν “ ν ` pT ´ pq degrees of freedom. A is the posterior of A` with dimension

nyˆnp such that elements of relevant variables in A store the corresponding elements

of Ai, and the rest are restricted to zero.

3.4 Simulation Experiments

We study the efficiency of our approach on simulated datasets generated from a

n-node graphical model. We consider the following data generating process (DGP):

Xt “

p
ÿ

i“0
pIk bBiqXt´i ` εt, (3.10)

t “ 1, . . . , T , where Xt is a n-dimensional vector, p is the lag order, and Bi, i “

0, 1, 2, 3, is the sequence of 5 ˆ 5 coefficient matrices given in Table 3.1. Note that

k controls the size n of the model, since n “ 5k. For a more general validity of

our simulation study, we consider six different settings, which correspond to the lag

order and the model dimension one can commonly find in the empirical applications.

We set p “ 1, 2, 3 in the 5-node (i.e., k “ 1) and 20-node (i.e., k “ 4) models. We

generate T “ 110 data points for each k and p, and use 100 observations for the

model estimation and 10 for the out-sample forecast analysis. For each case, we

replicate the estimation exercises 20 times, with random draws from the DGP. All

the results reported in the following are averages over the replications.

We compare the MIN structure with the contemporaneous structure of the PC

algorithm (see A.3.4) and SSVS ω matrix (SSVS(ω)). See George et al. (2008)

for details on the implementation of the SSVS approach. The MAR structure is

also compared with the temporal dependence structure given by a modified condi-
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pB0q pB1q pB2q pB3q
¨

˚

˚

˚

˚

˝

0 0 -0.8 0 0
0 0 0 0 0
0 0 0 0 0
0 0.5 0 0 -0.5
0 0 0 0 0

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

-0.8 0 0 0 0
0.6 0 0.5 0 0
0.7 0 -0.5 0 0
0 0 0.5 0.7 0
0 -0.6 0 0 0.6

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0.5 0 0 0 0
0 0 0 0 -0.4

-0.6 0 0 0 0
0 0 -0.4 0 0

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

0 0 0 0 0
0 0 0 0 0
0 0 0 -0.4 0
0 0 0 0 0
0 0.4 0 0 0

˛

‹

‹

‹

‹

‚

Table 3.1: Coefficients of the data generating process. B0 is the contemporaneous coefficient matrix,
and B1, B2, and B3 are the temporal coefficient matrices at lag 1, 2 and 3, respectively.

tional Granger-causal (C-GC) inference and the SSVS γ matrix (SSVS(γ)). For this

comparison, we modified the C-GC of (Ding et al., 2006) to select Granger-causal

variables at different lags (see A.3.5). As an alternative to the C-GC the Granger

causal priority (see Sims, 2010, 1976; Qin, 2011) can be applied, which is an approach

to discriminate between mediated and direct Granger-causal effects.

We evaluate the accuracy of our estimates by comparing the BGVAR model

with the BVAR and the SSVS models. The reduced-form model is estimated by

considering the BGVAR under the Minnesota (BGV-MP) and the normal-Wishart

(BGV-NW) prior distributions, and the BVAR model under the Minnesota (BV-MP)

and the normal-Wishart conjugate (BV-NW) prior distributions. The prediction

accuracy of the models is evaluated using the log-predictive score and the predictive

AIC. See Appendix A.3 for details on the graph accuracy assessment and the model

prediction accuracy evaluation.

For the small- (moderate-) dimension models, we run a total of 20,000 (40,000)

Gibbs iterations and exclude 50% burn-in samples for our BGVAR model. For the

predictive model estimation, we run a total of 2200 Gibbs iterations with 200 burn-in

samples for both BVAR and BGVAR. Following George et al. (2008), we run a total

of 20,000 Gibbs iterations for the SSVS and exclude 10,000 burn-in samples.

We report in Table 3.2 the results of the comparison between the different in-

ference schemes. The top panel of the table shows that the MIN achieves a higher

accuracy than the PC. In both small and moderate-dimension settings, we notice
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Small-size (n “ 5) Moderate-size (n “ 20)
Scheme p “ 1 p “ 2 p “ 3 p “ 1 p “ 2 p “ 3

Contemporaneous Structure Inference (Accuracy)

PC 80.00 72.00 72.00 95.75 93.75 96.25
MIN 88.00 88.00 80.00 96.75 96.25 96.25

Temporal Structure Inference (Accuracy)

C-GC 100.00 100.00 89.33 100.00 99.04 96.67
MAR 100.00 100.00 100.00 100.00 99.47 99.75

Forecast Accuracy (log predictive score)

BV-MP -47.12 -50.16 -11.96 -241.13 -256.57 -41.39
BV-NW -43.48 -45.90 4.09 -308.74 -484.03 -111.82
SSVS -42.33 -41.66 20.19 -224.77 -226.72 26.97
BGV-MP -45.55 -47.96 -13.04 -208.21 -206.61 -9.23
BGV-NW -41.14 -40.14 6.75 -221.44 -223.03 -0.13

Prediction Accuracy Adjusted (AIC)

BV-MP 144.24 200.32 173.92 1282.27 2113.13 2482.79
BV-NW 136.95 191.81 141.82 1417.48 2568.05 2623.64
SSVS 134.66 183.32 109.62 1249.55 2053.44 2346.06
BGV-MP 117.09 149.92 100.08 640.43 1087.22 1230.47
BGV-NW 108.28 134.29 60.50 666.87 1120.06 1212.26

Computational Time (in seconds)

SSVS(γ, ω) 42.26 51.38 67.46 735.38 3340.88 9587.92
BGVAR 16.09 17.04 17.47 153.24 187.54 229.01

Table 3.2: Metics on the 5- and 20-node models with lag “ 1, 2, 3. Note: Comparison is in terms
of accuracy of the contemporaneous structures (first panel), accuracy of the temporal dependence
structures (second panel), forecast accuracy (third panel), and computational time (fourth panel).

that the MIN inference achieves an accuracy above the 80%. This evidence shows

that our inference of the contemporaneous dependence from the observed time series

offers some insight into the structural dynamic of the VAR. In Figure 3.2, we show

the contemporaneous structure of PC, SSVSpωq and MIN, for the 5-node and p “ 3

lag model, averaged over the 20 replications. The PC indicates strong evidence of

the following relationships: X2
t ´ X4

t ´ X3
t ´ X5

t ´ X3
t . The SSVSpωq shows the

following: X2
t ´ X3

t ´ X4
t ´ X5

t ´ X3
t . The MIN structure indicates the following:

X1
t Ñ X3

t ; X4
t Ñ X2

t ; X5
t Ñ pX3

t , X
4
t q. We conclude that all the three approaches

capture similar correlations.
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The SSVSpωq shows only contemporaneous correlations and does not offer the

directions of the causal effects. The PC shows partially directed edges with in-

dications that some causal directions are more probable than their reverse, e.g.

P pX4
t Ñ X5

t |X q “ 0.9 ą P pX5
t Ñ X4

t |X q “ 0.6. However the PC indicates a

contemporaneous correlations (undirected edge) between the majority of the vari-

ables. The MIN structure shows an unambiguous direction of the edges among the

variables. From a comparison with the DGP of the contemporaneous structure (B0),

given as: X2
t Ñ X4

t ; X3
t Ñ X1

t ; X5
t Ñ X3

t , we notice that the MIN shows similar

relationships with some edges in the opposite direction of the DGP. A possible expla-

nation relates to issues of Markov equivalence of contemporaneous directed graphical

models discussed in Section 2.
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Figure3.2: Structure of 5-node model (p “ 3) averaged over 20 replications. Response (explana-
tory) variables are on rows (columns). The light (dark) green indicate weak (strong) dependence.

The second panel of Table 3.2 shows that both MAR and C-GC perform well
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(c) MAR

Figure3.3: Temporal structure of the 5-node model (p “ 3) averaged over 20 replications. Re-
sponse (explanatory) variables are on rows (columns). The light (dark) green indicates weak (strong)
dependence.

at inferring the temporal dependence relationships. We notice that MAR achieves a

slightly higher accuracy than C-GC when p “ 3, in both small (5-node) and moderate

(20-node) dimension models. Figure 3.3 shows the temporal structure of C-GC,
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(c) BGVAR-NW Coefficient Matrix

Figure3.4: Coefficients matrix of BVAR (normal-Wishart), SSVS, and BGVAR (normal-Wishart),
for the 5-node model with lag order p “ 3. Response (explanatory) variables are on the rows
(columns). Elements in red (green) represent negative (positive) coefficients, white for zeros.

SSVSpγq and MAR for the 5-node p “ 3 lag model averaged over 20 replications.

The figure shows that C-GC and MAR detect more strong evidence of dependence

than SSVSpγq. MAR presents a better inference than C-GC and SSVSpγq.

56



3.4. SIMULATION EXPERIMENTS

The third panel of Table 3.2 shows the forecast accuracy of the models based

on log predictive scores - sum of log predictive likelihood over the forecast period.

The log predictive score strongly favors BGVAR with normal-Wishart (Minnesota)

prior in small (moderate) dimension DGP with lag order p ă 3, and favors SSVS

in small and moderate dimension DGP with lag order p “ 3. When adjusted for

the number of estimated coefficients, (see the fourth panel) BGVAR (with both the

Minnesota and normal-Wishart priors) achieves a higher predictive accuracy and fits

the simulated data better than BVAR and SSVS.

In Figure 3.4, we report the estimates of the reduced-form coefficient matrices.

For the sake of conciseness, a comparison between BVAR (normal-Wishart), SSVS

and BGVAR (normal-Wishart) is provided only for the 5-node DGP with p “ 3.

Negative, positive and null elements are represented in red, green, and white, re-

spectively. The BVAR and the SSVS coefficient matrices look dense whereas that

of the BGVAR model are sparse (with a lot of null elements). The SSVS and the

BVAR matrices are similar with most of the elements in the BVAR slightly greater

(in absolute values) than their SSVS counterparts. This is not surprising since the

SSVS draws the coefficient from a mixture of two normal densities. Since a priori one

of the two mixture components is peaked at zero, SSVS favors a shrinking-to-zero of

the coefficients. The BGVAR model on the other hand is more parsimonious than

the BVAR and the SSVS.

The bottom panel of Table 3.2 shows the computational time (average over the

different prior settings) for inference of the SSVS and the BGVAR connectivity matri-

ces and parameters. Since only BGVAR and SSVS are concerned with joint inference

on parameters, temporal and contemporaneous structures, the computational times

for PC, C-GC and BV are not reported.

For the small dimension DGP we set 20,000 iterations for the SSVS and the BG-

VAR inference. Since the number of possible structures increases super-exponentially
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3.5. MODELING AND FORECASTING MACROECONOMIC TIME SERIES

with the number of nodes and lags, for the moderate dimension DGP, we consider

40,000 iterations for BGVAR, and maintain 20,000 iterations for SVSS. Our results

show that, in both small- and moderate-dimension settings, the collapsed Gibbs sam-

pler used for the BGVAR posterior approximation is computationally less expensive

than the algorithm used for the SSVS posterior approximation. Although we obtain

similar results over different experiments and settings, our limited investigations con-

firm the good mixing of MCMC chain for our BGVAR model.

3.5 Modeling and Forecasting Macroeconomic Time Series

The work by Banbura et al. (2010) has motivated an interest in the application

of high dimensional BVAR models to forecast macroeconomic time series. In their

empirical application, the authors showed that high dimensional BVAR models pro-

duce better forecasts than the traditional (factor methods) approach. These findings

were recently corroborated by Koop (2013) in his study on forecasting with Bayesian

VARs. According to Banbura et al. (2010), most of the gains in forecast performance

of high dimensional models was achieved using medium VARs pn “ 20q. Based on

this, we apply our inference to model a moderate dimension VAR of 20 macroeco-

nomic variables. The first objective of this exercise is to offer an interpretations of

the structural dynamics by comparing our results with both the PC algorithm and

the Granger-causal inference. Secondly, we compare the estimated BGVAR model

with the BVAR and SSVS models, and evaluate their predictive performance.

The dataset consists of quarterly series of 20 US-macroeconomic variables, from

1959Q1 to 2008Q4, used by Koop (2013). We transform the data as in Koop (2013).

See A.4 for the list of series and their transformation. The specification of the lag

order pp “ 1q is based on testing the appropriate lag length using BIC. We estimate

a model with the following 7 response variables: pY q - real gross domestic product

(GDP), pPiq - consumer price index, pRq - Federal funds rate, pMq - money stock
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3.5. MODELING AND FORECASTING MACROECONOMIC TIME SERIES

M2, pCq - real personal consumption, pIP q - industrial production index, and pUq

- unemployment. We consider the following 13 additional variables as predictor

variables: pMP q - real spot market price index for all commodities, pNBq - non-

borrowed reserves, pRT q - total reserves, pCUq - capacity utilization, pHSq - housing,

pPP q - producer price index, pPCq - personal consumption expenditure, pHEq - real

average hourly earnings, pM1q - money stock M1, pSP q - S&P500 index, pIRq - 10-yr

US treasury bill rate, pERq - US effective exchange rate, pENq - employment.

0.00

0.00

0.00

0.00

0.60

0.63

0.00

0.00

0.00

0.06

0.26

0.09

0.00

0.00

0.00

0.06

0.00

0.54

0.00

0.23

0.29

0.00

0.20

0.71

0.00

0.03

0.00

0.00

0.89

0.00

0.00

0.00

0.00

0.00

0.00

0.83

0.00

0.14

0.00

0.00

0.00

0.86

0.00

0.00

0.46

0.00

0.00

0.94

0.00

Y
,t

P
i,t R
,t

M
,t

C
,t

IP
,t

U
,t

Y,t

Pi,t

R,t

M,t

C,t

IP,t

U,t

(a) PC

0.00

0.04

0.05

0.05

0.86

0.79

0.06

0.04

0.00

0.09

0.19

0.15

0.09

0.05

0.05

0.09

0.00

0.42

0.27

0.36

0.21

0.05

0.19

0.42

0.00

0.06

0.05

0.11

0.86

0.15

0.27

0.06

0.00

0.06

0.05

0.79

0.09

0.36

0.05

0.06

0.00

0.92

0.06

0.05

0.21

0.11

0.05

0.92

0.00
Y

,t

P
i,t R
,t

M
,t

C
,t

IP
,t

U
,t

Y,t

Pi,t

R,t

M,t

C,t

IP,t

U,t

(b) SSVS(ω)

0.00

0.00

0.00

0.00

0.83

0.03

0.00

0.00

0.00

0.00

0.00

0.37

0.00

0.00

0.03

0.00

0.00

0.60

0.20

0.00

0.03

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.09

0.00

0.00

0.00

0.00

0.00

0.00

0.91

0.00

0.29

0.00

0.00

0.00

0.86

0.00

0.03

0.46

0.00

0.00

0.06

0.00

Y
,t

P
i,t R
,t

M
,t

C
,t

IP
,t

U
,t

Y,t

Pi,t

R,t

M,t

C,t

IP,t

U,t

(c) MIN

Figure3.5: Contemporaneous structure of PC, SSVS and MIN averaged over the period 1960Q1´
2006Q4. The light (dark) green color indicates weak (strong) evidence of dependence. Response
(explanatory) variables are on the rows (columns). The variables are: (Y ) - real gross domestic
product, (Pi) - consumer price index, (R) - Federal funds rate, (M) - money stock M2, (C) - real
personal consumption expenditure, (IP ) - industrial production index, (U) - unemployment rate.

To allow for model changes, we apply a moving window to estimate, for each

window, the structure and the associated predictive model. The moving window

uses the most recent observations to estimate the model. Thus new data are added

to the exiting dataset and the oldest observations are deleted. We initialize the first
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(b) SSVS(γ)
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(c) MAR

Figure3.6: Temporal dynamic structure of C-GC, SSVS and MAR averaged 1960Q1´2006Q4. The
light (dark) green color indicates weak (strong) evidence of dependence. Response (explanatory)
variables are on the rows (columns). The variables are: pY q - real GDP, pPiq - consumer price index,
pRq - Federal funds rate, pMq - money stock M2, pCq - real personal consumption, pIP q - industrial
production index, pUq - unemployment, pMP q - real spot market price, pNBq - non-borrowed
reserves, pRT q - total reserves, pCUq - capacity utilization, pHSq - housing, pPP q - producer price
index, pPCq - personal consumption expenditure, pHEq - real average hourly earnings, pM1q -
money stock M1, pSP q - S&P500 index, pIRq - 10-yr US treasury bill rate, pERq - US effective
exchange rate, pENq - employment.

sample from 1960Q1 ´ 1974Q4, and then move the window forward by 4-quarters.

We produce forecasts for all the horizons up to 4-quarters ahead. Our last sample is
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Figure3.7: The BIC of the contemporaneous and temporal dependence structures of the PC (blue),
C-GC (blue) and the MAR (green) over the period 1960Q1´ 2006Q4.
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Figure3.8: Log predictive score and predictive AIC of models over 1975Q1 ´ 2008Q4. BV-
Minn (BVAR with Minnesota prior (blue)), BV-NW (BVAR with normal-Wishart (green)), SSVS
(Stochastic Search Variable Selection (red)), BGV-Minn (BGVAR with Minnesota prior (cyan)),
and BGV-NW (BGVAR with normal Wishart (pink)).

set to 1993Q1´ 2007Q4. Thus the forecast period ranges from 1975Q1 to 2008Q4.

We report in Figure 3.5 the results of PC, SSVSpωq and MIN for the macroe-

conomic application averaged over 1960Q1 ´ 2006Q4. The PC algorithm identified

strong evidence of the following relationships: Ct ´ Yt ´ IPt ´ Ut, and Mt ´ Rt.

SSVSpωq shows Ct ´ Yt ´ IPt ´ Ut, and MIN reveals: Yt Ñ Ct, IPt Ñ pYt, Utq, and

Rt Ñ Mt. Thus all the algorithms capture contemporaneous relationships between:

consumption (Ct) and real GDP (Yt); industrial production (IPt) and unemploy-

ment pUtq; money supply (Mt) and interest rates (Rt); industrial production pIPtq

and GDP (Yt). Though PC shows a stronger evidence of the effects of consump-

tion (Ct) and industrial production (IPt) on real GDP (Yt), it does not rule out the
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(a) BVAR Coefficients
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(b) SSVS Coefficients
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(c) BGVAR Coefficients

Figure3.9: Coefficients matrix of BVAR (normal-Wishart), SSVS, and BGVAR (normal-Wishart)
for the period 1993Q1 ´ 2007Q4. Response (explanatory) variables are on the rows (column).
Elements in red (green) represent negative (positive) coefficients, white elements for zeros. The
variables are: pY q - real GDP, pPiq - consumer price index, pRq - Federal funds rate, pMq - money
stock M2, pCq - real personal consumption, pIP q - industrial production index, pUq - unemployment,
pMP q - real spot market price, pNBq - non-borrowed reserves, pRT q - total reserves, pCUq - capacity
utilization, pHSq - housing, pPP q - producer price index, pPCq - personal consumption expenditure,
pHEq - real average hourly earnings, pM1q - money stock M1, pSP q - S&P500 index, pIRq - 10-yr
US treasury bill rate, pERq - US effective exchange rate, pENq - employment.

possibility of a reverse effect of real GDP (Yt) on consumption (Ct) and industrial

production (IPt). A possible explanation for the different findings of MIN regarding
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this relationship could stem from issues related to Markov equivalence of graphical

models (see Section 2) or issues related to the exclusion of other relevant variables.

In order to show the effects of the omission of relevant variables on the causal

structure estimates, we compare the results of PC, SSVS and MIN, when investment

is included as a response variable. The structures of both PC and MIN show no

evidence of the effect of real GDP on consumption and no direct effect of industrial

production on real GDP (see Figure 3.10 in 3.5.1). However, they record strong

evidence of the effects of consumption on real GDP. In addition, they capture strong

evidence of the effect of industrial production on investment and a direct effect of

investment on real GDP. The SSVSpωq approach on the other hand maintains a

strong correlation between industrial production and real gross domestic product

even when investment is included.

The results in 3.5.1 show that the MIN and PC dependence structures are sen-

sitive to the exclusion of relevant variables, as opposed to the SSVS procedure. On

the contrary in the SSVS procedure, the edges between variables may be wrongly

inferred, also when all relevant variables are included in the model. These results are

due to the fact that MIN (PC) uses directed (partially directed) edges to represent

the contemporaneous dependence structure while SSVSpωq uses undirected relation-

ships among variables. As a result, SSVSpωq does not provide any information on

the direction of influence among variables and is less sensitive to the choice of the

variable to include in the analysis.

In Figure 3.6 we report the temporal dependence structure of C-GC, SSVSpγq

and MAR, averaged over 1960Q1´2006Q4. The figure reveals that C-GC and MAR

identify stronger evidence of dependence than SSVSpγq. More specifically, SSVSpγq

finds strong evidence of dependence only for two edges, whose probabilities are close

to 60%. MAR, on the other hand, detects edges that are persistent over time. For

example, current real GDP pYtq strongly depends on previous level of consumption
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pCt´1q; current level of inflation pPitq strongly depends on previous level of inflation

pPit´1q; and current level of money stock M2 pMtq strongly depends on previous

levels of money stock M1 pM1t´1q and the 10-year US treasury bill rate pIRt´1q.

Finally, we shall note that these response variables may also weakly or temporarily

depend on other variables, but the edge probabilities in Figure 3.6 may be close to

zero since they are averages over a sequence of rolling estimates.

Figure 3.7a compares the evolution of the BIC scores of PC (in blue) and MIN (in

green) over the period 1960Q1´2006Q4. The figure shows that the BIC score favors

MIN over PC, giving an indication that MIN provides a better representation of the

contemporaneous dependence in the observed time series than PC. The top-right

chart in Figure 3.7b presents the evolution of the BIC scores of C-GC (in blue) and

MAR (in green) over the period 1960Q1´2006Q4 for the macroeconomic application.

Clearly, the figure shows that the BIC favors the MAR over the C-GC. This seems

to indicate that the MAR structure provides a better representation of the temporal

dependence in the observed time series than the C-GC.

In Figure 3.8a and 3.8b, we report the evolution of the log predictive scores and

predictive AIC of the competing models over the period 1975Q1´ 2008Q4. The log

predictive scores - the sum of the log predictive, measure the forecast performance

of the models. The predictive AIC on the other hand measure the predictive perfor-

mance adjusted for number of estimated coefficients. The figure shows that the log

predictive score strongly favors BGVAR Minnesota (in cyan), followed by BGVAR

normal-Wishart (pink) and SSVS (in red). The two BVAR models record the low-

est log predictive scores. When adjusted for the number of estimated coefficients,

the predictive AIC strongly favor the BGVAR model (under both Minnesota and

normal-Wishart prior distributions), followed by SSVS and BVAR. Thus, BGVAR

achieves a higher predictive accuracy and fits the data better than BVAR and SSVS.

We compare the estimated coefficient matrices of the BVAR (normal-Wishart),
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SSVS, and BGVAR (normal Wishart prior) for the last window p1993Q1´ 2007Q4q

of the sample data. This is shown in Figure 3.9. Elements in red (green) repre-

sent negative (positive) coefficients and white elements represent zeros. Most of the

BAVR coefficient values are slightly higher (in absolute values) than the correspond-

ing SSVS coefficient values. These results confirm that the SSVS approach acts as a

parameter shrinkage and does not ignore unimportant variables. The BGVAR model

distinguishes instead the relevant explanatory variables from the unimportant ones.

In the figure, the coefficients of the unimportant explanatory variables are repre-

sented in white color. Having a large number of white elements (zero coefficients)

implies that, unlike BVAR and SSVS, BGVAR adopts a framework where response

variables can be determined by only a handful of explanatory variables. For instance,

forecasting real GDP (Yt`1) for the period 2008Q1 ´ 2008Q4 depends only on real

GDP (Yt), consumption (Ct), industrial production (IPt), non-borrowing reserves

(NBt), S&P500 index pSPtq and employment pENtq. A similar observation holds for

the other response variables. These results confirm that the BGVAR model is more

parsimonious than BVAR and SSVS and reduces the future cost of predictions.

3.5.1 Robustness Check for the Macroeconomic Application

In our sensitivity analysis, we augment the set of response variables of the macroe-

conomic model with the gross domestic private investment. Figure 3.10 shows the

results of PC, SSVSpωq and MIN for the augmented model.

3.6 Measuring Financial Interconnectedness

The level of interconnectedness of the financial system received a lot of attention

by many parts in the aftermath of the 2007-2009 financial crisis. While the greater

interconnectedness can increase the systemic risk and the probability of contagion,

it can also have a positive impact on the system, provided the authorities take steps
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Figure3.10: Contemporaneous structure of the PC, SSVS and MIN averaged over 1960Q1 ´
2006Q4. The light (dark) green color indicates weak (strong) evidence of dependence. Response
(explanatory) variables are on the rows (columns). The variables are: (Y ) - real gross domestic
product, (Pi) - consumer price index, (R) - Federal funds rate, (M) - money stock M2, (C) - real
personal consumption expenditure, (IP ) - industrial production index, (U) - unemployment rate
and (I) - gross domestic private investment.

to prevent the systemic risk. For this reason, several studies on financial networks

have empirically assessed the linkages and the exposures within financial institutions

(e.g., see Hautsch et al. (2014), Billio et al. (2012), and Diebold and Yilmaz (2014)).

Non-financial institutions, on the other hand, have increasingly gained awareness of

the need to adopt financial strategies to avoid being vulnerable to instabilities in

financial markets. The objective of the financial application presented in this paper

is to investigate empirically, by means of BGVAR, the linkages between financial and

non-financial institutions. Ultimately the aim is to assess the interconnectedness of

the system and thus its vulnerability.

The dataset consists of the return indexes of the 19 super-sectors of Euro Stoxx
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3.6. MEASURING FINANCIAL INTERCONNECTEDNESS

600, sampled at a monthly frequency from January 2001 to August 2013 (source:

Datastream). The dataset also represents the largest Eurozone companies in each of

the 19 super-sectors, as defined by the Industry Classification Benchmark (ICB). The

countries covered are Austria, Belgium, Finland, France, Germany, Greece, Ireland,

Italy, Luxembourg, the Netherlands, Portugal, and Spain (see A.4). The specification

of the lag order pp “ 1q is based on testing the appropriate lag length using BIC.

Following Billio et al. (2012), we apply a 36-month moving window to analyze the

evolution of the linkages among the super-sectors.

In this application we focus only on the temporal dependence among the variables.

To this purpose, we compare the structure of our MAR with the modified conditional

Granger-causality (C-GC) and with the modified pairwise Granger-causality (P-GC).
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Figure3.11: Total connectivity index among super-sectors of Euro Stoxx 600 from January 2001
- August 2013 based on a 36-month moving window. P-GC (blue), C-GC (green) and MAR (red).

We compute the number of linkages by summing all the edges in the graph

structure for each window. Figure 3.11 compares the evolution of the number of

links of P-GC (blue line), C-GC (green line) and MAR (red line) as a percentage

of all possible edges among the super-sectors over the sample period. As shown in

Figure 3.11, the percentage of links obtained P-GC is relatively higher than that of

C-GC and MAR. C-GC on the other hand, moves in accordance with MAR except

in the period 2005-2007, where MAR records a lower number of edges.
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Figure3.12: Total connectivity index among (3.12a) from financial to non-financial and (3.12b)
from non-financial to financial the super-sectors of Euro Stoxx 600 from January 2001 - August
2013. P-GC (blue), C-GC (green) and MAR (red).

From the MAR, we identify four periods of high interconnectedness. The periods

are pre-2005, 2007-2009, 2010-2011, and 2011-2013. By matching these periods to

notable global and European events, the pre-2005 can arguably be linked to the

aftermath of scandals such as Enron and Worldcom; whereas 2007-2009 and 2010-

2013 capture the recent financial crisis and the European sovereign crisis, respectively.

Figure 3.12 compares the evolution of the percentage of links of P-GC (blue line),

C-GC (green line) and MAR (red line) from financial to non-financial super-sectors

and from non-financial to financial super-sectors. Again, the P-GC overestimates

the linkages compared to C-GC and MAR. MAR still identifies four peaks of high

connectedness in both figures. Surprisingly, these periods coincide with the results

shown in Figure 3.11. This similarity suggests that periods of financial market tur-

bulence also experienced a higher number of linkages between financial and non-

financial super-sectors. In the pre-2005 period, we observe a stronger linkage from

non-financial to financial super-sectors than the reverse. The 2007-2009 financial

crisis sees a stronger linkage from financial to non-financial super-sectors compared

to the linkage from non-financial to financial. For the 2010-2013 European sovereign

crisis, we observe an equally strong linkage between the two super-sectors.
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Figure3.13: The BIC score of the graph estimation performance from January 2001 - August 2013
based on a 36-month moving window. P-GC in blue, C-GC (green) and MAR (red).

The BIC scores (Figure 3.13, top-right) strongly favors the MAR structure in the

greater part of the sample period. The P-GC approach is the least favored among the

three schemes. This result is, to some degree, expected since the pairwise Granger

causality approach deals only with bivariate time series and does not consider the

conditioning on relevant covariates. We also observe that the BIC score favors C-

GC above P-GC. This is expected since the modified conditional Granger considers

the conditioning on relevant covariates. However, with a higher number of variables

relative to the number of data point, the C-GC approach encounters a problem of

over-parameterization, that leads to a loss of degrees of freedom and to inefficiency

in correctly gauging the causal relationships. The BGVAR approach allows the re-

searcher to handle such situations, by conditioning on all relevant variables, carrying

out joint inference on all quantities of interest, and achieving model parsimony. The

BIC confirms that BGVAR provides a more accurate linkages among the institutions

than P-GC and C-GC, offering a better approach to studying systemic risk.

3.7 Conclusion

This paper develops a new Bayesian graph-based approach to identification and over-

parameterization issues in structural VAR models. Our inference procedure of the

BGVAR causal relationships provides also a variable selection procedure. Moreover,
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we propose an efficient MCMC algorithm to infer the BGVAR causal structures and

the unknown parameters from observed multiple time series. In both simulation

experiments and real data applications, the BIC score indicates that our BGVAR

produces a better representation of the structural causal relationships than several

competing standard approaches. Our comparison results show that the BGVAR

model is more parsimonious and interpretable than both the classical Bayesian VAR

(BVAR) and the stochastic search variable selection (SSVS) models.

In the macroeconomic application, the BGVAR provides a data-driven identifi-

cation of the structural VAR, thus offering a useful tool for policy analysis. The

predictive accuracy, adjusted for number of estimated coefficients, strongly favors

BGVAR over BVAR and SSVS. In the financial application, results show that the

BGVAR produce a better representation of the linkages among economic sectors than

the Granger inference, thus offering a better approach to studying systemic risk.
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Chapter 4

Sparse Graphical VAR: A Bayesian
Approach

4.1 Introduction

High dimensional modeling and large dataset handling have recently gain attention

in several fields, particularly in economics and finance. This has become neces-

sary since useful information is often scattered among large number of variables.

Building models that allow for extraction of these information from large dataset en-

hances a better understanding of the modern economic and financial system. Many

researchers have shown that combining financial and macroeconomic variables to

estimate large vector autoregressive (VAR) models produces better forecasts than

standard approaches (see, Banbura et al., 2010; Koop, 2013; Giannone et al., 2005;

Stock and Watson, 2012; Carriero et al., 2013). Many others, using datasets of a

large number of financial institutions, have shown that the financial system has be-

come highly interconnected and thus, can be represented as a network where linkages

among agents sharing common structures play a fundamental role in contagion and

This chapter is based on: Ahelegbey, D. F., Billio, M. and Casarin, R. (2015). Sparse Graph-
ical Vector Autoregression: A Bayesian Approach, Working Paper, Social Science Research Net-
work.(Submitted).
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4.1. INTRODUCTION

the spread of systemic risk (see, Huang et al., 2012; Billio et al., 2012; Diebold and

Yilmaz, 2014; DasGupta and Kaligounder, 2014; Hautsch et al., 2014).

In this paper we propose a new Bayesian model for multivariate time series of

large dimension by combining graph-based notion of causality (see Pearl, 1988; Lau-

ritzen and Wermuth, 1989; Whittaker, 1990), with the concept of sparsity (see, e.g.

Box and Meyer, 1986). Graphical models have been applied in time series analysis

for estimating causal structures in VAR models (see Corander and Villani, 2006;

Demiralp and Hoover, 2003; Swanson and Granger, 1997; Moneta, 2008) and identi-

fication restrictions in structural VAR (Ahelegbey et al., 2015). They have received

increasing attention as tools to represent interconnectedness and sources of contagion

among financial institutions (see Barigozzi and Brownlees, 2014; Billio et al., 2012;

Diebold and Yilmaz, 2014; Ahelegbey and Giudici, 2014; Merton et al., 2013). As

described in the following, we contribute to the literature in many ways.

One of the key challenges of high-dimensional models is the complex interactions

among variables and the inferential difficulty associated with handling large datasets.

For instance, in large VAR models, econometricians encounter the curse of dimension-

ality problem due to high number of variables relative to the number of data points.

The standard Bayesian VAR approach to this problem is parameter shrinkage by ap-

plying the Minnesota prior (see, e.g. De Mol et al., 2008; Banbura et al., 2010; Doan

et al., 1984). This approach is however inefficient to deal with the problem of inde-

terminacy (see Donoho, 2006), i.e. when the number of parameters to estimate in a

system of equations exceeds the number of observations. Other common approaches

discussed in the literature are dimension reduction and variable selection methods.

For dimension reduction, there is a very large literature on dynamic factor models

(DFM) (see, e.g. Geweke, 1977; Sargent and Sims, 1977; Bai and Ng, 2002; Stock

and Watson, 2002; Forni et al., 2000, 2005, 2004), factor augmented VAR (FAVAR)

models (Bernanke et al., 2005), and recent development in sparse (dynamic) factor
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models (Kaufmann and Schumacher, 2013; Bhattacharya and Dunson, 2011; Car-

valho et al., 2008). For variable selection methods, standard methods considered are

Bayesian model averaging (see, e.g. Koop and Potter, 2004; Jacobson and Karlsson,

2004) and regularization methods like the Least Absolute Shrinkage and Selection

Operator (LASSO) of Tibshirani (1996) and its variants, (see, e.g. Efron et al., 2004;

Kyung et al., 2010; Park and Casella, 2008). The method considered in this paper

is related to the latter, thus to variable selection.

Variable selection is a fundamental problem in high-dimensional models, and this

is closely related to the possibility to describe the model with sparsity (Zhang et al.,

2012). The idea of sparsity is associated with the notion that a large variation in

the dependent variables is explained by a small proportion of predictors (Box and

Meyer, 1986). Modeling sparsity has received attention in recent years in many fields,

including econometrics, (see Korobilis, 2013; Elliott et al., 2013; Gefang, 2014). See

also Belloni and Chernozhukov (2011) for an introduction to high-dimensional sparse

econometric models.

This paper introduces and models sparsity in graphical VAR models of large

dimension by dealing also with uncertainty in the lag order. It thus substantially ex-

tends the graphical VAR model, the inference approach and posterior approximation

algorithm given in Ahelegbey et al. (2015). In most empirical analyses, researchers

often overlook dependence among series when dealing with multi-equation regression

models and large number of predictors, (see, e.g. Korobilis, 2013; Stock and Watson,

2014), since model selection is a difficult issue and such approach is often necessary

to avoid the indeterminacy problem. However, this can be unsatisfactory in terms of

interpretability and forecasting performance, since temporal dependence in the series

is ignored. The graphical approach presented in this paper enables us to deal with

this indeterminacy problem by exploiting sparsity to estimate the dynamic causal

structure in large VAR models.
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Many studies have considered several approaches to model sparse graphs (see,

e.g. Jones et al., 2005; Carvalho et al., 2008; Scott and Carvalho, 2008; Shojaie

and Michailidis, 2010). Also, there is an increasing interest in sparsity estimation

for large VAR models (see, e.g. Davis et al., 2012; Gefang, 2014; Song and Bickel,

2011; Kock and Callot, 2015; De Mol et al., 2008; Medeiros and Mendes, 2012). We

contribute to this literature by focusing on graphical VAR models from a Bayesian

perspective with suitable prior specifications to deal with sparsity on the temporal

dependence. More precisely, we build on the fan-in method of Friedman and Koller

(2003) and propose a new approach to sparsity modeling. The idea of the fan-in is

based on imposing a maximal number of predictors to ensure sparsity on the graph.

Setting an a-priori hard fan-in might be too restrictive for large VAR applications.

We therefore propose a prior distribution on the fan-in to allow for different prior

information level about the maximal number of predictors for each equation of the

VAR model. Thus, we allow for a random fan-in and adapt this prior distribution

to the prior probability in variable selection problems. We show that this new prior

distribution encourages sparsity on the graph taking into account the lag order. Since

there is duality between prior and the penalty in the information criterion, our prior

leads to a modified BIC for graphical model selection.

We also contribute to the literature on dynamic relationship identification. Here,

we propose an efficient Markov Chain Monte Carlo (MCMC) algorithm to sample

jointly, the graph structure, the lag order and the parameters of the VAR model. Due

to the uncertainty on the lag order, we propose an efficient MCMC algorithm that

takes advantage of computational power through parallel simulation of the graph

and lag order. Inference of the graph and lag order allows us to estimate only the

parameters of the relevant explanatory variables.

We show the efficiency and study the performance of our approach through simu-

lation examples and an application to forecast macroeconomic times series with large
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number of predictors. We consider the standard Lasso-type methods (i.e. LASSO

and Elastic-Net) as benchmarks for comparing the identified causal structure and

the forecast ability. We find evidence that our sparse graphical VAR model is more

parsimonious than the LASSO and Elastic-Net. Furthermore, we find evidence of a

gain in the predictive accuracy of our approach over the Lasso-type methods.

The paper is organized as follows: Section 4.2 presents the graphical concept for

VAR models; Section 4.3 discusses prior distributions and focuses on the interaction

between lag order and sparse graph prior distribution; Section 4.4 discusses the

Bayesian inference scheme; Section 4.5 illustrates the simulation experiments; and

Section 4.6 presents the empirical application.

4.2 Graphical VAR Models

Graphical models are statistical models that summarize the marginal and conditional

independences among random variables by means of graphs (see Brillinger, 1996).

The core of such models is representing relationships among variables in the form of

graphs using nodes and edges, where nodes denote variables and edges show interac-

tions. They can be represented in a more compact form by pG, θq P pG ˆ Θq, where

G is a graph of relationships among variables, θ is the graphical model parameters,

G is the space of the graphs and Θ is the parameter space.

Let Xt be nˆ 1 vector of observations at time t and assume Xt “ pY
1
t , Z

1
tq, where

Yt, the ny ˆ 1 vector of endogenous variables, and Zt, a nz ˆ 1, nz “ pn´ nyq vector

of exogenous predictors. In a VAR model with exogenous variables, the variables of

interest Yt, is determined by the equation

Yt “
p
ÿ

i“1
BiXt´i ` εt (4.1)

t “ 1, . . . , T , where εt is ny ˆ 1 vector of errors, independent and identically normal,
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with mean zero and covariance matrix Σε; p is the maximum lag order; Bi, 1 ď i ď p

is ny ˆ n matrix of coefficients.

By interpreting (4.1) as a model with temporal dependence between explanatory

and dependent variables, The VAR model can be expressed in a graphical framework

(referred to as graphical VAR model), with a one-to-one correspondence between the

coefficient matrices and a directed acyclic graph; if Bs,ij ­“ 0 then there is a causal

effect of Xj
t´s on Y i

t , 1 ď s ď p. Here we read X i
t as realization of the i-th element

of X at time t.

More formally, we define the relation Bs “ pGs ˝ Φsq, where Gs is a ny ˆ n

binary connectivity matrix (also called adjacency matrix), Φs is a ny ˆn coefficients

matrix, and the operator p˝q is the element-by-element Hadamard’s product (i.e.,

Bs,ij “ Gs,ij Φs,ij). Based on this definition, we identify a one-to-one correspondence

between Bs and Φs conditional on Gs, such that Bs,ij “ Φs,ij, if Gs,ij “ 1; and Bs,ij “

0, if Gs,ij “ 0. The above relationship can be presented in a stacked matrix form

as, B “ pG ˝ Φq, where B “ pB1, . . . , Bpq, G “ pG1, . . . , Gpq and Φ “ pΦ1, . . . ,Φpq,

where each matrix is of dimension ny ˆ np.

Let Wt be stacked lags of Xt, where Wt “ pX 1
t´1, . . . , X

1
t´pq

1 is of dimension

np ˆ 1, with p as the lag order, and Vt “ pY 1t ,W
1
t q
1 of dimension pny ` npq ˆ 1.

Suppose the joint, Vt, follows the distribution, Vt „ N p0,Ω´1q, where Σ “ Ω´1

is pny ` npq ˆ pny ` npq is the covariance matrix. The joint distribution of the

variables in Vt can be summarized with a graphical model, pG, θq, where G P G

consists of directed edges. In this paper, we focus on modeling directed edges from

elements in Wt to elements in Yt, capturing the temporal dependence among the

observed variables. More specifically, Gij “ 0, means the i-th element of Yt and j-th

element of Wt are conditionally independent given the remaining variables in Vt, and

Gij “ 1 corresponds to a conditional dependence between the i-th and j-th elements

of Yt and Wt respectively given the remaining variables in Vt. The graphical model
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parameter, θ P Θ, consist the coefficients, capturing the strength and sign of the

temporal dependence relationship described by G. Based on the above assumption,

estimating the model parameters associated with G is equivalent to estimating the

precision matrix, Ω, i.e θ “ Ω. The relationship between the parameters of the VAR,

tB,Σεu, and that of the graphical model, Ω, is as follows.

Proposition 1. Suppose the marginal distribution of Wt „ N p0,Σwwq and the

conditional distribution of Yt|Wt „ N pBWt,Σεq. There is a correspondence between

tB,Σεu and Ω, such that given Ω, we obtain Σ “ Ω´1 and tB,Σεu by

B “ ΣywΣ´1
ww, Σε “ Σyy ´ ΣywΣ´1

wwΣwy (4.2)

Also given tB,Σεu and Σww, Ω “ Σ´1 of pYt,Wtq is estimated by

Ω “
ˆ

Σ´1
ε ´Σ´1

ε B
´B1Σ´1

ε Σ´1
ww `B

1Σ´1
ε B

˙

(4.3)

Proof. See B.1.1.

Following our definition, B “ pG˝Φq and the results of Proposition 1, we identify

the relationship between Ω and the dependence structure G, through the sub-matrix

pΣ´1
ε Bq of Ω. We denote ΩG “ Σ´1

ε B, defined on the space MpGq, i.e. the set of

precision matrices where elements of ΩG corresponds to elements in G. Clearly, if

the errors are assumed to be independent and normally distributed, Σε is a diagonal

matrix, which when normalized to identity leads to a one-to-one correspondence

between B,ΩG and G such that Bij “ ΩG
ij “ 0 if Gij “ 0 and Bij “ ΩG

ij ­“ 0 if Gij “ 1.

In large VAR estimation, most empirical papers follow the above assumption on the

errors to estimate the model, (see Stock and Watson, 2014; Kock and Callot, 2015).

In this paper we assume Σε is a full matrix, i.e, the errors are correlated among the

equations of the VAR. Estimating our graphical VAR model therefore involves: the

temporal dependence graph, G, the maximum lag order, p, and the set of parameters
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in Ω which related to tB,Σεu. Estimating all these jointly is challenging. However,

following the Bayesian paradigm allows us to take into account uncertainties on the

quantities of interest through model averaging, (Madigan and York, 1995; Giudici

and Green, 1999). The objective of this paper is to estimate jointly the lag order

and graph from the observed time series, and to incorporate the inferred quantities

to select the relevant variables to estimate the parameters of the model.

4.3 Sparse Bayesian Graphical VAR Models

In a system of linear equations where the number of parameters exceeds the number

of observations, for instance in large VAR models, we face another problem referred to

as indeterminacy, (see Donoho, 2006). Such systems can be modeled by exploiting

sparsity. The description of our graphical VAR for high dimensional multivariate

time series is completed with the elicitation of the prior distributions for the lag

order p, a sparsity prior on the graph, and the prior on G and Ω.

4.3.1 Lag Order Prior Distribution

We allow for different lag orders for the different equations of the VAR model. We

denote with pi the lag order of the i-th equation. We assume for each pi, i “ 1, . . . , ny,

a discrete uniform prior on the set tp, . . . , p̄u

P ppiq “
1

pp̄´ p` 1qItp,...,p̄uppiq (4.4)

where IApxq is the indicator function, that is unity if x P A and zero otherwise. This

is a standard choice in AR model selection problems (e.g.,Casarin et al. (2012)).

Alternatively, the lag order can be assumed to follow a truncated Poisson distribution

with mean λ and maximum p̄ (Vermaak et al. (2004)), or a discretized Laplace

distribution (Ehlers and Brooks (2004)). Our choice of discrete uniform distribution

is fairly informative since p and p̄ are defined a-priori following standard applications
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and assigns equal weights to all possible values of pi. For instance, in estimating VAR

models with monthly (quarterly) time series, the standard lag selection procedure

often consider p “ 1 and p̄ “ 12 (p̄ “ 4). The alternative lag order prior distributions

are more informative and assigns different weights to the possible values of pi.

4.3.2 Standard Graph Prior Distribution

Most of the literature on graphical models takes the prior for a graph G with n

variables as uniform over all the relevant graphs, i.e., P pGq “ |G|´1, where |G| is the

cardinality of G, (see Geiger and Heckerman, 2002; Giudici and Castelo, 2003). This

can be attributed to the fact that the number of possible graphs increases super-

exponentially with the number of variables, and there is difficulty in calculating the

number of possible graphs. Assuming uniform probabilities for all graphs, however,

does not ensure sparsity. Thus, many authors have discussed several approaches to

penalize globally or locally “dense” graphs (see, e.g. Jones et al., 2005; Carvalho

et al., 2008; Scott and Carvalho, 2008; Wang, 2010). See also Telesca et al. (2012)

and Shojaie and Michailidis (2009) for the use of explicit information prior to improve

the estimation of the graph structure.

Friedman and Koller (2003) proposed a factorization of the graph prior into equa-

tion specific terms for DAG models. As argued by the authors, setting an upper

bound on the number of explanatory variables for each dependent variable encour-

ages sparsity on the graph. This bound is referred to as the fan-in restriction in the

graphical model literature. Let m be the maximum number of explanatory variables

for each equation. Restricting the graph model selection to at most f explanatory

variables instead of m, f ă m, reduces the number of possible sets from Op2mq to
`

m
f

˘

, where
`

n
k

˘

is the binomial coefficient. A uniform choice on the latter set yields
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a graph prior

P pGq “
n
ź

i“1
P pπiq9

n
ź

i“1

ˆ

n´ 1
|πi|

˙´1

(4.5)

where πi “ tj “ 1, . . . , n : Gij “ 1u is the set of explanatory variables of the i-th

equation, |πi| is the number of elements in πi, and P pπiq is the local graph prior of

the i-th equation.

Jones et al. (2005) discussed a prior distribution for penalizing the inclusion of

additional edges in dense graphs given by

P pG|γq “ γkp1´ γqm´k (4.6)

where m is the maximum number of edges and k represents the number of edges

in the graph. In their application, the authors use a Bernoulli prior on each edge

inclusion with parameter γ “ 2{pn´ 1q and set m “
`

n
2
˘

.

For choices of the prior distribution on γ in the beta family, Scott and Carvalho

(2008) showed that γ can be explicitly marginalized out. The uniform prior on γ

gives a marginal prior inclusion probability of 1{2 for all edges and yields model

probabilities

P pGq “
1

pm` 1q

ˆ

m

k

˙´1

(4.7)

4.3.3 Sparsity Prior Distribution

We build on the fan-in approach of Friedman and Koller (2003) by introducing a

prior distribution on the fan-in to allow for different prior information level about

the maximal number of predictors for each equation of the VAR model.

In a multivariate dynamic models with n variables and a lag order p, the number

of possible predictors is np. Given that each series has T number of observations,

then the number of observations of the model is T´p. In large VAR models, it is often

natural that the number of predictors is greater than the number of observations,
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i.e. np ą T ´ p. When this happens, we expect that each equation has at most

T ´ p predictors to efficiently estimate the model. In cases where T ´ p ą np, we

expect that each equation has at most np predictors. Thus the maximal number

of explanatory variables required to efficiently estimate a high dimensional model is

given by mp “ mintnp, T ´ pu. Setting an a-priori hard fan-in (see Friedman and

Koller, 2003) might be too restrictive for large VAR applications.

We denote with η̄, 0 ď η̄ ď 1, the measure of the maximal density, i.e. the fraction

of the predictors that explains the dependent variables. Thus the level of sparsity is

given by p1´ η̄q. We set the fan-in to f “ tη̄mpu, where f is the largest integer less

than η̄mp. To allow for different levels of sparsity for the equations in the VAR model,

we assume a prior distribution on the maximal density for the different equations.

We denote η̄i the maximal density of the i-th equation and assume the prior on η̄i,

given lag order pi is beta distributed with parameters a, b ą 0, η̄i|pi „ Bepa, bq, on

the interval r0, 1s

P pη̄i|piq “
1

Bpa, bq
η̄a´1
i p1´ η̄iqb´1 (4.8)

This leads to random fan-in’s for the different equations in the VAR model. Note

that the fan-in, fi, must be directly related to the number of selected predictors in

each equation and indirectly related to the number of observations of the model.

4.3.4 Our Graph Prior Distribution

We define the graph prior for each equation in the VAR model conditional on the

sparsity prior. We refer to the prior on the graph of each equation as the local graph

prior, denoted by P pπi|pi, γ, η̄iq. Following (Scott and Berger, 2010), we consider the

inclusion of predictors in each equation as exchangeable Bernoulli trials with prior

probability

P pπi|pi, γ, η̄iq “ γ|πi|p1´ γqnpi´|πi| It0,...,fiup|πi|q (4.9)
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where γ P p0, 1q is the Bernoulli parameter, |πi| is the number of selected predictors

out of npi and fi “ tη̄impu is the fan-in restriction for the i-th equation. We assign

to each variable inclusion a prior probability, γ “ 1{2, which is equivalent to assign

the same prior probability to all models with predictors less than the fan-in fi, i.e

P pπi|pi, η̄iq “
1

2npi It0,...,fiup|πi|q (4.10)

Alternatively, a uniform prior on γ gives to each variable a marginal prior inclusion

probability of 1{2 and a local graph prior (Foygel and Drton, 2011)

P pπi|pi, η̄iq “

ˆ

npi
|πi|

˙´1

It0,...,fiup|πi|q (4.11)

4.3.5 Parameter Prior Distribution

There are two main approaches to define parameter priors for graphical models, how-

ever a common feature to these approaches is that both are graph conditional param-

eter priors. On one hand is a vast work on Gaussian DAG models discussing a list

of conditions that permits an unconstrained precision matrix Ω (see, e.g. Heckerman

and Geiger, 1994; Heckerman and Chickering, 1995; Geiger and Heckerman, 2002;

Consonni and Rocca, 2012). On the other hand is a vast publication on Gaussian

decomposable undirected graphical (UG) models with constraints on the precision

matrix Ω (see, e.g. Roverato, 2002; Carvalho and Scott, 2009; Wang and Li, 2012;

Lenkoski and Dobra, 2011). Note that, an unconstrained Ω characterizes a complete

Gaussian DAG or UG model, i.e. a graph with no missing edges. The standard

parameter prior for Gaussian DAG models with zero expectations is a Wishart dis-

tribution, whereas that of UG models is a G-Wishart distribution. A consequence

of the DAG conditional parameter prior is that, once we specify the parameter prior

for one complete DAG model, all other priors can be generated automatically (see

Consonni and Rocca, 2012). We follow the DAG framework since it allows us to
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marginalize out Ω analytically and focusing on the structure inference, and then

estimating the model parameters given the structure (see Section 4.4 for details).

Following Geiger and Heckerman (2002), we assume a prior distribution on the

unconstrained precision matrix, Ω, conditional on any complete DAG, G, for a given

lag order p, is Wishart distributed, with probability density function

P pΩ|p,Gq “ 1
Kdpν, S0q

|Ω|
pν´d´1q

2 etr
´

´
1
2ΩS0

¯

(4.12)

where etrpAq “ expttrpAqu and trpAq is the trace of a square matrix A, ν is the

degree of freedom parameter, S0 is a dˆ d symmetric positive definite matrix, with

d “ ny ` np, the size of the vector of stacked dependent and explanatory variables

of the model. The normalizing constant is:

Kdpν, S0q “ 2 νd
2 |S0|

´ ν
2 Γd

´ν

2

¯

(4.13)

where Γdpaq “ π
dpd´1q

4
śd

i“1 Γ
´

a` 1´i
2

¯

is the multivariate gamma function and Γp¨q

denotes the gamma function.

Based on the assumption that the conditional distribution of the dependent vari-

ables given the set of predictors, is described by equation (4.1), with parameters

tB,Σεu, we assume the prior distribution on pB,Σε|p,Gq is an independent normal-

Wishart (see, e.g. Heckerman and Geiger, 1994; Geiger and Heckerman, 2002). This

is one of the prior distributions extensively applied in the Bayesian VAR literature.

Specifically, we assumed the coefficients matrix B is independent and normally dis-

tributed, B|p,G „ N pB, V q, and Σ´1
ε is Wishart distributed, Σ´1

ε „ Wpν, S{νq.

The prior expectation, B “ 0nyˆnp, is a zero matrix, and the prior variance of the

coefficient matrix, V “ Inpˆnp, is an identity matrix. Also, the prior expectation of

Σε “
1
ν
S where is S is ny ˆ ny positive semi-definite matrix and ν ą ny ´ 1 is the

degrees of freedom.
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4.4 Bayesian Inference

We define Gs as ny ˆ n binary connectivity matrix that captures the temporal re-

lationship of variables at time t ´ s with the variables at time t. We denote with
~Gp “ pG1, . . . , Gpq as stacked G1, . . . , Gp, such that ~Gp is of dimension ny ˆ np. We

then define ~Gp,i, i “ 1, . . . , ny as the local graph associated with the i-th equa-

tion which is the i-th row of ~Gp. The likelihood function of a random sample

X “ pV1, . . . , VT0q „ N p0,Ω´1q is given by

P pX |p, ~Gp,Ωq “ p2πq´
dT0

2 |Ω|
T0
2 etr

´

´
1
2ΩŜ

¯

(4.14)

where T0 “ T ´ p, T is the length of observation of the time series, Ŝ “
řT0
i“1 VtV

1
t ,

sum of squares matrix of dimension d ˆ d. A nice feature of the unconstrained

parameter prior in the DAG mode framework is that it allows for integrating out

analytically, the precision matrix, Ω, with respect to its prior to obtain a marginal

likelihood function for any DAG, ~Gp with lag p given by

P pX |p, ~Gpq “

ż

P pX |p, ~Gp,Ωq P pΩ|p, ~Gpq dΩ “ Kdpν ` T0, S0 ` Ŝq

p2πq
dT0

2 Kdpν, S0q
(4.15)

where S0 and S0 ` Ŝ are the prior and posterior sum of square matrices, which

when normalized are Σ “ 1
ν
S0 and Σ̄ “ 1

ν`T0
pS0 ` Ŝq respectively. Geiger and

Heckerman (2002) outlined conditions for the integral in equation (4.15) to be ana-

lytically tractable and to have a close form expression that can be factorized into local

marginal likelihoods. A key assumption is that the parameters must be independent

within and across equations. In VAR models, the errors are correlated across equa-

tions which makes the factorization of (4.15) quite problematic. Following the idea

of large-sample approximation by Kass et al. (1988) and Chickering and Heckerman

(1997), we consider the errors of a large VAR model as unobserved variables which

can be ignored when dealing with large datasets (see, e.g. Stock and Watson, 2014).
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Based on this consideration and assumption that the coefficients are independent

a-priori within and across equations, we approximate (4.15) with a pseudo-marginal

likelihood given by the product of local densities

P pX |p, ~Gpq «

ny
ź

i“1
P pX |pi, ~Gp,ipyi, πiqq “

ny
ź

i“1

P pX pyi,πiq|pi, ~Gp,iq

P pX pπiq|pi, ~Gp,iq
(4.16)

where ~Gppyi, πiq is the local graph of the i-th equation with yi as dependent variable

and πi as the set of predictors; X pyi,πiq is the sub-matrix of X consisting of yi and

πi; and X pπiq is the sub-matrix of πi. This approximation allows us to develop

search algorithms to focus on local graph estimation. More specifically, a Markov

chain Monte Carlo (MCMC) algorithm using the global score would be less efficient

in exploration since the global score would be insensitive to the proposal of edge

deletion or addition. Thus, the approximation allows the chain to explore the graph

locally at equation level. The pseudo-likelihood has been used in MCMC by Zhou

and Schmidler (2009) to circumvent the intractable normalizing constant problem in

random fields. See also Andrieu and Roberts (2009); Maclaurin and Adams (2014)

for one of the approximated likelihood in MCMC. The closed form of (4.16) is

P pX di |pi, ~Gp,iq “ π
´Ti|di|

2
|Σ̄di |

´
pν`Tiq

2

|Σdi |
´ ν

2

|di|
ź

i“1

Γ
´

ν`Ti`1´i
2

¯

Γ
´

ν`1´i
2

¯ (4.17)

where di P
 

pyi, πiq, πi
(

, and X di is a sub-matrix of X consisting of |di| ˆ Ti re-

alizations, where |di| is the dimension of di, Ti “ T ´ pi, |Σdi | and |Σ̄di | are the

determinants of the prior and posterior covariance matrices associated with di.

4.4.1 Posterior Approximation

Inferring jointly the lag and the graph allows for selecting the relevant predictors

to estimate the model parameters pB,Σεq. In order to approximate the posterior
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distributions of the equations of interest, the standard approach is to consider a

collapsed Gibbs sampling. At the j-th iteration, the sampler consists of the following:

1. Sample jointly, ppjq, η̄pjq and ~Gpjqp from P pp, η̄, ~Gp|X q.

2. Estimate Bpjq and Σpjqε directly from P pB,Σε|p
pjq, ~Gpjqp ,X q.

As regards to the first step, standard MCMC algorithms (Madigan and York,

1995) such as Gibbs sampling and Metropolis-Hastings (MH) apply only to model

selection with fixed dimensions. In model selection problems with unknown lag order,

the dimension of the model varies with the lag order. The algorithm extensively ap-

plied for this problem is the reversible jump (RJ) MCMC (Green, 1995). In graphical

models especially, the space of possible graphs increases super-exponentially with the

number of variables (Chickering et al., 2004). Therefore, sampling from a distribution

on a union of varying graph dimension using the RJ algorithm will require a higher

number of iterations to thoroughly search the space of all graphs. In our graphical

VAR, the inferential difficulty increases due to the random fan-in restriction.

We propose an algorithm for sampling the graph taking into consideration the

random fan-in and estimating the lag order. At the j-th iteration of the Gibbs, we

consider for each equation i “ 1, . . . , ny and each lag order pi “ p, . . . , p̄, a sample of

η̄
pjq
i and ~G

pjq
p,i from P pη̄i, ~Gp,i|pi,X q9P pη̄i|piqP pπi|pi, η̄iqP pX |pi, ~Gp,iq. By conditioning

on each possible lag order, we are able to apply standard MCMC algorithm thereby

avoiding movement between models of different dimensions since the dimension is

fixed for each lag. After J iterations, we average the draws, ~Gpjqp,i , over J and estimate

~̂Gp,i, for each pi “ p, . . . , p̄, using the criterion discussed in B.2.2. This procedure

estimates the local graph for the possible lags of pi P tp, . . . , p̄u. Next, we find

pp̂i, Ĝp̂,iq which minimizes a penalized local log-likelihood (BIC) score given in (4.24).

Given the estimated graph and lag order, pp̂i, Ĝp̂,iq, we select the relevant predictors
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for each equation to estimate the model parameters pB,Σεq.

4.4.2 Graphical Model Selection

Graphical model selection is a challenge since the dimension of the graph space to

explore increases super-exponentially with the number of variables. In this paper we

apply MCMC and build on the MCMC algorithm described in Madigan and York

(1995); Grzegorczyk and Husmeier (2011). Our algorithm differs from that of the

above mentioned papers in two aspects: the initialization and the inclusion of the

random fan-in restriction.

As regards to the initialization, we propose a strategy which improves the mixing

of the chain. In MCMC search algorithms the space exploration crucially depends

on the choice of the starting point of the chain. A set of burn-in chain iterations is

often used to have a good starting point. However, Brooks et al. (2011) pointed out

that any sample that is believed to be representative of the equilibrium distribution

is an equally good starting point. In view of this, we propose an initialization which

extracts variables (and their lags) with reliable information to improve predictions of

the dependent variables. Let ~Gp,i denote the local graph of the i-th equation, Vi
p,x,

the vector of all possible explanatory variables with lags up to p for each equation,

with p P rp, . . . , p̄s, and Vy, the vector of dependent variables. We run the following

1. Initialize the graph ~Gp as ny ˆ np zero matrix, i.e, ~Gp,i is 1ˆ np zero vector.

2. For each equation, i “ 1, . . . , ny:

2a. Test whether or not predictions of yi P Vy is improved by incorporating

information from each xk P Vi
p,x, i.e, P pyi|xkq ą P pyiq. Following a Min-

nesota type of prior, we assume recent lags (specifically lag 1) of dependent

variables are more reliable to influence current realizations. Based on this

idea, set ~Gppyi, xkq “ 1 if xk is equal to lag 1 of yi, and retain xk in Vi
p,x.
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2b. For xk not equal to lag 1 of yi, we compare the probability of the null

hypothesis, H0 “ P pX |pi, ~Gppyi,Hqq, where H denote the empty set,

against the probability of the alternative, H1 “ P pX |pi, ~Gppyi, txkuqq. If

H1 ą H0, we reject the null, set ~Gppyi, xkq “ 1 and retain xk in Vi
p,x. If

H1 ď H0, we set ~Gppyi, xkq “ 0 and remove xk from Vi
p,x.

3. We then denote Nppπiq as the set of variables, x1ks, retained in Vi
p,x.

In our experience, the above initialization provides a good starting point for graphical

model selection. See Figure B.1 for a comparison of the convergence diagnostics of a

random initialization MCMC for the graph simulation. Using the set Nppπiq of can-

didate predictors of the dependent variable of the i-th equation, we start our MCMC

search. We proceed with the local causal search by investigating the combination of

variables in Nppπiq that produces the highest scoring local graph(s).

As regards the inclusion of the random fan-in restriction, we denote with mp “

mintnp, T ´ pu, the maximal number of predictors required to efficiently estimate

the model, for p P rp, . . . , p̄s. At the j-th iteration, let ~G
pj´1q
p,i be the current local

graph and π
pj´1q
i , the current set of predictors in ~G

pj´1q
p,i , then for each equation,

i “ 1, . . . , ny, the Gibbs iterates the following steps:

1. Draw the sparsity parameter for the forward proposal probability, η̄p˚qi from a

Bepa, bq and set the fan-in f
p˚q

i “ tmpη̄
p˚q

i u.

2. If the number of elements in π
pj´1q
i is less than the fan-in, i.e. |πpj´1q

i | ă f
p˚q

i ,

then randomly draw a xk from the set of candidate predictors, Nppπiq, and add

or remove the edge between yi and xk, i.e. ~Gp˚qp pyi, xkq “ 1´ ~Gpj´1q
p pyi, xkq. The

forward proposal probability, Qp~Gp˚qp,i |~G
pj´1q
p,i , η̄

p˚q

i q “ 1{|Nppπiq|. If |πpj´1q
i | ě

f
p˚q

i , then randomly draw a variable, xk, from the current set of predictors,
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π
pj´1q
i , and remove the edge between yi and xk, i.e. ~Gp˚qp pyi, xkq “ 0. In this

case, the forward proposal probability is Qp~Gp˚qp,i |~G
pj´1q
p,i , η̄

p˚q

i q “ 1{|πpj´1q
i |.

3. To obtain the reverse proposal probability, we denote πp˚qi , the set of predictors

in ~G
p˚q

p,i taking into consideration the changes made in step 2.

4. Next, we draw the sparsity parameter for the reverse proposal probability, η̄p˚˚qi

from a Bepa, bq and set f p˚˚qi “ tmpη̄
p˚˚q

i u.

5. If |πp˚qi | ă f
p˚˚q

i , the reverse move will involve a random draw of a variable from

Nppπiq to add or delete from ~G
p˚q

p,i . The reverse proposal probability is given by

Qp~G
pj´1q
p,i |~G

p˚q

p,i , η̄
p˚˚q

i q “ 1{|Nppπiq|. If |πp˚qi | ě f
p˚˚q

i , the reverse will randomly

draw a variable from π
p˚q

i to delete from ~G
p˚q

p,i . The reverse proposal probability

in this case is given by Qp~Gpj´1q
p,i |~G

p˚q

p,i , η̄
p˚˚q

i q “ 1{|πp˚qi |.

6. From (4.10), the ratio of the local graph priors simplifies to 1 and the acceptance

probability is Ap~Gp˚qp,i , η̄
p˚q

i |
~G
pj´1q
p,i , η̄

p˚˚q

i q “ mint1, RAu where

RA “

"

P pX |pi, ~Gp˚qp,i q
P pX |pi, ~Gpj´1q

p,i q

Qp~G
pj´1q
p,i |~G

p˚q

p,i , η̄
p˚˚q

i q

Qp~G
p˚q

p,i |
~G
pj´1q
p,i , η̄

p˚q

i q

*

(4.18)

where P pX |pi, ~Gp,iq “ P pX |pi, ~Gppyi, πiqq, and can be computed from (4.16)

and (4.17). Without the fan-in restriction, the proposal distribution is sym-

metric, thus, the prior and inverse proposal ratio in (4.18) simplifies to 1.

7. Sample u „ Ur0,1s and if u ă mint1, RAu, then accept changes made in the local

graph and set ~Gpjqp,i “ ~G
p˚q

p,i , otherwise and set ~Gpjqp,i “ ~G
pj´1q
p,i .

A description of the pseudo-code for the graph selection is given in B.3.
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4.4.3 Duality between Priors and Penalties

Thanks to the duality between prior distributions and the penalization of likelihood

functions, we define an information criterion for choosing p̂i and ~̂Gp,i by solving

pp̂i, ~̂Gp,iq “ arg max
pi, ~Gp,i

P ppiqP pπi|piqP pX |pi, ~Gp,iq (4.19)

where P pπi|piq “

ż

P pπi|pi, η̄iqP pη̄i|piqdη̄i (4.20)

Following the standard BIC for graphical models, the logarithm of the marginal

likelihood function of the local graph can be approximated by

logP pX |pi, ~Gp,iq « logP pX |pi, ~̂Gp,iq ´
1
2 |π̂i| log T (4.21)

where ~̂Gp,i and π̂i are the estimated local graph and set of relevant predictors of the

dependent variable of the i-th equation.

Proposition 2. For choices of P pη̄i|piq in (4.8), as beta distributed and P pπi|pi, η̄iq

according to (4.10), η̄i can be integrated out of (4.20) to obtain

P pπi|piq “
1

2npi

mp´1
ÿ

j“0
It0,...,jup|πi|q

´

I j`1
mp

pa, bq ´ I j
mp

pa, bq
¯

(4.22)

where Izpa, bq “
şz

0pBpa, bqq
´1pη̄iq

a´1p1 ´ η̄iq
b´1 dη̄i, is the incomplete beta function

(Abramowitz and Stegun, 1964, p. 263).

Proof. See B.1.2.

Corollary 3. A uniform prior on η̄i, means a “ b “ 1 and yields

P pπi|piq “
1

2npi
´

1´ |πi|
mp

¯

(4.23)

Proof. See B.1.3.
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Proposition 4. Let P pπi|piq as shown in (4.23) be evaluated at the values of πi such

that |πi| “ k. If ϕpkq “ ´ logP pπi|piq is considered a function of πi, with |πi| “ k,

k “ 0, . . . , npi, then ϕpkq is a convex function given pi ą 0 and n ą 0.

Proof. See B.1.4.

From the marginalized local graph prior in (4.23), it follows that P pπi|piq ď
1

2npi , @|πi| ď mp. For choices of discrete uniform prior on the lag order according to

(4.4) means P ppiq is constant, @pi P tp, . . . , p̄u. Following (4.21), we define a modified

BIC for local graph and lag selection as

BICppi, ~Gp,iq “ ´2 logP pX |pi, ~̂Gp,iq ` |π̂i| log T ` 2npi log 2 (4.24)

Following a similar approach proposed by Chib and Greenberg (1995), we use the

estimated local graph ~̂Gp,i to evaluate the score and to select the lag order p̂i. Se-

lecting the local graph and lag order for each equation may automatically produce

asymmetric lags for the different equations. Closely related to our modified BIC

is the extended BIC discussed by (see Bogdan et al., 2004; Chen and Chen, 2008;

Foygel and Drton, 2011). These papers show that the standard BIC has the tendency

to select large size models when dealing with high-dimensional data. A significant

difference between our modified BIC and the ones discussed in the above papers is

that the additional penalty term depends only on the number of possible links (npi)

for each lag order and independent of the number of estimated links (|π̂i|). Thus in

comparing graphs with the same lag order but different configuration, our modified

criterion coincides with the standard BIC with an additional constant term.

4.4.4 Model Estimation

The posterior of Ω conditional on the lag order p̂ and a given graph Ĝp is Wishart

distributed (see Geiger and Heckerman, 2002). Since Ω is directly related to B and
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Σε, (see Proposition 1), we proceed with the posterior estimation of the model pa-

rameters focusing on B and Σε. Thus we estimate B̂ and Σ̂ε from P pB,Σε|p̂, Ĝp,X q

with an independent normal-Wishart. By conditioning on Ĝp, we estimate the pa-

rameters tB̄G,i, V̄G,iu that corresponds to the non-zero elements of the i´th equation

graph Ĝp,i. We define the selection matrix Ei “ pej1 , . . . , ej|πi|q, where Ei is of di-

mension npˆ |πi|, jk P πi is an element of the set of predictors of the i-th equation,

and ek is the standard orthonormal basis of the set of real np-dimensional vectors.

The posterior mean and variance of tB̄G,i, V̄G,iu is

B̄G,i “ V̄G,ipV
´1
G,iBG,i ` σ̄

´2
i W 1

G,iYiq (4.25)

V̄G,i “ pV
´1
G,i ` σ̄

´2
i W 1

G,iWG,iq
´1 (4.26)

with

WG,i “ WEi, BG,i “ BiEi, VG,i “ E 1iV iEi (4.27)

where WG,i P W
1, is the set of selected predictors of the i-th equation; W 1 is stacked

W 1
1, . . . ,W

1
T0 , such that W 1 is of dimension T0 ˆ np; Y is stacked Y 11 , . . . , Y

1
T0 , such

that Y is of dimension T0 ˆ ny; Yi is the i-th column of Y ; BG,i and V G,i, are the

prior mean and variance of WG,i respectively; σ̄2
i , i “ 1, . . . , ny, is the variance of

residuals from the posterior of Σε, where the posterior of Σ´1
ε is Wishart distributed

with scale matrix

S̄ “ S ` pY 1 ´ B̄W 1
q
1
pY ´WB̄1q (4.28)

and degrees of freedom ν̄ “ ν`T0, where B̄ “ pB̄G,1, . . . , B̄G,nyq, the stacked posterior

mean of the coefficients, such that B̄ is of dimension nyˆnp with positions of non-zero

elements corresponding to non-zero elements in Ĝp.
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4.5 Simulation Study

4.5.1 Metrics for Performance Evaluation

We investigate the effectiveness of our graphical approach with our new prior dis-

tribution against one without sparsity restriction together with the LASSO of (Tib-

shirani, 1996) and the Elastic-net (ENET) of Zou and Hastie (2005). We evaluate

the efficiency of the algorithms in terms of the estimated graph, the predictive per-

formance of the estimated models on out-of-sample observations and computational

cost in terms of run time.

Given the graph of the data generating process (DGP), we extract from the

estimated graph the number of true links correctly predicted as TP ; FP as number

of true zero edges predicted as positives; TN as number of true zero edges correctly

predicted; and FN as number of true links unidentified. We evaluate the graph

estimation performance based on the number of predicted positive links pPP “

TP ` FP q, the graph accuracy pACCq and precision (PRC) given as

ACC “
TP ` TN

TP ` TN ` FP ` FN
PRC “

TP

TP ` FP
(4.29)

Furthermore, we evaluate the graph estimation performance in terms of log-likelihood

and BIC scores. Following (4.24), the graph BIC is obtained as

BICG “

ny
ÿ

i“1
BICppi, ~Gp,iq “ ´2LG `

ny
ÿ

i“1
p|π̂i| log T ` 2np̂i log 2q (4.30)

where LG “
řny
i“1 Li, with LG is the log-likelihood of the estimated graph and Li “

logP pX |pi, ~Gppyi, πiqq is the log-likelihood of the local graph of the i-th equation.

We evaluate the model estimation performance based on the out-of-sample joint

density and point forecasts. The log-predictive score (LPS) is the most common

measure of the joint predictive density discussed in the literature. Since the compet-

ing models might have different number of variables and lags across the equations,
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the predictive AIC presents a meaningful comparison for purposes of parsimony and

is given by

AICM “ ´ 2 logP pYτ1 |Xτ0 ; B̂, Σ̂εq ` 2|B̂| (4.31)

for τ1 “ τ0`1, . . . , T , where τ0 is the number of observations for the training sample,

Xτ0 is the training sample dataset; Yτ1 is the out-of-sample observations of the de-

pendent variables; |B̂| is the number of non-zero coefficients in B̂; Σ̂ε is the estimated

error covariance matrix; and logP pYτ1 |Xτ0 ; B̂, Σ̂εq is the log predictive score.

For point forecast, the mean squared forecast error (MSFE) is the most common

measure discussed in the literature. To compare the joint point forecasts, we compute

the mean MSFE (MMSFE) following

MMSFE “
1

T ´ τ0 ´ 1

T
ÿ

τ1“τ0`1

´ 1
ny

ny
ÿ

i“1
pY i

τ1 ´ Ŷ
i
τ1q

2
¯

(4.32)

where Y i
τ1 and Ŷ i

τ1 are the out-of-sample observed and predicted values of the i-th

dependent variable respectively.

4.5.2 Simulation Study Set-up and Results

The data generating process (DGP) of the simulated study is as follows

Yt “ BXt´1 ` εt, εt
iid
„ N p0,Σεq (4.33)

t “ 1, . . . , T , where Σε „ IWpb, Inyq, is a full matrix drawn from an inverse-Wishart

distribution with degree of freedom b “ ny ` 1 and an identity scale matrix, Iny ,

B is ny ˆ n coefficient matrix, Yt and Xt are is a ny ˆ 1 and n ˆ 1 respectively.

To analyze different sparsity levels, we generate the coefficients matrix B such that,

the number of non-zero coefficients for each equation is drawn from a uniform on

t0, . . . , 40u. We considered a large dimensional model by setting ny “ 10, n “ 100.

We replicate the simulation and estimation exercises 100 times. The 100 replicatons
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have been conducted on a cluster multiprocessor system which consists of 4 nodes;

each comprises four Xeon E5-4610 v2 2.3GHz CPUs, with 8 cores, 256GB ECC PC3-

12800R RAM, Ethernet 10Gbit, 20TB hard disk system with Linux. The simulation

study in Table 4.1 takes about 14 minutes of CPU time. For each replication, we

generate a sample size, T “ 60 and use T0 “ 50 for model estimation and 10 for

out-sample forecast analysis.

We run 20,000 Gibbs iterations for the graph estimation and 2000 iterations for

parameter estimations. We applied the standard approach of Tibshirani (1996) and

Zou and Hastie (2005) for the LASSO and ENET estimation respectively. We set

p “ 1 and p̄ “ 4 and implement a parallel estimation for the LASSO and ENET.

For each p P rp, p̄s, we sequentially use one variable as the dependent variable and

the remaining as the predictors. We apply a five-fold cross validation to select the

regularization parameter λ with minimal plus one standard error point (index1SE).

Figure B.2 shows the convergence diagnostics of the graph simulation and the

local graph BIC for the lags. The figure of the PSRF indicates convergence of the

chain. We also notice from Figure B.2d that the posterior distribution on the lag

order for each equation of the simulation experiment using our modified BIC favors

lag order p “ 1. We report in Table 4.1, the performance of the LASSO, ENET,

BGVAR and SBGVAR for the inference of the DGP in (4.33).

We proceed by comparing the effectiveness of the algorithms in estimating the

graph of the true DGP, when the DGP average links number is 201.5. Table 4.1

shows that without the sparsity restriction, the BGVAR overestimates the number

of links compared to the other algorithms. The Lasso-type methods (LASSO and

Elastic-Net) fall in the middle with a lower number of links compared to that of the

DGP. The SBGVAR on the other hand recorded the least number of edges. This is

quite expected since the idea is to select the subset of the explanatory variables that

explains a large variation in the dependent variables.
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LASSO ENET BGVAR SBGVAR
DGP Average number of links = 201.5

PP 108.40 131.30 249.42 69.88
TP 62.04 67.92 97.76 48.62
ACC 95.35 95.08 93.61 95.65
PRC 58.06 51.85 39.31 69.58
LG 145.28 169.83 242.35 160.71
BICG 1457.40 1509.23 1837.14 1307.80
LPS -243.07 -304.32 -236.79 -166.49
AICM 702.94 871.24 972.42 472.74
MMSFE 0.67 0.69 0.62 0.59
Time (in seconds) 55.76 50.18 162.52 42.47

Table 4.1: Average graph and model performance of algorithms over 100 replications. PP - number
of predicted positive links; TP - number of true positive links; ACC - graph accuracy; PRC -
graph precision; LG - graph log-likelihood; BICG - graph BIC; LPS - log predictive score; AICM
- predictive AIC; MMSFE - Mean of MSFE. Bold values indicate the best choice for each metric.

By including more edges than the true DGP, the graphical search algorithm

without sparsity restriction (BGVAR) records the highest true positive links but

relatively low accuracy and precision compared to the other algorithms. Again the

Lasso-type methods fall in the middle, recording a lower number of true positive links

but with a higher accuracy and precision than the BGVAR. The graphical approach

with sparsity restriction instead had the least number of true positive edges but tends

to be more accurate and much precise than the other algorithms. The log-likelihood

score of the graph favored the BGVAR but the graph BIC score favored the SBGVAR.

Thus the BIC score confirms the outcome of the graph accuracy metric which shows

that though the SBGVAR records the least edges, it produced a better representation

of the temporal dependence in the simulated dataset than the Lasso-type methods

and the BGVAR.

The log predictive score, predictive AIC and the MMSFE all favor the SBGVAR

over the other competitors. One would expect the Lasso-type methods to perform

better than the graphical VAR, however this is not the case according to the above

simulation results. This is attributable to the fact that the Lasso-type techniques

perform both model selection and parameter estimation simultaneously. This may
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seem to be an advantage but on the other hand it affects the estimated parameters,

since it shrinks all coefficients at the same rate (see Gefang, 2014). In addition, the

Lasso-type methods only focus on estimating the coefficients in each equation neglect-

ing the interaction among the errors across the different equations. The graphical

approach instead focus on selecting and estimating only the coefficients of relevant

variables taking into consideration the interaction among the errors across the differ-

ent equations. Thus the latter achieves better parameter estimation efficiency than

the Lasso-type models. The result shows that the sparsity restriction on the graph

enables us to identify the small set of the most influential explanatory variables that

explains a large variation in the dependent variables. Also, the SBGVAR produce

a more parsimonious model with better out-of-sample forecasts than the Lasso-type

methods.

On the computational intensity, the SBGVAR spends less time than the other

algorithms. Interestingly, it records about one-fourth of the run time of the BGVAR.

Thus, the sparsity restriction helps to reduce the run time by considering a relatively

lower search space in terms of the number of combinations of explanatory variables.

The higher run time of the Lasso-type methods is due to the cost of cross-validation

to select the regularization parameter.

4.5.3 Sparsity and Indeterminacy Evaluation

A system of linear equations is said to be under-determined when the number of

parameters to estimate exceeds the number of observations (see Donoho, 2006). Such

systems can be modeled by exploiting sparsity. We investigate the performance of the

graphical model approaches against the standard Lasso-type methods for different

level of indeterminacy and sparsity of the DGP.

For a VAR model with ny dependent variables and n explanatory variables for

each equation, and a lag order p, we have a total of nynp number of coefficients
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to estimate. Given a multiple time series with T observations, the total number of

observations of the dependent variables is given by pT ´ pqny. Following Donoho

(2006), we measure the level of indeterminacy by δ “ pT ´ pqny{nynp “ pT ´ pq{np,

and the level of sparsity by ρ “ kny{pT ´ pqny “ k{pT ´ pq, where k is the number

of non-zero coefficients in each equation of the DGP.

Following Donoho and Stodden (2006), we formulate our experiment by setting

the DGP to generate a VAR model with ny “ 10, n “ 100 and lag order p “

1. For different level of indeterminacy, we set T ´ p to take values t20, . . . , 100u.

For each T ´ p, we generate for each equation, k “ rρpT ´ pqs, where ρ takes

values t0.2, 0.3, . . . , 1u. This is to allow for different sparsity levels for each level of

indeterminacy.

We proceed by comparing the effectiveness of the LASSO, ENET, BGVAR and

SBGVAR in estimating the true DGP by setting p “ p̄ “ 1. For each T and k,

we replicate the simulation and estimation exercise 10 times with the magnitude of

the coefficients drawn from a uniform on r´1, 1s. In each replication, we estimate

the model and perform a 1-step ahead forecast. Figure 4.1 shows the estimation

performance of the algorithms for the different levels of indeterminacy averaged over

the different levels of sparsity.

Figure 4.1a shows the difference between the average DGP number of links and the

estimated links of the algorithms. Except for the BGVAR, all the other algorithms

estimated a lower number of links compared to that of the DGP. More specifically, the

BGVAR seems to overestimate the number of DGP links for lower under-determined

models, whereas the SBGVAR underestimates the number of DGP links regardless

of the level of indeterminacy. We also see that, the difference between the DGP

and the estimated links of the BGVAR and SBGVAR increases overtime while the

Lasso-type methods are relatively stable regardless of the level of indeterminacy.

The graph accuracy in Figure 4.1b shows that all the algorithms experienced a
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Figure4.1: Estimation performance of the algorithms for different level of indeterminacy averaged
over different level of sparsity. The LASSO is in green, ENET in blue, BGVAR in red and SBGVAR
in cyan.

deterioration in the accuracy of the prediction of the graph associated with the DGP.

However, on average the SGBVAR performs slightly better at the graph estimation

for lower under-determined models than the Lasso-type methods.

In Figure 4.1c, the graph BIC of the algorithms increases with the level of inde-

terminacy. This is not surprising since the BIC is a direct function of the number

of observations which increases with the level of indeterminacy. Again we observe
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that the graph BIC score favors the graph estimated by the SBGVAR over the other

competing algorithms. This shows that though the SBGVAR recorded the minimum

number of links, it produce a better representation of the graph associated with the

DGP.

For model estimation performance, Figure 4.1d shows that all the algorithms

perform better at out-of-sample point forecasts for higher under-determined models.

The MMSFE of the algorithms are not significantly different though we find that

it favors the SBGVAR for lower under-determined models. The predictive AIC (in

Figure 4.1e) on the other strongly favors the SBGVAR for all level of indeterminacy.

On the computational intensity, we notice (from Figure 4.1f) an increase in run

time with the level of indeterminacy for all algorithms except the BGVAR which

seems slightly constant over time. Overall, the Lasso-type methods achieve a lower

run time for lower under-determined models whiles the SBGVAR achieves lower run

time for higher under-determined models.

We focus attention on the model estimation performance of the algorithms for

the different levels of indeterminacy and sparsity. Figure 4.2 shows the heatmap

of the predictive AIC of the models of the algorithms estimated over the levels of

sparsity and indeterminacy of the DGP. The color bar shows the different range of

values of the predictive AIC, where blue represents lower AIC, and red for highest

AIC. Clearly, we notice a significant difference between the results of the Lasso-type

methods and that of the graphical model approaches. Thus the LASSO and ENET

are not significantly different from each other, whiles the BGVAR and SBGVAR

are quite different, dominated by cyan and blue respectively. The figure shows that

the predictive AIC favor the SBGVAR over all levels of sparsity and indeterminacy.

The Lasso-type methods only performs better than the BGVAR for lower under-

determined models with different level of sparsity, whiles the BGVAR dominates in

higher under-determined models.
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(b) ENET Predictive AIC
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(c) BGVAR Predictive AIC
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(d) SBGVAR Predictive AIC

Figure4.2: Heatmap of the predictive AIC of the models estimated by the four algorithms over
the different levels of indeterminacy and sparsity in the data generating process. The result is an
average of 10 replication exercises for each δ and ρ. The color bar shows the different range of
values of the predictive AIC, where blue represents lower AIC, and red for highest AIC.

The results of this exercise confirm that of our first simulation experiment. Firstly,

the sparsity restriction on the graph space induces sparsity on the estimated graph

of the temporal relationship among the variables. Secondly, the random fan-in re-

striction helps to reduce the computational complexity by considering a relatively

lower search space in terms of the number of combinations of explanatory variables.

Thirdly, though the SBGVAR under-estimates the number of links compared to the

DGP and other algorithms, it is able to identify the small set of the most influen-

tial explanatory variables that explains a large variation in the dependent variables.
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Thus, the SBGVAR produces a more parsimonious model with competitive out-of-

sample joint point forecasts and better density forecasts than the competing models.

4.6 Forecasting VAR with Many Predictors

Several studies have shown empirically that applying large VAR models for macroe-

conomic time series produces better forecasts than standard approaches (see Banbura

et al., 2010; Koop, 2013; Giannone et al., 2005; Stock and Watson, 2012; Carriero

et al., 2013). In the literature, researchers typically work with a single model with

fixed or time varying coefficients (see Koop and Korobilis, 2013). It is therefore

important to allow for changes in structure and/or parameters to understand the

dynamic evolution of the relationship among variables. As part of our contribu-

tion, we apply our graphical scheme to model and forecast selected macroeconomic

variables with large number of predictors.

The dataset is quarterly observations of 130 US-macroeconomic variables. All

series were downloaded from St. Louis’ FRED database and cover the quarters from

1959Q1 to 2014Q3. Some series had missing observations which are completed with

earlier version of the database used by Korobilis (2013). We follow the adjustment

codes of De Mol et al. (2008); Stock and Watson (2012) and Korobilis (2013) to

transform all the series into stationarity. See B.4 for the list of series and adjustment

codes. We consider 6 series as dependent variables and the remaining 124 as pre-

dictors. The dependent variables are: consumer price index (CPIAUCSL), Federal

funds rate (FEDFUNDS), real gross domestic product (GDPC96), real gross private

domestic investment (GPDIC96), industrial production index (INDPRO) and real

personal consumption expenditure (PCECC96).

We set the minimum and maximum lag order equal to p “ 1 and p̄ “ 4 re-

spectively according to the literature. We consider a moving window with a starting

sample from 1960Q1 to 1970Q4 to estimate the model and to forecast 1 to 4-quarters
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ahead. We then move the window forward by 4-quarters. Our last sample covers

2003Q1 to 2013Q4, and the final forecast is up to 2014Q3.
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Figure4.3: Performance of the algorithms in modeling and forecasting selected macroeconomic
variables with many predictors over the sample period 1960Q1´ 2014Q3. Figures 4.3a - 4.3c show
the graph estimation performance, whilst 4.3d - 4.3f depict the model estimation performance.

Figures B.3 in B.2 show the convergence diagnostics of the graph simulation and

the local graph BIC for the lags for the macroeconomic application. The figure of

the PSRF indicates convergence of the chain. Clearly, the global log score of the

graph seems to increase with the lag order in Figure B.3b whereas the total number
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of links of the different lags seems quite close as displayed in Figure B.3a. However,

we notice from Figure B.3d that the posterior distribution on the lag order for each

equation of the macroeconomic application using our modified BIC score favors lag

order p “ 1.

We report in Figure 4.3, the graph and model estimation performance of the

Lasso-type methods and the graphical VAR approaches in modeling and forecasting

the selected macroeconomic variables over the sample period 1960Q1´2014Q3. The

graph estimation performance is compared in terms of the number of link (PP -

predicted positive edges), the log-likelihood of the graph (LG) and the BIC score of

the graph (BICG). The model estimation performance is compared in terms of the

log predictive score (LPS), the predictive AIC (AICM) and the average of the mean

squared forecast errors (MMSFE). Table 4.2 presents the averages of the graph and

model estimation performance of the algorithms including the computational time

over the sample period.

From Figure 4.3, we observe that the BGVAR estimated more edges than the

other algorithms in a greater part of the sample period. This is followed by the

Lasso-type methods, (ENET, then the LASSO) and the SBGVAR records the least

number of links over the entire sample period. In scoring the estimated graphs,

the BGVAR obtained the highest log likelihood over the entire period whiles the

SBGVAR records the minimum at the beginning but showed significant improvement

over the rest of the sample period. The BIC score of the graph however favored the

SBGVAR over the other algorithms. The summary of the averages in Table 4.2 shows

that the by including more edges than the other algorithms the BGVAR records the

highest log likelihood of the graph whilst the SBGVAR with the least number of

links obtained the minimum BIC score indicating that the SGBVAR graph presents

a better representation of the temporal dependence in the macroeconomic application

than the Lasso-type methods and the BGVAR.
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Figure 4.3d shows the evolution of the out-of-sample joint point forecasts of the

models estimated by the algorithms. We observe from the plot that the MSFE

are not very different from each other. However, in terms of the out-of-sample joint

density forecasts, the BGVAR model presents the minimum cumulative log predictive

score and that of the SBGVAR model dominates the LASSO but is very competitive

against the ENET model. When adjusted for the number of selected variables used

for the forecasting analysis, the SBGVAR model obtain the minimum predictive AIC

whilst the BGVAR model performed worst than the Lasso-type models. From Table

4.2, we see that on average the Lasso-type models obtain the minimum MMSFE

and this indicate that they produce slightly better point forecasts than the graphical

approaches. The average log predictive score and AIC on the other hand are in favor

of the SGBVAR over the Lasso-type models.

LASSO ENET BGVAR SBGVAR
PP 25.14 39.09 70.82 13.50
LG 372.26 379.45 437.21 400.05
BICG 434.09 473.71 481.01 333.46
LPS -36.87 -34.33 -44.36 -33.79
AICM 124.01 146.84 230.36 94.57
MMSFE 1.30 1.26 1.24 1.32
Time (in seconds) 57.93 42.26 65.74 23.77

Table 4.2: Average graph and model estimation performance of algorithms in modeling and fore-
casting selected macroeconomic series from 1960Q1´ 2014Q3. PP - number of predicted positive
edges; LG - graph log-likelihood; BICG - graph BIC; LPS - log predictive score; AICM - predictive
AIC; and MMSFE - mean of MSFE. Bold values indicate the best choice for each metric.

On the computational intensity, the result shows that on average the SBGVAR

spends less simulation time on graph sampling and parameter estimation than the

other algorithms. Interestingly, it records about one-fourth of the run time of the

BGVAR.

In summary, we find evidence that the graphical VAR approach with our new

graph prior distribution induces sparsity on the graph structure. In modeling and
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Figure4.4: Frequency of inclusion of the most influential variables that explain a large variation in
the dependent variables of the macroeconomic application averaged over the sample period 1960Q1´
2014Q3. CPIAUCSL is consumer price index, FEDFUNDS - Federal funds rate, GDPC96 - real
gross domestic product, GPDIC96 - real gross private domestic investment, INDPRO - industrial
production index and PCECC96 - real personal consumption expenditure.
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forecasting our selected macroeconomic series, the result shows that the SBGVAR

better represents the temporal dependence, since it is more parsimonious than the

competitors. Furthermore, we find evidence of a gain in the predictive performance of

the SBGVAR approach over the Lasso-type methods. It is also less computationally

intensive compared to the graphical approach without sparsity restriction and the

Lasso-type methods.

In Figure 4.4, we report the frequency of inclusion of the relevant predictors for

the variables of interest in our macroeconomic application, averaged over the sample

period 1960Q1 ´ 2014Q3. For convenience, we report only the top explanatory

variables of real investment (GPDIC96) with frequency up to 14%. We notice from

the figure that all the variables of interest are not explained by the same set of

predictors. Thus, apart from real investment and industrial production index, which

have a higher number of predictors over the sample period, the rest can be predicted

by a handful of macroeconomic variables.

We find evidence supporting the effect of financial variables on the real sector

of the US economy. More specifically, we find that over the sample period, S&P

500 and exchange rates with Japan, Switzerland and UK, have strong effects on

real investment (GPDIC96) and industrial production index (INDPRO), and weak

effects on real gross domestic product (GDPC96) and on the Federal funds rate

(FEDFUNDS). The results are in line with Diebold and Yilmaz (2015) suggesting the

importance of monitoring the connectedness between real activity and stock returns

(or financial variables). Furthermore, it offers some insight for further evaluation of

macro-financial linkages which have long been at the core of the IMF’s mandate to

oversee the stability of the global financial system.
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4.7 Conclusion

In recent years, there has been increasingly available rich datasets with large number

of variables relative to the length of observations. Standard estimation techniques

often encounter problems since there are too many parameters to estimate. This

paper contributes to solve this problem by developing a Bayesian graphical approach

to model dependence and to address over-parametrization in high-dimensional mul-

tivariate time series models. The novelty of the approach of this paper is proposing

a new (sparsity) prior limiting the number of predictors for each equation of a large

vector autoregressive (VAR) model and developing a new Markov chain Monte Carlo

(MCMC) algorithm to determine the relevant links and lag order for each equation,

and the parameter estimates.

We show through simulation and real data macroeconomic application that our

proposed method is a valid alternative to the standard Lasso-type methods - LASSO

and Elastic-Net (ENET). In both applications, we find evidence that our new prior

distribution induces sparsity on the graph of temporal dependence among variables.

The comparison with the standard LASSO and ENET as benchmarks show that

our model perform well in identifying the relevant predictors and forecasting the

variables of interest. Furthermore, the simulation exercise shows that our model

performs comparatively better when indeterminacy is high. On the macroeconomic

application, we find evidence that financial variables helps in predicting economic

activity. Thus, our proposed method can be considered for empirical evaluation of

macro-financial linkages.
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Chapter 5

Bayesian Selection of Systemic Risk
Networks

5.1 Introduction

In the latest financial crisis, started in 2007, the core capital of banks has proved to

be insufficient to cover impairment losses arising from loans and security portfolios.

Consequently, several banks have strengthened their capital base or reduced their

asset exposure. Other banks have been bailed out by state aids or have defaulted.

To reduce the risk of similar crises in the future and to enhance the resilience of

the banking sector, a new regulatory framework, the so-called Basel III package,

has been proposed, implying more stringent capital requirements for financial insti-

tutions (Basel Committee on Banking Supervision, 2011). The effectiveness of the

new regulatory framework to prevent banking default and financial crisis is an open

problem, particularly as regulations themselves are still in progress, and may thus

benefit from the results of research findings in the field.

The adoption of a robust financial network approach for systemic risk is rec-

ommended not only because of its proper emphasis on financial interdependencies,

This chapter is based on: Ahelegbey, D. F. and Giudici, P. (2014). Bayesian Selection of Systemic
Risk Networks, Advances in Econometrics: Bayesian Model Comparison, vol. 34, 117–153.
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but also for its possibility to describe how the structure of these interdependencies

evolves in time. If this is achieved, we would be able to address systemic financial

risks in two directions: on one hand, to understand the role that a network structure

plays in the spread of financial shocks; on the other hand, to understand the impact

of simulated stress events on a network of interdependencies .

To learn financial networks from the data we propose empowering network models

with multivariate graphical models. Graphical models embed the idea that interac-

tions among random variables in a system can be represented in the form of graphs,

whose nodes represents the variables and whose edges shows their interactions. For

an introduction to graphical models see, for example, Pearl (1988); Lauritzen and

Wermuth (1989); Whittaker (1990); Wermuth and Lauritzen (1990); Edwards (1990);

Lauritzen (1996).

Graphical models can be employed to accurately estimate the adjacency matrix,

aimed at measuring interconnectedness between different financial institutions and,

in particular, to assess central ones that may be the most contagious or the strongest

source of contagion (as in Billio et al., 2012). Network models use the correlation

matrix estimated from the data to derive the adjacency matrix. Although useful,

this approach takes into account only the marginal (indirect) effect of a variable on

another, without looking at the (direct) effect of other variables. In our context,

it does not distinguish between the direct and the indirect effect of a country on

other ones. Graphical models, instead, focus on the partial correlation matrix, that

is obtained by measuring only the direct correlation between two variables. A partial

correlation coefficient can express the change in the expected value of a dependent

variable, caused by a unitary change of the independent variables, when the remain-

ing variables are held constant. In so doing, the effect of a bank on another is split

into a direct effect (estimated by the partial correlation) and an indirect effect (what

is left in the marginal correlation). Here we follow this approach and derive the adja-
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cency matrix, the main input of a financial network model, not from the correlation

matrix but, rather, from the partial correlation matrix obtained from the application

of graphical models to the available data.

To achieve this aim we consider multivariate Gaussian graphical models, defined

in terms of Markov properties, that is, conditional independencies associated with

the underlying graph (Lauritzen, 1996; Whittaker, 1990). While traditional network

models assume fixed graphical structures (such as fully connected graphs), the struc-

ture of a graphical model is typically random, and can be learned from the data, as

a good fitting structure. Such a model selection can be performed by testing, in a

stepwise procedure, the statistical significance of conditional independencies, which

are equivalent to specified zeroes among certain partial correlation coefficients which,

in turn, are equivalent to missing edges in the network representation.

The use of graphical models can thus help to have a deeper understanding of

the relationships between variables, by distinguishing direct from indirect relation-

ships. From their appearance in the 90’s, several methodological advances have been

made for graphical models. Less so in terms of applications, especially in financial

economics. In our opinion, this requires to solve two main problems.

First, the assumption of a random graph may be an important added value in

situations where little a priori knowledge is present, as is the case for systemic risk.

In addition, results should not be conditioned on single models, but, rather, should

be model averaged, to avoid suboptimal inferences. Second, graphical models do not

allow to decompose asset return correlations into market specific and idiosyncratic

effects, as in the classical CAPM models (Sharpe, 1964). This assumption seems to

be restrictive in finance.

The first problem can be solved with the use of more advanced, Bayesian, graph-

ical models, as shown in Madigan and York (1995), Giudici and Green (1999) and,

more recently, Ahelegbey et al. (2015). In particular, Madigan and York (1995) and
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Giudici and Green (1999) propose a Bayesian model able to consider all possible

graphical structures, choose the best fitting ones and, if necessary, average inferen-

tial results over the set of all models. The methodological contribution of this paper

can solve the second problem as well. We propose Bayesian hierarchical graphical

models, that allow correlations to be decomposed, as in a CAPM-like model, into a

country (market) effect plus a bank-specific (idiosyncratic) effect.

The applied contribution of this paper is in the understanding of whether and

how a distress probability is transmitted between different banks, that belong to

different countries, with different regulatory systems. The world financial market is

not perfect: many frictions exists between different countries, mainly due to different

regulations, given the fundamental relevance of banks for the economies to which

they belong. A very interesting case study, in this respect, is the Eurozone, where

the European Central Bank (ECB) has recently taken over the supervision of the

largest banks (with total assets greater than 30bn euro) in each of the member states.

Thus, eventually, the euro banking market will evolve into a single market but, at

the time being, it is still fragmented. It thus becomes timely and rather interesting

to study the degree of convergence towards a European banking union, looking at

the comovements between stock returns of the banks in the area, that may give

important insights.

Finally, we remark that the paper also contributes to computational statistics as,

in order to apply the proposed hierarchical model to the large p/small n database at

hand, a novel Markov Chain Monte Carlo algortihm, based on Bayes factor thresh-

olding, has been developed and implemented in a Matlab routine, available upon

request.

The paper is organized as follows. In Section 5.2 we review the relevant literature,

both from a methodological and an applied viewpoint. In Section 5.3, we introduce

Bayesian graphical models methodology, and show their theoretical implications. In
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Section 5.4 we introduce a simulated data application that is helpful for the set-up

of our computational methodology. Section 5.5 describes the empirical results ob-

tained with the application of the Bayesian hierarchical graphical models to analyze

European Banks Risk Network.

5.2 Literature Review

The study of bank failures is important for two reasons. First, an understanding of

the factors related to bank failure enables regulatory authorities to supervise banks

more efficiently. In other words, if supervisors can detect problems early enough, reg-

ulatory actions can be taken, to prevent a bank from failing and, therefore, to reduce

the costs of its bail-in, faced by shareholders, bondholders and depositors; as well

as those of its bail-out, faced by the governments and, therefore, by the taxpayers.

Second, the failure of a bank very likely induces failures of other banks or of parts

of the financial system as a whole. Understanding the determinants of a single bank

failure may thus help to understand the determinants of financial systemic risks,

which could be due to microeconomic, idiosyncratic factors or to macroeconomic

imbalances. When problems are detected, their causes can be removed or isolated,

to limit “contagion effects”.

The literature on predictive models for single bank failures is relatively recent:

until the 1990s, most authors emphasize the absence of default risk of a bank (see

e.g. Gup, 1998; Roth, 1994), in the presence of a generalized expectation of state

interventions. However, in the last years we have witnessed the emergence of financial

crisis in different areas of the world, and a correlated emphasis on systemic financial

risks. In addition, government themselves are less willing than before to save banks,

partly for their financial shortages and partly for a growing negative sentiment from

the public opinion. As a consequence of all of these, recent research trends have seen

a growing body of literature on bank failures, and systemic risks originating from
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the above mentioned sentiments and actions.

The studies on bank failures can be classified into three main streams: financial

market models, scoring models and macroeconomic models.

Financial market models originate from the seminal paper of Merton (Merton,

1974), in which the market value of a bank’s asset, typically modeled as a diffusion

process, is insufficient to meet its liabilities. Due to its practical limitations, Merton’s

model has been evolved into a reduced form (see e.g. Vasicek, 1984), leading to a

widespread diffusion of the resulting model, and the related implementation in Basel

II credit portfolio model. For a review of this evolution see, for example, the book

by Resti and Sironi (2007). In order to implement market models, diffusion process

parameters and, therefore, bank default probabilities can be obtained on the basis

of share price data that can be collected almost in real time from financial markets.

Market data are public, relatively easy to collect and are quite objective. On the

other hand, they may not reflect the true fundamentals of the underlying financial

institutions, and may lead to a biased estimation of the probability of failure. Indeed,

the recent paper by Idier et al. (2013) and Fantazzini and Maggi (2012) show that

market models may be good in very short-term predictions, but not in medium and

long-term ones, where the importance of fundamental financial data emerge.

Scoring models are based only on financial fundamentals, taken from the publicly

available balance sheet information. Their diffusion followed the seminal paper by

Altman (Altman, 1968), which has induced the production of scoring models for

banks themselves: notable examples are Sinkey (1975), Tam and Kiang (1992), Rose

and Kolari (1985), Cole and Gunther (1998). The development of the Basel regulation

and the recent financial crisis have further boosted the literature on scoring models

for banking failure predictions. Recent examples include Arena (2005), Davis and

Karim (2008) who use logit models; Vazquez and Federico (2012) who use a probit

model and Klomp and Haan (2012) who use a principal component factor approach.
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Systemic risk can indeed also be defined as the risk that the failure of one signif-

icant financial institution can cause or significantly contribute to the failure of other

significant financial institutions, as a result of their linkages to each other (see e.g.

Billio et al., 2012). Trying to address this aspect of systemic risks, researchers have

recently proposed network models, that can help model the systemic risk in financial

systems which display complex degrees of connectedness. In particular, Billio et al.

(2012) propose several econometric measures of connectedness based on principal

component analysis and Granger-causality networks. They find that hedge funds,

banks and insurance companies have become highly interrelated over the past decade,

likely increasing the level of systemic risk through a complex and time-varying net-

work of relationships. Chen et al. (2013a) and Barigozzi and Brownlees (2014) follow

similar approaches.

The emergence of systemic risks has also directed the attention on macroeconomic

models to predict bank failures, especially for those countries whose economies are

heavily dependent on banks. As in Merton’s reduced form model, the main intuition

behind these models is to decompose failure risk into an idiosyncratic component,

that can be studied using microeconomic data, and a systematic component. Scoring

models have been extended in different ways: interesting developments include the

incorporation of macroeconomic components (see e.g., Koopman et al., 2011; Mare,

2012; Kanno, 2013; Kenny et al., 2013) ; and the explicit consideration of the credit

portfolio, as in the symbol model of De Lisa et al. (2011) - that allows stress tests

of banking asset quality and capital, as emphasized in the recent paper by Halaj

(2013). The problem with scoring models is that they are mostly based on balance

sheet data, which are different from the market and has a low frequency of update

(annual or, at best, quarterly) and depends on subjective strategic choices. They

may thus be good to predict defaults (especially in the medium term) but not in the

assessment of systemic risks, which occur very dynamically and with short notice.
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Our focus here will not be on the prediction of single defaults but rather, on how

such prediction are correlated with each other, in a systemic perspective. The re-

search literature on systemic risk is very recent, and follows closely the developments

of the recent financial crisis. A comprehensive review is discussed in Brunnermeier

and Oehmke (2012) who also provide a historical comparison of different crisis. Spe-

cific measures of systemic risk have been proposed, in particular, by (Adrian and

Brunnermeier, 2010; Acharya et al., 2010; Brownlees and Engle, 2011; Huang et al.,

2012; Billio et al., 2012; Segoviano and Goodhart, 2009). All of these approaches are

built on financial market price information, on the basis of which they lead to the

estimation of appropriate quantiles of the estimated loss probability distribution of

a financial institution, conditional on a crash event on the financial market. These

literature developments have led to and are still contributing to the identification of

the Systemically Important Financial Institutions (SIFIs), at the global and regional

level. They however do not address the issue of how risks are transmitted between

different institutions.

In this paper we aim to provide a model for the estimation of contagion between

banks supported by the data using hierarchical graphical models.

5.3 Hierarchical Bayesian Graphical Models

In this section we review the basics of Bayesian graphical models and, then, describe

the methodology and the computational approach we propose.

From a statistical viewpoint, while correlations can be estimated, on the basis of

the N observed time series of data, assuming that, at each time point, observations

follow a multivariate Gaussian model, with unknown variance-covariance matrix Σ,

partial correlations can be estimated assuming that the same observations follow a

graphical Gaussian model, in which Σ is constrained by the conditional independence

described by a graph.
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Let X “ pX1, ..., XNq P R
N be a random vector distributed according to a mul-

tivariate normal distribution NNpµ,Σq. In this paper, without loss of generality,

we will assume that the data are generated by a stationary process, and, therefore,

µ “ 0. In addition, we will assume throughout that the covariance matrix Σ is non

singular.

Let G “ pV,Eq be an undirected graph, with vertex set V “ t1, ..., Nu, and

edge set E “ V ˆ V , a binary matrix, with elements eij, that describes whether

pairs of vertices are (symmetrically) linked between each other (eij “ 1), or not

(eij “ 0). If the vertices V of this graph are put in correspondence with the random

variables X1, ..., XN , the edge set E induces conditional independence on X via the

so-called Markov properties (see e.g. Lauritzen (1996), Whittaker (1990) or, from an

econometric viewpoint, Carvalho and West (2007) and Corander and Villani (2006)).

More precisely, the pairwise Markov property determined by G states that, for all

1 ď i ă j ď N ,

eij “ 0 ðñ Xi K Xj|XV zti,ju

that is, the absence of an edge between vertices i and j is equivalent to independence

between the random variables Xi and Xj, conditionally on all other variables XV zti,ju.

In our context, all random variables are continuous and it is assumed that X „

NNp0,Σq. Let the elements of Σ´1, the inverse of the variance-covariance matrix,

be indicated as tσiju.It can be shown (see e.g. Whittaker (1990)) that the following

equivalence also holds:

Xi K Xj|XV zti,ju ðñ ρijV “ 0, ρijV “
´σij
?
σiiσjj

(5.1)

where ρijV denotes the ij-th partial correlation, that is, the correlation between Xi

and Xj conditionally on the remaining variables XV zti,ju.

Therefore, by means of the pairwise Markov property, given an undirected graph

G “ pV,Eq, a graphical Gaussian model can be defined as the family of all N -variate
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normal distributions NNp0,Σq that satisfy the constraints induced by the graph on

the partial correlations, as follows:

eij “ 0 ðñ ρijV “ 0, @1 ď i ă j ď N (5.2)

Graphical model uncertainty can be taken into account, along with parameter

uncertainty, within a Bayesian approach, whose main practical advantage is that

inferences on quantities of interest can be averaged over different models, each of

which has a weight that corresponds to its Bayesian posterior probability. See,

for example, Madigan and York (1995), Giudici and Green (1999) and Giudici and

Castelo (2003).

To achieve this aim, the first task is to recall the expression of the marginal

likelihood of a graphical Gaussian model, and specify prior distributions over the

parameter Σ as well as on the graphical structures G. For a given graph G, consider

a sample x of size n from P “ NNp0,Σq, and let Sn be the corresponding observed

variance-covariance matrix. For a subset of vertices A Ă N , let ΣA denote the

variance-covariance matrix of the variables in XA, and define ΣA the corresponding

observed matrix. When the graph G is decomposable the likelihood of a graphical

gausssian model specified by P nicely decomposes as follows (see e.g. Dawid and

Lauritzen (1993)):

ppx|Σ, Gq “
ś

CPC ppxC |ΣCq
ś

SPS ppxS|ΣSq
(5.3)

where C and S respectively denote the set of cliques and separators of the graph G,

and:

P pxC |ΣCq “ p2πq´
n|C|

2 |ΣC |
´n

2 exp
„

´
1
2trtSCΣ´1

C u



(5.4)

and similarly for P pxS|ΣSq.

Dawid and Lauritzen (1993) propose a convenient prior for the parameters of the

above likelihood, which is named hyper Wishart. It can be obtained from a collection
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of clique specific marginal Wishart as follows:
ś

CPC lpΣCq
ś

SPS lpΣSq
(5.5)

where lpΣCq is the density of a Wishart distribution, with hyper-parameters TC and

α, and similarly for lpΣSq. For the definition of the hyper-parameters, we follow

Giudici and Green (1999) and let T0C and T0S be the sub-matrices of a large matrix

T0 of dimension N ˆ N , and choose α ą N . To complete prior specification, for

P pGq we assume a uniform prior over all possible graphical structures.

Dawid and Lauritzen (1993) show that, under the previous assumptions, the

posterior distribution of the variance-covariance matrix Σ, is a hyper-Wishart distri-

bution with α `N degrees of freedom and a scale matrix given by:

Tn “ T0 ` Sn (5.6)

where Sn is the sample variance-covariance matrix.

The proposed prior distributions can also be used to integrate the likelihood

with respect to the unknown random parameters, obtaining the so-called marginal

likelihood of a graph, which will be the main metric for model selection. This follows

from

P pX|Gq “ P pX|Σ, GqP pΣq (5.7)

Giudici and Green (1999) show that such marginal likelihood is equal to:

ppx|Gq “

ś

CPC ppxCq
ś

SPS ppxSq
(5.8)

where

P pxCq “ pπq
´
n|C|

2
kp|C|, α` nq

kp|C|, αq

detpT0Cq
α{2

detpTnCqpα`nq{2
(5.9)

where kp¨q is a normalization constant, given by: kpx, yq “
śx

j“1 Γpy`1´j
2 q, T0C

and TnC are sub-matrices corresponding to xC of a large matrix T0 and Tn. The

120



5.3. HIERARCHICAL BAYESIAN GRAPHICAL MODELS

metric expressed by the above marginal likelihood is the basic ingredient for Gaussian

graphical model selection and averaging, as will now be shown.

According to the conventional Bayesian paradigm, being the model space discrete,

the best graphical model will be that with the highest a posteriori probability. By

Bayes rule, the posterior probability of a graph is given by:

P pG|Xq9P pX|GqP pGq (5.10)

and, therefore, since we assumed a uniform prior over the graph structures, maxi-

mizing the posterior probability is equivalent to maximizing the marginal likelihood

metric. For graphical model selection purposes we shall thus search in the space of

all possible graphs for the structure such that

G˚ “ arg max
G

P pG|Xq9P pX|Gq (5.11)

The Bayesian paradigm does not force conditioning inferences on the (best) model

chosen. The assumption of G being random, with a prior distribution on it, al-

lows any inference on quantitative parameters to be model averaged with respect

to all possible graphical structures, with weights that correspond to the posterior

probabilities of each graph. This because, by Bayes’ theorem:

P pΣ|Xq “ P pΣ|X,GqP pG|Xq (5.12)

The above allows to overcome the main drawback of non-Bayesian graphical models,

namely, the fact that, once a model is chosen, all inferences will be conditional on

that model, even if it has a little support from the data (although maximal).

However, in real situations, the number of possible graphical structures may

be very large and we may need to restrict the number of models to be averaged.

This can be done efficiently, for example, following a simulation-based procedure for

model search, such as Markov Chain Monte Carlo (MCMC) sampling, described in

Madigan and York (1995). One of the standard MCMC methods is the Metropolis-

Hastings (MH) algorithm, which is based on an acceptance-rejection scheme. In our
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context, given an initial graph, the algorithm samples a new graph using a proposal

distribution.

We remark that, to guarantee irreducibility of the Markov chain, we follow Giudici

and Castelo (2003) and test whether the proposal is a decomposable graph. Following

Giudici and Green (1999) and Frydenberg and Lauritzen (1989) we apply the concept

of junction tree (see Lauritzen (1996) or Cowell et al. (1999)). More specifically, the

addition of an edge between two nodes is allowed if the two nodes belong to two

different connected components or if the cliques they belong to are connected by a

separator. On the other hand, the removal of an edge is allowed if such edge belongs

to a single clique. After each iteration the junction forest is updated according to

the new organization of the cliques. The newly sampled graph is compared with the

old graph, with a decision rule to either reject or accept the proposed sample. The

proposed graph Gnew is either accepted, or rejected in which case the previous graph

is maintained as Gold. The decision to accept or reject a proposed graph depends on

an acceptance probability. By assuming a uniform graph prior, the log acceptance

probability is given by:

logpAcq “ maxtlogpP pX|Gnewqq ´ logpP pX|Goldqq, 0u (5.13)

5.3.1 Hierarchical Graphical Models

One of the appealing features of graphical models for multivariate time series anal-

ysis is to represent graphically the logical implications as well as the conditional

independence relationships among the variables. In high dimensional settings, it

is extremely hard to extract meaningful information from the complex interaction

among the variables. In addition, learning such complex interactions is computa-

tionally intensive when using standard structure learning schemes. There is a high

chance that the learning algorithm gets trapped, spending much time to learn local

optimum structures which might not be representative A possible solution to the
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trap problem is to add more structure to the graphical model. For example, in the

Bayesian setting, the prior distribution over the graph space can be enriched and

used to penalize complex structures. Another approach, particularly suited for the

applied problem considered in this paper, is to employ hierarchical graphical models:

this will allow structural learning to be localized to groups of variables which however

are not independent and, thus, can borrow inferential strength from each other.

Several researchers have discussed and applied hierarchies in graphical models

(see e.g. Hensman et al., 2013; Gyftodimos and Flach, 2002; Zhang et al., 2005).

The approach proposed in this paper is in the spirit of Guo et al. (2011, 2013) but

from a Bayesian perspective. Suppose we have a large dataset of n random variables,

X “ pX1, . . . , Xnq, that can be grouped into k categories, pZ1, . . . , Zkq, such that the

kth category contains nk variables Zk “ pY1, . . . , Ynkq. Without loss of generality,

we assume that each variable in X belongs to exactly one of the categories, i.e
řk
i“1 ni “ n, and that the observations in the same category are centered along each

variable. To exemplify, the random variables in X can be banks that can be grouped

into k different countries (represented as Z) with each country consisting of a number

of banks (represented as Y ), so that X “ pY, Zq.

In this context, we consider Z as a compressed representation of the banking

system in different countries. Based on the classification, we build a two-level hierar-

chical model composed of: a country specific component, that explains relationships

between banking systems of different countries, and an idiosyncratic component that

models relationships between banks in the same country. More formally

P pXq “ P pY, Zq “ P pZqP pY |Zq

To achieve this aim, we introduce a one-way decomposition of the covariance between

any two banks, Xi, Xj P X, that belong, respectively, to countries Za and Zb. Let Gz

be a k ˆ k, 0z1 matrix, representing the structure of between country relationships.
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In our context, all random variables are continuous and it is assumed that X „

Nnp0,Σq, Z „ Nkp0,Φq and Y „ Nnp0,Ψq. We assume that:

σi,j “ gza,b ˝ pφa,b ˝ ψi,jq ` p1´ gza,bq ˝ ψi,j, Xi P Za, Xj P Zb

σi,j “ pφa,a ˝ ψi,jq, Xi, Xj P Za, Xi ­“ Xj

where p˝q is the Hadamard product, gza,b “ Gzpa, bq captures the link between country

Za and Zb, φa,b is the covariance between Za and Zb, and ψi,j is the covariance between

banks Yi and Yj. This decomposition treats φa,b as a common factor controlling any

linkage between two banks Yi and Yj from different countries. On the other hand, ψi,j

measures the covariance between banks Yi and Yj, independent of a country specific

effect.

A nice aspect of the above model is that it can be further decomposed, to ac-

commodate for further grouping effects. For instance, in our specific application, the

term φa,b may be further be decomposed into a macroeconomic country effect plus

a banking sector specific ones, calculating the difference between macroeconomic

log returns (e.g. of the Gross Domestic Product of a country) and capitalization

weighted log returns of the banking sector of a country. In addition, the term ψyi,yj

can also be similarly decomposed in groups, according to bank-specific balance sheet

variables (such as asset size, leverage, etc.).

5.3.2 Efficient Structural Inference Scheme

We now focus on sampling the multivariate instantaneous relationships among ran-

dom variables by allowing for simultaneous interactions. We will do so by extending

the work by Ahelegbey et al. (2015). In large dimensional settings, a common draw-

back of the classical Metropolis-Hastings sampling scheme is the likelihood of spend-

ing much time to learn local optimum structures which might not be representative

of the global optimum structure. Secondly, sampling structures with simultaneous

interactions (undirected links) leads to difficulties in diagnosing convergence of the
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chain. According to Madigan and York (1995), irreducibility is guaranteed on condi-

tion that the structures satisfy acyclic constraints. This makes the standard scheme

not feasible in sampling undirected structures. In this paper, we propose a Markov

chain Monte Carlo scheme that employs a Bayes factor thresholding.

A sketch of the idea is as follows: We initialize the algorithm by assuming a

fully connected structure (Gold). At each iteration, we delete the edge between

two variables Xi and Xj to produce a new structure (Gnew). We then compute the

posterior of the two structures and compute the Bayes factor. By assuming a uniform

graph prior, it can be shown that the log Bayes factor is given by:

logpBF q “ logpP pX |Gnewqq ´ logpP pX |Goldqq

If logpBF q ą τ , where τ ě 0, then the model of the new structure is much pre-

ferred which means that the edge between Xi and Xj must be deleted. However, if

logpBF q ď τ , then the edge between Xi and Xj can be retained. Thus the mechanism

automatically accepts edges between variables leading to improvements in structural

learning.

To sample our two-level hierarchical model, we marginalize out analytically the

parameters of the structural model to obtain an efficient Gibbs sampling algorithm

(e.g., see Casella and Robert, 2004). That is, we sample the parameters and the

relationships in blocks (e.g., see Roberts and Sahu, 1997). Let Gz and Gy be the

structure of the between country and between bank relationships. Thus, our ap-

proach involves sampling from the posterior distribution of the between country

structural relationships pGzq given Ψ, then updating Ψ given pGzq. The next step

involves sampling from the posterior distribution of the between banks structural

relationships pGyq given Ψ, Φ and Gz. Let X “ pZ,Yq where X is the observed

dataset of the variables arranged into Z and Y representing the country specific and

bank specific dataset respectively. The resulting collapsed Gibbs sampler (Liu, 1994)
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consists of the following steps:

1. Sample between country structural relationships: (Gz|Z),

2. Update between country parameters: (Φ|Z, Gz),

3. Sample between banks structural relationships: (Gy|Y ,Z,Φ, Gz),

4. Update between banks parameters: (Ψ|Y ,Z,Φ, Gz, Gy),

See C.2 for details on the MCMC for sampling the relationships and estimating the

parameters.

5.3.3 Centrality Measures

Let A be n ˆ n, 0z1 matrix, which we will call the adjacency matrix. Network

statistics can be derived using A: in particular, meaningful summary measures can

be obtained using an appropriate singular value decomposition of such matrix. The

simplest measure of node centrality is the degree which measures the number of

connection of a given node in a network. In the framework of undirected network,

the degree (di) of node i is simply:

di “
n
ÿ

j“1
ai,j

where j represents all other nodes, n is the total number of nodes, and aij is the pi, jq

element of the adjacency matrix of the network, which is defined as 1 if node i is

connected to node j, and 0 otherwise. The centrality measure that has been proposed

in financial network modeling to explain the capacity of an agent to cause systemic

risk, that is, a large contagion loss on other agents, is the eigenvector centrality

(see e.g. Furfine, 2003; Billio et al., 2012). The eigenvector centrality measure is a

measure of the importance of a node in a network. It assigns relative scores to all

126



5.3. HIERARCHICAL BAYESIAN GRAPHICAL MODELS

nodes in the network, based on the principle that connections to few high scoring

nodes contribute more to the score of the node in question than equal connections

to low scoring nodes.

More formally, for the i-th node, the centrality score is proportional to the sum

of the scores of all nodes which are connected to it, as in the following equation:

xi “
1
λ

n
ÿ

j“1
ai,jxj,

where xj is the score of a node j, ai,j is the pi, jq element of the adjacency matrix

of the network, λ is a constant and n is the number of nodes of the network. The

previous equation can be rewritten for all nodes, more compactly, as:

Ax “ λx,

where A is the adjacency matrix, λ is the eigenvalue of the matrix A, with associated

eigenvector x, an n-vector of scores (one for each node). Note that, in general, there

will be many different eigenvalues λ for which a solution to the previous equation

exists. However, the additional requirement that all the elements of the eigenvec-

tor be positive (a natural request in our context) implies (by the Perron-Frobenius

theorem) that only the eigenvector corresponding to the largest eigenvalue provides

the desired centrality measures. Therefore, once an estimate of A is provided, net-

work centrality scores can be obtained from the previous equation, as elements of

the eigenvector associated to the largest eigenvalue.

In our two-level hierarchical model, it follows that the centrality measure de-

composes into a country specific component, and a between banks component. In

addition to centrality measures we will consider, as a summary measure of systemic

risk of a bank, the number of its links with other banks in the systems.
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5.4 Simulation Experiment

To illustrate how our methodology and computational algorithm work, In this Section

we illustrate it with a 6-node simulation experiment of Wang and Li (2012). The

experiment considers a model of n “ 6 variables, with T “ 18 observations, and an

estimated sum of squares S “ T Σ̂ “ TA´1, where the upper triangular matrix of A

is defined as:

A “

¨

˚

˚

˚

˚

˚

˚

˝

1 0.5 0 0 0 0.4
1 0.5 0 0 0

1 0.5 0 0
1 0.5 0

1 0.5
1

˛

‹

‹

‹

‹

‹

‹

‚

(5.14)

Using our proposed algorithm, we run 2000 Gibbs iterations with 200 burn-in ones

and considered three thresholds τ “ 0, 1, 2. The result of the posterior probabilities

of edge presence in the graph are shown in Table 5.1:

pτ “ 0q pτ “ 1q pτ “ 2q
¨

˚

˚

˚

˚

˚

˚

˝

1 0.94 0.02 0.01 0.02 0.83
1 0.94 0.02 0.01 0.02

1 0.93 0.02 0.01
1 0.93 0.01

1 0.94
1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0.96 0.05 0.03 0.04 0.92
1 0.96 0.04 0.02 0.04

1 0.96 0.04 0.03
1 0.96 0.04

1 0.96
1

˛

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˝

1 0.95 0.76 0.76 0.76 0.92
1 0.95 0.77 0.76 0.76

1 0.94 0.78 0.77
1 0.95 0.77

1 0.96
1

˛

‹

‹

‹

‹

‹

‹

‚

Table 5.1: Marginal posterior probabilities of edges for threshold τ “ 0, 1, 2.

Following the idea of testing significance of regression coefficients, we apply a

test for significance of an edge between two variables. We test if the posterior edge

probability is greater than 0.5 under a 95% credibility interval. If this is true, then

the edge is statistically significant, otherwise there is no link between the variables.

We monitor convergence of the MCMC using potential scale reduction factor

(PSRF) of Gelman and Rubin (1992). See C.2 for computational details and con-

vergence diagnostics of both simulated and empirical application of our inference

approach. By comparing our graph estimation performance with the data gener-
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ating process, we observe that fixing a threshold τ “ 0 or 1 produces an accurate

description of the data generating process. According to the scale provided by Kass

and Raftery (1995), using τ “ 0 leads to accepting edges that are not worth more

than a bare mention. However, fixing τ “ 1 produces strong evidence against the

null network. When τ “ 2, we observe from the results that the algorithm over-

estimates the number of links in the network therefore yielding an unsatisfactory

representation of the links. Based on these results, we consider τ “ 1 as a robust

logarithm Bayes factor threshold for our empirical application, that will be presented

in the next Section.

5.5 European Banks Risk Network

In this section we apply our proposed model to the estimation of the systemic credit

risk of the largest listed banks of the Eurozone. We consider the Eurozone because

of the changes in progress in this area, where the European central bank (ECB) start

the take over of the supervision of the largest banks on November 1st, 2014. It is

a gradual process, that aims at replacing the previous fragmented supervision and

regulation (between 17 member states) into a unified one, with common rules and

practices. It thus seems timely and important to focus the analysis on the banks that

belong to this area, with the aim of contributing to identifying the most contagious

institutions, at the super-national level.

In this work we consider only large banks, whose total assets are greater than

30b euros, and that are included in the ECB comprehensive assessment review. As

we aim for an approach that integrates market information with bank-specific data,

we consider only publicly listed banks, for which market data is available. Finally,

in the case of a banking group with more entities that satisfy the above criteria, we

consider only the controlling entity. The complete list of the 45 considered financial

institutions is in Table C.1, with the corresponding ticker code acronyms. To com-
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plete the information, Table C.1 contains, besides bank names and their codes, their

prevalent country, whether they are Systematically Important Financial Institutions

(SIFI) either at the Global or at the Domestic level, their Total Assets from the last

available balance sheet (in thousands of euro), the Year Over Year variation of their

equity returns (in percentage points), and the corresponding standard deviation of

the returns, also in percentage points.

From Table C.1, note that 12 of the 17 eurozone countries have at least one bank

with total assets greater than 30bn euro. The five missing countries are Estonia, Lux-

embourg, Malta, Slovakia and Slovenia. Apart from the missing (small) countries,

Table C.1 underlines a remarkable difference in the banking structure of the different

countries, that is to be remembered when interpreting the obtained results. Some

countries have a large number of banks in the sample: Italy, the third populated

country, has 12, Spain, the fourth populated country, has 7. Others have instead

a limited number of banks: Germany, the most populated country, has only 5, and

so does France, the second populated country. Note that Greece, a small country,

with the most troubled eurozone economy, has 4. For comparison purposes, the ECB

assessment sample (that includes unlisted banks) contains a total of 130 banks in

the Eurozone, among which 24 German banks, 13 French, 15 Italian, 16 Spanish

and 4 Greek ones. Looking at country representation note that our sample of banks,

which does represent about a third of all banks in the ECB list, is overrepresented

in terms of Greece banks (it contains them all) and Italian banks (has about 80% of

them), and underrepresented in terms of German banks (has about 20% of them).

The above bias is the result of the structure of the banking systems in the different

countries, and especially of medium sized banks, that typically operate at a local

(subnational) level: while most such banks, in Italy (and in Greece), are listed, in

Germany this is rarely the case, with other countries lying in between.

The market and financial data that we considered is from Bankscope, a com-
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prehensive database for individual banks across the world provided by the private

company Bureau Van Dijk. In particular, the information that we use covers a year

of price stock data, just before the start of the ECB supervision, with observations

on a weekly basis. Precisely, our observation period goes from October 22, 2012, to

October 18, 2013. From the Bankscope database, we have extracted the weekly clos-

ing stock prices for each bank, Pt and, then, transformed them into weekly returns,

defined as: Rt “ logpPt{Pt´1q, where t is a week in the last year and t´ 1 the week

that precedes it.

We now present the results from the application of Bayesian graphical models to

the weekly log returns of the 45 considered banks. We applied to such data both

a (non-hierarchical) Bayesian graphical model, and our proposed Bayesian hierar-

chical models that enlarges the state space of each bank log return variables with

country specific log return variables, obtained averaging the returns of the banks

in each country. This inclusion, if significant, is expected to lower the connections

between banks, and especially cross-border ones, as connections between banks may

be replaced by connections between countries.

Figure 5.1a shows the unconditional graphical network model between banks with

the highest a posteriori probability, in the non hierarchical model, and Figure 5.1b

the same best model, conditional on the country to country relationships, in the

hierarchical model. From Figure 5.1a note that the model is highly interconnected,

and it is rather difficult to interpret. The only apparent message conveyed is about

banks that appear ”peripheral”, with a lower degree and a lower centrality measures.

Such banks range from the troubled Greek banks Alpha bank and Piraeus Bank, and

Dexia bank, to medium size banks such as Wustenrot and Wurttenbergische in Ger-

many, Pohjola Bank in Finland, UBI in Italy, and two internationally oriented SIFIs

such as Banco de Bilbao and BNP. These banks, because of their lower centrality,

seem to appear less contagious/subject to contagion.
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Figure5.1: Comparison of Inter-Bank connections for banks in the Euro area from October, 2012,
to October, 2013. (5.1a): a Non-Hierarchical Network and (5.1b): a Hierarchical Network. Banks
are represented using their Bank Codes (See Table C.1 for Bank Names).

Figure 5.1b, instead presents a much clearer picture: the total number of links

drop from 711 to 95. There is a remarkable difference between the unconditional

results in Figure 5.1a and those obtained conditionally on a country effect, in Figure

5.1b. The most evident difference is the lower degree of connectivity between banks,

especially at the cross-border level. This means that the country effect explains a lot

of the co-movements between the returns of the banks. Table 5.3, that contains, for
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each bank, the centrality measure and the total number of connections, gives further

evidence in this direction: indeed, most banks have connections mainly with banks of

their country, and this is a further confirmation of the fact that share prices of banks

heavily depend on the risk of the countries in which they operate. This also explains

why the most central and connected banks in Table 5.3 are Italian banks, which are

more represented in the sample. To the other side of the spectrum, German banks,

that appear disconnected from other countries’ banks. Similarly, Greek banks form

their own circle of troubled banks, together with the Spanish Bankia.

Besides the existence of a country effect, Table 5.3 emphasizes that some Sys-

tematically Important Financial Institutions (SIFI in Table 1) are potentially more

contagious than others, as they are more connected. This is the case of Unicredit,

heavily linked to most italian banks; of ING, strongly interconnected at an interna-

tional level; and, although to a lesser extent, for the French banks BPCE, Credit

Agricole and Societe General and the Spanish Banco Santander. Other SIFIs, in-

cluding the two German ones Deutsche bank and Commerzbank, as well as BNP

Paribas, are less central.

We now examine in detail the inter country linkages estimated by the hierarchical

model. Figure 5.2 shows the between country graphical network that is learned

(model averaged) from the data, and Table 5.2 gives the corresponding centrality

measures. To aid interpretation, we have added a marker for the estimated sign of

the partial correlation found: positive or negative.

From Figure 5.2 and Table 5.2, notice that country financial systems are not

much connected, confirming the image of Europe as a “market with financial fric-

tions”. In particular, due to the still persisting strong crisis, that generates high credit

loss impairments, southern European countries, such as Greece, Spain and Italy are

connected with each other. Similarly, so are stronger economies such as Germany,

Austria and Finland. France act as gates between troubled southern countries and
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Figure5.2: Inter-Country connections in the Euro area from October, 2012, to October, 2013.
AT stands for Austria, BE for Belgium, CY for Cyprus, DE for Germany, ES for Spain, FI for
Finland, FR for France, GR for Greece, IE for Ireland, IT for Italy, NL for the Netherlands and
PT for Portugal. The color of links indicate the signs of the partial correlations: red for negative
and blue for positive.

Rank Code Country Eig.V Degree Num. Banks YOY Stdev

1 PT Portugal 0.4497 5 5 5.24 4.64
2 FI Finland 0.4148 5 1 24.34 4.52
3 AT Austria 0.3714 5 7 15.45 3.80
4 FR France 0.3695 5 3 11.21 6.68
5 NL Netherland 0.3692 4 1 59.85 8.36
6 IT Italy 0.3412 4 12 -10.39 9.49
7 DE Germany 0.1895 2 5 16.04 4.92
8 ES Spain 0.1818 3 2 -61.51 10.98
9 CY Cyprus 0.1178 2 1 44.17 4.96
10 IE Ireland 0.1174 2 2 16.18 4.63
11 GR Greece 0.0438 1 4 -24.67 11.65
12 BE Belgium 0 0 2 24.16 4.00

Table 5.2: Inter-Country centrality measures from October, 2012, to October, 2013.

stronger ones, along with the Netherlands and Portugal whose banks have a high

international exposure. Finally, Belgium, Ireland and Cyprus, smaller economies,

follow very specific paths: Belgium, disconnected, because of the very different be-

haviour of its two banks: Dexia, under restructuring, and KBC, healthier; Cyprus,

that went through a dramatic financial crisis, in the last year; Ireland, whose banks

have gone through a year of gains, that followed years of crisis.

Indeed, looking at Table 5.2, the most contagious countries seem France, Portu-
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gal, Finland, Austria and Netherlands. While the French economy is indeed a gate

between southern and Northern european economies, the other centralities can be

explained by the multinational activities of the banks of the related countries.

Having estimated the country-to-country connections, we now look in detail the

interdependencies between banks, that emerge from Figure 5.1b. As already re-

marked, Table 5.3 gives the corresponding numeric description. In particular, it

gives, for each bank, its eigenvalue centrality measure, and the total number of links

in the conditional model. Such total number is split between the within country

links and the cross-border links of each bank.

We first focus on the within country links that are estimated by the Bayesian

model averaged hierarchical graphical model. Figure 5.3 extracts from Figure 5.1b

the bank relationships that are learned from the data, within each country. A first

remark is that, conditionally on the country-to country relationships, the number of

links between banks, within country, decreases from 96 to 58. The results in Figure

5.3 can be read off jointly with the column of Table 5.3 that shows the Within

Country links, country by country. We focus on the largest ones.

Italy

Figure 5.4 shows that Italian banks seem to rotate around Unicredit, and Intesa

San Paolo, as well as with the investment bank Mediobanca. Among the other

banks the most central ones are the cooperative territorial banks such as Popolare di

Milano, Banca Popolare di Sondrio, Credito Valtellinese and Banca Popolare Emilia

Romagna, indeed linked with each other. Note that the two most troubled banks,

Monte dei Paschi di Siena and Banca Carige, have different centrality: the former is

more connected and, therefore, can spread its distress among more neighbours.

We also underline that a remarkable aspect of the model is that it seems to be

able to capture even regional (subnational) links between banks, expression of the
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Code Bank Name Country Eig.V Degree
Tot W-C A-C

1 PMI Banca Popolare di Milano Italy 0.3995 14 9 5
2 UCG UniCredit Italy 0.3314 11 10 1
3 BPSO Banca Popolare di Sondrio Italy 0.3052 9 7 2
4 CVAL Credito Valtellinese Italy 0.2587 8 6 2
5 BMPS Banca Monte dei Paschi di Siena Italy 0.2557 9 7 2
6 ISP Intesa Sanpaolo Italy 0.2552 7 6 1
7 MB Mediobanca Italy 0.2482 7 7 0
8 BPE Banca popolare Emilia Romagna Italy 0.2324 7 6 1
9 BCP Banco Comercial Portugues Portugal 0.2289 8 2 6
10 BES Banco Espirito Santo Portugal 0.2145 8 2 6
11 CE Credito Emiliano Italy 0.1999 6 5 1
12 BPI Banco BPI Portugal 0.1879 6 2 4
13 INGA ING Groep Netherland 0.1751 9 0 9
14 POH1S Pohjola Bank Oyj Finland 0.1490 7 0 7
15 UBI Unione di Banche Italiane Italy 0.1437 4 4 0
16 CRG Banca Carige Italy 0.1375 5 3 2
17 BP Banco Popolare Italy 0.1325 6 2 4
18 BKT Bankinter Spain 0.1081 7 4 3
19 KN Natixis-BPCE Group France 0.0921 5 1 4
20 SAB Banco de Sabadell Spain 0.0732 3 2 1
21 CABK Caixabank Spain 0.0620 4 3 1
22 ACA Credit Agricole France 0.0530 4 2 2
23 GLE Societe Generale France 0.0525 6 4 2
24 SAN Banco Santander Spain 0.0461 5 2 3
25 POP Banco Popular Espanol Spain 0.0396 2 1 1
26 BNP BNP Paribas France 0.0360 3 2 1
27 BBVA Banco Bilbao Vizcaya Argentaria Spain 0.0198 2 2 0
28 RBI Raiffeisen Bank International Austria 0.0195 2 1 1
29 CC CIC Credit Mutuel Group France 0.0067 1 1 0
30 EBS Erste Group Bank Austria 0.0025 1 1 0
31 BIR Bank of Ireland Ireland 0 0 0 0
32 ALPHA Alpha Bank Greece 0 2 2 0
33 EUROB Eurobank Ergasias Greece 0 0 0 0
34 TPEIR Piraeus Bank Greece 0 2 2 0
35 ETE National Bank of Greece Greece 0 3 2 1
36 BKIA Bankia Spain 0 1 0 1
37 DBK Deutsche Bank Germany 0 2 2 0
38 CBK Commerzbank Germany 0 0 0 0
39 DEXB Dexia Belgium 0 0 0 0
40 KBC KBC Group Belgium 0 0 0 0
41 CPB Bank of Cyprus Cyprus 0 0 0 0
42 WUW Wustenrot & Wurttembergische Germany 0 2 2 0
43 ARL Aareal Bank Germany 0 2 2 0
44 IKB IKB Deutsche Industriebank Germany 0 0 0 0
45 AIB Allied Irish Banks Ireland 0 0 0 0

Table 5.3: Inter-Bank centrality measures from the Hierarchical Network for banks in the Euro
area over the period October, 2012, to October, 2013. Tot : Total Degree, W-C : Within Country
Degree, and A-C : Across Country Degree.

fact that banks may share the same lenders and, therefore, similar risks. This is the

case for: CVAL and BPSO , both operating mainly in the Lombardy region; BP and

UBI, both operating in the north center-east region; BPE and CE both operating in

the Emilia Romagna region.
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Figure5.3: Comparison of Within-Country connections over the period October, 2012, to Oc-
tober, 2013. (5.3a): a non-Hierarchical Network and (5.3b): a Hierarchical Network. Banks are
represented using their Bank Codes (See Table C.1 for Bank Names). The color of links indicate
the signs of the partial correlations: red for negative and blue for positive.

Spain

In the case of Spain, the territorial banks Bankinter and Caixabank are the most

central, within country. The two large banks Santander and Banco de Bilbao are less

central, but related to each other. Finally, Bankia is disconnected from the others,

due to its state led restructuring. Considerations on regional dependences can be

137



5.5. EUROPEAN BANKS RISK NETWORK

BMPS

BPE

UCG
ISP

PMI

UBI

MB

CE

BPSO
CRG

CVAL

BP

Figure5.4: Inter-Bank connections in Italy over the period October, 2012, to October, 2013.
UniCredit pUCGq, Intesa Sanpaolo pISP q, Banca Monte dei Paschi di Siena pBMPSq, Unione
di Banche Italiane pUBIq, Banco Popolare pBP q, Mediobanca pMBq, Banca popolare Emilia Ro-
magna pBPEq, Banca Popolare di Milano pPMIq, Banca Carige pCRGq, Banca Popolare di Sondrio
pBPSOq, Credito Emiliano pCEq and Credito Valtellinese pCV ALq.

drawn for spanish banks in a similar fashion to Italiian ones.

France

In France the Systematically Important Institution Societe Generale acts as a gate

between the territorial bank groups BPCE and Credit Mutuel and the larger groups:

BNP Paribas and Credit Agricole.

Germany

In Germany the Systematically Important Deutsche Bank is connected to both

Aareal Bank and Wustenrot, while Commerzbank and IKB are isolated, with their

respectively bad and good performances.

Greece

All Greek banks but Eurobank (involved in a restructuring plan) are related with

each other, and this reflects the fact that they reflect a common deep financial crisis

of the country.
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5.5.1 Discussion

From the above discussion, the existence of a country effect, that determines sta-

tistical correlations and dependencies between banks, is clear. From an economical

viewpoint such effect can be explained as follows. On the asset side, banks acts as

lenders and, thus, if the economy is doing badly, so do banks, as enterprises do not

repay the given credit and/or go default. In addition, countries with high public

debts typically persuade banks to buy the related government securities. When the

economy is badly performing, the value of such bond decreases. On the liability side,

depositors from troubled countries typically put less money in banks or withdraw

it. Furthermore, when a bank does badly, the government may intervene, and cap-

italize it buying a relevant portion of shares. Because of this inter-linkage between

banks and their countries, we expect stock prices of banks to be highly determined

by a country risk effect, which may increase the interconnections between banks in

troubled countries, siuch as southern European ones.

We now look at bank to bank connections, that are estimated by our model, across

countries, rather than within each country. Figure 5.5 shows the across country

between bank network that is learned from the data, extracted from 5.1b. The

results in Figure 5.5 can be read off jointly with the column of Table 5.3 that shows

the Across Country links.

We remind the reader that, on the basis of the assumptions of the proposed

hierarchical model, the less a country is connected, the less likely the presence of

significant cross border relationships for its banks. To exemplify, a cross border

correlation for a German (or an Irish) bank is less likely to remain in the model than

a similar (in size) cross border correlation for a French (or a Portoguese) bank, as

France (and Portugal) are much more central than Germany (and Belgium) in the

country-to-country network.
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Figure5.5: Comparison of Inter-Bank connections across countries in the Euro area over the period
October, 2012, to October, 2013. (5.5a): a Non-Hierarchical Network and (5.5b): a Hierarchical
Network. Banks are represented using their Bank Codes (See Table C.1 for Bank Names). The
color of links indicate the signs of the partial correlations: red for negative and blue for positive.

From Figure 5.5, notice that the number of connections significantly decreases,

from 615 to 37, much more than what do the within country connections. From the

figure and Table 5.3, the most connected banks, at the cross border level, are either

banks in small countries, such as ING, Pohjola, Banco Commercial Portoguese and

Banco Espirito Santo, or multinational SIFIs such as Unicredit and Societe Generale.

Notice also the high centrality of territorial banks such as Banca Popolare di Milano,
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Banco Popolare, Banco BPI and BPCE, presumably as they have relevant portions of

shares in the hand of international investment funds, that look at them with common

portfolio based strategies.

Another interesting remark that can be drawn from Figure 5.5 concerns the banks

with no cross-border connections: the Greek and the German banks, whose country,

as already seen, is disconnected from the others; the Irish banks which have no

specific connections beyond the aggregate country ones and, finally, the Bank of

Cyprus, Bankia and the Belgian banks.

A final remark concerns the comparison between SIFIs, whose contagion is the

most dangerous beacuse of their asset size. The most central ones appear Unicredit,

ING, and the French banks Societe Generale, BPCE and Credit Agricole. Banco

Santander, BNP Paribas and Banco Bilbao are connected, but less then the previous

ones; Commerzbank, Dexia, and Deutsche Bank are the least connected.

For sensitivity analysis, we run our algorithm with different log Bayes factor

thresholds, τ “ 0 and τ “ 2, (see C.3). Our results, summarised in Table C.2 show

that the results do not differ considerably from previous ones but the corresponding

networks are, respectively, less or more interconnected.

5.6 Conclusions

Financial network models are a useful tool to model interconnectedness and sys-

temic risks in financial systems. Such models are essentially descriptive, and based

on highly correlated networks. The motivation of this paper is to provide a stochas-

tic framework for financial network models, aimed at a more parsimonious and more

realistic representation. The paper contains two main research contributions in this

direction. First we have introduced Bayesian Gaussian graphical models in the field

of systemic risk modelling, thus estimating the adjacency matrix of a network in

a robust and coherent way. Following this approach, (Bayesian) confidence inter-
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vals for the centrality measures can be easily obtained, from the simulated output.

Second, we have proposed a hierarchical Bayesian graphical model that can usefully

decompose dependencies between financial institutions into correlations into between

countries and correlations between institutions, within and/or across countries.

We have applied our proposed methods to the largest Eurozone banks, with the

aim of identifying central institutions, more subject to contagion of or, conversely,

whose failure could result in further distress or breakdowns in the whole system.

Our results show that, in the transmission of the perceived default risk, there is a

strong country effect, that reflects the weakness and the strenth of the underlying

economies. Besides the country effect, the most central banks appear the large

international ones, especially if from a relatively small country.

From an applied viewpoint, in the paper we have considered only stock market

data and not balance sheet data. This because the latter is typically backward-

looking, whereas market data incorporate future expectations. We believe, however,

that the two sources of information are complementary and should be combined in a

methodological extension of our work, possibly also considering “soft” information,

that may be “forward looking”, such as that present in social network data.
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Chapter 6

Conclusion

6.1 Summary

This thesis is motivated by the increase in attention and application of econometric

methods for systemic risk analysis mainly through network models. More specifically,

empirical studies on systemic risk have shown that networks reflect the architecture

of interactions that arise among financial institutions and can provide insight into

the structure and stability of the financial system. The network approach has shown

to be very useful in understanding the global financial system as a web of intercon-

nected institutions, where linkages among institutions helps to analyze contagion,

spillover effects and mechanisms for propagating risk. The thesis contributes to the

literature on network econometrics by providing new techniques for building models

that enhance our understanding of the economic and/or financial system.

In Chapter 2, we review the literature on graphical models from a multidisci-

plinary perspective and their application in the context of systemic risk and financial

contagion. We discussed potential applications of such models in econometrics and

finance. We also demonstrate empirically the application of the Bayesian approach

to graph structural inference on financial time series. We consider the dataset of

Billio et al. (2012) on the monthly return indexes of hedge funds, brokers, banks
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and insurance companies over two samples: 1994-2000 and 2001-2008. Our result

corroborate the findings of Billio et al. (2012), with evidence of a higher intercon-

nection between 2001-2008 leading to the global financial crisis between 2007-2009.

The evidence also suggests that insurance companies played a central role in the

interconnectedness among the financial institutions during the period. We extended

the application to analyze the volatility connectedness in the European stock mar-

ket. The result shows that, the graphical (joint estimation) method allows us to

extract a dependence patterns more suitable to model the complex relationships in

the European stock market than the Granger-causality (pairwise estimation). We

find evidence that Banks and Insurance companies are more central in the “fear

connectedness” (Diebold and Yilmaz, 2014) expressed by market participants in the

financial sector of the Euro-area.

In Chapter 3, we propose a Bayesian, graph-based approach to identification

in vector autoregressive (VAR) models. In our Bayesian graphical VAR (BGVAR)

model, the contemporaneous and temporal causal structures of the structural VAR

model are represented by two different graphs. We also provide an efficient Markov

chain Monte Carlo algorithm to estimate jointly the two causal structures and the

parameters of the reduced-form VAR model. The BGVAR approach is shown to

be quite effective in dealing with model identification and selection in multivariate

time series of moderate dimension, as those considered in the economic literature.

In the macroeconomic application the BGVAR identifies the relevant structural re-

lationships among 20 US economic variables, thus providing a useful tool for policy

analysis. The financial application contributes to the recent econometric literature

on financial interconnectedness. The BGVAR approach provides evidence of a strong

unidirectional linkage from financial to non-financial super-sectors during the 2007-

2009 financial crisis and a strong bidirectional linkage between the two sectors during

the 2010-2013 European sovereign debt crisis.
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In Chapter 4, we propose a model selection approach to multivariate time series

of large dimension by combining graph-based notion of causality with the concept

of sparsity on the structure of dependence among the variables. In particular, we

build on the application of fan-in restriction for graphical models by proposing a

sparsity-inducing prior distribution that allows for different prior information level

about the maximal number of predictors for each equation of a VAR model. We

discuss the joint inference of the temporal dependence in the observed series and the

maximum lag order of the process, with the parameter estimation of the model. The

applied contribution focuses on modeling and forecasting selected macroeconomic

and financial time series with many predictors. Our result shows a gain in predictive

performance using our sparse graphical VAR.

In Chapter 5, we develop a stochastic framework for financial network mod-

els, aimed at a more parsimonious and more realistic representation. We introduce

Bayesian Gaussian graphical models in the field of systemic risk modeling, by esti-

mating the adjacency matrix of a network of financial institutions in a robust and

coherent way. In addition, we propose a hierarchical Bayesian graphical model that

can usefully decompose dependencies between financial institutions into linkages be-

tween different countries financial systems and linkages between banking institutions,

within and/or across countries. This is applied to study the largest banks in the Euro-

area with the aim of identifying central institutions. More specifically to understand

how linkages of inter-country systems contribute to the contagion process among

banks. Our results show that, in the transmission of default risk, there is a strong

country effect, that reflects the weakness/strength of the underlying economies. Be-

sides the country effects, we observe that banks that are central to the transmission

of default risk are the large international banks.
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6.2 Extensions and Further Research

The Bayesian graphical approach as presented in this work has a broad range of real

world applications, especially in macro-econometrics as well as other fields in empir-

ical economics and finance. Further research with this approach will be to develop

the research lines discussed in Chapter 2 with methodological and/or application

contributions. Given the promising results of the subsequent chapters, the graphical

approach can be extended to other applications of VAR models as well to Dynamic

Stochastic General Equilibrium (DSGE) models.

In Chapter 2, one of the research lines discussed is time varying model estima-

tion. In the light of this, Ahelegbey and Koopman (working paper, 2014) adopt the

generalized autoregressive score (GAS) methodology to model varying dependence in

multivariate time series. The GAS approach allows the dynamics of the graph to be

modeled as an observation-driven time varying parameter model where the graphs

are used as parameters and the mechanism to update them is the scaled score of the

marginal likelihood function.

In Chapter 3, we pointed out that though our graphical approach provides a so-

lution to the identification problem in structural VAR (SVAR) models, the result is

not a unique solution to the problem. This is so because cross-sectional dependence

graphs belonging to the same equivalence class have the same score and therefore

cannot be distinguished on the basis of the probability distribution of the data. A

possible extension is to combine our approach with other sources of information,

by incorporating prior experts knowledge into the inference of the cross-sectional

dependence from the equivalence class of graphs. If external interventions are not

possible and experts knowledge are not available to disentangle and identify the con-

temporaneous causal ordering in SVAR, then a possible alternative is to allow for

partially directed graphs. In this case, only directed edges can be assigned a causal
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interpretation. Undirected edges on the other hand can be considered as simulta-

neous interactions among variables. This notion is in line with Hoover (2001), who

argues that an adequate account of causality must permit simultaneity, especially in

economics since much of economics is represented in simultaneous systems.

In Chapter 4, we found strong evidence supporting the effect of financial variables

on the real sector of the US economy. Further research in this area (under prepa-

ration) is to consider the application of graphical models for empirical evaluation of

macro-financial linkages to understand how policy instruments targeted at financial

institutions might have direct or indirect effect on the macroeconomy through the

connectedness between the financial sector and the macroeconomy.

A methodological extension of Chapter 5 is to consider a fairly informative (or

sparsity) prior over the different graphical structures. This will lead to penalizing

overly complicated models. Although this may introduce a selection bias, it may be

help model selection when large networks are being considered. A further extension

of the paper involves considered directed, rather than undirected, graphical Gaussian

models. Doing so we may be able to provide “causal” directions of systemic risks

and not only symmetric ones.

147



Bibliography

Abramowitz, M. and Stegun, I. A. (1964), Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables, Courier Dover Publications.

Acharya, V. V., Pedersen, L. H., Philippon, T., and Richardson, M. (2010), “Measuring

Systemic Risk,” Working Paper 1002, Federal Reserve Bank of Cleveland.

Adrian, T. and Brunnermeier, M. K. (2010), “CoVaR,” Staff Reports 348, Federal Reserve

Bank of New York.

Ahelegbey, D. F. (2015), “The Econometrics Aspects of Networks: A Review,” Working

Paper.

Ahelegbey, D. F. and Giudici, P. (2014), “Bayesian Selection of Systemic Risk Networks,”

Advances in Econometrics: Bayesian Model Comparison, 34, 117–153.

Ahelegbey, D. F., Billio, M., and Casarin, R. (2014), “Sparse Graphical Vector Autoregres-

sion: A Bayesian Approach,” Working Paper, Social Science Research Network.

Ahelegbey, D. F., Billio, M., and Casarin, R. (2015), “Bayesian Graphical Models for Struc-

tural Vector Autoregressive Processes,” Journal of Applied Econometrics (forthcoming).

Akavia, U. D., Litvin, O., Kim, J., Sanchez-Garcia, F., Kotliar, D., Causton, H. C., Pocha-

nard, P., Mozes, E., Garraway, L. A., and Pe’er, D. (2010), “An Integrated Approach to

Uncover Drivers of Cancer,” Cell, 143, 1005–1017.

Altman, E. I. (1968), “Financial Ratios, Discriminant Analysis and the Prediction of Cor-

porate Bankruptcy,” The journal of finance, 23, 589–609.

148



BIBLIOGRAPHY

Ammann, M. and Verhofen, M. (2007), “Prior Performance and Risk-Taking of Mutual

Fund Managers: A Dynamic Bayesian Network Approach,” The Journal of Behavioral

Finance, 8, 20–34.

Andersson, S. A., Madigan, D., and Perlman, M. D. (1997), “A Characterization of Markov

Equivalence classes for Acyclic Digraphs,” The Annals of Statistics, 25, 505–541.

Andrieu, C. and Roberts, G. O. (2009), “The Pseudo-Marginal Approach for Efficient

Monte Carlo Computations,” The Annals of Statistics, pp. 697–725.

Arena, M. (2005), “Bank Failures and Bank Fundamentals: A Comparative Analysis of

Latin America and East Asia During the Nineties Using Bank-Level Data,” Journal of

Banking and Finance, 32, 299–310.

Bai, J. and Ng, S. (2002), “Determining the Number of Factors in Approximate Factor

Models,” Econometrica, 70, 191–221.

Banbura, M., Giannone, D., and Reichlin, L. (2010), “Large Bayesian Vector Autoregres-

sions,” Journal of Applied Econometrics, 25, 71 – 92.

Barigozzi, M. and Brownlees, C. (2014), “Nets: Network Estimation for Time Series,”

Working Paper, Social Science Research Network.

Basel Committee on Banking Supervision (2011), “Basel III: A Global Regulatory Frame-

work for More Resilient Banks and Banking Systems,” Tech. rep., Bank for International

Settlements.

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., and Stiglitz, J. E. (2012), “Li-

aisons Dangereuses: Increasing Connectivity, Risk Sharing, and Systemic Risk,” Journal

of Economic Dynamics and Control, 36, 1121–1141.

Belloni, A. and Chernozhukov, V. (2011), High Dimensional Sparse Econometric Models:

An Introduction, Springer.

Berger, J. O. and Pericchi, L. R. (1998), “On Criticisms and Comparisons of Default Bayes

Factors for Model Selection and Hypothesis Testing,” in Proceedings of the Workshop on

Model Selection, Edizioni Pitagora, Bologna, Italy.

149



BIBLIOGRAPHY

Bernanke, B. (2013), “Monitoring the Financial System,” in Intervento alla 49th Annual

Conference Bank Structure and Competition, Chicago, vol. 10.

Bernanke, B., Boivin, J., and Eliasz, P. S. (2005), “Measuring the Effects of Monetary

Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach,” The Quarterly

Journal of Economics, 120, 387–422.

Bernanke, B. S. (1986), “Alternative Explanations of the Money-Income Correlation,”

Carnegie-Rochester Conference Series on Public Policy, 25, 49–100.

Bernanke, B. S. (2010), “Causes of the Recent Financial and Economic Crisis,” Statement

before the Financial Crisis Inquiry Commission, Washington, September, 2.

Bhattacharya, A. and Dunson, D. B. (2011), “Sparse Bayesian Infinite Factor Models,”

Biometrika, 98, 291–306.

Bianchi, D., Billio, M., Casarin, R., and Guidolin, M. (2014), “Modeling Contagion and

Systemic Risk,” Working Paper, Social Science Research Network.

Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. (2012), “Econometric Measures

of Connectedness and Systemic Risk in the Finance and Insurance Sectors,” Journal of

Financial Economics, 104, 535 – 559.

Bishop, C. M. (2006), Pattern Recognition and Machine Learning, vol. 4, Springer New

York.

Bisias, D., Flood, M. D., Lo, A. W., and Valavanis, S. (2012), “A Survey of Systemic Risk

Analytics,” US Department of Treasury, Office of Financial Research.

Bogdan, M., Ghosh, J. K., and Doerge, R. (2004), “Modifying the Schwarz Bayesian In-

formation Criterion to Locate Multiple Interacting Quantitative Trait Loci,” Genetics,

167, 989–999.

Box, G. E. and Meyer, R. D. (1986), “An Analysis for Unreplicated Fractional Factorials,”

Technometrics, 28, 11–18.

150



BIBLIOGRAPHY

Brillinger, D. R. (1996), “Remarks Concerning Graphical Models for Time Series and Point

Processes,” Revista de Econometria, 16, 1–23.

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011), Handbook of Markov Chain

Monte Carlo, CRC press.

Brooks, S. P. and Gelman, A. (1998), “General Methods for Monitoring Convergence of

Iterative Simulations,” Journal of Computational and Graphical Statistics, 7, 434–455.

Brownlees, C. T. and Engle, R. (2011), “Volatility, Correlation and Tails for Systemic Risk

Measurement,” Technical report, New York University.

Brunnermeier, M. K. and Oehmke, M. (2012), “Bubbles, Financial Crises, and Systemic

Risk,” NBER Working Papers 18398, National Bureau of Economic Research, Inc, Cam-

bridge, MA.

Brunnermeier, M. K. and Pedersen, L. H. (2009), “Market Liquidity and Funding Liquid-

ity,” Review of Financial studies, 22, 2201–2238.

Bunea, F., She, Y., Wegkamp, M. H., et al. (2011), “Optimal Selection of Reduced Rank

Estimators of High-dimensional Matrices,” The Annals of Statistics, 39, 1282–1309.

Carriero, A., Clark, T. E., and Marcellino, M. (2013), “Bayesian VARs: Specification

Choices and Forecast Accuracy,” Journal of Applied Econometrics, 25, 400–417.

Carvalho, C., Massam, H., and West, M. (2007), “Simulation of Hyper-inverse Wishart

Distributions in Graphical Models,” Biometrika, 94, 647–659.

Carvalho, C. M. and Scott, J. G. (2009), “Objective Bayesian Model Selection in Gaussian

Graphical Models,” Biometrika, 96, 497–512.

Carvalho, C. M. and West, M. (2007), “Dynamic Matrix-Variate Graphical Models,”

Bayesian Analysis, 2, 69–98.

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M.

(2008), “High-Dimensional Sparse Factor Modeling: Applications in Gene Expression

Genomics,” Journal of the American Statistical Association, 103.

151



BIBLIOGRAPHY

Casarin, R., Dalla Valle, L., and Leisen, F. (2012), “Bayesian Model Selection for Beta

Autoregressive Processes,” Bayesian Analysis, 7, 385–410.

Casella, G. and Robert, C. P. (2004), Monte Carlo Statistical Methods, Springer Verlag,

New York.

Chen, H., Cummins, J. D., Viswanathan, K. S., and Weiss, M. A. (2013a), “Systemic Risk

and the Interconnectedness between Banks and Insurers: an Econometric Analysis,”

Journal of Risk and Insurance.

Chen, J. and Chen, Z. (2008), “Extended Bayesian Information Criteria for Model Selection

with Large Model Spaces,” Biometrika, 95, 759–771.

Chen, K., Dong, H., and Chan, K.-S. (2013b), “Reduced Rank Regression via Adaptive

Nuclear Norm Penalization,” Biometrika, 100, 901–920.

Chen, L. and Huang, J. Z. (2012), “Sparse Reduced-Rank Regression for Simultaneous

Dimension Reduction and Variable Selection,” Journal of the American Statistical As-

sociation, 107, 1533–1545.

Chib, S. and Greenberg, E. (1995), “Hierarchical Analysis of SUR Models with Extensions

to Correlated Serial Errors and Time-varying Parameter Models,” Journal of Economet-

rics, 68, 339–360.

Chickering, D. M. and Heckerman, D. (1997), “Efficient Approximations for the Marginal

Likelihood of Bayesian Networks with Hidden Variables,” Machine Learning, 29, 181–

212.

Chickering, D. M., Heckerman, D., and Meek, C. (2004), “Large-Sample Learning of

Bayesian Networks is NP-Hard,” Journal of Machine Learning Research, 5, 1287–1330.

Choi, M. J., Tan, V. Y., Anandkumar, A., and Willsky, A. S. (2011), “Learning Latent

Tree Graphical Models,” The Journal of Machine Learning Research, 12, 1771–1812.

Cole, R. A. and Gunther, J. W. (1998), “Predicting Bank Failures: A Comparison of on-and

off-site Monitoring Systems,” Journal of Financial Services Research, 13, 103–117.

152



BIBLIOGRAPHY

Coleman, J. S. (1986), “Social Theory, Social Research, and a Theory of Action,” American

journal of Sociology, pp. 1309–1335.

Consonni, G. and Rocca, L. L. (2012), “Objective Bayes Factors for Gaussian Directed

Acyclic Graphical Models,” Scandinavian Journal of Statistics, 39, 743–756.

Cooley, T. F. and Leroy, S. F. (1985), “A Theoretical Macroeconometrics: A Critique,”

Journal of Monetary Economics, Elsevier,, 16, 283–308.

Corander, J. and Villani, M. (2006), “A Bayesian Approach to Modelling Graphical Vector

Autoregressions,” Journal of Time Series Analysis, 27(1), 141–156.

Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J. (1999), Probabilis-

tic Networks and Expert Systems: Statistics for Engineering and Information Science,

Springer Verlag New York, Inc.

Dahlhaus, R. and Eichler, M. (2003), “Causality and Graphical Models for Time Series,”

n: P. Green, N. Hjort, and S. Richardson (eds.): Highly structured stochastic systems.

University Press, Oxford.

DasGupta, B. and Kaligounder, L. (2014), “On Global Stability of Financial Networks,”

Journal of Complex Networks, pp. 1–59.

Davis, E. P. and Karim, D. (2008), “Comparing Early Warning Systems for Banking

Crises,” Journal of Financial stability, 4, 89–120.

Davis, R. A., Zang, P., and Zheng, T. (2012), “Sparse Vector Autoregressive Modeling,”

arXiv preprint arXiv:1207.0520.

Dawid, A. (2003), “An Object-Oriented Bayesian Network for Estimating Mutation Rates,”

in Proceedings of the Ninth International Workshop on Artificial Intelligence and Statis-

tics, pp. 3–6.

Dawid, A. P. and Lauritzen, S. L. (1993), “Hyper Markov Laws in the Statistical Analysis

of Decomposable Graphical Models,” The Annals of Statistics, 21, 1272–1317.

153



BIBLIOGRAPHY

Dawid, A. P. and Lauritzen, S. L. (2001), “Compatible Prior Distributions,” In Bayesian

Methods with Application to Science, Policy and Official Statistics; Selected Papers from

ISBA 2000.

De Bandt, O. and Hartmann, P. (2000), “Systemic Risk: A Survey,” .

De Lisa, R., Zedda, S., Vallascas, F., Campolongo, F., and Marchesi, M. (2011), “Modelling

Deposit Insurance Scheme Losses in a Basel 2 Framework,” Journal of Financial Services

Research, 40, 123–141.

De Mol, C., Giannone, D., and Reichlin, L. (2008), “Forecasting Using a Large Number

of Predictors: Is Bayesian Shrinkage a Valid Alternative to Principal Components?”

Journal of Econometrics, 146, 318–328.

Demiralp, S. and Hoover, K. D. (2003), “Searching for the Causal Structure of a Vector

Autoregression,” Oxford Bulletin of Economics and Statistics, 65, 745–767.

Diebold, F. and Yilmaz, K. (2014), “On the Network Topology of Variance Decompositions:

Measuring the Connectedness of Financial Firms.” Journal of Econometrics, 182(1),

119–134.

Diebold, F. and Yilmaz, K. (2015), Financial and Macroeconomic Connectedness: A Net-

work Approach to Measurement and Monitoring, Oxford University Press.

Diks, C. and Panchenko, V. (2005), “A Note on the Hiemstra-Jones Test for Granger

Non-Causality,” Studies in Nonlinear Dynamics & Econometrics, 9.

Ding, M., Chen, Y., and Bressler, S. L. (2006), “Granger Causality: Basic Theory and Ap-

plications to Neuroscience,” in Schelter B., Winterhalder M., Timmer J. (eds) Handbook

of time series analysis, pp. 437–460, Wiley, Weinheim.

Doan, T., Litterman, R., and Sims, C. (1984), “Forecasting and Conditional Projection

using Realistic Prior Distributions,” Econometric Reviews, 3, 1–100.

Donoho, D. and Stodden, V. (2006), “Breakdown Point of Model Selection when the

Number of Variables Exceeds the Number of Observations,” in Neural Networks, 2006.

IJCNN’06. International Joint Conference on, pp. 1916–1921, IEEE.

154



BIBLIOGRAPHY

Donoho, D. L. (2006), “High-Dimensional Centrally Symmetric Polytopes with Neighbor-

liness Proportional to Dimension,” Discrete Computational Geometry, 35, 617–652.

Drton, M. and Perlman, M. D. (2007), “Multiple Testing and Error Control in Gaussian

Graphical Model Selection,” Statistical Science, pp. 430–449.

Dungey, M., Luciani, M., and Veredas, D. (2012), “Ranking Systemically Important Fi-

nancial Institutions,” Tech. rep., Tinbergen Institute.

Edwards, D. (1990), “Hierarchical Interaction Models (with discussion),” Journal of the

Royal Statistical Society, Series B, 52, 3–20 and 51–72.

Edwards, D. (2000), Introduction to Graphical Modelling, Springer Science & Business

Media.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), “Least Angle Regression,”

The Annals of Statistics, 32, 407–499.

Ehlers, R. S. and Brooks, S. P. (2004), “Bayesian Analysis of order Uncertainty in ARIMA

Models,” Federal University of Parana, Tech. Rep.

Eichler, M. (2007), “Granger Causality and Path Diagrams for Multivariate Time Series,”

Journal of Econometrics, 137, 334–353.

Elliott, G., Gargano, A., and Timmermann, A. (2013), “Complete Subset Regressions,”

Journal of Econometrics, 177, 357–373.

European Central Bank (ECB) (2010), “Financial Networks and Financial Stability,” Fi-

nancial Stability Review, 2010, 155–160.

Fama, E. F. and French, K. R. (2004), “The Capital Asset Pricing Model: Theory and

Evidence,” Journal of Economic Perspectives, 18, 25–46.

Fan, J. and Peng, H. (2004), “Nonconcave Penalized Likelihood with a Diverging Number

of Parameters,” The Annals of Statistics, 32, 928–961.

Fantazzini, D. and Maggi, M. (2012), “Computing Reliable Default Probabilities in Tur-

bulent Times,” Rethinking Valuation and Pricing Models, pp. 241–255.

155



BIBLIOGRAPHY

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000), “The Generalized Factor Model:

Identification and Estimation,” Review of Economics and statistics, 82, 540–554.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2004), “The Generalized Factor Model:

Consistency and Rates,” Journal of Econometrics, 119, 231–255.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005), “The Generalized Dynamic Factor

Model,” Journal of the American Statistical Association, 100.

Foygel, R. and Drton, M. (2011), “Bayesian Model Choice and Information Criteria in

Sparse Generalized Linear Models,” arXiv preprint arXiv:1112.5635.

Friedman, N. and Koller, D. (2003), “Being Bayesian About Network Structure,” Journal

of Machine Learning, 50, 95–125.

Friedman, N., Murphy, K., and Russell, S. (1998), “Learning the Structure of Dynamic

Probabilistic Networks,” in Proceedings of the Fourteenth conference on Uncertainty in

Artificial Intelligence, pp. 139–147, Morgan Kaufmann Publishers Inc.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000), “Using Bayesian Networks to

Analyze Expression Data,” Journal of Computational Biology, 7, 601–620.

Frydenberg, M. and Lauritzen, S. L. (1989), “Decomposition of Maximum Likelihood in

Mixed Graphical Interaction Models,” Biometrika, 76, 539–555.

Furfine, C. H. (2003), “Interbank Exposures: Quantifying the Risk of Contagion,” Journal

of Money, Credit and Banking, 35, 111–128.

Gefang, D. (2014), “Bayesian Doubly Adaptive Elastic-net Lasso for VAR Shrinkage,”

International Journal of Forecasting, 30, 1–11.

Geiger, D. and Heckerman, D. (2002), “Parameter Priors for Directed Acyclic Graphi-

cal Models and the Characterization of Several Probability Distributions,” Annals of

Statistics, 30, 1412–1440.

Gelman, A. and Rubin, D. B. (1992), “Inference from Iterative Simulation Using Multiple

Sequences, (with discussion),” in Statistical Science, vol. 7, pp. 457–511.

156



BIBLIOGRAPHY

George, E. I., Sun, D., and Ni, S. (2008), “Bayesian Stochastic Search for VAR Model

Restrictions,” Journal of Econometrics, 142, 553–580.

Geweke, J. (1977), The Dynamic Factor Analysis of Economic Time-Series Models., SSRI

workshop series, Social Systems Research Institute, University of Wisconsin-Madison.

Giannone, D., Reichlin, L., and Sala, L. (2005), “Monetary Policy in Real Time,” in NBER

Macroeconomics Annual 2004, vol. 19, pp. 161–224, MIT Press.

Giudici, P. and Castelo, R. (2003), “Improving Markov Chain Monte Carlo Model Search

for Data Mining,” Machine Learning, 50, 127–158.

Giudici, P. and Green, P. J. (1999), “Decomposable Graphical Gaussian Model Determi-

nation,” Biometrika, 86, 785–801.

Granger, C. W. J. (1969), “Investigating Causal Relations by Econometric Models and

Cross-spectral Methods,” Econometrica, 37, 424–438.

Green, P. J. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and

Bayesian Model Determination,” Biometrika, 82, 711–732.

Grzegorczyk, M. and Husmeier, D. (2008), “Improving the Structure MCMC Sampler for

Bayesian Networks by Introducing a New Edge Reversal Move,” Journal of Machine

Learning, 71, 265–305.

Grzegorczyk, M. and Husmeier, D. (2011), “Non-homogeneous Dynamic Bayesian Networks

for Continuous Data,” Machine Learning, 83, 355–419.

Grzegorczyk, M., Husmeier, D., and Rahnenführer, J. (2010), “Modelling Nonstationary

Gene Regulatory Processes,” Advances in Bioinformatics, pp. 1–17.

Guo, J., Levina, E., Michailidis, G., and Zhu, J. (2011), “Joint Estimation of Multiple

Graphical Models,” Biometrika, 98, 1–15.

Guo, J., Levina, E., Michailidis, G., and Zhu, J. (2013), “Estimating Heterogeneous Graph-

ical Models for Discrete Data with an Application to Roll Call Voting,” Annals of Applied

Statistics.

157



BIBLIOGRAPHY

Gup, B. E. (1998), Bank Failures in the Major Trading Countries of the World: Causes

and Estimation, Westport, CT: Quorum Books.

Gyftodimos, E. and Flach, P. A. (2002), “Hierarchical Bayesian Networks: A Probabilistic

Reasoning Model for Structured Domains,” in Proceedings of the ICML-2002 Workshop

on Development of Representations. University of New South Wales, pp. 23–30.

Halaj, G. (2013), “Optimal Asset Structure of a Bank - Bank Reactions to Stressful Market

Conditions,” Working Paper Series 1533, European Central Bank, Frankfurt, Germany.

Hao, D., Ren, C., and Li, C. (2012), “Revisiting the Variation of Clustering Coefficient of

Biological Networks Suggests New Modular Structure,” BMC Systems Biology, 6, 34.

Hautsch, N., Schaumburg, J., and Schienle, M. (2014), “Financial Network Systemic Risk

Contributions,” Review of Finance.

Heckerman, D. and Chickering, D. M. (1995), “Learning Bayesian Networks: The Combi-

nation of Knowledge and Statistical Data,” in Machine Learning, pp. 20–197.

Heckerman, D. and Geiger, D. (1994), “Learning Gaussian Networks,” in Uncertainty in

Artificial Intelligence, pp. 235–243.

Hensman, J., Lawrence, N. D., and Rattray, M. (2013), “Hierarchical Bayesian Modelling

of Gene Expression Time Series Across Irregularly Sampled Replicates and Clusters,”

BMC Bioinformatics, 14, 1–12.

Hoover, K. D. (2001), Causality in Macroeconomics, Cambridge University Press, Cam-

bridge.

Huang, X., Zhou, H., and Zhu, H. (2012), “Systemic Risk Contributions,” Journal of

financial services research, 42, 55–83.
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Appendix A
Technical Details of Chapter 3

A.1 Prior and Posterior Distributions

A graphical model is defined by a graph structure G and a collection of parameters,

θ. Let Xt “ pX
1
t , X

2
t , . . . , X

n
t q, where X i

t is a realization of the variable X i at time

t. Let X “ pX1, . . . , XT q be a time series of n observed variables. We assume that

X follows a multivariate normal distribution, and define θ ” tµ,Ωxu, Ωx “ Σ´1
x .

For simplicity, we assume that the data is generated by a stationary process and,

without loss of generality, we set µ “ 0. The likelihood of X is given by

P pX |Ωx, Gq “ p2πq´
nT
2 |Ωx|

T
2 exp

!

´
1
2xΩx, Ŝxy

)

(A.1)

where xA,By “ trpA1Bq denotes the trace inner product and Ŝx “
řT
t“1XtX

1
t.

From a Bayesian perspective, the joint prior distribution over (Ωx, G) is given as

P pG,Ωxq “ P pGqP pΩx|Gq. Two sources of uncertainty are associated with the

model: the graph structure G and the parameter Ωx. The graph structure G con-

sidered in this paper is characterized by 0 ´ 1 elements, Gij, where Gij “ 1 means

Xj Ñ X i, and Gij “ 0 means that no link exists between the two variables. An

independent Bernoulli prior with parameter β is assumed on each edge. We assume

β “ 0.5, that leads to a uniform prior on the graph space, i.e. P pGq91.
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A.1. PRIOR AND POSTERIOR DISTRIBUTIONS

Following the standard Bayesian paradigm, we assume that Ωx conditional on a

complete graph G is Wishart distributed, Ωx „ Wpν, S´1
0 q, with density

P pΩx|Gq “
1

Knpν, S0q
|Ωx|

pν´n´1q
2 exp

!

´
1
2xΩx, S0y

)

(A.2)

where ν ą n ` 1 is the degree of freedom parameter, S0 is a symmetric positive

definite matrix, and Knpν, S0q is the normalizing constant given by

Knpν, S0q “

ż

|Ωx|
pν´n´1q

2 exp
!

´
1
2xΩx, S0y

)

dΩx “ 2 νn
2 |S0|

´ ν
2 Γn

´ν

2

¯

with Γnpaq “ π
npn´1q

4
śn

i“1 Γ
´

a´ i`1
2

¯

and Γp¨q the gamma function. Following Geiger

and Heckerman (2002), we assume that the independence and modularity conditions

are satisfied. In our SVAR model, the independence assumption means that the

structural coefficients and the error terms, within and across equations, are a priori

independent. The modularity assumption states that if a response variable has the

same set of explanatory variables in two graphs, then the associated parameters must

have the same prior distribution. These assumptions on the prior distributions allow

us to factorize the likelihood, to integrate out the parameters analytically, and to

obtain the following expression

P pX |Gq “
ż

P pX |Ωx, GqP pΩx|GqdΩx

“

ż

|Ωx|
T`ν´n´1

2

p2πqnT2 Knpν, S0q
exp

!

´
1
2xΩx, S0 ` Ŝxy

)

dΩx “
Knpν ` T, S0 ` Ŝxq

p2πqnT {2Knpν, S0q

Based on the uniform prior assumption over structures, maximizing the posterior

probability of G is equivalent to maximizing the marginal likelihood metric. For

graphical model selection purposes, we sample G in the space of all possible graphs

from the marginal posterior distribution, G „ P pG|X q9P pX |Gq. We assume S0
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and S0 ` Ŝx are the prior and posterior covariance matrices and define Σx “ S0{ν,

Σx “ pS0 ` Ŝxq{pν ` T q. Based on the choice of the prior distribution, the marginal

likelihood factorizes into the product of ny terms, each one involving the response

(Y i) and its set of explanatory variables (πi)

P pX |Gq “

ny
ź

i“1
P pX |GpY i, πiqq “

ny
ź

i“1

P pX pY i,πiq|Gq

P pX pπiq|Gq
(A.3)

where ny is the number of response variables, GpY i, πiq is the sub-graph of G with

nodes Y i and the elements of πi, X pY i,πiq is the sub-matrix of X consisting of the

response variable Y i and its set of explanatory variables πi; and X pπiq is the sub-

matrix of the set of explanatory variables of pY iq. The closed form of the marginal

likelihood for a graph G is

P pXD
|Gq “ pπq

´ndT

2
|Σx,d|

´
pν`T q

2

|Σx,d|
´ ν

2

nd
ź

i“1

Γ
´

ν`T`1´i
2

¯

Γ
´

ν`1´i
2

¯ (A.4)

where D P
 

pY i, πiq, pπiq
(

, and XD is a sub-matrix of X consisting of nd ˆ T

realizations, where nd is the dimension of D, |Σx,d| and |Σx,d| are the determinants of

the prior and posterior covariance matrices associated with D. The above is referred

to as the Bayesian Gaussian equivalent (BGe) metric (Heckerman and Geiger, 1994).

In our application, the parameters of interest are the reduced form coefficients

matrix, pA`q, and covariance matrix of the reduced form errors, pΣuq. These are

transformations of the structural parameters, tB˚,Σεu, which can be estimated from

Σx “ Ω´1
x . Following a standard Bayesian approach, we considered two typical

BVAR prior settings, i.e. the Minnesota (MP) and the normal-Wishart (NW) prior.

In both cases, we assume A` „ N pA, V q, and compute the posterior mean (Ai) and

variance pV iq of each VAR equation as follow: Ai “ V ipV
´1
i Ai ` σ´2

i W 1
iY

iq, V i “
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pV ´1
i `σ

´2
i W 1

iWiq
´1, where Ai and V i, are the prior mean and variance of the relevant

variables in each equation, and Wi, is the set of relevant variables that influence the

response Y i. Under MP, σi “ σi, are diagonal elements of Σu “ diagpσ2
1, . . . , σ

2
nyq.

Under NW, σ2
i , is the variance of residuals from the posterior of Σu, which is assumed

to be inverse-Wishart distributed, Σu „ IWpν, Sq.

A.2 MCMC Sampling

Given a graph G, the algorithm samples a new graph G˚ based on a proposal distri-

bution. The new graph is accepted with probability

ApG˚|Gq “ min
"

P pX |G˚q
P pX |Gq

P pG˚q

P pGq

QpG|G˚q

QpG˚|Gq
, 1
*

(A.5)

where P pX |Gq is the likelihood, P pGq is the prior and QpG˚|Gq is the proposal dis-

tribution. For the single edge addition or removal, the proposal distribution assigns

a uniform probability to all possible graphs in the neighborhood nbdpGq of G, which

is the set of all graphs that can be reached from the current state (G) by adding or

deleting a single edge. Following Madigan and York (1995), we considered a symmet-

ric proposal distribution (i.e., QpG|G˚q “ QpG˚|Gq). Moreover, based on a uniform

graph prior the acceptance probability simplifies to the Bayes factor.

We modify the standard MCMC inference scheme to allow for inference of con-

temporaneous and temporal dependence structures. Let Vy be ny vector of response

variables, Vx be np vector of explanatory variables, and Vyztyiu the subvector of

Vy obtained by deleting the i-th element of Vy. The pseudo-code for sampling the

contemporaneous and temporal structures are given in Algorithms 1 and 2, respec-

tively. To speed up the algorithm, the common approach is to reduce the size of the

search space by restricting the maximum number of explanatory variables (fan-in) in

the parent set of each response variable. In our application, we do not impose such
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Algorithm 1 MIN Sampling
1: Initialize Gp1q as pny ˆ nyq zero matrix
2: for t “ 1 to Total iterations do
3: Pick at random ρptq “ pρ

ptq
1 , . . . , ρptqnyq from the set of the ny! possible permu-

tations of the integers t1, . . . , nyu
4: for i “ 1 : ny do set ỹi “ y

ρ
ptq
i
, ỹi P Vy and G˚ “ Gptq

5: Draw a candidate explanatory variable, yj P Vyztyρptqi
u

6: if G˚pyj, ỹiq “ 1 then set G˚pyj, ỹiq “ 0
7: Add/remove edge; G˚pỹi, yjq “ 1´G˚pỹi, yjq
8: if G˚ is acyclic then sample u „ Ur0,1s
9: Compute the Bayes factor: BF “ P pX |G˚q{P pX |Gptqq

10: if u ă mint1, BF u then Gpt`1q “ G˚

11: else Gpt`1q “ Gptq

12: else Gpt`1q “ Gptq

Algorithm 2 MAR Sampling
1: Initialize Gp1q as pny ˆ npq zero matrix
2: for t “ 1 to Total iterations do
3: Pick at random ρptq “ pρ

ptq
1 , . . . , ρptqnyq from the set of the ny! possible permu-

tations of the integers t1, . . . , nyu
4: for i “ 1 : ny do set ỹi “ y

ρ
ptq
i
, ỹi P Vy and G˚ “ Gptq

5: Draw a candidate explanatory variable, xj P Vx

6: Add/remove edge; G˚pỹi, xjq “ 1´G˚pỹi, xjq
7: Sample u „ Ur0,1s
8: Compute the local Bayes factor: BF “ P pX |G˚pỹi, πiqq{P pX |Gptqpỹi, πiqq
9: if u ă mint1, BF u then Gpt`1qpỹi, πiq “ G˚pỹi, πiq

10: else Gpt`1qpỹi, πiq “ Gptqpỹi, πiq

restriction. However, to reduce the computing time, we pre-compute Σx, Σx and

the metric in (A.4). Since the proposal involves a single edge addition or removal,

we compute the scores of the structures at each iteration by updating only the local

scores affected by the move. To sample the MIN structures, we apply the score func-

tion in (A.3) and (A.4) by replacing G with the contemporaneous structure G0 and

Σx and Σx with the prior and posterior covariance matrix of the contemporaneous

response variables. For the MAR structure inference, we organize our time series

into p1ˆnq blocks composed of lagged variables (X) and a dependent variable (Y i).

The matrix X is stacked X 1
p`1´s, . . . , X

1
T´s, 1 ď s ď p, such that X is of dimension
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np ˆ pT ´ pq, X piq “ pX 1, pY iq
1

q1, X piq is pnp ` 1q ˆ pT ´ pq. Let G` be a stacked

graph of the MAR relationships. Then marginal likelihood of the MAR structure is

P pX |G`q “

ny
ź

i“1

P
`

X piqpY i,πi`q
ˇ

ˇG`
˘

P
`

X piqpπi`q
ˇ

ˇG`
˘ (A.6)

where πi` is the candidate explanatory variables of Y i, consisting of the lagged vari-

ables in X`. We score the MAR by evaluating (A.3) and (A.4), and by replacing G

with G`, and Σx and Σx with the prior and posterior covariance matrices of X piq,

i “ 1, . . . , ny.

A.3 Graphical Model Evaluation

A.3.1 Convergence Diagnostics

We monitor the convergence of the MIN and MAR structures by using the potential

scale reduction factor (PSRF) and the multivariate PSRF (MPSRF) of Gelman and

Rubin (1992) and Brooks and Gelman (1998), respectively. See also Casella and

Robert (2004), ch. 12, for a review on methods for convergence monitoring in MCMC.

The PSRF (MPSRF) monitors the within-chain and between-chain covariances of

the global (local) log posterior densities of the sampled structures to test whether

all the chains converged to the same posterior distribution. The chain is said to

have properly converged if PSRF pMPSRF q ď 1.2. In all of the simulation and

empirical applications, we obtained MPSRF and PSRF for both MAR and MIN less

than 1.1, which indicates convergence of the MCMC chain.

A.3.2 Graph Structure Evaluation

We estimate the posterior probability of the edge Gij by êij, which is the average of

the MCMC samples from the Gij posterior distribution. In order to identify signifi-

cant explanatory variables for our model, we define a one sided posterior credibility
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interval for the edge posterior distribution, and find the interval lower bound

qp1´αq “ êij ´ zp1´αq

d

êijp1´ êijq
neff

(A.7)

where neff is the effective sample size (see Casella and Robert (2004), pp. 499-500)

representing the number of independent posterior samples of the graph, and zp1´αq

is the z-score of the normal distribution at the p1´ αq significance level. Finally we

define the estimator Ĝij, of the edge from Xj to X i, as

Ĝij “

#

1 if qp1´αq ą 0.5
0 otherwise

(A.8)

Clearly as neff Ñ 8, Ĝij “ 1 if êij ą 0.5.

When the data generating process is known, we refer to the non-zero elements

as real positives and the zero elements as real negatives. Based on (A.7), we ob-

tain a connectivity structure, where non-zero elements are referred to as predicted

positives and the zero elements as predicted negatives. The metric to evaluate the

graph-predictive accuracy is shown in Table A.1. TP indicates the number of real

Table A.1: Classification table for graph-predictive accuracy evaluation.

Real Positives Real Negatives
Predicted Positives TP FP
Predicted Negatives FN TN

positives correctly predicted as positives, FP indicates the number of real negatives

predicted as positives, TN indicates the number of real negatives correctly predicted

as negatives, and FN indicates the number of real positives predicted as negatives.

We measure the graph inference accuracy by

ACC “
TP ` TN

TP ` TN ` FP ` FN
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When the true model is unknown, we compare the graph structure using the BIC:

BICpĜq “ ´2 logpP pX |Ĝqq ` |E| logpT q (A.9)

where P pX |Ĝq is the marginal likelihood, |E| is the number of non-zero edges in the

estimated graph Ĝ and T is the number of time series observations.

A.3.3 Model Prediction Accuracy

We evaluate the estimated model based on the predictive AIC given by

AICpM̂q “ ´2 logpP pX |M̂qq ` 2|ÂM | (A.10)

where |ÂM | is the number of estimated coefficients in the model M̂ , and logP pX |M̂q

is the log predictive score.

A.3.4 PC Algorithm

The PC algorithm, (named after authors Peter Spirtes and Clark Glymour) is a

graph-theoretic approach developed by Spirtes et al. (2000) for learning partially

directed structures. The algorithm uses conditional independence (e.g the Fisher’s

z statistic) test to decide whether a particular constraint holds. See Spirtes et al.

(2000) for details on implementation of the PC algorithm.

A.3.5 Granger-Causality

Pairwise Granger causality (P-GC) (Granger, 1969) relies on the condition that if

the prediction of X i
t is improved by incorporating lagged observations of Xj

t , then

Xj
t has a causal influence on X i

t . A limitation to this approach in multivariate

settings is the inability to discriminate between direct and mediated causal influences.

For instance, one variable may influence two other variables with differential time

delays, and a pairwise analysis may indicate a causal influence from the variable

that receives an early input to the variable that received a late input. Conditional
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A.4. MACROECONOMIC AND FINANCIAL DATA DESCRIPTION

Granger causality (C-GC) (Ding et al., 2006) deals with this limitation by accessing

dependence between a pair of time series conditional on other series and their lags.

The C-GC relies on block-wise Granger causality test which includes all lags of the

pair of variables of interest (see Ding et al. (2006), eqs. 17.30-17.33). In this paper,

we modified the C-GC procedure and use pairwise-Granger causality at different lags

conditioning on the other series and their lags. In our modified C-GC we estimate

the VAR(p) model

X i
t “

p
ÿ

s“1
βs,1X

1
t´s`. . .`

p
ÿ

s“1
βs,iX

i
t´s`. . .`

p
ÿ

s“1
βs,jX

j
t´s`. . .`

p
ÿ

s“1
βs,nX

n
t´s`u

i
t (A.11)

where i, j P t1, . . . , nu, i ‰ j, and test whether Xj
t´s Ñ X i

t , by checking if the

following hypothesis holds true

H0 : βs,j “ 0, H1 : βs,j ­“ 0

with a t-test.

A.4 Macroeconomic and Financial Data Description

Table A.2 gives the data description and transformation code from Koop (2013) used

for our macroeconomic application in Section 3.5. Table A.3 presents the description

of the Euro Stoxx 600 super-sectors from Datastream for our financial application in

Section 3.6.
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Short ID Mnemonic Code Description
Y GDP251 5 Real GDP, Quantity Index (2000=100)
Π CPIAUCSL 6 CPI All Items
R FYFF 2 Interest rate: Federal funds (effective) (% per annum)
M FM2 6 Money stock: M2 (bil$)
C GDP252 5 Real Personal Cons. Exp., Quantity Index
IP IPS10 5 Industrial production index: total
U LHUR 2 Unemp. rate: All workers, 16 and over (%)
I˚ GDPIC96 5 Real gross domestic private investment
MP PSCCOMR 5 Real spot market price index: all commodities
NB FMRNBA 3 Depository inst reserves: non-borrowed (mil$)
RT FMRRA 6 Depository inst reserves: total (mil$)
CU UTL11 1 Capacity utilization: manufacturing (SIC)
HS HSFR 4 Housing starts: Total (thousands)
PP PWFSA 6 Producer price index: finished goods
PC GDP273 6 Personal Consumption Exp.: price index
HE CES275R 5 Real avg hrly earnings, non-farm prod. workers
M1 FM1 6 Money stock: M1 (bil$)
SP FSPIN 5 S&Ps common stock price index: industrials
IR FYGT10 2 Interest rate: US treasury const. mat., 10-yr
ER EXRUS 5 US effective exchange rate: index number
EN CES002 5 Employees, non-farm: total private

Table A.2: Data description and transformation code. 1 = no transformation, 2 = first difference,
3 = second difference, 4 = log, 5 = first difference of the log variable, 6 = second difference of the
log variable. (˚) Added to augment the response variable vector.

No. Name ID No. Name ID
1 Banks˚ BK 11 Media MD
2 Insurance companies˚ IN 12 Travel & Leisure TL
3 Financial Services˚ FS 13 Chemicals CH
4 Real Estates˚ ` RE 14 Basic Resources BR
5 Construction & Materials CM 15 Oil & Gas OG
6 Industrial goods & services IGS 16 Telecommunication TC
7 Automobiles & Parts AP 17 Health Care HC
8 Food & Beverage FB 18 Technology TG
9 Personal & Household Goods PHG 19 Utilities UT
10 Retail RT

Table A.3: Description of Euro Stoxx 600 super-sectors. ˚ - The financial sector variables. (`)
from September 2008.
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Appendix B
Technical Details of Chapter 4

B.1 Proofs

B.1.1 Proof of Proposition 1

Proof. Let Xt be n ˆ 1 vector of observations at time t, Yt Ď Xt a ny ˆ 1 vector of

dependent variables, Wt the stacked lags of Xt, where Wt “ pX
1
t´1, . . . , X

1
t´pq

1 is of

npˆ 1 dimension, with p as the maximum lag order. Suppose the joint distribution

of pY 1t ,W 1
t q „ N pµ,Ω´1q, where µ is the ppnp ` nyq ˆ 1q vector of means and Ω´1

is pnp ` nyq ˆ pnp ` nyq matrix of covariances. Without loss of generalization, we

assume µ is a zero vector.

Suppose the marginal distribution of Wt „ N p0,Σwwq and the conditional dis-

tribution of Yt|Wt „ N pBWt,Σεq, where B is ny ˆ np matrix of coefficients and Σε

is ny ˆ ny covariance matrix of the errors. Then given Ω as the precision matrix of

pYt,Wtq, we can obtain Σ “ Ω´1 which can be expressed as

Σ “
ˆ

Σyy Σyw

Σwy Σww

˙

(B.1)

where Σwy is npˆny the covariances between Wt and Yt, and Σyy is nyˆny covariances

among Yt. Then B and Σε can be obtained from Σ by

B “ ΣywΣ´1
ww, Σε “ Σyy ´ ΣywΣ´1

wwΣwy (B.2)

178



B.1. PROOFS

Now given Σ as in (B.1), Ω “ Σ´1 can be obtained as:

Ω “
ˆ

pΣyy ´ ΣywΣ´1
wwΣwyq

´1 ´pΣyy ´ ΣywΣ´1
wwΣwyq

´1ΣywΣ´1
ww

´pΣww ´ ΣwyΣ´1
yy Σywq

´1ΣwyΣ´1
yy pΣww ´ ΣwyΣ´1

yy Σywq
´1

˙

(B.3)

To complete the proof, we report the well-known Sherman-Morrison-Woodbury for-

mula (see Woodbury, 1950). The inverse of a partitioned symmetric matrix is

pA11 ´ A12A
´1
22 A21q

´1
“ A´1

11 ` A
´1
11 A12

´

A22 ´ A21A
´1
11 A12

¯´1
A21A

´1
11

´pA11 ´ A12A
´1
22 A21q

´1A12A
´1
22 “ ´A

´1
11 A12pA22 ´ A21A

´1
11 A12q

´1 (B.4)

Following (B.4) and the expressions in (B.2), (B.3) can be simplified as

Ω “
ˆ

Σ´1
ε ´Σ´1

ε B
´B1Σ´1

ε Σ´1
ww `B

1Σ´1
ε B

˙

(B.5)

B.1.2 Proof of Proposition 2

Proof. From the prior distributions in (4.8) and (4.10), we marginalize out η̄i

P pπi|piq “
1

2npi

ż 1

0
It0,...,fiup|πi|q

1
Bpa, bq

pη̄iq
a´1
p1´ η̄iqb´1 dη̄i (B.6)

where fi “ tη̄impu with mp “ min tnpi, T ´piu, It0,...,fiup|πi|q is the indicator function

It0,...,fiup|πi|q “

$

’

’

’

&

’

’

’

%

It0up|πi|q, 0 ď η̄i ă
1
mp... ¨ ¨ ¨

It0,...,mp´1up|πi|q,
mp´1
mp

ď η̄i ă 1
It0,...,mpup|πi|q, η̄i “ 1

(B.7)
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B.2. CONVERGENCE DIAGNOSTICS AND POSTERIOR APPROXIMATION

Let fpη̄iq “ pBpa, bqq´1 η̄a´1
i p1´ η̄iqb´1. From (B.6)

P pπi|piq “
1

2npi

„

It0up|πi|q
ż 1

mp

0
fpη̄iq dη̄i ` . . .` It0,...,mp´1up|πi|q

ż 1

mp´1
mp

fpη̄iq dη̄i



“
1

2npi

„mp´1
ÿ

j“0
It0,...,jup|πi|q

´

I j`1
mp

pa, bq ´ I j
mp

pa, bq
¯



(B.8)

where Izpa, bq “
şz

0 fpη̄iqdη̄i is the incomplete beta function (Abramowitz and Stegun,

1964, p. 263).

B.1.3 Proof of Corollary 3

Proof. By assuming a uniform prior on η̄i, fpη̄iq “ 1. Furthermore, the difference

between the incomplete beta functions in (B.8) is I j`1
mp

pa, bq ´ I j
mp

pa, bq “ 1
mp

. Thus

P pπi|piq “
1

2npi
1
mp

mp´1
ÿ

j“0
It0,...,jup|πi|q “

1
2npi

´

1´ |πi|
mp

¯

(B.9)

B.1.4 Proof of Proposition 4

Proof. The function ϕpkq is convex if and only if ϕ2pkq ą 0, @k. By defining ϕpkq “

´ logP pπi|piq “ npi logp2q` logpmpq´ logpmp´kq, for |πi| “ k, it can be shown that

ϕ2pkq “
1

pmp ´ kq2
ą 0 (B.10)

B.2 Convergence Diagnostics and Posterior Approximation

B.2.1 Convergence Diagnostics

For our graphical approach, we monitor the convergence of the MCMC chain using

the potential scale reduction factor (PSRF), see Gelman and Rubin (1992). See also
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B.2. CONVERGENCE DIAGNOSTICS AND POSTERIOR APPROXIMATION

Casella and Robert (2004), ch. 12, for a review on methods for convergence monitor-

ing in MCMC. The PSRF monitors the within-chain and between-chain covariances

of the global log posterior densities of the sampled structures to test whether The

chain is said to have properly converged if PSRF ď 1.2. Figure B.1 display a com-

parison of the MCMC convergence diagnostics for a random initialization and our

initialization procedure of the graph averaged over lags. Figures B.2 and B.3 shows

plots of links and graph score at each MCMC iteration, the local graph BIC for the

lags for the simulation experiments and the macroeconomic application respectively.
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FigureB.1: Comparison of the MCMC convergence diagnostics for a random initialization (in
blue) and our initialization (in green) procedure of the graph averaged over lags. The black dashed
line is 1.2, and colored lines close to this line indicate convergence of the chain.

B.2.2 Edge Posterior Approximation

We estimate the posterior probability of the edge by êij, which is the average of the

MCMC samples from the Gij posterior distribution. For variable selection purposes,

we define the estimator G˚ij of the edge from Xj to X i based on a one sided posterior

credibility interval for the edge posterior distribution, and find the interval lower

bound G˚ij “ 1 if êij ´ zp1´αq
b

êijp1´êijq
neff

ą 0.5, where neff is the effective sample size

representing the number of independent posterior samples of the graph, and zp1´αq

is the z-score of the normal distribution at the p1´ αq significance level.
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(c) Convergence diagnostics (PSRF)
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FigureB.2: Links (B.2a) and graph score (B.2b)at each MCMC iteration, with convergence diag-
nostics (B.2c) and local graph BIC (B.2d) for lags for each simulation experiment equation.
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FigureB.3: Links (B.3a) and graph score (B.3b) at each MCMC iteration, with convergence
diagnostics (B.3c) and local graph BIC (B.3d) for lags for each macroeconomic equation.
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B.3 Pseudo-Code for Sparse Graph Selection

Algorithm 3 presents a description of the pseudo-code for the sparse graph selection.

Algorithm 3 Graphical VAR Model Selection Algorithm
for p P rp, . . . , p̄s do

Initialize ~Gp as pny ˆ npq zero matrix, set mp “ min tnp, T ´ pu
Vi
p,x the vector of all possible explanatory variables up to lag p

Vy the vector of dependent variables
for each yi P Vy do

for each xk P Vi
p,x do

if xk is equal to lag 1 of yi then
Set ~Gppyi, xkq “ 1

else
Compute H0 “ P pX |pi, ~Gppyi,Hqq and H1 “ P pX |pi, ~Gppyi, txkuqq
if H1 ą H0 then

Set ~Gppyi, xkq “ 1 and retain xk in Vi
p,x

else
Set ~Gppyi, xkq “ 0 and remove xk from Vi

p,x

Set Nppπiq the set of variables, x1ks, retained in Vi
p,x

for j “ 1 Ñ J , the total iterations do
for each yi P Vy do

Set πpj´1q
i = the set explanatory variables of yi in ~G

pj´1q
p,i

Draw η̄
p˚q

i from a Bepa, bq and set f p˚qi “ tmpη̄
p˚q

i u

if |π
pj´1q
i | ă f

p˚q

i then
Set Qp~Gp˚qp,i |~G

pj´1q
p,i , η̄

p˚q

i q “ 1{|Nppπiq|, Draw xk P Nppπiq

Add/remove edge; i.e. ~Gp˚qp pyi, xkq “ 1´ ~G
pj´1q
p pyi, xkq

else
Set Qp~Gp˚qp,i |~G

pj´1q
p,i , η̄

p˚q

i q “ 1{|πpj´1q
i |, Draw xk P π

pj´1q
i

Remove edge; i.e. ~Gp˚qp pyi, xkq “ 0
Set πp˚qi = the set explanatory variables of yi in ~G

p˚q

p,i

Draw η̄
p˚˚q

i from a Bepa, bq and set f p˚˚qi “ tmpη̄
p˚˚q

i u

if |π
p˚q

i | ă f
p˚˚q

i then
Set Qp~Gpj´1q

p,i |~G
p˚q

p,i , η̄
p˚˚q

i q “ 1{|Nppπiq|
else

Set Qp~Gpj´1q
p,i |~G

p˚q

p,i , η̄
p˚˚q

i q “ 1{|πp˚qi |

Sample u „ Ur0,1s and Compute RA following equation (4.18)
if u ă mint1, RAu then ~G

pjq
p,i “

~G
p˚q

p,i

else ~G
pjq
p,i “

~G
pj´1q
p,i
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B.4 Data Description - Large Macroeconomic Application

Table B.1 provides a description and stationarity transformation codes used for our

large macroeconomic application in Section 4.6.

No. Mnemonic Description Tcode
1 CPIAUCSL* Consumer Price Index for All Urban Consumers: All Items 6
2 FEDFUNDS* Effective Federal Funds Rate 2
3 GDPC96* Real Gross Domestic Product, 3 Decimal 5
4 GPDIC96* Real Gross Private Domestic Investment, 3 decimal 5
5 INDPRO* Industrial Production Index 5
6 PCECC96* Real Personal Consumption Expenditures 5
7 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
8 AHECONS Ave Hr Earnings Of Prod & Nonsupervisory Employees: Construction 6
9 AHEMAN Ave Hr Earnings of Prod & Nonsupervisory Empl: Manufacturing 6
10 AWHMAN Ave Wkly Hr of Prod & Nonsupervisory Empl: Manufacturing 5
11 AWOTMAN Ave Wkly Overtime Hrs of Prod & Nonsup. Empl: Manufacturing 5
12 BAA Moody’s Seasoned Baa Corporate Bond Yield 2
13 BORROW Total Borrowings of Depository Institutions from the Federal Reserve 6
14 BUSLOANS Commercial and Industrial Loans, All Commercial Banks 6
15 CBIC96 Real Change in Private Inventories 1
16 CCFC Corporate: Consumption of Fixed Capital 6
17 CIVPART Civilian Labor Force Participation Rate 5
18 CONSUMER Consumer Loans at All Commercial Banks 5
19 CP Corporate Profits After Tax (without IVA and CCAdj) 6
20 CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel 6
21 CPIENGSL Consumer Price Index for All Urban Consumers: Energy 6
22 CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy 6
23 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care 6
24 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation 6
25 CPIUFDSL Consumer Price Index for All Urban Consumers: Food 6
26 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food 6
27 CURRCIR Currency in Circulation 6
28 CURRSL Currency Component of M1 6
29 DEMDEPSL Demand Deposits at Commercial Banks 6
30 DIVIDEND Corporate Profits after tax with IVA and CCAdj: Net Dividends 6
31 DMANEMP All Employees: Durable goods 5
32 DPIC96 Real Disposable Personal Income 6
33 EMRATIO Civilian Employment-Population Ratio 5
34 EXCAUS Canada / U.S. Foreign Exchange Rate 5
35 EXJPUS Japan / U.S. Foreign Exchange Rate 5
36 EXPGSC96 Real Exports of Goods & Services, 3 Decimal 5
37 EXSZUS Switzerland / U.S. Foreign Exchange Rate 5
38 EXUSUK U.S. / U.K. Foreign Exchange Rate 5
39 FINSLC96 Real Final Sales of Domestic Product 5
40 GCEC96 Real Government Consumption Expenditures & Gross Investment 5
41 GDPDEF Gross Domestic Product: Implicit Price Deflator 5
42 GPDICTPI Gross Private Domestic Investment: Chain-type Price Index 6
43 GS1 1-Year Treasury Constant Maturity Rate 2
44 GS10 10-Year Treasury Constant Maturity Rate 2
45 GS3 3-Year Treasury Constant Maturity Rate 2
46 GS5 5-Year Treasury Constant Maturity Rate 2
47 GSAVE Gross Saving 5
48 HOUST Housing Starts: Total: New Privately Owned Housing Units Started 4
49 HOUST1F Privately Owned Housing Starts: 1-Unit Structures 4
50 HOUST5F Privately Owned Housing Starts: 5-Unit Structures or More 4

Table B.1: Variables and transformation codes, 1 = no transformation, 2 = first difference, 4 = log,
5 = 100ˆ(first difference of log), 6 = 100ˆ(second difference of log). *- The dependent variables.
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No. Mnemonic Description Tcode
51 HOUSTMW Housing Starts in Midwest Census Region 4
52 HOUSTNE Housing Starts in Northeast Census Region 4
53 HOUSTS Housing Starts in South Census Region 4
54 HOUSTW Housing Starts in West Census Region 4
55 IMPGSC96 Real Imports of Goods & Services, 3 Decimal 5
56 INVEST Securities in Bank Credit at All Commercial Banks 5
57 IPBUSEQ Industrial Production: Business Equipment 5
58 IPCONGD Industrial Production: Consumer Goods 5
59 IPDCONGD Industrial Production: Durable Consumer Goods 5
60 IPDMAT Industrial Production: Durable Materials 5
61 IPFINAL Industrial Production: Final Products (Market Group) 5
62 IPMAT Industrial Production: Materials 5
63 IPNCONGD Industrial Production: Nondurable Consumer Goods 5
64 IPNMAT Industrial Production: nondurable Materials 5
65 LOANS Loans and Leases in Bank Credit, All Commercial Banks 6
66 M1SL M1 Money Stock 6
67 M1V Velocity of M1 Money Stock 5
68 M2SL M2 Money Stock 6
69 M2V Velocity of M2 Money Stock 5
70 MCUMFN Capacity Utilization: Manufacturing (NAICS) 1
71 MPRIME Bank Prime Loan Rate 2
72 MZMSL MZM Money Stock 6
73 NAPM ISM Manufacturing: PMI Composite Index 1
74 NAPMEI ISM Manufacturing: Employment Index 1
75 NAPMII ISM Manufacturing: Inventories Index 1
76 NAPMNOI ISM Manufacturing: New Orders Index 1
77 NAPMPI ISM Manufacturing: Production Index 1
78 NAPMPRI ISM Manufacturing: Prices Index 1
79 NAPMSDI ISM Manufacturing: Supplier Deliveries Index 1
80 NDMANEMP All Employees: Nondurable goods 5
81 NONREVSL Total Nonrevolving Credit Owned and Securitized, Outstanding 6
82 OPHPBS Business Sector: Real Output Per Hour of All Persons 5
83 PAYEMS All Employees: Total nonfarm 5
84 PCDG Personal Consumption Expenditures: Durable Goods 5
85 PCECTPI Personal Consumption Expenditures: Chain-type Price Index 5
86 PCESV Personal Consumption Expenditures: Services 5
87 PCND Personal Consumption Expenditures: Nondurable Goods 5
88 PFCGEF Producer Price Index: Finished Consumer Goods Excluding Foods 6
89 PINCOME Personal Income 6
90 PNFI Private Nonresidential Fixed Investment 6
91 PPIACO Producer Price Index: All Commodities 6
92 PPICPE Producer Price Index: Finished Goods: Capital Equipment 6
93 PPICRM Producer Price Index: Crude Materials for Further Processing 6
94 PPIFCF Producer Price Index: Finished Consumer Foods 6
95 PPIFCG Producer Price Index: Finished Consumer Goods 6
96 PPIFGS Producer Price Index: Finished Goods 6
97 PPIITM Producer Price Index: Intermediate Materials: Supplies & Components 6
98 PRFI Private Residential Fixed Investment 6
99 PSAVE Personal Saving 5
100 REALLN Real Estate Loans, All Commercial Banks 6
101 SAVINGSL Savings Deposits - Total 6
102 SLEXPND State & Local Government Current Expenditures 6
103 SLINV State & Local Government Gross Investment 6
104 SP500 S&P 500 5
105 SRVPRD All Employees: Service-Providing Industries 5
106 TB3MS 3-Month Treasury Bill: Secondary Market Rate 2
107 TB6MS 6-Month Treasury Bill: Secondary Market Rate 2
108 TCDSL Total Checkable Deposits 6
109 TOTALSL Total Consumer Credit Owned and Securitized, Outstanding 6
110 TVCKSSL Travelers Checks Outstanding 6
111 UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks 5
112 UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over 5

185



B.4. DATA DESCRIPTION - LARGE MACROECONOMIC APPLICATION

No. Mnemonic Description Tcode
113 UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks 5
114 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks 5
115 ULCNFB Nonfarm Business Sector: Unit Labor Cost 5
116 UNRATE Civilian Unemployment Rate 2
117 USCONS All Employees: Construction 5
118 USEHS All Employees: Education & Health Services 5
119 USFIRE All Employees: Financial Activities 5
120 USGOOD All Employees: Goods-Producing Industries 5
121 USGOVT All Employees: Government 5
122 USINFO All Employees: Information Services 5
123 USLAH All Employees: Leisure & Hospitality 5
124 USMINE All Employees: Mining and logging 5
125 USPBS All Employees: Professional & Business Services 5
126 USPRIV All Employees: Total Private Industries 5
127 USTPU All Employees: Trade, Transportation & Utilities 5
128 USTRADE All Employees: Retail Trade 5
129 USWTRADE All Employees: Wholesale Trade 5
130 WASCUR Compensation of Employees: Wages & Salary Accruals 6
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Appendix C
Technical Details of Chapter 5

C.1 Data Description For European Banks Risk Network

Table C.1 provides a description of the dataset used for our analysis European banks

risk network in Section 5.5.

C.2 Computational Details and Convergence Diagnostics

Following the idea by Wang and Li (2012), we implement the algorithm such that

steps 1 and 2 can be combined and step 3 and 4 as well. A pseudo presentation of

the algorithm is shown in Algorithm (4):

Algorithm 4 Sampling Network
1: Initialize T0 to be identity matrix
2: Compute Tn “ T0 ` Sn
3: Initial with a fully connected graph (upper triangle) G
4: for t “ 1 to Total iterations do
5: for each variable xi do
6: extract the clique xiC centered around xi
7: for each variable xj P xiCzxi do
8: extract the clique xiCzj “ xiCzxj
9: Compute log Bayes factor, logpBF q “ logpP pxiCzjqq ´ logpP pxiCqq

10: if logpBF q ą τ then
11: xj R xiC , set Gij “ 0 and update T0,ii
12: else
13: xj P xiC , set Gij “ 1 and update T0,ii and T0,ij
14: Update Tn following Carvalho et al. (2007)

As discussed in Section 5.4, we choose τ “ 1 as a threshold value for the Bayes

187



C.2. COMPUTATIONAL DETAILS AND CONVERGENCE DIAGNOSTICS

Bank Name Code Country T.Assets SIFI YOY Stdev

Deutsche Bank DBK Germany 2012329 G 3.96 4.00
BNP Paribas BNP France 1907290 G 26.94 3.59
Credit Agricole ACA France 1842361 G 37.42 4.39
Banco Santander SAN Spain 1269628 G 10.90 3.60
Societe Generale GLE France 1250696 G 44.17 4.96
ING Groep INGA Netherland 1168632 G 24.86 4.08
UniCredit UCG Italy 926827 G 41.21 4.99
Intesa Sanpaolo ISP Italy 673472 D 30.72 4.45
Banco Bilbao Vizcaya Argentaria BBVA Spain 637785 G 32.08 3.82
Commerzbank CBK Germany 635878 G -48.65 7.28
Natixis-BPCE Group KN France 528370 G 37.39 4.74
Dexia DEXB Belgium 357210 G -133.50 22.46
Caixabank CABK Spain 348294 - 25.86 5.08
Bankia BKIA Spain 282310 - -469.33 32.13
KBC Group KBC Belgium 256886 D 72.92 4.16
CIC Credit Mutuel Group CC France 235732 - 33.69 2.02
Banca Monte dei Paschi di Siena BMPS Italy 218882 - 2.39 6.29
Erste Group Bank EBS Austria 213824 D 24.34 4.52
Banco de Sabadell SAB Spain 161547 - -3.57 6.21
Banco Popular Espanol POP Spain 157618 - -44.69 12.19
Bank of Ireland BIR Ireland 148146 D 91.20 5.80
Raiffeisen Bank International RBI Austria 136116 D -25.59 3.91
Unione di Banche Italiane UBI Italy 132433 - 38.72 5.30
Banco Popolare BP Italy 131921 - 7.77 6.13
Allied Irish Banks AIB Ireland 122516 D 53.60 8.68
National Bank of Greece ETE Greece 104798 D -186.01 25.86
Banco Comercial Portugues BCP Portugal 89744 D 25.95 5.92
Banco Espirito Santo BES Portugal 83690 - 37.05 7.37
Wustenrot & Wurttembergische WUW Germany 77192 - -4.68 1.89
Mediobanca MB Italy 72841 - 29.96 5.55
Piraeus Bank TPEIR Greece 70406 D -146.26 21.33
Eurobank Ergasias EUROB Greece 67653 D -7.49 19.93
Banca popolare Emilia Romagna BPE Italy 61637 - 30.46 5.77
Alpha Bank ALPHA Greece 58357 D -121.81 18.04
Bankinter BKT Spain 58165 - 83.17 5.68
Banca Popolare di Milano PMI Italy 52475 - 10.74 6.06
Banca Carige CRG Italy 49325 - -18.23 7.07
Aareal Bank ARL Germany 45734 - 37.33 4.34
Pohjola Bank Oyj POH1S Finland 44623 - 14.87 3.38
Banco BPI BPI Portugal 44564 D 22.54 6.02
Bank of Cyprus CPB Cyprus 33762 - -60.01 10.77
IKB Deutsche Industriebank IKB Germany 31593 - 59.85 8.36
Banca Popolare di Sondrio BPSO Italy 32349 - -3.35 3.74
Credito Emiliano CE Italy 30748 - 30.57 4.50
Credito Valtellinese CVAL Italy 29896 - -11.50 5.68

Table C.1: Banks listed and supervised by the European Central Bank from October 2012, to
October 2013. G: Global Systemically Important, D: Domestically Important, T.Asset: Total
Assets, YOY: Year on Year Returns, Stdev: standard deviations

factor. We run 2200 Gibbs iterations with 200 as burn-in. Our MCMC simulations

are implemented in Matlab. We have verified posterior convergence of the algorithm

by diagnosing the complexity of the network.

We monitor convergence of the chain using potential scale reduction factor of

Gelman and Rubin (1992). The approach divides the sampled chains into three
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C.3. SENSITIVITY ANALYSIS

parts to compute within-chain and between-chain covariances to test whether all the

chains converge to the same posterior distribution. The chain is said to have properly

converged if PSRF ď 1.2. The results from our convergence diagnostics, indicates

that all our simulations converged with a PSRF smaller than 1.02.

C.3 Sensitivity Analysis

For sensitivity analysis purposes, we have run our computational algorithm with

different log Bayes factor thresholds, τ “ 0 and τ “ 2. Table C.2 shows the result

of the total links of both hierarchical and non-hierarchical networks for the different

Bayes factor thresholds.

Type Network Baye’s Factor Threshold and Total Links
τ “ 0 τ “ 1 τ “ 2

Non-Hierarchical

Over-all Inter Banks 611 711 867
Within-Country 85 96 106
Inter-Bank Across Country 526 615 761
SIFI 44 45 51

Hierarchical

Over-all Inter Banks 59 95 343
Within-Country 41 58 93
Inter-Bank Across Country 18 37 250
SIFI 8 11 28
Inter-Countries 12 19 46

Table C.2: Sensitivity Analysis with different log Bayes factor thresholds

Our results, summarized in Table C.2 show that the results do not differ con-

siderably from previous ones but the corresponding networks are, respectively, less

or more interconnected. For example, in terms of the between country network, the

estimated present links drop from 19 to 12 for τ “ 0, and increase to 46 for τ “ 2.

In terms of specific relationships, we remark that the substance of what we found

and discussed for the threshold of τ “ 1, chosen according to what presented in the

Simulation section, remains stable with other choices of the threshold.

189


	Declaration
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations and Symbols
	Acknowledgements
	1 General Introduction
	2 The Econometrics Aspects Networks: A Review 
	2.1 Introduction
	2.2 A Review of Graphical Models
	2.2.1 Statistical Inference
	2.2.2 Applications and Developments

	2.3 A Review of Network Aspect of Systemic Risk 
	2.4 Graphical Models in Multivariate Analysis
	2.4.1 Multivariate (Multiple) Regression
	2.4.2 Applications in Econometrics and Finance

	2.5 Bayesian Inference Procedure
	2.5.1 Prior Distribution
	2.5.2 Posterior Approximation
	2.5.3 Graph Sampling Scheme

	2.6 Financial System Interconnectedness
	2.7 Volatility Connectedness in the Euro-Area
	2.8 Conclusion

	3 Bayesian Graphical Models for SVAR Processes
	3.1 Introduction
	3.2 Bayesian Graphical Vector Autoregression
	3.2.1 Over-Parametrized VAR Models
	3.2.2 Identification of Structural Dynamics
	3.2.3 Graphical Models and Structural VAR
	3.2.4 Bayesian Graphical VAR Models
	3.2.5 Statistical Inference on Graphical VAR Models 

	3.3 Efficient Model Inference Scheme
	3.3.1 Sampling the MAR Structure
	3.3.2 Sampling the MIN Structure
	3.3.3 Estimating Reduced-Form Graphical VAR

	3.4 Simulation Experiments
	3.5 Modeling and Forecasting Macroeconomic Time Series
	3.5.1 Robustness Check for the Macroeconomic Application

	3.6 Measuring Financial Interconnectedness
	3.7 Conclusion

	4 Sparse Graphical VAR: A Bayesian Approach
	4.1 Introduction
	4.2 Graphical VAR Models
	4.3 Sparse Bayesian Graphical VAR Models
	4.3.1 Lag Order Prior Distribution
	4.3.2 Standard Graph Prior Distribution
	4.3.3 Sparsity Prior Distribution
	4.3.4 Our Graph Prior Distribution
	4.3.5 Parameter Prior Distribution

	4.4 Bayesian Inference
	4.4.1 Posterior Approximation
	4.4.2 Graphical Model Selection
	4.4.3 Duality between Priors and Penalties
	4.4.4 Model Estimation

	4.5 Simulation Study
	4.5.1 Metrics for Performance Evaluation
	4.5.2 Simulation Study Set-up and Results
	4.5.3 Sparsity and Indeterminacy Evaluation

	4.6 Forecasting VAR with Many Predictors
	4.7 Conclusion

	5 Bayesian Selection of Systemic Risk Networks
	5.1 Introduction
	5.2 Literature Review
	5.3 Hierarchical Bayesian Graphical Models
	5.3.1 Hierarchical Graphical Models
	5.3.2 Efficient Structural Inference Scheme
	5.3.3 Centrality Measures

	5.4 Simulation Experiment
	5.5 European Banks Risk Network
	5.5.1 Discussion

	5.6 Conclusions

	6 Conclusion
	6.1 Summary
	6.2 Extensions and Further Research

	Bibliography
	Appendices
	A Technical Details of Chapter 3
	A.1 Prior and Posterior Distributions
	A.2 MCMC Sampling
	A.3 Graphical Model Evaluation
	A.3.1 Convergence Diagnostics
	A.3.2 Graph Structure Evaluation
	A.3.3 Model Prediction Accuracy
	A.3.4 PC Algorithm
	A.3.5 Granger-Causality

	A.4 Macroeconomic and Financial Data Description

	B Technical Details of Chapter 4
	B.1 Proofs
	B.1.1 Proof of Proposition 1
	B.1.2 Proof of Proposition 2
	B.1.3 Proof of Corollary 3
	B.1.4 Proof of Proposition 4

	B.2 Convergence Diagnostics and Posterior Approximation
	B.2.1 Convergence Diagnostics
	B.2.2 Edge Posterior Approximation

	B.3 Pseudo-Code for Sparse Graph Selection
	B.4 Data Description - Large Macroeconomic Application

	C Technical Details of Chapter 5
	C.1 Data Description For European Banks Risk Network 
	C.2 Computational Details and Convergence Diagnostics
	C.3 Sensitivity Analysis


