
Master’s Degree programme – Second Cycle
(D.M. 270/2004)
in Economics and Finance

Final Thesis

Macroeconomic Factors and the 
U.S. Stock Market Index: A 
Cointegration Analysis

Supervisor
Ch. Prof. Stefano Federico Tonellato

Graduand
Verena Brufatto
Matriculation Number 849145

Academic Year
2014 / 2015



Abstract

This thesis is aimed at investigating the impact that changes and shocks in a set of selected

macroeconomic variables have on the U.S. stock market returns. The existence of a long-run

equilibrium relationship between fundamentals and the stock market index is inquired using

the methodological framework of cointegration analysis and a vector error correction model.

Moreover, the short-run dynamic dependencies between the variables are examined by per-

forming an impulse response analysis and the empirical question of whether economic vari-

ables are useful indicators of future stock market returns is addressed. The empirical results

of this study indicate that the U.S. stock market index establishes a cointegrating relationship

with some of the selected macroeconomic variables, showing that information about relevant

economic indicators is reflected in stock returns and that changes in fundamentals are signifi-

cantly priced in the stock market index. In addition, the impulse response analysis highlights

the presence of meaningful short-run dynamic effects, on the grounds that innovations in the

macroeconomic variables are seen to exert an impact on stock prices.
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Abbreviations

Table 1: List of abbreviations

Abbreviation Definition

ACF Autocorrelation Function

ADF Augmented Dickey-Fuller Unit Root Test

AIC Akaike Information Criterion

APT Arbitrage Pricing Theory

AR (AR(p)) Autoregressive Process (of order p)

ARCH Autoregressive Conditional Heteroskedasticity (Model)

ARMA (ARMA(p, q)) Autoregressive Moving Average Process (of order p, q)

BIC Bayesian-Schwartz Information Criterion

CRDW Cointegration Regression Durbin-Watson Test

DF Dickey-Fuller Unit Root test

DOLS Dynamic Ordinary Least Squares (Estimator)

DGP Data Generating Process

DW Durbin-Watson Statistic

EC / ECM Error Correction / Error Correction Model

ECT Error Correction Term

EG Engle-Granger Cointegration Test

FEVD Forecast Error Variance Decomposition

GARCH Generalized Autoregressive Conditional Heteroskedasticity Model

GDP Gross Domestic Product

GNP Gross National Product
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HQIC Hannan-Quinn Information Criterion

IID Independently and Identically Distributed

IRF Impulse Response Function

KPSS Kwiatkowski-Phillips-Schmidt-Shin Stationarity Test

LR Likelihood Ratio Test

LM Lagrange Multiplier Test

MA (MA(q)) Moving Average Process (of order q)

ML / MLE Maximum Likelihood / Maximum Likelihood Estimator

MSE Mean-Squared Errors

OECD Organization for Economic Co-operation and Development

OLS Ordinary Least Squares (Estimator)

PP Phillips-Perron Unit Root Test

PACF Partial Autocorrelation Function

RHS / LHS Right Hand Side / Left Hand Side

S&P500 Standard and Poor’s 500 Stock Index

VAR (VAR(p)) Vector Autoregressive Model (of order p)

VEC / VECM Vector Error Correction / Vector Error Correction Model
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Introduction

The empirical question of whether fundamentals can be influential factors in the determination

and prediction of stock prices is, by now, well-documented in the literature. Although the es-

tablishment of a link between macroeconomic variables and stock prices is in contrast with the

efficient market hypothesis by Fama (1970)1, evidence of a long-run relationship between fun-

damentals and stock markets across a variety of countries was found by a number of studies.

As maintained by economic theory and previous surveys, macroeconomic forces are believed

to drive stock prices on the grounds that changes in economic activities are expected to affect

corporate future earnings, future dividend payouts and discount rates, which in turn influence

the equity market (Fama (1981, 1990), Chen et al. (1986), Ferson and Harvey (1991, 1993)). Much

of the early literature in this thematic area is characterized by the use of the arbitrage pricing

theory (APT) model by Ross (1976) for investigating whether a series of risk factors can explain

stock returns2. Employing this methodology, evidence that macroeconomic variables have a

systematic effect on U.S. stock market returns was found by Fama and Schwert (1977), Nelson

(1977) and Jaffe and Mandelker (1976), among others. A study by Chen et al. (1986), based

on the APT model, reports that the set of macroeconomic variables composed of interest rates

spread, expected and unexpected inflation, industrial production and bond yield spread signif-

1The efficient market hypothesis states that, if the market is efficient, the possibility of earning abnormal

profits through the prediction of future movements of stock prices is precluded to investors, since, due

to competition among investors, any relevant information enclosed in changes in fundamentals will be

swiftly incorporated in current stock prices.
2The APT approach focuses on establishing whether changes in fundamental variables represent sig-

nificant risk factors, rewarded by risk premia, on the equity market and if they are consistently priced in

stock market returns.
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icantly influences stock market returns. The findings of Chen et al. suggested the possibility

that a long-term equilibrium relationship between fundamentals and stock prices existed, but

it was not until the development of cointegration analysis by Granger (1986) and Johansen and

Juselius (1990) that the basis for the empirical determination of this relationship was set. In

particular, the introduction of the error correction model (ECM) by Engle and Granger (1987)

and of the vector error correction model (VECM) by Johansen (1991) offered the opportunity to

investigate the dynamic co-movements between the variables and to examine the adjustment

mechanism to previous periods departures from long-run equilibrium, even in the presence

of non-stationary time series. Ever since its development, the methodology of cointegration

analysis has been widely applied in economic studies with focus on the stock exchanges of

industrialized countries as well as emerging economies. Several studies concentrated on exam-

ining the co-movements of macroeconomic variables and the stock exchange in the U.S. and

Canada (Fama (1981), Geske and Roll (1983), Chen et al. (1986), Darrat (1990), Lee (1992), Ab-

dullah and Hayworth (1993), McMillan (2001)), others tried to establish a link between real

activity and the U.K. equity market (Poon and Taylor (1991), Cheng (1995)), while some studies

focused on finding this relationship in European countries (Wasserfallen (1989), Asprem (1989),

Gjerde and Saettem (1999), Nasseh and Strauss (2000), Hondroyiannis and Papapetrou (2001),

Panetta (2002), Tsoukalas (2003), Dritsaki and Adamopoulos (2005)), in Asian countries (Hamao

(1988), Mukherjee and Naka (1995), Kwon and Shin (1999), Ibrahim (1999), Maysami and Koh

(2000), Maysami and Sims (2001a, 2001b, 2002), Maysami et al. (2004)), in India (Padhan (2007),

Agrawalla and Tuteja (2007), Naik and Phadi (2012)) and in African countries (Jefferis and Okea-

halam (2000), Lekobane-Sikalao and Lekobane (2012), Ogbulu et al. (2014)).

Although the results of the aforementioned surveys indicate the presence of a strong link

between the stock market performance and fundamentals, there is a certain number of studies

that disclaim the existence of any significant relationship. Culter et al. (1988), for example, de-

bate the hypothesis that information about expected corporate cash flows and discount rates

are perfectly incorporated into stock prices and find that the influence of macroeconomic news

on stock markets is generally weak. The effort of Schwert (1989) to relate stock volatility in the

U.S. to changes in leading economic indicators failed to find strong evidence that economic fac-

tors contribute to the determination of highly volatile future stock prices. A survey by Richards

(1996) reports that the predictability of stock returns in emerging equity markets appears to
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have diminished over time, while Allen and Jagtianty (1997) argue that, due to the widespread

practice of writing derivative contracts on interest rates for hedging purposes, the sensitivity

of the stock market to changes in interest rates suffered a decrease between the late 1980’s and

the early 1990’s. According to Pearce (1983), the stock market is likely to generate false signals

about the direction of the economy – as it was the case when, during the 1987 stock market crash,

the advent of an economic recession was wrongly prognosticated by the market – and should

hence not be regarded as a reliable economic indicator. Nevertheless, evidence that macroeco-

nomic factors significantly contribute to the determination of stock prices was found by several

cointegration-based studies. For example, Cheung and Ng (1998) investigated the long-run

relationship between five national stock market indexes and aggregate real economic variables

such as real GNP, real oil price, real money supply and real consumption. Using Johansen’s like-

lihood ratio test for the cointegration rank and an ECM, the authors established that the stock

market indexes of Canada, Germany, Italy, Japan and the U.S. are strongly related to changes in

real domestic aggregate activity. By employing Johansen’s VECM, Mukherjee and Naka (1995)

report that the Japanese stock market is cointegrated with a set of domestic macroeconomic

variables –that is, industrial production, money supply, exchange rate, call money rate, long-

term interest rate and inflation. In a series of papers, Maysami and Sims (2001a, 2001b, 2002)

examined the relationship between money supply, interest rates, inflation, exchange rate, real

activity and the stock exchanges of Malaysia and Thailand, Japan and Korea and Hong Kong

and Singapore using a vector error correction model (VECM). In order to proxy for the effect

of the 1997 Asian financial crisis, a dummy variable was included in the set of macroeconomic

factors. The output of the studies highlights the presence of a significant long-run relationship

between fundamentals and stock markets, which however differs in type and size depending

on the particular financial structure of the country under analysis. Through Johansen’s cointe-

gration rank test and a forecast error variance decomposition, Nasseh and Strauss (2000) found

that industrial production, short- and long-term interest rates, business surveys of manufac-

turing and foreign stock prices strongly influenced the stock market prices of six European

countries, namely Germany, Italy, France, Netherlands, the U.K. and Switzerland. McMillan

(2001) inquired the existence of a cointegrating relationship between two U.S. stock market in-

dexes and industrial production, inflation, short- and long-term interest rates and money sup-

ply. The results indicated a significant long-run relationship between the Standard and Poor’s
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500 (S&P500) and the Dow Jones Industrial Average (DJX) and industrial production, long-term

interest rates and inflation. A variance decomposition highlighted the contribution of industrial

production, short- and long- term interest rates and inflation to explaining stock price variabil-

ity in the U.S. With an application to the Australian stock exchange, Chaudhuri and Smile (2004)

focused on determining the effect of changes in real macroeconomic activity on real stock re-

turns. Using the methodology of cointegration analysis, the authors found evidence that real

domestic aggregate activity along with stock return variability in New Zealand and the U.S.

have significant explanatory power over stock market movements in Australia.

The purpose of this survey is to contribute to empirically assess the extent to which a long-

run relationship between U.S. stock prices and a set of macroeconomic variables exists. In par-

ticular, the question of whether current economic activities are among the determinants of U.S.

stock market prices and whether they are influential factors in predicting future stock returns

is of interest. If stock market returns consistently reflect macroeconomic information, the U.S.

stock market index should be cointegrated with the set of macroeconomic variables and changes

in the latter should contribute significantly to the cointegrating relationship. In economic terms,

this would imply that the U.S. equity market is sensitive to changes in fundamentals and that

future stock prices can be determined, to some degree, by changes in economic factors. The

methodological framework of cointegration analysis and a vector error correction model are

used in an attempt to capture the long-run response of the U.S. stock market, represented by

the Dow Jones Industrial Average, to changes in the levels of fundamental economic variables

such as industrial production, money supply, short-term interest rates, crude oil price and the

rate of inflation. This study finds that the selected macroeconomic variable and the U.S. stock

index are cointegrated, indicating that the equity market incorporates economic information

into the stock price index. The existence of a vector error correction model implies that there

is Granger causality from macroeconomic factors to the stock market index and consequently,

past values of the set of macro-variables possess a certain forecasting ability with respect to U.S.

stock prices. By performing an impulse-response analysis, the short-term effect of a shock in

each of the macroeconomic factors on the stock market is investigated. The results of this sur-

vey highlight the presence of significant short-term relations between the U.S. stock index and

the set of macroeconomic factors, in addition to a long-term equilibrium relationship.
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Chapter 1

Time Series Concepts

Univariate time series models, which will be briefly introduced later on in this section, are

commonly used to model and forecast economic and financial variables by relying on the infor-

mation retained in the variable’s own past values and current or past values of an error process.

This class of models represents and alternative to structural models, which are typically multi-

variate and which are aimed at explaining how the value of a variable changes in response to

the movements of a set of explanatory variables.

1.1 Stationarity, Ergodicity and Weak Dependence

The following section is intended to outline some of the fundamental concepts in time series

analysis, prior to introducing the main notions of this survey in the next chapters.

Definition 1 (Stochastic Process). A sequence {Yt(ω)}t∈T of random variables or random vectors,

which are all defined on the same probability space (Ω,A ,P), is called a stochastic process. The time

parameter T usually corresponds to the set of natural, real or integer numbers.

A stochastic process depends both on time and on uncertainty. A realization {yt}t∈T of

a random variable is the observed value of one of the variables that constitute the stochastic

process. A sequence of realizations is what is called a time series. Since normally the process

is not observed at every point in time in T, but only on a finite subset T of T, the time series,

i.e. the observed path, has length T . Often the terms stochastic process and time series are
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used as synonyms to indicate a series of random variables which are indexed by time; the

notation {yt} = {...yt−1, yt, yt+1...} for t = 1, ..., T can be used equivalently to {Yt(ω)}t∈T to

denote a stochastic process. Time series data are very frequently used in economic empirical

studies. The concept of stationarity plays a crucial role in the analysis of financial time series.

When considering cross sectional data, i.e. data which stems from the same point in time, the

samples are i.i.d., whereas this is not necessarily true for sample variables from a time series.

As a consequence, estimators like the sample mean might no longer be unbiased and consistent

when applied to time series data. In order to employ usual estimation methods on a sample

from a time series, the stochastic process is required to be stationary and ergodic. Stationarity

provides the condition for the series to be identically distributed, while ergodicity ensures that

certain results, such as the law of large numbers and the central limit theorem, hold even when

the realizations are not independent.

Definition 2 (Strict Stationarity). Considering the points in time t1, ..., tn ∈ T, for n ∈ N, the stochas-

tic process {Yt(ω)}t∈T is strictly stationary if, for h ∈ T:

P (Yt1 ≤ y1, ..., Ytn ≤ yn) = P (Yt1+h ≤ y1, ..., Ytn+h ≤ yn)

A process is defined strictly stationary when its probability distribution is stable over time,

in the sense that the joint distribution of a collection of random variables from the process

remains unchanged when the collection is shifted in time. The stochastic process {Yt(ω)}t∈T,

which from now on we will denote {yt} for simplicity, is strictly stationary if, for all h, the joint

distribution of (yt1 , ..., ytn) is the same as the joint distribution of (yt1+h, ..., ytn+h). In other

words, yt has the same probability distribution as yt+h, which is the value of the process h

periods of time ahead. The same holds for any pair or sequence of terms in the process, up to

an arbitrary positive integer n. Usually, the assumption of a weaker form of stationarity, which

is more manageable than strict stationarity, suffices for analysis purposes.

Definition 3 (Weak Stationarity). A stochastic process {yt} with a finite second moment E[y2t < ∞]

is covariance stationary if E[yt] = µt = µ and if Cov[yt, yt−h] = E[(yt − µ)(yt−h − µ)] = γh, for all

t ∈ T and for any h.

A process is weakly stationary when its moments are independent of time. This definition

implies that also the variance is invariant under a time shift, since Var[yt] = Cov[yt, yt] = γ0.

12



Hence, the first two moments of a covariance stationary process are constant — since they don’t

depend on t, while the covariance, and consequently also the correlation between yt and yt−h,

only depends on the time gap h and not on the starting point t. The autocovariance of a process

{yt}, denoted as

Cov[yt, yt−h] = γh = E[(yt − µ)(yt−h − µ)] (1.1)

is, in the case of a weakly stationary process, the covariance between the value of y at present

time t and its value at previous times. The correlation between current and past values of

the process Yt is known as the autocorrelation function of Yt and is obtained by divinding the

autocovariance function γh by the variance γ0. In particular, the correlation coefficient between

Yt and Yt−h is defined as the lag-h autocorrelation, written

ρh =
Cov[yt, yt−h]√
Var[yt]Var[yt−h]

=
Cov[yt, yt−h]

Var[yt]
=
γh
γ0

(1.2)

where Var[yt] = Var[yt−h], since yt is a weakly stationary process. By plotting the autocorre-

lations ρh against the time lags h = 1, 2, ..., the autocorrelation function (ACF), also known as

correlogram, is built. Gaussian white noise processes are known to be stationary processes. A

time series {yt} with finite first and second moment is said to be white noise, while if {yt} fol-

lows a normal distribution with mean 0 and variance σ2, then it is Gaussian white noise and its

realizations are i.i.d. Since the autocovariance of white noise processes is always zero except for

at lag zero, where it is equal to the variance, observations are uncorrelated across time. Conse-

quently, the ACF of a white noise sequence is 1 for h = 0 and zero otherwise. A white noise

series does not display any kind of trending behavior, such that, in a time plot, the process will

frequently cross it mean value of zero.

Definition 4 (Ergodicity). Let (y1, .., yT ) be a collection of T random variables from a weakly stationary

stochastic process {yt} with expected value µ. The process is said to be mean-ergodic or first-order ergodic

if

p lim

(
1

T

T∑
t=1

yt

)
= µ

A stationary stochastic process is first-order ergodic when the sample mean 1
T

∑T
t=1 yt con-

verges in probability to the population mean µ. If the same holds for both the first and second

sample moments, the process is said to be ergodic in the wide sense and consistent estimation
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of population moments is ensured when the number of points in time at which the process is

observed increases. Hence, when considering a long enough sample string, the time average of

its elements is consistent for the population mean, provided that the realizations of the process

are not too strongly correlated. Ergodicity also ensures that the law of large numbers can be

applied to a sequence of dependent random variables stemming from a time series.

Definition 5 (Weak Dependence). A covariance stationary time series {yt} is said to be weakly de-

pendent, if Corr[yt, yt+h] → 0 as h→ ∞.

The concept of weak dependence is used to determine how strongly two realizations of a

stochastic process are correlated when they are set far apart in time. For a stationary time se-

ries, weak dependence is given when yt and yt+h are almost independent for a large h, which

implies that the lag-h autocorrelation of yt decays sufficiently rapidly to zero as the number of

lags h increases. Intuitively, any sequence that is i.i.d. is also weakly dependent. Because the

autocorrelation of a covariance stationary process doesn’t depend on the starting point t, such

processes are automatically weakly dependent. Weakly dependent time series are also said to

be asymptotically uncorrelated. In practice, as the time distance between two random variables

increases, their correlation progressively diminishes, until it eventually goes to zero when the

number of lags reaches infinity. Weak dependence has useful implications in regression anal-

ysis, for it ensures the validity of the law of large numbers and of the central limit theorem,

replacing the assumption of random sampling in time series data.
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1.2 Stationary Time Series Models

1.2.1 Autoregressive Processes

AR(1) Models

An autoregressive model of order one, or AR(1) in short, has the form

yt = ϕ0 + ϕ1yt−1 + ut (1.3)

where the term ut is a zero mean white noise process with variance σ2. As can be seen from

the model expression, in an AR(1) model the value of yt depends on its first lag yt−1 and on the

disturbance term ut. If we assume that (1.3) is a covariance stationary series, then it must be

that E[yt] = µ, Var[yt] = γ0 and Cov[yt, yt−h] = γh, where µ and γ0 are constants and γh only

depends on h and not on t. The expected value of (1.3) is calculated as

E[yt] = µ =
ϕ0

1− ϕ1
(1.4)

since, under the weak stationarity assumption, E[yt] = E[yt−1] = µ, from which it follows that

µ = ϕ0 + ϕ1µ or equivalently ϕ0 = (1− ϕ1)µ. From (1.4) it can be seen that the mean of yt only

exists as long as ϕ1 ̸= 1 and is non-zero only for ϕ0 ̸= 0. By the same logic, Var[yt] = Var[yt−1]

and the variance of yt is

Var[yt] = γ0 =
σ2

1− ϕ21

since yt−1 and ut are uncorrelated. The variance of the AR(1) process is positive and bounded

provided that ϕ21 < 1, such that the weak stationarity of (1.3) is ensured by the constraint |ϕ1| <

1. Exploiting the fact that ϕ0 = (1−ϕ1)µ, the lag-h autocovariance of yt is calculated by rewriting

(1.3) as

yt − µ = ϕ1(yt−1 − µ) + ut (1.5)

and then multiplying each side of the previous equation by (yt−h − µ) and taking expectations,

yielding

E[(yt − µ)(yt−h − µ)] = ϕ1E[(yt−1 − µ)(yt−h − µ)] + E[ut(yt−h − µ)]
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Since E[ut(yt − µ)] = σ2 and E[ut(yt−h − µ)] = 0, the lag-h autocovariance of yt is

γh =


ϕ1γ1 + σ2 if h = 0

ϕ1γh−1 =
σ2ϕh

1

1−ϕ2
1

if h > 0

Considering that ρh = γh/γ0, the autocorrelations of the AR(1) model are equal to ρ0 = 1,

ρ1 = ϕ1, ρ2 = ϕ21,..., ρh = ϕh1 . Equivalently, the lag-h autocorrelation of yt can be expressed as

ρh = ϕ1ρh−1 (1.6)

such that it satisfies

(1− ϕ1L)ρh = 0 (1.7)

where L is the lag operator and Lρh = ρh−1. The first-order polynomial equation

1− ϕ1z = 0 (1.8)

is known as the characteristic equation of the AR(1) model. The root of the characteristic equa-

tion is referred to as the characteristic root of the model and it is calculated as the inverse of

the solution of (1.8). The stationarity of yt is ensured when the characteristic root lies inside the

complex unit circle or equivalently, when its absolute value is less than one. By solving (1.8)

with respect to z and then taking the inverse, the root λ = 1/z = ϕ1 is obtained, so that (1.3) is

a stationary process provided that |ϕ1| < 1. In this instance, the ACF of yt will decay exponen-

tially to zero as h gets large. For ϕ1 > 0, the convergence of the correlogram will be direct, while

the ACF will waver around zero for ϕ1 < 0.

AR(2) Models

The following process

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + ut (1.9)

is called an autoregressive model of order two, written AR(2). Assuming that the process is

weakly stationary, the expected value of (1.9) is calculated as

E[yt] = µ =
ϕ0

1− ϕ1 − ϕ2
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which exists as long as ϕ1 + ϕ2 ̸= 1. Exploiting the fact that ϕ0 = µ(1 − ϕ1 − ϕ2), the AR(2)

model can be rewritten as

yt − µ = ϕ1(yt−1 − µ) + ϕ2(yt−2 − µ) + ut (1.10)

The higher order moments of the AR(2) model are obtained by multiplying (1.10) by (yt−h − µ)

for h = 0, 1, 2, ..., and taking expectations1

E[(yt − µ)(yt − µ)] = ϕ1E[(yt−1 − µ)(yt − µ)] + ϕ2E[(yt−2 − µ)(yt − µ)] + E[ut(yt − µ)]

E[(yt − µ)(yt−1 − µ)] = ϕ1E[(yt−1 − µ)(yt−1 − µ)] + ϕ2E[(yt−2 − µ)(yt−1 − µ)] + E[ut(yt−1 − µ)]

...

E[(yt − µ)(yt−h − µ)] = ϕ1E[(yt−1 − µ)(yt−h − µ)] + ϕ2E[(yt−h − µ)(yt−1 − µ)] + E[ut(yt−h − µ)]

(1.11)

which yields

γ0 = ϕ1γ1 + ϕ2γ2 + σ2 (1.12)

γ1 = ϕ1γ0 + ϕ2γ1 (1.13)

γh = ϕ1γh−1 + ϕ2γh−2 (1.14)

By dividing (1.13) and (1.14) by γ0, it is possible to obtain the autocorrelations of the AR(2)

model

ρ1 = ϕ1ρ0 + ϕ2ρ1 = ϕ1 + ϕ2ρ1 (1.15)

ρh = ϕ1ρh−1 + ϕ2ρh−2 (1.16)

since ρ0 = 1. By looking at equation (1.16), it can be seen that the autocorrelations satisfy

(1− ϕ1L− ϕ2L
2)ρh = 0, such that the second-order polynomial equation

1− ϕ1z − ϕ2z
2 = 0 (1.17)

represents the characteristic equation of yt. As in the previous case of a AR(1) model, the two

characteristic roots λ1 and λ2 of the AR(2) must be less than one in modulus in order for yt to be

stationary. Under this condition, (1.16) ensures that the ACF of the AR(2) will converge to zero

1This procedure is known as the Yule-Walker equations
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as h gets large. The solutions of (1.17) are obtained by solving

z =
ϕ1 ±

√
ϕ21 + 4ϕ2

−2ϕ2

and the inverses of these solutions represent the characteristic roots. In case that both the

characteristic roots are real numbers, the polynomial (1 − ϕ1L − ϕ2L
2) can be factored as

(1−λ1L)(1−λ2L) and the ACF of the AR(2) model will be a mixture of two exponential decays.

If instead λ1 and λ2 are complex numbers, the correlogram will display a sinusoidal path.

AR(p) Models

Let us generalize the results obtained for the AR(1) and AR(2) models by including p lags of the

variable yt in the model specification. The resulting process

yt = ϕ0 + ϕ1yt−1 + ...+ ϕpyt−p + ut

= ϕ0 +

p∑
i=1

ϕiyt−i + ut

(1.18)

is known as an autoregressive model of order p, written AR(p)2. Using the lag operator and

setting ϕ(L) = 1− ϕ1L− ...− ϕpL
p, (1.18) can be rewritten as

ϕ(L)yt = ϕ0 + ut (1.19)

The AR(p) model is stationary when the solutions of the associated characteristic equation

1− ϕ1z − ...− ϕpz
p = 0 (1.20)

have modulus greater than one, or otherwise when the characteristic roots —that is, the inverses

of the solutions of (1.20), are less than one in modulus. If stationarity is ensured, the ACF of the

AR(p) model will decay exponentially to zero as the number of lags increases. Depending on

the nature of the characteristic roots of yt, the correlogram will exhibit a pattern of exponential

decays and sinusoidal behavior. The expected value of an AR(p) model is equal to

E[yt] =
ϕ0

1− ϕ1 − ...− ϕp
(1.21)

while its other moments can be calculated as in the AR(2) case by means of the Yule-Walker

equations

γ0 = ϕ1γ1 + ...+ ϕpγp + σ2 (1.22)

2Chapter 2 treats the order selection, parameter estimation and model adequacy tests for AR models.
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γh = ϕ1γh−1 + ...+ ϕpγh−p (1.23)

ρh = ϕ1ρh−1 + ...+ ϕpρh−p (1.24)

According to the Wold decomposition theorem, any weakly stationary process can be repre-

sented in the form of an infinite order moving average process MA(∞). In the case of a zero

mean AR(p) process that contains no constant term

ϕ(L)yt = ut (1.25)

Wold’s decomposition is stated as

yt = ψ(L)ut (1.26)

where ψ(L) = ϕ(L)−1 = (1− ϕ1L− ...− ϕpL
p)−1.

1.2.2 Moving Average Processes

As we have seen in the previous section, in an AR model the value of the process y at present

time t depends on its own previous values plus an error term. In contrast, in a moving average

(MA) model, yt can be seen as a weighted average of present and past disturbance terms. A MA

model of order one (MA(1)) has the following expression

yt = c+ ut − θ1ut−1

= c+ (1− θ1L)ut

(1.27)

where c is a constant and ut ∼WN(0, σ2). By computing the expected value of yt

E[yt] = c

can be seen that the constant term in (1.27) is the mean of the series, such that the MA(1) can be

rewritten as

yt = µ+ ut − θ1ut−1 (1.28)

Since MA models are finite linear combinations of white noise sequences, they are always sta-

tionary. The same property can be deduced by calculating the moments of the series. We have

already seen that the mean of a MA(1) is time invariant. By using the fact that ut and ut−1 are

uncorrelated, the variance of yt is equal to

Var[yt] = σ2 + θ21σ
2 = (1 + θ21)σ

2
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which is also independent of time. Let us set µ = 0 for simplicity and multiply each side of

equation (1.28) by yt−h

ytyt−h = utyt−h − θ1ut−1yt−h

by taking expectations, the autocovariances of the series are obtained

γh =


−θ1σ2 if h = 1

0 if h > 1

Dividing γh by γ0 = V ar[yt], yields the ACF of yt

ρ0 = 1, ρ1 =
−θ1
1 + θ21

, ρh = 0 for h > 1

As can be seen from this result, the ACF of a MA(1) is different from zero at lag 1 but is zero

afterward, that is to say, it cuts off at lag 1. For a MA(2) model of the form

yt = µ+ ut − θ1ut−1 − θ2ut−2 (1.29)

the ACF satisfies

ρ1 =
−θ1 + θ1θ2
1 + θ21 + θ22

, ρ2 =
−θ2

1 + θ21 + θ22
, ρh = 0 for h > 2

such that it cuts off at lag 2. It is easy to see how this results extend to the general MA(q) model

yt = µ+ ut − θ1ut−1 − ...− θqut−q

= µ+ ut −
q∑
i=1

θiut−i

(1.30)

which, setting θ(L) = 1− θ1L− ...− θqL
q , can equivalently be expressed as

yt = µ+ θ(L)ut

The moments of a MA(q) are calculated as

• E[yt] = µ

• Var[yt] = γ0 = (1 + θ21 + ...+ θ2q)σ
2

• Cov[yt, yt−h] = γh =


−(θh + θh+1θ1 + ...+ θqθq−h)σ

2 for h = 1, ..., q

0 for h > q
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Hence, since the process (1.30) has constant mean, constant variance and a time invariant auto-

covariance structure, the conditions for weak stationarity are satisfied. Moreover, the autoco-

variances and consequently also the ACF of a MA(q) model can take on non-zero values only

up to lag q, after which they have value zero, such that ρh = 0 for h > q. Since the ACF of

a MA cuts off at the lag corresponding to its order, it can be used for identifying the order of

the process. The parameters of a MA model are conventionally estimated via the maximum

likelihood estimator. In order to build the likelihood function, two different approaches can be

used: the conditional and the exact likelihood method. In the context of conditional likelihood,

the initial disturbances, ut for t ≤ 0 are set equal to zero. The likelihood function is then calcu-

lated recursively using the expressions for the error terms at t = 1, 2, ..., yielding u1 = y1 − µ,

u2 = y2−µ+ θ1u1 and so on. When using the exact likelihood method, instead, the initial value

of the error terms is treated as an additional parameter and is estimated jointly with the MA

coefficients. Both estimation procedures yield similar results for large sample sizes.

1.2.3 ARMA Processes

ARMA(1,1) Models

Autoregressive moving average (ARMA) models result from the combination of AR and MA

models and are often used in financial applications for their capability of describing the dy-

namic structure of the data while relying on a limited number of parameters. An ARMA(1,1)

has the form

yt = ϕ0 + ϕ1yt−1 + ut − θ1ut−1 (1.31)

where ut ∼ WN(0, σ2), ϕ0 is a constant term and ϕ1 ̸= θ1. Assuming that yt is a covariance

stationary process, such that E[yt] = E[yt−1] = µ, the mean of (1.31) is equal to

E[yt] = µ =
ϕ0

1− ϕ1

which is exactly the same as the mean of an AR(1) sequence from Section 1.2.1. Assuming for

simplicity that ϕ0 = 0, the variance and autocovariances of the ARMA(1,1) can be calculated by
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means of the Yule-Walker equations

E[ytyt] = ϕ1E[yt−1yt] + E[utyt]− θ1E[ut−1yt] → γ0 = ϕ1γ1 + σ2(1 + θ21 − ϕ1θ1)

E[ytyt−1] = ϕ1E[yt−1yt−1] + E[utyt−1]− θ1E[ut−1yt−1] → γ1 = ϕ1γ0 − θ1σ
2

E[ytyt−2] = ϕ1E[yt−1yt−2] + E[utyt−2]− θ1E[ut−1yt−2] → γ2 = ϕ1γ1

...

E[ytyt−h] = ϕ1E[yt−1yt−h] + E[utyt−h]− θ1E[ut−1yt−h] → γh = ϕ1γh−1

By substituting the expression for the lag-1 autocovariance γ1 into the expression for γ0, after

some manipulation, we obtain the variance of the process yt

Var[yt] = γ0 =
(1 + θ21 − 2ϕ1θ1)σ

2

1− ϕ21

In order for the variance to be positive, it is required that ϕ21 < 1, which is equivalent to |ϕ1| < 1,

the same condition that an AR(1) process must satisfy in order to be stationary. By looking at

the expression for γ1 it is clear that the first lag autocovariance of an ARMA(1,1) is not the same

as that of an AR(1). However, the lag-2 autocovariance γ2 is identical for both processes, and

the same is also true for each following lag up to lag h. By calculating the autocorrelations of yt,

it can be seen that they satisfy

ρ0 = 1, ρ1 = ϕ1 −
θ1σ

2

γ0
, ρh = ϕ1ρh−1 for h > 1

Hence, the ACF structure of an ARMA(1,1) is essentially equal to that of an AR(1) model, with

the only difference that it starts its exponential decay at lag 2. Note that neither the ACF nor the

PACF of an ARMA(1,1) process become zero at any finite lag.

ARMA(p, q) Models

An ARMA(p, q) model has the form

yt = ϕ0 + ϕ1yt−1 + ...+ ϕpyt−p − θ1ut−1 − ...− θqut−q + ut

= ϕ0 +

p∑
i=1

ϕiyt−i −
q∑
i=1

θiut−i + ut

(1.32)

By making use of the former notation for the AR and MA polynomials ϕ(L) = 1−ϕ1L−...−ϕpLp

and θ(L) = 1− θ1L− ...− θqL
q , (1.32) can be rewritten as

ϕ(L)yt = ϕ0 + θ(L)ut
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From the fact the simple AR(p) and MA(q) models are special cases of the general ARMA(p, q)

model, it follows that the latter enjoys some of the properties of both models. In particular, the

stationarity of yt entirely depends on the AR coefficients included in the ARMA model, such

that (1.32) has the characteristic equation

1− ϕ1z − ...− ϕpz
p

and is a weakly stationary process provided that all the roots of the characteristic equation are

less than one in absolute value or equivalently, lie inside the complex unit circle. If at least one

of the characteristic roots is equal to or greater than unity, yt is said to be an autoregressive

integrated moving average (ARIMA) model. The mean of a stationary ARMA(p, q) model is

equal to

E[yt] =
ϕ0

1− ϕ1 − ...− ϕp

while the lag-h autocovariance and autocorrelation of the process satisfy

γh = ϕ1γh−1 + ϕ2γh−2 + ...+ ϕpγh−p

ρh = ϕ1ρh−1 + ϕ2ρh−2 + ...+ ϕpρh−p

for h > q. This result does not hold as long as h ≤ q due to the correlation between the terms

θhut−h and yt−h. The ACF of an ARMA(p, q) starts its exponential decay at lag q, while the

PACF begins going to zero from lag p. Both the ACF and the PACF do not cut off at any finite

lag, such that they cannot be used for determining the order of the ARMA model. As for MA

models, estimation of ARMA models is performed by means of maximum likelihood.

1.3 Nonstationary Time Series Models

Nonstationarity is a common feature of many economic and financial time series such as interest

rates, foreign exchange rates and stock price series. Nonstationary time series are characterized

by lacking the tendency of revolving around a fixed value or trend and by being long memory

processes, implying that shocks, i.e. unforseen changes in the value of a variable, have a persis-

tent effect on nonstationary data. Whereas the influence of innovations on a stationary process

such as those introduced in Section 1.2 progressively fades away as time passes and eventually

disappears, the effect of a shock on a nonstationary process does not necessarily decrease with
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time and is likely to endure till infinity. In fact, whereas the ACF of a stationary series goes

to zero at an exponential rate (see Section 1.2), that of a nonstationary process decays at a far

slower linear rate as the number of lags increases, implying that a shock will affect the process

indefinitely, i.e. have a persistent effect. Moreover, nonstationary processes are likely to display

serially autocorrelated and heteroskedastic errors. Several studies (Kim et. al (2002), Busetti

and Taylor (2003), Cavaliere and Taylor (2006, 2007), among others) showed that the presence

of autocorrelation and ARCH effects in the residual series of a model might cause the invalidity

of standard asymptotic test which are derived under the assumption of i.i.d Gaussian residual

distribution. Another problem of using nonstationary data in statistical analysis is that the in-

ference drawn from a nonstationary process might result invalid. If two time series contain a

stochastic trend (Section 1.3.2), regressing them against each other might produce a so-called

spurious regression (Section 4.1), which is charachterized by a high level of fit, as measured by

the R2 coefficient, and a low value of the Durbin-Watson statistic, indicating highly autocorre-

lated residual. Although the t-statistic from the regression output might indicate the existence

of a significant relationship between the nonstationary variables, the resulting model is without

any economical meaning as past innovations permanently affect the system. Furthermore, stan-

dard assumptions employed in regression analysis are invalid when applied to nonstationary

data. When the error terms are not independent, estimates of the regression coefficients will be

inefficient though unbiased, while forecasts built on the spurious regression may be inaccurate

and significance tests on the regression coefficients misleading. In fact, traditional significance

tests are likely to indicate that the null hypothesis of no relationship between two nonstation-

ary variables should be rejected in favor of the acceptance of a spurious relation, even when

the variables are generated by independent processes. Hence, it is possible that uncorrelated

nonstationary variables that are not bound by any sort of causal relationship appear as if they

were highly correlated in a regression analysis. Depending on whether a nonstationary pro-

cess is difference- or trend-stationary, first differencing or de-trending the series will produce a

stationary process, i.e. will remove the stochastic or deterministic trend contained in the series,

as outlined in Section 1.3.2. Nonstationary time series are often termed integrated processes,

according to the following definition

Definition 6 (Integrated Process). {yt} is an integrated process of order 1, written yt ∼ I(1), if its

first difference is a stationary series. More in general, a nonstationary time series yt is I(d) if differencing
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it d times results in a process that has no unit roots, such that ∆dyt ∼ I(0).

Since the root of the characteristic equation of a nonstationary I(1) series is unity, processes

that are integrated of order 1 are also referred to as unit root processes. In the following section,

three classes of I(1) models are introduced: the random walk, the random walk with drift and

the trend-stationary process.

1.3.1 Random Walk

A random walk process has the form

yt = yt−1 + ut (1.33)

where ut is a stationary disturbance term, distributed as Gaussian white noise with mean zero

and variance σ2. Although (1.33) can be seen as a special case of an AR(1) model, it does not

satisfy the condition for weak stationarity |ϕ1| < 1, since the coefficient of the term yt−1 is unity.

By applying the lag operator, (1.33) can be rewritten as

yt = Lyt + ut → (1− L)yt = ut

The characteristic equation of the process yt is 1 − λ = 0, which has root λ = 1. Because

their characteristic equation has a unit root, random walk models belong to the class of unit

root processes. By means of repeated substitution, yt can be expressed as the sum between the

initial observation y0 of the series and the sequence of error terms

yt = ut + ut−1 + ...+ u1 + y0

= y0 +
t−1∑
i=0

ut−i

(1.34)

Provided that y0 is constant, the expected value and the variance of yt are calculated as

E[yt] = E[ut] + E[ut−1] + ...+ E[u1] + E[y0] = y0

Var[yt] = Var[ut] + Var[ut−1] + ...+Var[u1] = σ2
ut

Although E[yt] is time invariant, Var[yt] is a linear function of time and the variance of the

random walk process yt increases as time passes, implying nonstationarity. In the instance that
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the autoregressive coefficient lies outside the complex unit circle, |ϕ1| > 1, the variance of the

random walk process would grow exponentially with time. Considering the autocorrelation

function of the series

Corr[yt, yt+h] =
t

t
√

1 + h
t

it is evident that it is also a function of the time index t. For any h, the correlation between yt and

yt+h will go to one as h→ ∞, since h/twill decay to zero at a speed that depends on the value of

t. Therefore, apart from being non-stationary, a random walk process is also not asymptotically

uncorrelated. Moreover, a random walk process is not predictable nor mean-reverting, since for

any forecast horizon, the point forecast of the random walk process is equal to the value of the

process at the forecast origin t, as can be seen from the h-step ahead forecast of yt

ŷt(h) = E[yt+h|yt, yt−1, ...] = yt,∀h ≥ 1

For this reason, the best prediction of a random walk model is always equal to the last observed

value of the process. This phenomenon is due to the fact that, in each time period, the random

walk yt will wander up or down conditional on its previous value yt−1 with probability 0.5,

which implies that, as long as the distribution of ut is symmetrical around zero, the time path

of the random walk process is entirely ruled by chance and is consequently not predictable.

Otherwise stated, since the value of the random walk at present time t is obtained by adding

an independent zero-mean random variable to its previous value yt−1, the best forecast of yt

at any future point in time h is the value of yt today. Consequently, a random walk process is

likely to deviate strongly from its mean value and to cross it rarely, which is why their behavior

is termed not mean-reverting. Like many nonstationary processes, the random walk is a long

memory processes, implying that the effect of a shock on the series is persistent and does not

die out with time, such that the process ’remembers’ all past innovations.

1.3.2 Random Walk with Drift

The random walk with drift is formulated as

yt = µ+ yt−1 + ut (1.35)
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where µ = E[yt− yt−1] is the time trend of the series, which is also called the drift of the model.

According to equation (1.34), the random walk with drift can be generalized to

yt = µt+ ut + ut−1 + ...+ u1 + y0

= y0 + µt+

t−1∑
i=0

ut−i

(1.36)

The sign of the slope constant µ rules the direction of the time path of the series, such that if

µ > 0, the value of the series increases until infinity as t increases, if µ < 0 the series goes to

−∞, while the steepness of the movement is dictated by the magnitude of µ. By considering

(1.36) and setting the starting value of the process yt equal to zero, y0 = 0, the expected value of

yt is

E[yt] = µt

implying that the value of yt will increase with time if the slope µ is positive, while it will

decrease if the slope is negative. The h-step ahead forecast of yt

ŷt(h) = E[yt+h|yt, yt−1, ...] = µh+ yt

indicates that the best forecast of the process (1.35) for any forecast horizon h is the value of

the process at the forecast origin t plus the drift term at time h, µh. The random walk and

the random walk with drift are examples of difference-stationary processes, for they contain

a stochastic trend whose changes are not fully predictable and which is represented by their

cumulated errors
∑t−1
i=0 ut−i, as it is shown in equations (1.34) and (1.36). In the case of the

pure random walk (1.33), the stochastic trend can be removed by applying the first difference

operator ∆ = 1 − L, yielding the stationary process ∆yt = yt − yt−1 = ut. For a random walk

with drift such as (1.35), this procedure results in ∆yt = µ + ut, which is stationary around a

constant mean.

1.3.3 Trend-Stationary Process

A trend-stationary process has form

yt = α+Dt+ ut (1.37)

where ut is distributed as Gaussian white noise with mean zero and variance σ2. The process yt

is stationary around a linear time trend, which is captured by the deterministic term Dt. Con-
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trary to stochastic trends, deterministic trends are predictable. Since ut is a stationary process,

(1.37) will display a trend-reverting behavior and the realizations of the process will fluctuate

randomly around the trend without drifting too far away from it. The growth rate of the pro-

cess (1.37) is governed by the value of the trend coefficient D. The mean of a trend-stationary

process E[yt] = α + Dt is not time invariant, whereas the variance Var[yt] = σ2 is finite and

does not depend on time. The deterministic trend in yt can be removed by performing a linear

regression, which would produce a covariance-stationary process.
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Chapter 2

Box-Jenkins Model Selection

Box and Jenkins (1976) propose a series of guidelines for model selection which apply to AR,

MA, ARMA and ARIMA models, described in Section 1.2. The popularity of the Box-Jenkins

method stems from the evidence that simple models that rely on a limited number of vari-

ables outperform large and complex econometric models in several circumstances, e.g. in out-

of-sample forecasts, as highlighted inter alia by Nelson (1972) and Cooper (1972). The underly-

ing idea is that parsimonious parametrization, i.e. the construction of models that fit the data

well while avoiding to incorporate unnecessary many coefficients, can prove advantageous in

many applications. The Box-Jenkins methodology for economic modeling can be summarized

by the following steps:

1. Stationarity: as a preliminary check, the stationarity of a time series can be assessed by

visually inspecting its time plot. Otherwise, specific tests exist that determine whether

a series is stationary or not, which are treated in Chapter 3. If non-stationarity is de-

tected, it is possible to suitably transform the considered data-set so that it satisfies the

assumption of covariance stationarity. Stationarity in the mean is usually achieved by ei-

ther removing the deterministic trend or taking the first difference of the analyzed series

with respect to time, depending on the nature of the non-stationarity (see Chapter 1.3).

When a time series is highly volatile or when its variance is unstable, a logarithmic or

power transformation might be appropriate (Pfaff (2006)).

2. Seasonality: if a time series is seen to present seasonal behavior, all seasonal patterns
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should be removed from the data before a model is estimated. This is due to the fact that

seasonality can be responsible for not otherwise justified high levels of volatility, which

might distort the inference that is drawn from seasonally-unadjusted data. Seasonality

can be removed by means of seasonal differencing (see Section 3.5) or by using appropri-

ate seasonal models for describing the data-set.

3. Order specification: when it is not known in advance, the appropriate order of a model

can be determined by examining the empirical autocorrelation and partial autocorrelation

functions, as outlined in the next section. If the analyzed time series exhibits seasonality,

the proposed procedures are also valid for determining the seasonal equivalent of the

model order. Otherwise, information criteria such as the Akaike, Schwarz-Bayesian or

Hannan-Quinn criterion can be used for order determination (Section 2.1).

4. Estimation: after a tentative model has been specified as described in step 3, the parame-

ters of the models can be estimated by OLS or maximum likelihood (Section 2.2).

5. Diagnostic checking: this step consists in verifying whether the estimated model is ad-

equate, in the sense that it describes the relevant features of the analyzed data-set suffi-

ciently well. Many diagnostic tests are performed on the residual process of a time series

model, since it is required that the residual series follows a white noise distribution in

order for the selected model to be considered final. Hence, the most widespread tests

are those aimed at detecting nonnormaity, ARCH effects or serial autocorrelation in the

residual series. Specifically, residual normality is usually tested by means of the Jarque-

Bera test (Section 2.3.1), whereas the null hypothesis of homoskedasticity is tested with

the ARCH-LM test or equivalently with the Breusch-Pagan test (Section 2.3.2). In order to

detect the presence of serial correlation in the residual process, the Box-Pierce and Ljung-

Box tests (Section 2.3.3) are used. Alternatively, model checking can be performed via

overfitting, a practice which consists of deliberately adding one or more extra coefficients

to the model at some randomly selected lag. Overfitting ought not to affect the model

greatly when it is adequate, such that the added coefficients should not appear to be sta-

tistically significant. In case that the tentative model proves inadequate, a different model

is entertained and steps 3 through 5 repeated.
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The following section describes how steps 3 through 5 of the Box-Jenkins methodology are

implemented in the case of an AR model as well as for other types of models.

2.1 Order Specification for AR Models

2.1.1 Partial Autocorrelation Function

Consider the AR(1) model from (1.3): even though yt−2 does not appear in the expression for

the AR(1), the terms yt and yt−2 are correlated with autocorrelation coefficient ρ2. The ACF is

built so that it captures all such ’invisible’ correlations between non-adjacent lags in the model

specification. On the contrary, the partial autocorrelation between yt and yt−h has the feature

that it eliminates the effect of any intermediate terms yt−1 through yt−h+1, such that for an

AR(1) model, the partial autocorrelation between yt and yt−2 is zero. In order to see how the

partial autocorrelation function (PACF) is formed, subtract the mean µ from every observation

of the process {yt}, so to obtain the new autoregressive series

y∗t = ϕ01 + ϕ11y
∗
t−1 + ut (2.1)

where y∗t = yt−µ and ut is an error term which may or may not be a white noise process. Since

in this case there are no intermediate values of y between yt and yt−1, ϕ11 represents both the

autocorrelation and the partial autocorrelation coefficient. Let us extend (1.27) by including one

more lag

y∗t = ϕ02 + ϕ21y
∗
t−1 + ϕ22y

∗
t−2 + ut (2.2)

In this case the coefficient ϕ22 measures the correlation between yt and yt−2 after the effect of the

intermediate term yt−1 has been controlled for and is therefore called the partial autocorrelation

coefficient. The PACF is obtained by repeating this procedure for all additional h lags contained

in the model. Since in an AR(p) model there is no direct correlation between yt and yt−h for

h > p, the PACF for an AR(p) should cut off at lag p and be zero afterward, such that all partial

correlation coefficients ϕhh are zero for h > p. It follows that since the PACF becomes zero

after the lag corresponding to the order of the AR model is reached, it can be used to identify

autoregressive processes by determining their order in case p is unknown.
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2.1.2 Information Criteria

Alternatively, the order p of an AR model can be specified by means of information criteria. For

a Gaussian AR(k) model, there are three likelihood-based information criteria available to this

purpose: the Akaike (1974), the Bayesian-Schwarz (1978) and the Hannan-Quinn information

criterion, respectively defined as

AIC(k) = ln(σ̃2) +
2k

T
(2.3)

BIC(k) = ln(σ̃2) +
k

T
ln(T ) (2.4)

HQIC(k) = ln(σ̃2) +
2k

T
ln(ln(T )) (2.5)

where σ̃2 is the maximum likelihood estimate of the residual variance, k = p + 1 is the total

number of estimated parameters and T is the sample size. The first term on the RHS of the

equations is a measure of the goodness of fit of the AR(k), i.e. how well the estimated model fits

the data, while the second term is the so-called penalty function of the corresponding criterion.

This way, a model is penalized according to the number of parameters it contains, hence endors-

ing parsimonious models, which can describe the features of the data using a limited number of

parameters. The reason why parsimonious models are preferred is because the residual sum of

squares
∑T
t=1 û

2
t is inversely proportional to the number of degrees of freedom. An increase in

the number of variables in the model provokes a reduction in the number of degrees of freedom,

while the coefficient standard errors and consequently their confidence intervals will be larger.

Although there is no evidence that one criterion is superior to the others in terms of absolute

performance, the BIC and the HQIC enjoy better large sample properties than the AIC. For sam-

ple sizes that approach infinity, in fact, both the BIC and HQIC are asymptotically consistent,

meaning that the order k suggested by these two criteria will converge almost surely in proba-

bility to the true order p. Instead, the AIC can sometimes be biased towards selecting a model

that is overparametrized. As it can be seen from expressions above, the penalty term for each

additional parameter included in the model is different for each information criterion, with the

consequence that different values for the order of the AR model may be suggested depending

on the information criterion used. Looking at (2.3) and (2.4), since ln(T ) is bigger than 2, the

BIC includes a bigger penalty term than does the AIC, so that it will tend to select a more parsi-

monious model than the AIC, while the HQIC will suggest an order that is in between. For AR
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model specification, the value of the chosen information criterion is computed for k = 0, ..., p,

where p is a prespecified upper bound for the model order. The value of k is selected for which

the value of the criterion is minimal. Intuitively, when coefficients without any explanatory

power are added to the model, the value of the information criterion will increase.

2.2 Estimation of AR Models

Estimation of a specified AR(p) model is usually performed by means of the conditional least-

squares method. Consider the AR(p) model from (1.18) and, conditioning on the first p values

of the series, rewrite the process starting at the (p + 1)-th realization, such that t = p + 1, ..., T .

The resulting model can be estimated via OLS, so that the fitted model is

ŷt = ϕ̂0 + ϕ̂1yt−1 + ...+ ϕ̂pyt−p (2.6)

where ϕ̂i is the OLS estimate of ϕi and the residual process is

ût = yt − ŷt

The variance σ2 of the disturbance term is estimated as

σ̂2 =

∑T
t=p+1 û

2
t

T − 2p− 1
(2.7)

Alternatively, the model (1.18) can be estimated via conditional likelihood. In that case, the es-

timates of the model coefficients ϕ̂i remain unaltered, while the residual variance (2.7) becomes

σ̃2 =
σ̂2(T − 2p− 1)

T − p

The goodness of fit of the fitted AR(p) model (2.6) can be measured by means of the R2 coeffi-

cient, defined as

R2 = 1− residual sum of squares
total sum of squares

= 1−
∑T
t=p+1 û

2
t∑T

t=p+1(yt − ȳ)2

where ȳ =
∑T
t=p+1 yt/(T − p) and 0 ≤ R2 ≤ 1. For a stationary series, a value of the R2 statistic

which is close to one indicates that the estimated model fits the data well. The shortcoming of

the R2 measure consists in the fact that it is an increasing function of the number of parameters,

such that its value tends to increase as more coefficients are included in the model, indepen-

dently of their explanatory power. This problem can be overcome by using a modified version
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of the R2 coefficient which, although it is no longer between zero and one, takes into account

the number of parameters employed in the estimated model. This measure is known as the

adjusted R2 or R̄2 and is calculated as

R̄2 = 1− σ̂2

Var[ŷt]

where Var[ŷt] is the sample variance of yt and σ̂2 is the residual variance (2.7). Alternatively,

the information criteria described in Section 2.1 can also be used as a measure of the goodness

of fit.

2.3 Diagnostic Checking

Once the fitted model is obtained, it is appropriate to verify that it is adequate, which is ac-

complished by checking whether the residual series ût follows a white noise distribution. In

particular, the residuals should satisfy the i.i.d. assumption and should follow a normal distri-

bution with mean zero and constant variance σ2. A preliminary analysis for model adequacy

can be accomplished by visually inspecting the correlogram of the residual process in order

to detect outliers, inhomogeneous variance, structural breaks and, more in general, periods in

which the model does not fit the data sufficiently well. Evidence that the estimated model is ad-

equate for the data-set is found when the residual process is shown to be normally distributed,

homoskedastic and not serially correlated. If, however, the error process does not obey the

white noise assumption, the fitted model should be refined, e.g. by eliminating regressors with

no explanatory power, or a different model should be considered for describing the considered

data.

2.3.1 Jarque-Bera Normality Test

The Jarque-Bera (1987) test is aimed at detecting non-normality in the residual series of a model

by comparing the third and the fourth moment, i.e. the skewness and kurtosis, of the analyzed

distribution with those of a normal distribution. When the skewess and kurtosis of the residual

distribution are consistent with the corresponding moments of a normal distribution, the null

hypothesis of residual normality is not rejected. Hence, the test considers the null hypothesis of

normality and verifies that E[ust ]
3 = 0 and E[ust ]

4 = 3 against E[ust ]
3 ̸= 0 and E[ust ]

4 ̸= 3, where
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ust are the standardized residuals of the true model such that ust = ut/σ. The Jarque-Bera test

statistic

JB =
T

6

[
T−1

T∑
t=1

(ust )
3

]2
+
T

24

[
T−1

T∑
t=1

(ust )
4 − 3

]2
is asymptotically distributed as a χ2 with two degrees of freedom if the null hypothesis is not

rejected. A multivariate version of the Jarque-Bera test exists as well and it is used for testing

the null hypothesis of normality on the residual series of VAR and VECM models, introduced in

Section 4.3 and Section 4.4, respectively. Formally, the multivariate Jarque-Bera test is a gener-

alization of its univariate counterpart, which is based on a standardization of the residual series

by means of a Choleski decomposition of the residual covariance matrix Σ, estimated as

Σ̂ =
1

T

T∑
t=1

(ût − ¯̂u)(ût − ¯̂u)′

The standardized residuals are defined as

ûst =
1

P̃
(ût − ¯̂u)

where P̃ is a lower triangular matrix with positive diagonal such that P̃ P̃
′
= Σ̃ is the Choleski

decomposition of the covariance matrix Σ. The test statistics for the multivariate Jarque-Bera

test is

JBmv = s23 + s24

where s23 = Tb′1b1/6 and s24 = T (b2 − 3k)
′(b2 − 3k)

′/24 are the multivariate skewness and

kurtosis, which are asymptotically distributed as a χ2 with K degrees of freedom under the

null hypotesis of normality. The parameters b1 and b2 are the third and fourth non-central

moments of the distribution of the standardized residuals ûst , while 3k = (3, ..., 3)′ is a vector

with dimensions (K × 1). The test statistics JBmv is asymptotically distributed as a χ2(2K).

2.3.2 Heteroskedasticity Tests

The ARCH-LM test (Engle(1982)), is a Lagrange multiplier (LM) test used for detecting autore-

gressive conditional heteroskedasticity (ARCH) in the residual process of the estimated model.

The ARCH-LM test is based on the auxiliary regression

û2t = β0 + β1û
2
t−1 + ...+ βqû

2
t−q + et (2.8)
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where ût is the OLS estimate of ut. The null hypothesis that there are no ARCH effects up to lag

q in the residual series, H0 : β1 = ... = βq = 0, is tested against the alternative H1 : βi ̸= 0 for

i = 1, ..., q. The LM test statistics

ARCHLM = TR2

is computed using the coefficient of determination R2 of the auxiliary regression (2.8) and the

number of observations T . Under the null hypothesis, the LM test statistics follows an asymp-

totic χ2 distribution with q degrees of freedom.

The presence of ARCH effects in the residual series of a VAR or VECM model (Sections 4.3

and 4.4) can be tested by means of the multivariate version of the ARCH-LM test for residual

heteroskedasticity, which is based on the following auxiliary regression:

vech(ûtû
′
t) = β0 +B1vech(ût−1û

′
t−1) + ...+Bqvech(ût−qû

′
t−q) + εt (2.9)

where vech is the column-stacking operator for symmetrical matrices, which stacks the columns

of a matrix from the main diagonal downward (Lüktepohl and Krätzig (2004)). The matrix β0

has dimensions 1/2(n(n + 1)) and the coefficient matrices Bi (i = 1, ..., q) have dimensions

1/2(n(n+ 1))× 1/2(n(n+ 1)), where n is the number of variables in a VAR(p) model. The null

hypothesis of the multivariate ARCH-LM test is the same as that for the univariate test, namely

that there are no ARCH effects in the residual process, such that the matrices Bi are jointly zero.

Hence, the null hypothesis H0 : B1 = ... = Bq = 0 is tested against the alternative H1 : Bi ̸= 0

for i = 1, ..., q. The test statistic for the multivariate ARCH-LM test

VARCHLM(q) =
1

2
Tn(n+ 1)R2

m

with

R2
m = 1− 2

n(n+ 1)
tr(Ω̂Ω̂

−1

0 )

where Ω̂ is the covariance matrix of the residuals from (2.9), follows a χ2(qn2(n + 1)2/4 distri-

bution.

2.3.3 Autocorrelation Tests

Additionally, the residual series should be examined for serial correlation, since serially corre-

lated residuals usually signalize a systematic movement in the data that the model coefficients
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do not properly capture. The Portmanteau test (Box and Pierce (1970)) or the Ljung-Box statistic

(Ljung and Box (1978)) are used to test the null hypothesis that residual autocorrelation at lags

1 to m is zero against the alternative that at least one of the autocorrelations is different from

zero. Formally, the tests consider the null hypothesis H0 : ρ1 = ... = ρm = 0 and the alternative

hypothesis H1 : ρi ̸= 0 for i = 1, ...,m. For the residuals of an AR(p), the Portmanteau statistic

is

Q(m) = T
m∑
i=1

ρ̂2i

where T is the sample size, m is the maximum number of lags and ρ̂i = T−1
∑T
t=i+1 ûtût−i

are the sample autocorrelations of the residual process ut. Since the prespecified maximum lag

lenght m can affect the power of the test, simulation studies recommend selecting m ≈ ln(T )

to improve the performance of the test (Tsay (2001)). Under the null hypothesis that all m au-

tocorrelation coefficients are not significantly different from zero, Q(m) follows asymptotically

a χ2 distribution with m degrees of freedom. For an AR(p) model, the number of degrees of

freedom of the χ2 is equal to m − p, where p is the number of AR coefficients included in the

model. Ljung and Box proposed a modified version of the Portmanteau statistic, which has

more power in finite samples:

Q∗(m) = T 2
m∑
i=1

ρ̂2i
T − i

Since as the sample size approaches infinity, the terms (T + 2) and (T − h) cancel out in the

expression forQ∗(m), the Box-Pierce and the Ljung-Box statistics are asymptotically equivalent.

The decision rule for theQ∗(m) test is to reject the null hypothesis ifQ∗(m) > χ2
α, with χ2

α being

the 100(1 − α)-th percentile from a χ2 distribution with m degrees of freedom. Alternatively,

when the p-value associated to the Q∗(m) statistic is provided, H0 is rejected when the p-value

is less than or equal to the significance level α.

The absence of serial correlation in the residuals of a VAR or a VECM model can be tested by

means of the multivariate Portmanteau test, which tests the null hypothesis H0 : E[utu
′
t−i] = 0

for i = 1, ...,m against the alternative that at least one autocorrelation of the residual process is

non-zero. The test statistic is defined as

Qmv(m) = T
m∑
i=1

tr(Ĉ ′
iĈ

−1
0 ĈiĈ

−1
0 ) (2.10)

where Ĉi = T−1
∑T
t=i+1 ûtût−1 is the sample autocorrelation of ut. An adjustment for the
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Qmv(m) statistic exists, which has better small sample properties:

Q∗
mv(m) = T 2

m∑
i=1

1

T − j
tr(Ĉ ′

iĈ
−1
0 ĈiĈ

−1
0 ) (2.11)

The test statistics (2.10) and the adjusted Portmanteau stastistics (2.11) are approximately dis-

tributed as a χ2 with (n2(m − p)) degrees of freedom, where p is the number of coefficients

included in the VECM or VAR model and n is the number of variables. As in the univariate

case, the power of the multivariate Portmanteau test is affected by the chosen lag length m.
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Chapter 3

Unit Root and Stationarity Tests

3.1 Dickey-Fuller Test

Consider the following AR(1) model:

yt = ϕyt−1 + ut (3.1)

for t = 1, ..., T where y0 = 0 and ut ∼ GWN(0, σ2). In order to test whether yt follows a pure

random walk such that it is I(1), one can examine the root of the autoregressive polynomial

ϕ(z) = 1 − ϕz = 0 of (3.1) and see if it is equal to one. Formally, this can be accomplished by

testing the null hypothesis H0 : |ϕ| = 1 against the alternative hypothesis H1 : |ϕ| < 1. This

unit root test was developed by Dickey and Fuller (1979) and goes by the name of Dickey-Fuller

(DF) test. Under the null hypothesis, the characteristic equation of the AR(1) model has a unit

root and the process is non-stationary, while under the alternative hypothesis, the coefficient of

the lagged term is less than one and stability is ensured. Assuming that |ϕ| = 1 implies that it is

appropriate to difference the series in order to induce stationarity. In the context of a unit root

test, the conventional t-statistics for a regression model do not follow a t-distribution under

the null hypothesis of non-stationarity. Since under H0, yt ∼ I(1), the central limit theorem

does not apply and the t-statistic is not asymptotically distributed as a standard normal even

for large sample sizes. Instead, it follows a non-standard distribution named the Dickey-Fuller

39



distribution. In this context, the test statistic used is

tϕ̂ =
ϕ̂− 1

s.e.(ϕ̂)
(3.2)

where ϕ̂ is the least squares estimator of ϕ

ϕ̂ =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

and

s.e.(ϕ̂) =

√∑
(ϕ− ϕ′)2

n

is the estimated standard error of ϕ, where ϕ′ is the predicted value of ϕ and n is the number of

observations. For practical purposes, equation (3.1) can be rewritten as

∆yt = ψyt−1 + ut (3.3)

so that ψ = ϕ− 1 and the test hypotheses become H0 : |ψ| = 0 and H1 : |ψ| < 0. In this case the

test statistic is

tψ̂ =
ψ̂

s.e.(ψ̂)
(3.4)

The critical values for the tests statistics in (3.2) and (3.4) have been tabulated by Dickey and

Fuller (1979) using Monte Carlo simulations. For large samples, critical values for different

significance levels are displayed in the following table:

Significance level 1% 5% 10 %

Critical values -3.43 -2.86 -2.57

The fact that the DF critical values are much bigger than standard normal critical values in

absolute terms suggests that more evidence is needed in order to reject the null hypothesis of a

unit root. If usual critical values were used in a DF test, for a 95% confidence interval H0 would

be rejected much more often than in 5% of the cases. The decision rule is to reject H0 in favor

of H1 if tϕ̂ < c, where c is the critical value for the preferred significance level. The DF test is

also applicable to series that contain an intercept or a linear trend, for which the follwing test

regressions are used:

∆yt = c+ ψyt−1 + ut (3.5)
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∆yt = c+Dt+ ψyt−1 + ut (3.6)

The presence of a trend in the DGP should be controlled for prior testing, since trend stationary

processes which are I(0) around their time trend may be mistaken for unit root processes in a

standard DF test. The test hypotheses are the same as those for the test regression (3.3), while

different critical values and t-statistic are employed for (3.5) and (3.6)

Significance level 1% 5% 10 %

Critical value -3.96 -3.41 -3.12

The critical values of the DF test for a trended series are larger than those employed for

testing (3.3), so that more evidence against H0 is needed for rejection if the regression equa-

tion includes a linear trend. This version of the DF test is only valid as long as the disturbance

term of the test regression is distributed as Gaussian white noise, so that ut is not autocorre-

lated. However, if the true data generating process is unknown, it is possible that ut contains

autoregressive or moving average components. In order to account for serial correlation in the

error term ut an alternative test, called the augmented Dickey-Fuller (ADF) test, is run on the

regression equation

∆yt = ψyt−1 +

p∑
i=1

θi∆yt−i + ut (3.7)

which is allowed to additionally include an intercept and a time trend if needed. The ADF test

is built by including p lags of the first-differenced dependent variable into the standard DF test

regression. This way, the assumption that ut follows a stationary AR(p) process is supported,

while any serial correlation that might have been present in (3.7) is eliminated. The null hy-

pothesis of the ADF test is stillH0 : |ψ| = 0 and the same t-statistics and critical values as for the

regular test can be employed. One important issue concerning the test regression in (3.7) is the

choice of the optimal number of lags. By including too many lags in the model specification,

the number of parameters to estimate increases with a consequent loss of degrees of freedom.

Degrees of freedom get used up because the large number of estimated parameters provokes a

reduction in the quantity of observations available. For each lag that is added to the regression,

one observation is lost. This can affect the power of the test to reject the null hypothesis of a

unit root, with the result that for a stationary process, H0 will be rejected less frequently than
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it otherwise should. On the other hand, if too few lags are included, the autocorrelation in the

error terms will not be fully removed, which will cause the results of the test to be biased. A

good rule of thumb is to use the frequency of the data for selecting the number of lags, so that,

if the data is monthly, 12 lags of yt will be included in the model. Alternatively, one can use

information criterion such as those introduced in Section 2.1 and include the number of lags for

which the value of the given criterion is minimized. The number of lags can also be selected re-

cursively by starting with a relatively large number of lags, say n, and checking if the t-statistics

on the coefficient of the n-th lagged first-difference is significant for a given critical value. In

case it isn’t, the test regression is re-estimated including n − 1 lags and the process is repeated

until a lag such that its corresponding coefficient is significantly different from zero is found. In

case that ut contains MA terms, which can be seen as an AR process of infinite order, the inclu-

sion of a larger number of lags is required. It is possible to verify if an optimal lag length has

been reached by looking for evidence of autocorrelation or structural breaks in the plot of the

regression residuals. Otherwise, the correlogram of ut should appear to be white noise when

all serial correlation has been eliminated. In case that the model under inquiry is suspected to

contain more than one unit root, the DF test can be extended in order to control for the presence

of multiple unit roots (Enders (1995)). This is accomplished by performing the DF test on ψ1

from the following equation

∆2yt = ψ1∆yt−1 + ut (3.8)

If H0 : ψ1 = 0 cannot be rejected, yt ∼ I(2). However, if ψ1 results to be significantly different

from zero, the hypothesis that yt ∼ I(1) should be tested on the following regression

∆2yt = ψ1∆yt−1 + ψ2yt−1 + ut (3.9)

If it appears that ψ1 < 0 but ψ2 = 0 then a single unit root is present in (3.9), while if they are

both non-zero, the series yt is stationary. Although it is rare for economic time series to have an

order of integration that exceeds one, equation (3.8) can be generalized so that it accounts for

the presence of a number k of unit roots

∆kyt = ψ1∆
k−1yt−1 + ut (3.10)

Following the same logic as before, if the null hypothesis of k unit roots is rejected, a new test for

k − 1 roots should be performed on the next test regression and so on. The underlying pattern
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can be formulated as

∆kyt = ψ1∆
k−1yt−1 + ψ2∆

k−2yt−1 + ...+ ψkyt−1 + ut (3.11)

The same procedure should be repeated until it is not possible to reject H0 or if the series is

shown to be stationary. Specific conditions such as the presence of structural breaks in the

model specification as well as seasonally adjusted data series can bias the results of a unit root

test against the rejection of H0. Borderline stationary time series, that exhibit a value of ϕ close

to one can be mistaken for unit root processes when they undergo a unit root test, especially for

small sample sizes. This problem can be overcome by coupling a unit root test with a stationary

test, such as the KPSS (Section 3.3), when a close to unit root series is suspected.

3.2 Phillips-Perron Test

The Phillips-Perron (PP) test, developed by Phillips and Perron (1988), relies on a non-parametric

correction of the Dickey Fuller test statistics which accounts for weak dependence and het-

eroskedasticity of the error process, such that it is no longer required to be i.i.d. Unlike the

DF test, which assumes the disturbance to follow a white noise series, the error term is now

relieved from the assumption of serial uncorrelation and homogeneous distribution. The fol-

lowing two regression equations are considered for testing the null hypothesis of a unit root on

the coefficient ϕ

yt = µ̂+ ϕ̂yt−1 + ût (3.12)

yt = µ̃+ λ̃(t− T

2
) + ϕ̃yt−1 + ũt (3.13)

where (µ̂, ϕ̂) and (µ̃, λ̃, ϕ̃) are the OLS estimates of the regression coefficients. The test statis-

tics, which are described in Phillips (1988) and Phillips and Perron (1988), are built so that the

limiting distribution and the critical values of the ADF statistics apply to the PP test as well. By

considering the long-run variance σ2
Tl and the residual variance σ2,

σ2
Tl = lim

T→∞

[∑T
t=1E(u2t )

T

]

σ2 = lim
T→∞

E
[∑T

t=1 ut

]2
T
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can be seen that as long as ut is an i.i.d. process, such that σ2 = σ2
Tl, the limiting distribution of

the test statistic is independent from the parameters of the process generating ut. The PP test

statistic Zt for testing the null hypothesis of ϕ = 1 on equation (3.12) or (3.13) is

Zt =

(
σ̂2
Tl

ŝ2

) 1
2

tϕ̂ −
1

2

(
ŝ2 − σ̂2

Tl

ŝ2

)(
T · s.e.(ϕ̂)

σ̂2
Tl

)
(3.14)

where tϕ̂ is the DF test statistic from (3.2), ŝ2 is the sample variance of the residuals and the

long-run variance σ̂2
Tl is estimated as

σ̂2
Tl =

1

T

T∑
t=1

û2t +
2

T

l∑
s=1

wsl

T∑
t=s+1

ûtût−s (3.15)

with wsl = 1 − s/(l + 1). It is understood that whenever the error process satisfies the i.i.d. as-

sumption, the ADF t-statistics can be employed equivalently to the PP statistics, the latter being

a transformation of the former. However, when considering autocorrelated residuals, the PP

statistics will result valid under the conventional critical values from the ADF test. The advan-

tage of the PP test procedure is that the inclusion of additional lags in the model specification is

no longer required. Hence, the possibility of a loss of power resulting from the misspecification

of the lag length does not subsist. Concerning the power of the PP test as compared to the ADF

test, Phillips and Perron (1988) present simulation evidence that if the error term is generated

by a MA(1), such that

ut = εt + θεt−1

the power of the PP test is higher as long as θ > 0. When the disturbance contains a negative

moving average term, however, the PP test presents substantial size distortion for finite sample

sizes. As a consequence, a true null hypothesis of ϕ = 1 is rejected more frequently than the

nominal size, i.e. 5% percent. The authors suggest using the ADF test when the presence of

negative MA components is suspected, while using the PP test if the error term is believed to

be i.i.d. or to contain a positive MA.

3.3 KPSS Test

The KPSS test, developed by Kwiatkowski, Phillips, Schmidt and Shin (1992), belongs to the

class of stationarity tests. In this context, the null hypothesis is that of stationarity, while under
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the alternative the series has a unit root. Performing both a stationarity and a unit root test

in order to evaluate whether or not a series is integrated is especially useful in case of near

unity roots, for which the DF test has low power. Moreover, the choice of stationarity as the

null hypothesis may be beneficial as many unit root test only reject the null of integration when

there is strong evidence in favor of the alternative. The test regression for the KPSS test

yt = λt+ µt + ut (3.16)

with

µt = µt−1 + εt, εt ∼WN(0, σ2
ε)

involves a deterministic trend, a random walk and a stationary disturbance, which may be

heteroskedastic. The initial value µ0 is constant and represents the intercept of the regression.

The test is carried out by examining H0 : σ2
ε = 0 against H1 : σ2

ε > 0, so that (3.16) is trend

stationary under the null. In case that λ = 0, yt is level stationary since it fluctuates around the

level µ0. The t-statistic employed by the KPSS test is the Lagrange multiplier (LM)

LM =

∑T
t=1 S

2
t

σ̂2
u

(3.17)

where St =
∑t
i=1 ûi, t = 1, ..., T . The residual ût is obtained from regressing yt on either both an

intercept and a trend, or on a constant only, depending on whether the user is testing for trend

or level stationarity. The term σ̂2
u in the t-statistic is a consistent estimate of the long run variance

of the error term, obtained by using the residuals ût and a Bartlett window w(s, l) = 1−s/(l+1)

as a weighting function

σ̂2
u = T−1

T∑
t=1

ût
2 + 2T−1

l∑
s=1

w(s, l)

T∑
t=s+1

ûtût−1 (3.18)

In case yt is level stationary, such that λ = 0, it can be shown that the distribution of the LM

statistics from (3.17) converges to a function of the Brownian motion called a standard Brownian

bridge

LM
d→
∫ 1

o

V1(r)dr (3.19)

where V1(r) = W (r) − rW (1) and W (r) is a Wiener process for r ∈ [0, 1]. For testing the

hypothesis of trend stationarity, the model employed is that of equation (3.16) and the residuals

ût are the result of regressing yt on both a constant and a trend. The LM statistic can be shown
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to be asymptotically distributed as a second-level Brownian bridge

LM
d→
∫ 1

o

V2(r)dr (3.20)

with V2(r) = W (r) + (2r − 3r2)W (1) + 6r(r − 1)
∫ 1

o
W (s)ds. The critical values for both the

level and trend stationarity version of the test are derived by simulation and are provided in

Kwiatkowsky et al. (1992). The KPSS test is a one-sided right-tailed stationarity test, for which

the decision rule at a significance level α is to reject H0 if the LM statistics is greater than the

(1− α) quantile from the asymptotic distribution (3.19) or (3.20).

3.4 Andrews-Zivot Structural Break Test

Formally, structural breaks are defined as unforeseen events that cause a shift in the structure of

the data-set under analysis; an example of such events is the promulgation of a new legislation

or the introduction of a new system of measurement for a given data series. A structural break

can either have a permanent effect on the series, or it can affect the series only for a limited

period of time. In the first case, the structural shift is usually modeled by a step dummy variable

—that is, a variable which has value 0 before the break date and 1 afterwards, while in the

second case it is modeled by a pulse dummy, which is 1 in correspondence with the break and 0

otherwise. The presence of a structural shift in a stationary series makes it harder to distinguish

it from an integrated series (Pfaff (2006)). Perron (1989, 1990) found evidence of a loss in the

power of DF type tests to reject a false null hypothesis when the analyzed series contained a

structural break. Andrews and Zivot (1992) developed a unit root test which accounts for the

presence of a structural break in the series under consideration. Under the null hypothesis, the

time series {yt}, t = 1, ..., T is a random walk with drift

yt = µ+ yt−1 + ut

and has no structural break, while under the alternative hypothesis, {yt} is stationary around a

linear trend and one endogenous break occurs at an unknown point in time in the trend function

of the process. The Andrews-Zivot test considers the following three models developed by

Perron (1989) for the null hypothesis:

Model(A) : yt = µ+ dD(TB)t + yt−1 + ut (3.21)
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Model(B) : yt = µ1 + yt−1 + (µ2 − µ1)DUt + ut (3.22)

Model(C) : yt = µ1 + yt−1 + dD(TB)t + (µ2 − µ1)DUt + ut (3.23)

whereD(TB)t is a pulse dummy variable that is equal to 1 if t = TB+1 and zero otherwise,DUt

is a step dummy which is 1 if t > TB and 0 otherwise and 1 < TB < T is the point in time in

which the structural break occurs. Model (A) accounts for a one time change in the levels of the

series, Model (B) allows for a change in the growth rate, whereas Model (C) is a combination of

both. The alternative hypothesis of trend-stationarity relies on the following models:

Model(A) : yt = µ1 + βt+ (µ2 − µ1)DUt + ut (3.24)

Model(B) : yt = µ+ β1t+ (β2 − β1)DT
∗
t + ut (3.25)

Model(C) : yt = µ1 + β1t+ (µ2 − µ1)DUt + (β2 − β1)DT
∗
t + ut (3.26)

where

DT ∗
t =


t− TB if t > TB

0 otherwise

Under the alternative hypothesis, Model (A) permits a one time break in the intercept of the

trend function of magnitude (µ2 − µ1), Model (B) allows for a break in the slope of the trend

function of size (β2 − β1), while Model (C) accounts for both a change in the levels and the

growth rate of the process. The ADF-type test regressions for the Andrews-Zivot test are the

following:

yt = µ̂A + θ̂ADUt(λ̂) + β̂At+ α̂Ayt−1 +

k∑
i=1

ĉAi ∆yt−i + ût (3.27)

yt = µ̂B + β̂Bt+ γ̂BDT ∗
t (λ̂) + α̂Byt−1 +

k∑
i=1

ĉBi ∆yt−i + ût (3.28)

yt = µ̂C + θ̂CDUt(λ̂) + β̂Ct+ γ̂CDT ∗
t (λ̂) + α̂Cyt−1 +

k∑
i=1

ĉCi ∆yt−i + ût (3.29)

where

DUt(λ) =


1 if t > Tλ

0 otherwise

DT ∗
t (λ) =


t− Tλ if t > Tλ

0 otherwise
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and λ = TB/T is the unknown break-point. The break-point is estimated as the point in time

for which the null hypothesis of a unit root with drift is the most likely to be rejected. Otherwise

stated, the value of λ is chosen which minimizes the t statistic from Perron (1989)

tα̂i(λ), i = A,B,C

since the decision rule is to reject H0 when the value of the test statistic tα̂i is smaller than the

corresponding critical value. This minimizing value is defined as λ̂iinf , such that the t statistic

for the Andrews-Zivot test is

tα̂i [λ̂iinf ] = inf
λ∈∆

tα̂i(λ), i = A,B,C (3.30)

where ∆ is a closed subset of [0,1]. The critical values for the Andrews-Zivot test are displayed

in Zivot and Andrews (1992).

3.5 HEGY Test for Seasonal Unit Roots

Until now we have considered processes for which integration is assumed to occur only at the

zero frequency of their spectrum. When a time series displays a distinct seasonal pattern, unit

roots at different frequencies may exist, i.e. roots other than 1 that are on the complex unit circle.

The spectrum of a seasonal time series peaks at different seasonal frequencies ω = 2πj/S, j =

1, ..., S − 1, where S is the periodicity of the data. Consider the data generating process

yt = yt−s + ut (3.31)

with seasonal frequency S. When the roots of (3.31) have modulus equal to one, yt is termed

a seasonally integrated process which is characterized by stochastic seasonality. Seasonally

integrated processes have similar properties as non-seasonal unit root processes in that, for

instance, they have long memory causing shocks to have a permanent effect on the time series

(Fuller (1976)). When stochastic seasonality is present, it is necessary to apply the seasonal

difference operator

∆S = (1− LS) = (1− L)(1 + L+ L2 + ...+ LS−1) = ∆S(L)
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in order to induce stationarity. For quarterly data, the seasonal operator can be factored into

∆4 = (1− L4) = (1− L)(1 + L)(1 + L2)

= (1− L)(1 + L)(1− iL)(1 + iL)
(3.32)

which has four unit roots ±1 and ±i. The root 1 is termed the zero frequency root or non-

seasonal unit root, the root -1 has semiannual frequency, while ±i are complex roots that have

annual frequency. The roots +i and −i are considered as having both a yearly cycle since they

are impossible to tell apart in quarterly data (Hylleberg et al. (1990)). The development of a

testing procedure for seasonal unit roots has been attempted by Dickey, Hasza and Fuller (1984)

and Ahtola and Tiao (1987). These tests have the drawback that integration is not accounted for

at all seasonal frequencies and that the roots are required to have the same modulus under the

alternative hypothesis. The HEGY test by Hylleberg et al. (1990) allows to test for the presence

of individual unit roots at specific seasonal frequencies, under the assumption of stochastic or

deterministic seasonality. The authors show that if the process {yt} is generated by a AR(p) such

as (1.18) with p ≥ 4, then the AR operator

ϕ(L) = 1− ϕ1L− ...− ϕpL
p

can be factored into

ϕ(L) = (1− L)(1 + L)(1− iL)(1 + iL)

− π1L(1 + L)(1− iL)(1 + iL) + π2L(1− L)(1− iL)(1 + iL)

+ (π3 + π4L)(1− L)(1 + L)− ϕ∗(L)(1− L)(1 + L)(1− iL)(1 + iL)

(3.33)

using (3.32), such that ϕ(L) has non-seasonal, semiannual or annual unit roots depending on

whether π1 = 0, π2 = 0 or π3 = π4 = 0. The HEGY test employs the following test regression

∆4yt = µt + π1y1,t−1 + π2y2,t−1 + π3y3,t−1 + π4y3,t−2 +

p−4∑
i=1

ϕ∗i∆4yt−i + ut (3.34)

where the regressors are defined as

y1t = (1 + L)(1− iL)(1 + iL)yt = (1 + L+ L2 + L3)yt

y2t = −(1− L)(1− iL)(1 + iL)yt = −(1 + L+ L2 − L3)yt

y3t = −(1− L)(1 + L)yt = −(1− L2)yt
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and the deterministic term µt = π0 + βt +
∑3
j=1 αjDj,t can be included in (3.34) in order to

allow for the possibility of an intercept, a linear time trend or seasonal dummy variables in

the test regression. In order to avoid perfect multicollinearity, only three seasonal dummies are

considered for quarterly series. The lagged seasonal differences ∆4yt−i ensure that all autocor-

relation is removed from the error process, such that it is white noise. The null hypothesis of

non-seasonal and seasonal unit roots is tested by estimating (3.34) by OLS and determining the

significance of πi, i = 1, .., 4. If it results that certain π’s are zero, then the corresponding roots

are on the complex unit circle. Hence, testing that π1 = 0 and π2 = 0 by means of a t-test is

equivalent to testing for the presence of a unit root at the zero and semiannual frequency. The

null hypothesis of annual roots π3 = π4 = 0 is tested jointly by means of an F-type test. If the

analyzed series contains no seasonal unit roots, then π2 ̸= 0 and either π3 ̸= 0 or π4 ̸= 0, while

stationarity entails that πi ̸= 0 for i = 1, .., 4. Hylleberg et al. (1990) and Franses and Hobijin

(1997) tabulated the critical values for quarterly data, which depend on the specification of the

test regression and the sample size.

Null Hypothesis Polynomial Root Frequency Cycles/Year

π1 = 0 (1− L) +1 0 (non-seasonal) 0

π2 = 0 (1 + L) -1 π (bimonthly) 6

π3 = π4 = 0 (1 + L2) ±i ±π
2 (four-monthly) 3

π5 = π6 = 0 (1 + L+ L2) −1
2(1±

√
3i) ±2π

3 (quarterly) 4

π7 = π8 = 0 (1− L+ L2) 1
2(1±

√
3i) ±π

3 (semiannual) 2

π9 = π10 = 0 (1 +
√
3L+ L2) −1

2(
√
3± i) ±5π

6 5

π11 = π12 = 0 (1−
√
3L+ L2) 1

2(
√
3± i) ±π

6 (annual) 1

Table 3.1: HEGY test: summary table for monthly data

The HEGY test for seasonal unit roots has been generalized for time series with monthly fre-

quency by Franses (1991) and Beaulieu and Miron (1993). If the considered data has periodicity
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S = 12, the seasonal difference operator is decomposed as

∆12 = 1− L12 = (1− L)(1 + L)(1− iL)(1 + iL)×[
1 +

1

2
(
√
3 + i)L

] [
1 +

1

2
(
√
3− i)L

]
×[

1− 1

2
(
√
3 + i)L

] [
1− 1

2
(
√
3− i)L

]
×[

1 +
1

2
(
√
3 + i)L

] [
1− 1

2
(
√
3− i)L

]
×[

1− 1

2
(
√
3 + i)L

] [
1 +

1

2
(
√
3− i)L

]
Assuming an AR(p) with p ≥ 12 as the data generating process, the HEGY test regression is

∆12yt = µt + π1y1,t−1 + π2y2,t−1 + π3y3,t−1 + π4y3,t−2

+ π5y4,t−1 + π6y4,t−2 + π7y5,t−1 + π8y5,t−2 + π9y6,t−1

+ π10y6,t−2 + π11y7,t−1 + π12y7,t−2 +

p−12∑
i=1

ϕ∗i∆12yt−i + ut

(3.35)

where

y1t = (1 + L)(1 + L2)(1 + L4 + L8)yt

y2t = −(1− L)(1 + L2)(1 + L4 + L8)yt

y3t = −(1− L2)(1 + L4 + L8)yt

y4t = −(1− L4)(1−
√
3L+ L2)(1 + L4 + L8)yt

y5t = −(1− L4)(1 +
√
3L+ L2)(1 + L4 + L8)yt

y6t = −(1− L4)(1− L2 + L4)(1− L+ L2)yt

y7t = −(1− L4)(1− L2 + L4)(1 + L+ L2)yt

and µt = π0+βt+
∑11
j=1 αjDj,t are the deterministic terms that can be included in (3.35). If π1 =

0, the process {yt} has a unit root at the zero frequency, whereas if any πi, i = 2, ..., 12 is equal

to zero, the process is seasonally integrated. Critical values for monthly seasonal frequencies

can be found in Franses and Hobijn (1997). Table 3.1 summarizes the null hypotheses and

corresponding roots of the HEGY test with monthly data.
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Chapter 4

Cointegration and Error Correction

4.1 Spurious Regression

The classic linear regression model, which is widely applied in economics, notoriously under-

lies the assumption of stationarity for the explanatory variables, establishing this way the con-

sistency and asymptotic properties of the OLS estimator, among others. In particular, for a static

regression model such as

yt = β0 + β1xt + et (4.1)

under the assumption of stationarity and weak dependence of {yt, xt}, proofs of consistency

require less than perfect collinearity as well as contemporaneous exogeneity of the regressor

with respect to the error process

E[ut|xt] = 0

In this case, the OLS estimator is said to be consistent

plim β̂1 = β1

although it still might be biased. Equivalently, it can be stated that as time passes, the number

of observations and hence the amount of information collected from the sample data increases,

so that sample moments converge to their population values. Stationarity is hence an essential

prerequisite for convergence of theoretical and empirical values, since this is only ensured when

population moments are constant in time. This requirement is obviously not satisfied by time
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series that are trending. Conventional regression techniques have been widely used on time

series that are non-stationary, since they sometimes can appear to be effective. Nonetheless, the

problem of non-sense regressions (Yule (1926)) and spurious regressions (Granger and Newbold

(1974)) may arise when making inference on a regression performed on non-stationary data. A

spurious regression is established whenever a statistically significant linear correlation appears

to exist between two integrated variables that are actually unrelated. As an example, consider

the DGP

yt = yt−1 + ut (4.2)

xt = xt−1 + εt (4.3)

where ut ∼ IID(0, σ2
u) and εt ∼ IID(0, σ2

ε). Since yt and xt are uncorrelated random walks, the

coefficient β1 in the regression equation (4.1) would be expected to converge in probability to

zero and so would theR2 coefficient from the regression, because the series are independent. By

testing the null hypothesis of β1 = 0 against the alternative that β1 ̸= 0 at a 5% significance level,

the t-statistic should appear significant only 5% of the times. Through simulation experiments,

Granger and Newbold (1974) showed that the t-statistic on β̂1 instead yields a significant result

much more often than the nominal significance level. Hence, when a spurious regression is

analyzed, the regression of two unrelated series produces a significant t-statistic even though

no relationship subsists. Spurious relationships are known to persist in large sample sizes, for

which the null of independence is rejected more frequently than it is for small samples. The

t-statistic in this context neither follows a t distribution nor is asymptotically distributed as a

standard normal, as would be the case for cross-sectional data or in regressions with stationary

time series. The t-statistic, in fact, would only converge in probability to a standard normal

if the et’s in equation (4.1) were a serially uncorrelated process with mean zero, while instead

{et} follows a random walk under H0 : β1 = 0, so that the test statistics goes to infinity as the

sample size gets large (Wooldridge (2003)). When considering the limiting distribution of the F-

statistics forH0 : β0 = β1 = 0, it can be seen that it diverges from the conventional F distribution

and that rejection rates increase with sample size. However, when testing for serial correlation

in the residuals, the results usually show that the model is misspecified, as the autocorrelation

test converges in probability to values that imply an autocorrelation of unity —that is to say,

Corr[et, et+1] → 1 as t increases. Another hint that the regression under analysis might be
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spurious is provided by the Durbin-Watson (DW) statistic. When considering a regression that

is not spurious, the DW statistic computed from the residuals of (4.1) typically converges in

probability to a non-zero value, meaning that an actual relationship between the time series

subsists (Phillips (1986)). Instead, if the regression is spurious, the DW statistic goes to zero

as T → ∞. A good rule of thumb for discriminating spurious from genuine regressions is to

compare the value of the R2 coefficient to that of the DW statistics. If it appears that R2 > DW,

the regression is likely to be spurious (Granger and Newbold (1974)). The same conclusions can

be drawn when considering a multiple regression equation with yt ∼ I(1), in which either all

or only some of the independent variables are also I(1). The regression model will result to be

spurious unless some specific equilibrium relationship requirements are met.

4.2 Cointegrated Economic Variables

Consider two processes {yt} and {xt} that are integrated of order d. In general, a linear combi-

nation zt = yt − βxt of these two series will yield a process that is also I(d) for any number β.

However, it is possible that for some β ̸= 0, zt = yt − βxt ∼ I(d− b), b > 0. In this case, yt and

xt are said to be cointegrated and β is referred to as the cointegrating vector. Engle and Granger

(1987) define cointegration in the following way:

Definition 7 (Cointegration). Consider some (n×1) vector of variables Y t = (y1t, y2t, ..., ynt)
′, whose

components are all I(d). If there exists a nonzero vector β for which Zt = β′Y t ∼ I(d− b), b > 0, then

the components of the vector Y t are said to be cointegrated of order (d, b), denoted Y t ∼ CI(d, b)

Typically, in economic literature only the case of CI(1, 1) variables is treated, since most

financial time series are individually integrated of order one. When considering two I(1) pro-

cesses, d = b = 1 and the combination Zt yields a stationary result when the variables are

cointegrated. In the definition by Engle and Granger, however, any relationship producing a re-

duction of the order of integration of the single variables by some positive scalar b is considered

to be a cointegrating relationship. Note that this definition also implies that variables with dif-

ferent orders of integration cannot be cointegrated. Suppose in fact that the first two elements

of Y t, y1t and y2t, are respectively I(d1) and I(d2), with d2 > d1, then any linear combination of

y1t and y2t will be I(d2). It is important to note that the cointegrating vector β is not uniquely
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defined, since if the combination β′Y t is stationary, so is also cβ′Y t for any scalar c ̸= 0. In

this case both β and cβ are cointegrating vectors for Y t. Hence, if Y t is an (n× 1) vector, there

can be up to h < n 1 linearly independent cointegrating vectors, where the number h is called

the cointegrating rank of Y t. Moreover, any linear combination of the elements of β also con-

stitutes a cointegrating vector itself. In order to preserve the uniqueness of β, a normalization

assumption must be imposed on the cointegrating vector by setting its first element β1 equal to

one, which yields β = (1,−β2, ...,−βn)′ 2 . The cointegrating relationship is then equal to

β′Y t = y1t − β2y2t − ...− βnynt ∼ I(0) (4.4)

or equivalently

y1t = β2y2t + ...+ βnynt + ut, ut ∼ I(0) (4.5)

The intuition behind the concept of cointegration is that of the existence of a long-run equilib-

rium relationship to which integrated time series eventually converge. When taken individu-

ally, I(1) variables can drift arbitrarily far apart from each other since they have no tendency to

frequently return to their initial or mean value and their unconditional variance increases as a

function of time. When instead two or more variables are cointegrated, so that a stationary com-

bination Zt = β′Yt of them exists, they are bounded by a so-called cointegrating relationship

which causes their association to be always restored in the long-run. Short-term deviations are

however possible and they are captured by the term ut in (4.5), called the disequilibrium error,

which measures the distance of the system from equilibrium at any point in time. The dise-

quilibrium error is expected to have value zero in the long term, as economic forces act in the

1The reason why the number of cointegrating vectors must be strictly less than the number of variables

is discussed more in detail in Section 4.4
2The following example shows that, in the bivariate case, there can exist only a single cointegrating

vector: let yt and xt be I(1) variables with two cointegrating parameters β1 ̸= β2, such that the regression

model

yt = βjxt + ujt ∼ I(0), j = 1, 2

is formed. By subtracting the first from the second equation, we obtain

(β2 − β1)xt = u1t − u2t

Since xt is a I(1) vector, the left hand side of this equation is I(1), whereas the right hand side is I(0) since

it is the difference of two stationary processes. This is a contradiction unless β1 = β2, so that u1t = u2t.
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direction of eliminating short-run departures from equilibrium. Hence, for ut = 0, the system

(4.5) is in long-run equilibrium, denoted

y1t = β2y2t + ...+ βnynt (4.6)

Furthermore, cointegration requires that the I(1) variables share a common stochastic trend,

which cancels out in the stationary combination Zt = β′Y t producing the cointegrating rela-

tionship. To this regard, consider the I(1) vector Y t = (y1t, y2t)
′ generated from the random

walk process

yjt = yjt−1 + ujt =
t∑
i=1

uji + yj0, j = 1, 2 (4.7)

and suppose that Y t is cointegrated with a normalized cointegrating vector β = (1, −β2)′.

The stochastic trend in (4.7) is captured by the cumulated errors
∑t
i=1 uji. The cointegrating

relationship Zt = β′Y t between the elements of Y t can be expressed as

Zt = β′Y t =
(
1− β2

)y1t
y2t

 = y1t − β2y2t

=

t∑
i=1

u1i + y10 − β2

(
t∑
i=1

u2i + y20

) (4.8)

For the stochastic trend to cancel out in Zt, we need that
∑t
i=1 u1i = β2

∑t
i=1 u2i, such that the

two stochastic terms cancel out, from which follows that

Zt = y10 − β2y20 ∼ I(0)

In order to achieve cointegration, the time series vector Y t must contain less stochastic trends

than variables. Hence, if a (n × 1) vector Y t is cointegrated with h < n cointegrating vectors,

there will be n − h common unit root stochastic trends. In case the data generating process

contains a deterministic trend, the cointegrating relationships cancels the stochastic but not the

deterministic trends. As a result, Zt = β′Y t is trend stationary, i.e. stationary around a linear

trend. By regressing the elements of the vector Y t against each other

y1t = β2y2t + ut (4.9)

it can be shown that if y1t and y2t are cointegrated, such that ut is a stationary mean zero vari-

able, then the OLS estimator β̂2 of β2 is superconsistent, in the sense that apart from being
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consistent it also converges to the true value at rate T. In this case the standard t-statistic for

testing H0 : β2 = 0 versus H1 : β1 ̸= 0 is is asymptotically normally distributed (see Stock

(1987)). Although it may be tempting to first difference I(1) variables in order to induce station-

arity, such a procedure is inadvisable as it would destroy any potentially existing information

about the long-run relationship of the series. For this reason, economic modeling involving sta-

ble relationship dynamics is usually conducted using the raw time series data rather than the

differenced series, which have no long term solution. In economic theory, there are several ex-

amples of models that presume the existence of an equilibrium relationship between variables.

In the permanent income model, consumption is linked to income by a cointegrating relation-

ship, while purchasing power parity implies cointegration between nominal exchange rates and

foreign and domestic prices. The Fisher equation presupposes that nominal interest rates and

inflation are cointegrated. Money demand and growth theory models, covered interest rate par-

ity and the expectation hypothesis of the term structure, which requires nominal interest rates

with different maturities to be cointegrated, are other examples of economic theories that rely

on the assumption of a stable long term relationship between integrated time series.

4.3 Vector Autoregressive Models

Vector autoregressive (VAR) models are the multivariate analog of AR models for single time

series and are commonly used to model the dynamic relationship between a number of time

series variables. VAR models were made popular by Sims (1980) as an alternative to simultane-

ous equations structural models. In a VAR model, the current value of each variable composing

the system depends on its own previous values and on past values of the other time series con-

tained in the VAR, plus an error term. Since in an AR model the value of the dependent variable

is determined only by its own lags and an error term, it can be seen as a restricted case of a VAR

model. In the simplest case of a bivariate VAR(p) with no deterministic terms, the model is

formed by two variables y1t and y2t and can be written in explicit form as

y1t = β10 + β11y1t−1 + ...+ β1py1t−p + α11y2t−1 + ...+ α1py2t−p + u1t

y2t = β20 + β21y2t−1 + ...+ β2py2t−p + α21y1t−1 + ...+ α2py1t−p + u2t

(4.10)

where u1t and u2t zero-mean white noise disturbance terms with covariance matrix Σu. The

model (4.10) can be expanded to include a number n of variables, such that each element of
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Y t = (y1t, y2t, ..., ynt) will have its own equation. Since writing such a model in extended form

would be a tedious task, the more compact notation

Y t
n×1

= β0
n×1

+ β1
n×n

Y t−1
n×1

+ β2
n×n

Y t−2
n×1

+ ...+ βp
n×n

Y t−p
n×1

+ ut
n×1

(4.11)

can be used equivalently. To understand where this notation comes from, consider the case in

which p = 1 so that each variable in the VAR only depends on the first lag of y1t and y2t

y1t = β10 + β11y1t−1 + α11y2t−1 + u1t

y2t = β20 + β21y2t−1 + α21y1t−1 + u2t

(4.12)

The model (4.12) can be rewritten in matrix form as

 y1t

y2t

 =

 β10

β20

+

β11 α11

α21 β21

 y1t−1

y2t−1

+

 u1t

u2t

 (4.13)

or otherwise as

Y t
n×1

= β0
n×1

+ β1
n×n

Y t−1
n×1

+ ut
n×1

(4.14)

where n = 2 since there are only two variables in the system. By setting β(L) = In−β1L− ...−

βpL
p, it is possible to write (4.11) in lag operator notation as

β(L)Y t = β0 + ut (4.15)

The stability of a VAR(p) model is assessed by considering the characteristic roots of the (np×np)

coefficient matrix β = (β1,β2, ...,βp) from equation (4.11). Provided that

det
(
In − β1λ− ...− βpλ

p
)
̸= 0

has characteristic roots |λ| ≤ 1, the VAR process is stable, meaning that it generates weakly

stationary time series. One important feature of VAR models is that they typically assume that

all variables are endogenous. Even though a VAR model can include exogenous terms, e.g.

seasonal dummy variables, linear time trends or stochastic exogenous variables, it is common

practice to regard all the variables in a VAR as being endogenous (Lütkepohl (2011)). Provided

that all the variables in the system are identified, the VAR model can be estimated by employ-

ing OLS on each separate equation as long as no contemporary terms appear on the RHS of

the model equation. In fact, estimation via OLS is feasible only provided that the RHS terms
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are known at present time t. VAR models are often employed for forecasting macroeconomic

time series, as they arguably fare better than large-scale simultaneous equations models in out-

of-sample forecasts (Sims (1980)). On the other hand, VAR models can generate a degrees of

freedom problem as more lags and equations are added to the system. If the VAR contains p

lags of a number n of variables, the amount of parameters to be estimated will be n+ pn2, plus

the estimate of Σ. When the number of estimated parameters is large, degrees of freedom will

be quickly used up, especially if the sample size is small, causing large standard errors and

consequently wide confidence intervals for the coefficients of the model. Another shortcoming

of VAR models is that they are a-theoretical, i.e. their specification can be accomplished devoid

of much information from economic theory about the relationship among the variables. Vector

autoregressions are commonly employed in testing the hypothesis that one or more of the vari-

ables in a VAR equation do not Granger cause the others. The definition of Granger causality is

given in Granger (1969), although other analogous definitions exist and can be found, among

others, in Sims (1972). For a VAR of the type specified in (4.10) the null hypothesis may be tested

that y2 does not Granger cause y1, denoted

E[y1t|It−1] ̸= E[y1t|Jt−1] (4.16)

where the term It−1 represents all past information that is available about both y1 and y2, while

Jt−1 only contains information about y1. The test is aimed at verifying whether past values

of y2 are useful in forecasting the current value of the process y1, namely y1t. Note that this

methodology can be extended to a set of n − 1 variables, Y 2t = (y2t, ..., ynt)
′, such that the

ability of each regressor of forecasting y1t is tested singularly. As long as (4.16) is valid, past

values of y2 as well as past values of y1 are of some relevance in predicting yt1. From this

argument it follows that the coefficients attached to the lags of y2 in the equation for y1 should be

significantly different from zero, which can be tested by means of an F-test for joint significance.

If y2 does not Granger cause y1, then all the α1j , j = 1, ..., p in (4.10) should be equal to zero.

Granger causality is only applicable for testing the lagged causality between y1 and y2 and it

does not extend to causal contemporary relationships between the two variables. It is hence to

be interpreted only in terms of forecasting ability of the past values of a variable with respect

to the current value of another. In a broader sense, Granger causality can be stated in terms

of the distribution of y1 and y2, such that y2 does not Granger cause y1 if the distribution of
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y1, conditional on past values of both variables, is equal to the distribution of y1, conditional

on its past values only. In applications, instead of testing the entire distribution of y1, it is

common practice to examine only whether the conditional mean of y1 depends on past values

of y2. Besides the already illustrated concept of Granger causality, the concept of instantaneous

causality is often used in applied econometric works. Formally, there is instantaneous causality

between two variables y1t and y2t if

E[y1t|It ∪ {y2,t+1}] ̸= E[y1t|It]

where the term It represents the set of past and current information about y2t and y2,t+1 is the

future value of y2t. In other words, we say that y2 instantaneously causes y1 if a better forecast of

y1 is achieved, at time t, by adding future information about the value of y2, y2,t+1, to past and

current information about y2. The concept of instantaneous causality is a symmetric one, such

that if y2 instantaneously causes y1, also y1 instantaneously causes y2 and the causal direction

is unspecified (Lütkepohl (2006)). This is due to the fact that, if the error terms u2t and u1t of

bivariate VAR model such as (4.10) are uncorrelated, then y2t is instantaneously causal of y1t

and vice versa (Lütkepohl and Krätzig (2004)).

In order to choose the number of lags of y1 and y2 to be included in the model (4.10), an F-test

can be performed separately on each equation forming the VAR. Alternatively, the lag length

may be selected by means of the multivariate version of the information criteria by Akaike

(1974), Schwarz (1978) and Hannan-Quinn, defined as

MAIC = log|Σ̂|+ 2k

T
(4.17)

MBIC = log|Σ̂|+ k

T
log(T ) (4.18)

MQIC = log|Σ̂|+ 2k

T
log (log(T )) (4.19)

where Σ̂ is the estimated variance-covariance matrix of the residuals, k = n + pn2 is the total

number of regressors in a VAR with n equations and p lags of each variable and T is the number

of observations. As with univariate information criteria, the number of lags to be included in the

model is the one minimizing the value of the chosen information criterion. Note that if y2 does

not Granger cause y1, any set of lagged y2 that appears in the model will not be significantly

different from zero.
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4.3.1 Forecasting

Consider the VAR(p) model from equation (4.11) and assume that the parameters βi (i = 1, ..., p)

are known. In this instance, the best linear predictor —that is, the predictor with minimum

mean-squared errors (MSE), of YT+h is the h-step ahead forecast

YT+h|T = β0 + β1YT+h−1|T + ...+ βpYT+h−p|T (4.20)

with YT+j|T = Yt+j for j ≤ 0 and T is the forecast origin. The corresponding h-step forecast

error is

YT+h − YT+h|T = uT+h +Φ1uT+h−1 + ...+Φh−1uT+1

=

h−1∑
k=0

ΦkuT+h−k

(4.21)

where the matrices Φk are computed recursively following

Φk =

k∑
j=1

Φk−jβj for j = 1, 2, .. (4.22)

with Φ0 = In and βj = 0 for j > p. The MSE matrix of the the h-step forecast YT+h|T is

Σy(h) = E[(YT+h − YT+h|T )(YT+h − YT+h|T )
′] =

h−1∑
j=0

ΦjΣΦ′
j

Since the forecast errors have expectation zero, the predictors are unbiased and therefore the

MSE is the forecast error variance, which can be used for constructing confidence intervals

(Lütkepohl (2006)). Under the assumption that ut has a multivariate normal distribution such

that ut ∼ i.i.d.N(0,Σ), the forecast errors are also normally distributed and a (1 − α)100%

forecast interval for the elements of YT+h|T can be set up as

[yi,T+h|T − c1−α/2σi(h), yi,T+h|T + c1−α/2σi(h)]

where yi,T+h|T is the i-th element of YT+h|T , c1−α/2 is the (1−α/2) quantile of a standard normal

distribution and σi(h) is the square-root of the i-th diagonal element of Σy(h), i.e. the standard

deviation of the h-step forecast error for the i-th element of Yt.

Now consider the instance in which the VAR(p) process from equation (4.11) is an estimated

one, such that its parameters βi are unknown. The MSE h-step predictor of ŶT+h is

ŶT+h|T = β̂0 + β̂1ŶT+h−1|T + ...+ β̂pŶT+h−p|T (4.23)
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where β̂i (i = 1, ..., p) are the estimated parameter matrices and ŶT+j|T = YT+j for j ≤ 0. The

forecast error is now defined as

YT+h − ŶT+h|T =

h−1∑
k=0

ΦkuT+h−k +
(
YT+h|T − ŶT+h|T

)

where
(
YT+h|T − ŶT+h|T

)
is the proportion of the error which is due to estimating the VAR(p)

model. The covariance matrix of the forecast error is

Σ̂y(h) = Σy(h) + E[(YT+h − ŶT+h|T )(YT+h − ŶT+h|T )
′]

whereas the (1− α)100% forecast interval for the components of ŶT+h|T has the form

[ŷi,T+h|T − c1−α/2σ̂i(h), ŷi,T+h|T + c1−α/2σ̂i(h)]

4.3.2 Impulse Response Functions

Impulse response analysis is used to quantify the impact that an innovation on the impulse

variable has on the response variable in a VAR(p) model. Recall from Section 4.3 the stability

condition for a VAR(p) process such as (4.11). In Section 1.2.1, the Wold decomposition theorem

for weakly stationary AR processes was introduced; likewise, a stable VAR(p) process can be

represented in the form of an infinite moving average process

Y t = Φ0ut +Φ1ut−1 +Φ2ut−2 + ... (4.24)

where Φ0 = In and the matrices Φk are computed by recursive substitution according to (4.22).

The (i, j)-th element of the matrix Φk is interpreted as the expected response of variable yi,t+k

to a unit change of variable yjt, k periods of time ago. In practice, the elements of Φk represent

the impulse responses of the elements of Y t with respect to the shocks ut, following

Φij,k =
δyi,t+k
δujt

=
δyit

δuj,t−k
for i, j = 1, ..., n

For a stable VAR(p), the accumulated effects of the impulses can be obtained by adding the

matrices Φk according to

Φ =

∞∑
k=0

Φk = (In − β1 − ...− βp)
−1
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This way, the accumulated impact of a unit shock in variable j on variable i at time k is com-

puted for k = 1, 2, .... This interpretation of impulse responses is only valid as long as innova-

tions occur in one variable at a time, such that shocks are independent. If, however, the elements

of ut are correlated, such that ut has non-zero off-diagonal elements, it is possible that a shock

in one variable is followed by another shock in a different variable. In that case, orthogonal in-

novations, which are not contemporaneously correlated, are preferred. Hence, in an orthogonal

impulse response, ut is a diagonal matrix and a change in one of the elements uit of ut has no

effect on the other elements, since they are orthogonal. Orthogonal innovations are calculated

by means of a Choleski decomposition of the covariance matrix of the error process Σ. If P is

a lower triangular matrix, the Choleski decomposition is such that Σ = PP ′ and the moving

average representation of the VAR(p) (4.24) can be rewritten as

Y t = Ψ0εt +Ψ1εt−1 +Ψ2εt−2 + ...

with Ψ0 = P , Ψi = ΦiP (i = 1, 2, ...) and εt = P−1. In orthogonal impulse responses, the

elements of the matrix Ψi are interpreted as responses of the VAR(p) variables to the innovations

εt. Because the matrix Ψi is lower triangular, only a shock on the first variable in the system

can have a simultaneous impact on all the other variables, whereas an innovation on the second

variable will have no effect on the first variable, but only on the remaining n− 2 variables, and

so on. The recursive ordering of the impulses can be represented as y1t → y2t → ...→ ynt, such

that changes in the variable on the left of the arrow affect all other variables in the system, but

not the opposite. This fact implies that the outcome of an orthogonal impulse response analysis

depends on the ordering of the variables. Therefore, a variable should be chosen as the first

when it can reasonably be assumed that a change in that variable has an instantaneous impact

on all the other variables in the VAR(p).

4.3.3 Forecast Error Variance Decomposition

The forecast error variance decomposition (FEVD) is used to determine the contribution of a

shock in variable j to the h-step forecast error variance of variable i, based on the orthogonal

impulse response matrices Ψk from Section 4.3.2. Recall the expression of the h-step forecast

error for a VAR(p) with known coefficients from equation (4.21). Rewriting it in terms of the
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orthogonal innovations εt = (ε1t, ..., εnt)
′ yields

YT+h − YT+h|T = Ψ0εT+h +Ψ1εT+h−1 + ...+Ψh−1εT+1

=
h−1∑
k=0

ΨkεT+h−k

(4.25)

where Ψi = ΦiP (i = 1, ..., p) and P is a lower triangular. The forecast error (4.25) of the i-th

element of YT+h, yi,T+h, is expressed as

yi,T+h − yi,T+h|T =

h−1∑
k=0

(ψi1,k ε1,T+h−k + ...+ ψin,k εn,T+h−k)

Formally, the orthogonal innovations εt are serially uncorrelated and have variance one; there-

fore, the forecast error variance of the i-th element of YT+h has the form

σ2
i (h) =

h−1∑
k=0

(
ψ2
i1,k + ...+ ψ2

in,k

)
=

n∑
j=0

(
ψ2
ij,0 + ...+ ψ2

ij,h−1

)
The term

(
ψ2
ij,0 + ...+ ψ2

ij,h−1

)
is interpreted as the contribution of shocks in variable j to the

forecast error variance of the h-step forecast of variable i. Dividing this quantity by the forecast

error variance σ2
i (h) yields the forecast error variance decomposition

FEVDij(h) =

(
ψ2
ij,0 + ...+ ψ2

ij,h−1

)
σ2
i (h)

(4.26)

which is defined as the proportion, in percent, of the h-step forecast error variance of variable

i which is due to variable j. Since the FEVD is based on orthogonal impulse responses, the

ordering of the variables in vector Yt influences the value of the FEVD.

4.4 Vector Error Correction Models

A cointegrated system is composed by time series whose time path is influenced by the mag-

nitude of any deviation from long-run equilibrium. If disequilibrium is to occur in any time

period, at least one of the cointegrated variables is required to change in response to this devia-

tion in the following period, so that the system can return to long-term equilibrium. According

to Granger representation theorem (Engle and Granger (1987)), any set of n, n ≥ 2, I(1) time se-

ries that are cointegrated has an error correction representation and any set of time series that is

error correcting is cointegrated. Hence, if an error correction representation exists, the variables
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must be cointegrated of order (1,1). A bivariate error correction (EC) model can be set up by

augmenting a two variables VAR which is expressed in first differences as well as levels with

the appropriate error correction terms. Moreover, specific restrictions must be placed on the

coefficients of the VAR in order to enable the variables to be CI(1,1). To this regard, consider the

VAR from (4.12), which we may rewrite without the intercept for simplicity

y1t = β11y1t−1 + α11y2t−1 + u1t

y2t = β21y2t−1 + α21y1t−1 + u2t

(4.27)

where u1t and u2t are white noise disturbance terms. By making use of the lag operator, (4.27)

can be formulated as

(1− β11L)y1t − α11Ly2t = u1t

−α21Ly1t + (1− β21L)y2t = u2t

(4.28)

By solving (4.28) with respect to y1t and y2t, the solutions

y1t =
(1− β21L)u1t + α11Lu2t

(1− β11L)(1− β21L)− α11α21L2
(4.29)

y2t =
α21Lu1t + (β11L)u2t

(1− β11L)(1− β21L)− α11α21L2
(4.30)

are found. It can be seen that y1t and y2t have the same inverse characteristic equation (1 −

β11L)(1− β21L)−α11α21L
2 = 0, whose roots are obtained by solving the equation with respect

to L. Letting λ = 1/L, after some manipulations the characteristic equation λ2 − (β11 + β21)λ+

(β11β21−α11α21) = 0 is obtained. Depending on the value of the characteristic roots (λ1, λ2), y1t

and y2t may or may not be cointegrated of order (1,1). Consider for instance the case in which

both λ1 and λ2 lie inside the unit circle. Under this circumstance, (4.29) and (4.30) yield stable

results, so that both processes are stationary and cannot be CI(1,1). If, on the other hand, either

one of the characteristic roots lies outside the unit circle, neither y1t nor y2t will be difference

stationary, since they will both be integrated of an order bigger than one. In particular, if both

characteristic roots are equal to unity, the two variables will be I(2). The necessary and sufficient

condition for y1t and y2t to be CI(1,1), such that an error correction representation exists, is that

one of the characteristic roots is unity, while the other one must be less than unity in absolute

value. By setting λ1 = 1, and multiplying (4.29) by (1− L) = ∆, we obtain

∆y1t =
(1− β21L)u1t + α11Lu2t

1− λ2L
(4.31)
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which is a stationary process for |λ2 < 1|. The condition placed on the first characteristic root

implies that

λ1 =
1

2

(
β11 + β21 +

√
β2
11 + β2

21 − 4(β11β21 − α11α21)

)
= 1

so that, after some simplifications, the coefficients of the VAR satisfy

β11 =
1− β21 − α11α21

1− β21
(4.32)

On the other hand, the constraint |λ2 < 1| entails that

β21 > −1 (4.33)

and

α11α21 + β2
21 < 1 (4.34)

since at least one of the coefficients α11 and α21 must be different from zero in order for y1t and

y2t to cointegrate. By taking into account the coefficient restrictions (4.32), (4.33) and (4.34), the

VAR model (4.27) can be rewritten as

∆y1t = (β11 − 1)y1t−1 + α11y2t−1 + u1t

∆y2t = (β21 − 1)y2t−1 + α21y1t−1 + u2t

(4.35)

Considering that (4.32) entails that β11 − 1 = −α11α21/(1− β21), the system becomes

∆y1t = −[α11α21/(1− β21)]y1t−1 + α11y2t−1 + u1t

∆y2t = (β21 − 1)y2t−1 + α21y1t−1 + u2t

(4.36)

Provided that both α11 and α21 are non-zero, the cointegrating vector can be normalized3 with

respect to y1t, yielding the error correction representation

∆y1t = α1(y1t−1 − βy2t−1) + u1t

∆y2t = α2(y1t−1 − βy2t−1) + u2t

(4.37)

where α1 = −α11α21

1−β21
, β = 1−β21

α21
and α2 = α21. Now the model (4.37) is in error correction

form and both variables y1t and y2t change in response to the disequilibrium of the previous

period, captured by y1t−1 − βy2t−1. Because ∆y1t and u1t are stationary by assumption, it fol-

lows that the linear combination y1t−1 − βy2t−1 must also be I(0), so that each equation in (4.37)

3Normalization entails that the coefficient of the variable that is being normalized is unity in the ex-

pression for the cointegrating vector.
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is balanced in terms of order of integration. Hence, y1t and y2t are cointegrated with cointegrat-

ing vector (1,−β). The coefficients α1 and α2 represent the speed of adjustment parameters,

i.e. the proportion of disequilibrium that is eliminated within a time period. A large value of

α1 indicates that most of the previous period’s disequilibrium has been corrected by y1t in the

following period. If, on the contrary, the value of α1 is small, y1t is not much responsive to de-

viations from long-run equilibrium. For the model in (4.37) to be error correcting, it is required

that at least one of the speed of adjustment parameters is non-zero, which is ensured by the

constraints (4.33) and (4.34). If one of the αi, i = 1, 2, happens to be zero, the corresponding

variable does not help in restoring the long-run equilibrium relation and all the error correction

is performed by the other variable. In fact, if we suppose that α1 = 0, ∆y1t = u1t and y1t only

changes in response to current shocks. Moreover, if α1 < 0 and α2 > 0, y1t decreases and y2t

increases following a positive deviation from long-term equilibrium. Hence, if one of the speed

of adjustment parameters has a negative sign, the value of the corresponding variable has been

above equilibrium in the previous period and a downward adjustment is to be expected. If

we suppose for instance that y1t−1 > βy2t−1, then the value of y1t−1 has overshot equilibrium

in t − 1. In order for y1t to return to its equilibrium value, it must be the case that ∆y1t < 0,

which entails α1 < 0. The vector error correction (VEC) model in (4.37) can also be augmented

by including an intercept and p− 1 lagged changes of both the dependent and the explanatory

variable into the model equation, resulting in

∆y1t = β10 + α1(y1t−1 − βy2t−1) +

p−1∑
i=1

βi11∆y1t−i +

p−1∑
i=1

αi11∆y2t−i + u1t

∆y2t = β20 + α2(y1t−1 − βy2t−1) +

p−1∑
i=1

βi21∆y2t−i +

p−1∑
i=1

αi21∆y1t−i + u2t

(4.38)

With this notation, the additional requirements needed for the concept of Granger casuality

(Section 4.3) to be applicable in the context of a VEC model can be easily illustrated. If the

process y2t does not Granger cause y1t, then all the lagged terms ∆y2t−i should not appear in

the equation for ∆y1t. This implies, in turn, that all the coefficients αi11 attached to the lagged

changes of y2t are equal to zero, as would be the case for a bivariate VAR model expressed in

first differences. When considering a VEC model such as (4.38), however, y1t is additionally

required to be irresponsive of any short-term disequilibrium when it is not Granger caused by

y2t, such that the speed of adjustment parameter α1 is also equal to zero. In general, an n-
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variable VEC model can be set up by letting Y t = (y1t, y2t, ..., ynt)
′ be an (n × 1) vector of I(1)

variables, such that the model has the form

∆Y t = Γ0 +ΠY t−1 + Γ1∆Y t−1 + Γ2∆Y t−2 + ...+ Γp∆Y t−p + ut (4.39)

where Γ0 is an (n×1) vector of intercept terms, Π is an (n×n) matrix of parameters with at least

one element πjk ̸= 0, Γi is an (n×n) coefficient matrix and ut is an (n×1) vector of disturbance

terms. If the model (4.39) has an error correction form, there must be a linear combination of

the I(1) components of Y t that is stationary. By solving (4.39) with respect to ΠY t−1, we obtain

ΠY t−1 = ∆Y t − Γ0 −
p∑
i=1

Γi∆Y t−i − ut (4.40)

Since every element on the RHS of equation (4.40) is stationary, this must be the case for ΠY t−1

also, such that each row of Π is a cointegrating vector of Y t. Notice that we imposed the

constraint on the matrix Π that at least one of its elements is different from zero, such that its

rank is also non-zero. This is because estimating the model (4.39) without the term ΠY t−1

would yield an n-variable VAR model in first differences, with the consequence that Y t would

not adjust in response to the previous period’s disequilibrium. It follows that if Π contains only

zero elements, the model (4.39) would no longer be error correcting. At the opposite extreme,

if we suppose Π to have full rank, i.e. rank(Π) = n, then all the n variables contained in Y t

would be stationary and not cointegrated, since we consider only variables with an order of

integration not bigger than 1. Hence, in order for an error correction representation of (4.39) to

exist, the rank of Π must be equal to h, 0 < h < n, such that there are h cointegrating vectors

of the system. If the VAR process from (4.27) has unit roots, which is the case if the roots of

det(I − β1λ) = 0 lie outside the complex unit circle, than Π is a singular matrix, implying that

it has reduced rank h < n. Consider to this instance the model (4.39) in restricted form

∆Y t
n×1

= Π
n×n

Y t−1
n×1

+ ut
n×1

(4.41)

The first element of the process Y t has expression

∆y1t = π11y1t−1 + π12y2t−1 + ...+ π1nynt−1 + u1t (4.42)

We can normalize (4.42) with respect to y1t−1 so that we obtain

∆y1t = α1(y1t−1 + β12y2t−1 + ...+ β1nynt−1) + u1t (4.43)
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where α1 = π11 and βij = πij/π11. Equation (4.43) represents a vector error correction model

with normalized cointegrating vector β = (1, β12, ..., β1n) and speed of adjustment parameter

α1.
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Chapter 5

Cointegration Tests

5.1 Engle and Granger Cointegration Test

Let Y t = (y1t, y2t)
′ be a vector of I(1) random variables and consider the bivariate static regres-

sion model

y1t = β2y2t + ut (5.1)

Engle and Granger (1987) propose a cointegration testing procedure based on performing a

unit root test on the residual process from (5.1). In particular, the Engle and Granger (EG) test

aims at verifying if Y t is cointegrated with cointegrating vector β = (1,−β2)′, so that the linear

combination β′Y t = y1t − β2y2t = ut is I(0). The test can be implemented by applying a unit

root test such as the ADF or PP test directly to the process ut, provided that the cointegrating

parameter β is prespecified and does not need to be estimated. In order to achieve cointegration,

the error term should follow a stationary white noise process. Since the null hypothesis of the

ADF test is that of unit root non-stationary data, the Engle and Granger (EG) test has the null

of no cointegration. If the residual process is found to have a unit root, it is non-stationary and

the random variables y1t and y2t do not cointegrate. In many applications, it can happen that

the cointegrating vector β is unknown, in which case the EG procedure is performed using the

OLS estimator β̂2 of β2 from regression (5.1). A unit root test is then applied on the estimated

residual

ût = y1t − β̂2y2t (5.2)
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Since in this context an estimate of the actual cointegrating relationship is being used, the crit-

ical values for testing H0 differ from those tabulated by Dickey and Fuller (1976). The correct

critical values for a unit root test on the cointegrating residuals are obtained by Monte Carlo

simulation and can be found in Engle and Granger (1987) and Engle and Yoo (1987). The crit-

ical values tabulated by Engle and Granger are suited for bivariate regression models with no

more than 100 observations, whereas Engle and Yoo extend these results to fit systems con-

taining up to 5 variables and for 50, 100 or 200 observations. Since under the null hypothesis

of no cointegration we are estimating a spurious regression, the asymptotic distribution of the

ADF test t-statistic is not anymore the usual DF distribution, but rather a function of Wiener

processes. The correct distribution of the ADF and PP test is in fact the Phillips and Ouliaris

distribution, named after its finders (see Phillips and Ouliaris (1990) for more details).

Despite the fact that, as previously mentioned, the OLS estimator β̂2 is superconsistent for

β2, Stock (1987) and Phillips (1991) found that when cointegration is given, β̂2 can be substan-

tially biased in finite samples and is also not efficient. However, both problems can be solved

by estimating β2 using the dynamic OLS estimator β̂2,DOLS , as suggested by Stock and Watson

(1993). The authors show that under certain conditions, the DOLS estimator β̂2,DOLS is consis-

tent, asymptotically normally distributed and efficient. To see how β̂2,DOLS is built, consider

a vector of random variables Y t = (y1t,Y
′
2t) with Y 2t = (y2t, ..., ynt)

′ and a normalized coin-

tegrating vector β = (1,−β′
2). The cointegrating regression of y1t on Y 2t is augmented with p

leads and lags of ∆Y 2t plus a deterministic trend Dt

y1t = γ′Dt + β′
2Y 2t +

p∑
i=−p

ψ′
i∆Y 2t−i + ut (5.3)

By estimating the augmented regression (5.3) by ordinary least squares, the DOLS estimator of

β2 is obtained. One important feature of the EG test is that, by construction, the null hypothesis

of no cointegration is rejected whenever the dependent variable y1t of the cointegrating regres-

sion cointegrates with at least one of the independent variables y2t, ..., ynt. Because the test is

based on the assumption that there is one single cointegrating vector, it is unable to tell with

how many regressors y1t cointegrates. When considering only two variables, there can be at

most one linear combination that is stationary, albeit if the system contains n variables, there

can be up to h linearly independent cointegrating relationships, where h < n. The OLS regres-

sion approach employed in the EG test, however, is uncapable of finding more than one coin-
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tegrating relationship, independently of how many variables the estimated model contains. As

we will see in the next section, a solution to this problem is proposed by Johansen (1988, 1992)

and Stock and Watson (1988), who developed a methodology that allows for the appraisal of all

h cointegrating vectors in an n-variate system. Since the EG cointegration test is based on the

employment of unit root tests such as the ADF and the PP test, all shortcomings of the latter

also affect the former.

5.2 Johansen Test

Johansen (1988) and Stock and Watson (1988) propose an alternative cointegration testing pro-

cedure which additionally allows to detect the presence of multiple cointegrating vectors. The

problems involved with the estimation technique employed in the EG test do not arise in this

context as both procedures provide for the use of the maximum likelihood estimator. Since the

Johansen and the Stock and Watson methods are similar, we intend to treat only the former in

this section. To see how the Johansen test is built, consider the VAR(p) model

Y t = β1Y t−1 + β2Y t−2 + β3Y t−3 + ...+ βpY t−p + ut (5.4)

and subtract Y t−1 from each side of the equation

∆Y t = (β1 − I)Y t−1 + β2Y t−2 + β3Y t−3 + ...+ βpY t−p + ut (5.5)

then add (β1 − I)Y t−2 and subtract (β1 − I)Y t−2 from (5.5)

∆Y t = (β1 − I)∆Y t−1 + (β2 + β1 − I)Y t−2 + β3Y t−3 + ...+ βpY t−p + ut (5.6)

again, add (β2 + β1 − I)Y t−3 and subtract (β2 + β1 − I)Y t−3 from the previous equation

∆Y t = (β1−I)∆Y t−1+(β2+β1−I)∆Y t−2+(β3+β2+β1−I)Y t−3+ ...+βpY t−p+ut (5.7)

Continuing in the same manner recursively yields

∆Y t = ΠY t−p + Γ1∆Y t−1 + Γ2∆Y t−2 + ...+ Γp−1∆Y t−p+1 + ut

= ΠY t−p +

p−1∑
i=1

Γi∆Y t−i + ut

(5.8)
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where Π =
∑p
i=1 βi − I and Γk = −

∑p
j=k+1 βj , k = 1, ..., p − 1, since the VAR(p) parameters

satisfy β1 = Γ1 +Π+ I and βk = Γk − Γk−1, k = 2, ..., p. Note that the results of the Johansen

test are sensitive to the number of lags that are included in the VEC model. In order to select

the optimal lag length, the same procedures suggested for VAR models (Section 4.3) can be

employed. Any evidence that the error terms in the estimated model are not distributed as

white noise is a signal that the lag length is misspecified. The Johansen cointegration test focuses

on the characteristic roots λi, i = 1, ..., n, of the matrix Π from the model (5.8), which are also

called the eigenvalues of Π 1. The rank of Π specifies the number of cointegrating vectors that

are present in the system. Since the rank of a square matrix is equal to the number of its non-

zero eigenvalues, the Johansen test is built so that it controls for the number of characteristic

roots of Π that are non-zero in order to assess the number of independent cointegrating vectors

in (5.8). If rank(Π) = 0, all of the elements of Π are zero and (5.8) becomes a VAR(p) model

written in first differences instead of levels. In this instance, all of the ∆Y it sequences contain

a unit root and none of the variables is cointegrated. If, on the contrary, rank(Π) = n, the

vector process Y t is stationary and also not cointegrated. In order for (5.8) to contain a single

cointegrating vector, the rank of Π must be equal to 1, such that ΠY t−p represents the error

correction term and (5.8) is a VEC model. In intermediate cases in which 1 < rank(Π) < n,

there are multiple cointegrating vectors. If we suppose that rank(Π) = h, such that the number

of independent cointegrating vectors is h, then only these h linear combinations of the variables

will yield a stationary result. The eigenvalues of Π can be ordered from the largest to the

smallest, λ1 > λ2 > ... > λn, such that for 0 < λi < 1 2, λ1 will be the closest to one and λn the

closest to zero. Hence, if the rank of Π is zero, then λi = 0, ∀i and the elements of Y t are not

cointegrated. The t-statistics employed in the Johansen test are the following:

λtrace(h) = −T
n∑

i=h+1

log(1− λ̂i) (5.9)

λmax(h, h+ 1) = −T log(1− λ̂h+1) (5.10)

1A scalar λ is said to be an eigenvalue of a (n × n) square matrix Π if there exists a non-zero (n × 1)

vector c, such that Πc = λc. In this case the vector c is called the eigenvector that corresponds to the

eigenvalue λ.
2This constraint ensures that ΠY t−p is stationary — that is to say, it has all roots inside the complex

unit circle.
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where λ̂i is the estimated value of the i-th eigenvalue obtained from estimating the matrix Π

and T is the number of usable observations. In the t-statistics (5.9) and (5.10), the expression

log(1 − λi) is used to verify whether the eigenvalues of Π are significantly different from zero.

Since log(1) = 0, if λi = 0, then also log(1 − λi) will be equal to zero. If the i-th eigenvalue of

Π happens to be non-zero, then log(1 − λi) < 0, while log(1 − λj) = 0 for all j ̸= i. Similarly,

if rank(Π) = 1, then log(1 − λ1) will be negative while all λi will not be different from zero for

i > 1. The λtrace statistic tests the null hypothesis that the number of independent cointegrating

vectors is less than or equal to h against the alternative that it is bigger than h. The test begins by

considering n eigenvalues and recursively removes the largest until the number of eigenvalues

which are significantly different from zero is found. If λtrace = 0, then all of the characteristic

roots of Π are not significantly different from zero. The larger the value of λi is, the larger will be

the λtrace statistic. The λmax statistic tests the null hypothesis that the number of cointegrating

vectors is h against the alternative that it is h + 1. Similarly, if the value of λi is large, so will

be the value of λmax. The λmax test is conducted sequentially by testing the null hypothesis

of an increasing number of cointegrating vectors. If the initial null hypothesis of h = 0 is

rejected, the test proceeds by controlling for the presence of one cointegrating vector, h = 1,

and so on until a value of h is found for which the null hypothesis can no longer be rejected.

The critical values for both test statistics are obtained through simulation experiments and can

be found in Johansen and Juselius (1990) or in Osterwald-Lenum (1992). According to these

studies, the two statistics follow a non-standard distribution which depends on the number of

nonstationary components under the null hypothesis and on whether a constant or a drift term

are included in the model equations. However, for a single cointegrating vector, the asymptotic

distribution of the Johansen test is the same as that of the EG test. In case that the model

contains an intercept, the critical values for λtrace and λmax are larger, while they are smaller if

the model is specified with a drift term. The null hypothesis of either test is rejected in favor of

the alternative if the critical values are smaller than the corresponding t-statistic. The Johansen

test additionally permits to test hypotheses on the coefficients of the cointegrating relationship

by imposing restrictions on the matrix Π, provided that these restrictions are not binding. In

fact, as long as restricting Π does not affect the model too much, the number of cointegrating

vectors should remain unaltered. To this purpose, the matrix Π is defined as the product of

two (n × h) matrices α and β′, where h is the rank of Π, which satisfy Π = αβ′. The matrix
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β′ = (1, β2, ..., βn) contains the cointegrating vectors, while α = (α1, α2, ..., αn) is the matrix

of the speed of adjustment parameters and indicates the weight of each cointegrating vector

entering the VAR(p) equations. Equation (5.8) can be rewritten using the new notation for Π as

∆Y t = αβ′Y t−p +

p−1∑
i=1

Γi∆Y t−i + ut (5.11)

Via maximum likelihood, the VAR model (5.4) can be estimated as a VEC model, the rank of Π

can be assessed and a value of α can be chosen such that Π = αβ′ holds. When estimating the

model, it is possible to include a constant or a linear trend in the cointegrating vector, and\or

add a drift term to the VEC model. If, for example, we include a constant c in (5.11), the VEC

model becomes

∆Y t = α(β′Y t−p + c) +

p−1∑
i=1

Γi∆Y t−i + ut

whereas adding to the model both a drift vector µ0 and a linear trend term Dt yields

∆Y t = µ0 +α(β′Y t−p +Dt) +

p−1∑
i=1

Γi∆Y t−i + ut

After the matrices α and β′ have been specified, restrictions can be tested on them. In this

instance, the test statistic to be used is

λres = T
h∑
i=1

[log(1− λ∗i )− log(1− λi)] (5.12)

where λ∗i and λi, i = 1, ..., n, are respectively the characteristic roots of the restricted and un-

restricted model. The test statistic (5.12) is asymptotically distributed as a χ2 with h(n − m)

degrees of freedom, where m is the number of restrictions placed on the matrices α and β′.

Suppose we wish to test restrictions on β′: if the value of (5.12) is bigger than the corresponding

value from a χ2 table, with degrees of freedom equal to the number of restrictions imposed on

β, then the restrictions enclosed in H0 are binding and the null hypothesis should be rejected.

When this is the case, the value of λi should appear to be large relative to λ∗i , which indicates

that the number of cointegrating vectors has changed, and in particular, that it has diminished

in the restricted model. In the exact same manner it is possible to test restrictions on α.
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Chapter 6

Empirical Results

This section is intended to provide an empirical implementation of the theories and methods

introduced in the previous chapters. The focus of this survey is set on assessing whether a

long-run relationship between the U.S. stock market index and a set of selected macroeconomic

variables exist. In particular, the methodology of cointegration analysis is used in an attempt to

capture the long-term linkages between the Dow Jones Industrial Average (DJX) and the set of

macroeconomic variables composed by industrial production (IP), narrow money supply (M1),

short-term interest rates (TB3M), crude oil price (OIL) and the consumer price index (CPI) as a

proxy for the rate of inflation. To this purpose, the order of integration of the variables is first of

all determined by means of an ADF, PP and KPSS unit root and stationarity test and it is ensured

that all the series are free from structural breaks and seasonal integration (Section 6.2). The exis-

tence of a cointegrating relationship between the financial time series is established using Engle

and Granger’s cointegration test and the cointegrating rank of the system of variables is de-

termined via Johansen’s likelihood ratio tests (Section 6.3). The dynamic dependencies among

the variables are modeled by a cointegrated multivariate VECM, whose adequacy for describing

the DGP of the analyzed data-set is assessed by performing a series of standard asymptotic tests

on the residual matrix of the model (Section 6.4). Finally, the short-term linkages between the

selected macroeconomic variables and the stock index are examined by performing an impulse

response analysis and the adequacy of the estimated VECM as a forecasting tool is inquired in

the context of an out-of-sample forecast (Section 6.5).
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6.1 Description of the Data

The data-set employed in this survey consists of monthly observations of five economic vari-

ables — that is, industrial production, money supply, interest rates, crude oil price and inflation

rate, and the Dow Jones stock market index, collected during the period from January 1989 to

August 2015, for a total of 320 observations for each time series. The choice of the observation

frequency is dictated by the fact that daily or weekly data tend to fluctuate more and contain

more noise than monthly data. According to Hakkio and Rush (1991), moreover, the consistency

of results from cointegration analysis is guaranteed by choosing a long enough observation pe-

riod rather than by increasing the frequency of the data. The macroeconomic variables are ob-

tained from the Organization for Economic Co-operation and Development (OECD) database,

except for crude oil price which was obtained from the database of the Economic Research De-

partment of the Federal Reserve Bank of St. Louis1. The time series of the Dow Jones Industrial

Average is obtained from the database Bloomberg. Industrial production, which proxies for

real economic activity, is expressed as a volume index, seasonally adjusted, with OECD refer-

ence year 2012. Money supply is defined as the narrow money supply M1, seasonally adjusted,

measured in billions of dollars. The secondary market rate for 3-month Treasury bills is used as

a for proxy for short-term interest rates and is expressed in percent, not seasonally adjusted. The

price for crude oil is the West Texas Intermediate, expressed in dollars per barrel and not sea-

sonally adjusted, while the inflation rate is measured as the Consumer Price Index for all items,

reference year 1982–1984, seasonally adjusted. Coherently with the post-Keynesian assumption

of endogenous money supply advocated by Kaldor (1982, 1985), Palley (1982, 1994) and Moore

(1979, 1983, 1986, 1988, 1989), this study treats narrow money supply as an endogenous vari-

able2. Based on previous studies and economic theory, the following paragraph illustrates what

impact the selected macroeconomic variables are expected to have on the stock market.

1The macroeconomic variables can be downloaded from http://stats.oecd.org/ and

https://research.stlouisfed.org/.
2The post-Keynesian school of monetary thought maintains that money supply is endogenously driven

by the decisions of commercial banks on liquidity reserves in response to the economy-wide demand for

bank credit. Evidence in favor of the endogenous determination of money supply was found in different

countries by a number of empirical studies (Kaldor (1982), Moore (1983), Pollin (1991), Panagopoulous

and Spiliotis (1998), Nell (2001), Vera (2001), Lavoie (2005), Haghighat (2011)).
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Industrial Production

Along with the gross domestic product (GDP) and the gross national product (GNP), industrial

production is conventionally used in applied studies as a measure for the level of real economic

activity, which is amongst the determinants of stock market prices. According to Maysami et

al. (2004), an increase in industrial production signalizes a rise in economic growth. A positive

relationship between industrial production and stock prices is hypothesized in the literature

(Chen et al. (1986), Maysami et al. (2004), Rahman et al. (2009)), on the grounds that expected

future cash flows are positively related to industrial production. Theoretically, a rise in the

present value of the firm due to higher corporate earnings encourages investments in the stock

market, ultimately leading to an increase in stock prices.

Money Supply

In spite of the amount of existing surveys and of the extensive inclusion of money supply as

an explanatory factor for stock price levels, the impact of money supply on stock markets still

remains an empirical question (Mukherjee and Naka (1995)). According to Fama (1981), an

increase in money supply may be followed by a rise in inflation and in discount rates, which

would lead to a decrease in stock prices. However, Mukherjee and Naka (1995) argue that the

economic stimulus resulting from a growth in liquidity might neutralize this negative effect

by increasing corporate future cash flows and consequently stock prices. On the other hand,

according to portfolio theory, an increase in money supply may trigger investors to shift from a

low-risk portfolio based on non-interest bearing monetary assets to a riskier portfolio based on

financial assets such as stocks. In practice, some authors (Mukherjee and Naka (1995), Maysami

et al. (2004) and Ratanapakorn and Sharma, (2007)) establish a positive relationship between

money supply and stock prices, whereas others (Rahman et al. (2009) and Mahedi (2012)) have

found evidence that the stock market is negatively influenced by money supply.

Interest Rates

Previous studies (Mukherjee and Naka (1995), Fama and Schwert (1977)) consistently determine

a negative relationship between interest rates and stock prices, on the grounds of two different

reasonings. In the first place, a decrease in interest rates reduces the cost of borrowing money
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and thus increases the investment capacity of firms, which is arguably an incentive for a rise in

stock prices. Due to the enhanced corporate profits, investors will be willing to pay a higher

price for the stock since they expect to receive higher dividends in the future. Conversely, an

increase in interest rates is thought to increase the cost of trading on the stock market, since a

large amount of stocks are purchased using borrowed money. As a consequence, investors will

request that the rates of return be sufficiently high to compensate for the transaction costs, hence

lowering demand and stock prices. The nominal contracting hypothesis postulated by French

et al. (1983) establishes a link between the sensitivity of corporate stock returns to the term

structure of the firm’s holding of nominal assets and liabilities. As maintained by Fama (1975,

1976), Fama and Gibbons (1982) and Nelson and Schwert (1977), changes in expected and un-

expected inflation are responsible for unanticipated movements in interest rate levels. Since the

relationship between stock prices and inflation is positive when the firm’s nominal asset hold-

ings surpass the firm’s nominal liabilities, while ceteris paribus it is negative when the opposite

is true, then the stock market sensitivity to changes in interest rates is fundamentally linked to

the firm’s balance sheet composition (Flannery and James (1984)). Although the relationship

between interest rates and stock returns is typically assumed to be negative, a few studies have

found evidence of a positive linkage between short-term interest rates and stock prices (Asprem

(1999), Mayasami and Koh (2000), Aspergis and Eleftherion (2002), Maysami et al. (2004)). As

argued by Shiller and Beltratti (1992), this positive effect can be justified by the fact that a rise

in interest rates may generate expectations about an increase in future fundamentals such as

dividend payments, hence proving to be beneficial for corporate stock returns.

Crude Oil Price

The existing literature on the relationship between the price of crude oil and stock markets,

which traces back to Hamilton (1983), advocates that, since crude oil is a fundamental input for

production, an increase in the price of oil would have a negative impact on economic output,

lowering economic activity in nearly all sectors. The resulting decrease in corporate future

earnings is expected to negatively influence stock performance, causing a fall in stock prices.

As argued bj Gjerde and Saettem (1999), however, this negative relationship is expected to hold

for oil importing countries, while oil exporting countries are expected to profit from a rise in the
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price of oil.

Inflation Rate

A negative relationship between the rate of inflation and stock prices has been hypothesized by

a substantial number of studies (Fama and Schwert (1977), Chen et al. (1986), Nelson (1976),

Jaffe and Mandelker (1976), Mukherjee and Naka (1995), inter alia). A rise in inflation provokes

a shift of resources from investment to consumption, reducing the volume of traded stocks and

hence stock prices. As a general rule, monetary policies provide for economic tightening mea-

sures to counteract a rise in inflation, which causes the nominal risk-free rate and consequently

discount rates to increase in a dividend-discount valuation model of type

Pt =
Dt+1

(k − g)

where P is the stock price at present time t, Dt+1 are the dividends payed after the first period, g

is the growth rates of dividends, assumed to be constant, and k is the rate of return of the stock.

According to DeFina (1991), due to nominal contracts that prevent firm’s costs and revenues

to instantaneously adjust, cash flows and inflation grow at different paces. As a consequence,

the negative effect resulting from a rise in the discount rate is not offset by the higher cash

flows that follow inflation. However, Ratanapakorn and Sharma (2007) point out at a positive

relationship between inflation and stock prices, whereas Gjerde and Saettem (1999) argue that

the relationship is not significant.

The variables used in this survey are all expressed as natural logarithms, except for inter-

est rates which is left in its original level-form, since it is a percentage figure. As can be seen

in Figure A.1 in Appendix A, which displays the time path of the untransformed series, the

variables DJX, IP, M1 and CPI exhibit a general trend of exponential growth. In this case, a

logarithmic transformation appears reasonable, since the logarithm of a variable that grows at a
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Variable Definition

DJX
Natural logarithm of the price-valued weighted average of the month-

end closing prices of 30 major American shares listed on the Dow Jones

Averages4 .

IP Natural logarithm of the month-end U.S. industrial production index.

M1 Natural logarithm of the month-end U.S. narrow money supply (M1).

TB3M The month-end U.S. 3-month Treasury bill secondary market rate.

OIL
Natural logarithm of the month-end U.S. West Texas Intermediate price

for crude oil.

CPI Natural logarithm of the month-end U.S. consumer price index.

Table 6.1: Description of the variables

Variable Mean Std Dev Minimum Maximum Skewness Kurtosis

DJX 8.96 0.58 7.72 9.81 -0.7 -0.82

IP 4.46 0.17 4.13 4.68 -0.73 -0.95

M1 7.19 0.35 6.65 8.03 0.8 -0.05

TB3M 3.15 2.44 0.01 8.82 0.17 -1.07

OIL 4.19 0.72 2.97 5.52 0.33 -1.38

CPI 5.19 0.19 4.8 5.47 -0.17 -1.15

Table 6.2: Descriptive statistics

4http://www.djaverages.com/.
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constant rate will grow as a linear function of time (Hendry (1995))3. On the other hand, taking

the logarithm of interest rates, which are expected to vary around a fixed level, appears super-

fluous. Moreover, since many economic time series have non-normal empirical distributions,

the logarithmic transformation is often employed to achieve a model which provides a better

fit to the classical linear model assumptions, as well as to reduce extreme values and diminish

the effect of outliers in the data-set (Wooldridge (2003)). The macroeconomic variables and the

stock index used in this survey are defined in Table 6.1, while Figure 6.1 shows the time path of

the series. From visual inspection, the time series appear to be non-stationary and the upward

trend of DJX, IP, M1 and CPI is clearly noticeable. A simultaneous drop in DJX, IP, TB3M and

OIL can be seen around the year 2008-2009, which corresponds to the negative impact of the

global financial crisis. Table 6.2 contains the descriptive statistics of the macroeconomic vari-

ables and the stock index. The values for the skewness and kurtosis indicate that none of the

considered time series apparently follows a normal distribution. From the correlation coeffi-

cients displayed in Table 6.3, it appears that IP and OIL have the highest correlation with the

Dow Jones index, while the correlation between TB3M and DJX is negative and has the lowest

score.

IP M1 TB3M OIL CPI

DJX 0.9833481 0.7833289 -0.6547373 0.9184908 0.7074254

Table 6.3: Correlation between DJX and the macro-variables

3Constant percentage growth of a variable y implies that

dy
dt

y
= g

Rearranging the terms and integrating both sided of the equation yields∫
dy

y
=

∫
g dt

log(y) = gt+ c

where c is a constant of integration and g is the percentage growth rate.
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Figure 6.1: Time plot of all series
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6.2 Unit Root Tests

6.2.1 Augmented Dickey-Fuller Test

In order to test whether the stock index and the macroeconomic variables contain a unit root,

the augmented Dickey-Fuller (ADF) test is applied to each time series. Recall from Section

3.1 that the ADF test regression (3.3) can include either an intercept or a linear time trend. In

this implementation of the ADF test, the following three variations of the test regression are

considered:

∆yt = c+Dt+ ψyt−1 +

p∑
i=1

θi∆yt−i + ut (6.1)

∆yt = c+ ψyt−1 +

p∑
i=1

θi∆yt−i + ut (6.2)

∆yt = ψyt−1 +

p∑
i=1

θi∆yt−i + ut (6.3)

The R function ur.df() from the package urca runs the ADF test. By setting the argu-

ment type="trend", type="drift" or type="none", it is possible to estimate test regres-

sion (6.1), (6.2) or (6.3), respectively. Additionally, the argument selectlags = c("AIC",

"BIC") permits to use the Akaike or the Bayesian-Schwartz information criterion (Section 2.1)

for selecting the optimal lag length. The command

ADF.tc <-ur.df(DJX, lags=10, type="trend", selectlags="BIC")

estimates regression (6.1) for the Dow Jones stock index. According to the BIC, serially uncor-

related errors are achieved by including one lagged endogenous variable in the test regression,

as can be seen from the summary output in Table 6.4. The plot of the residual autocorrelations

and partial autocorrelations in Figure 6.2 confirms this finding.

The results of the ADF test are obtained by comparing the test statistics with the appropriate

critical values from Table 6.5. Performing a pure unit root test —that is, testing the null hypoth-

esis H0 : ψ = 0 against H1 : ψ ̸= 0, returns the τ3 statistic, while testing the null hypotheses

ψ = c = 0 and ψ = Dt = 0 by means of an F-type test, yields the test statistics ϕ2 and ϕ3,

respectively. According to the test results, the null hypothesis ψ = 0 cannot be rejected for each

of the time series at all significance levels, indicating that they are all unit root processes. The

null hypothesis ψ = c = 0 cannot be rejected for M1 and CPI, which behave as random walks
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Variable Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.1454 0.0806 1.804 0.0722

z.lag.1 -0.01680 0.009949 -1.688 0.0923

tt 0.000007045 0.00006079 1.159 0.2474

z.diff.lag 0.01258 0.05726 0.220 0.8263

Table 6.4: ADF test: Regression with constant and trend for DJX

Figure 6.2: ADF test: Residual diagnostic for DJX

with drift, while the presence of a trend (hypothesis ψ = Dt = 0 ) is rejected for all series at

the 5% significance level. The order of integration of the analyzed time series is determined by

supplying their first difference as an argument for the ADF test: rejecting the null hypothesis of

a unit root indicates that the series are I(1). As can be seen from the test results in Table 6.6, the

first difference of each time series is stationary and hence the variables are I(1).
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Test Statistics τ3 ϕ2 ϕ3

DJX -1.6884 3.2461 1.7743

IP -1.8999 2.4142 2.071

M1 0.1677 6.0176 1.6157

TB3M -2.8475 3.0986 4.1564

OIL -2.7535 2.6394 3.8815

CPI -2.298 23.2502 6.1032

Critical Values τ3 ϕ2 ϕ3

1% -3.98 6.15 8.34

5% -3.42 4.71 6.30

10% -3.13 4.05 5.36

Table 6.5: ADF test: Test statistics and critical values

Variable Statistic 1% 5% 10%

∆ DJ -12.2463 -2.58 -1.95 -1.62

∆ IP -4.3845 -2.58 -1.95 -1.62

∆ M1 -2.9627 -2.58 -1.95 -1.62

∆ TB3M -5.8045 -2.58 -1.95 -1.62

∆ OIL -10.1554 -2.58 -1.95 -1.62

∆ CPI -4.7092 -2.58 -1.95 -1.62

Table 6.6: ADF test: Order of integration

6.2.2 Phillips-Perron Test

The Phillips-Perron (PP) test, introduced in Section 3.2, is a unit root test similar to the ADF

test, which however relieves the error process from the i.i.d. assumption. The test regression

is allowed to contain both an intercept and a time trend, or an intercept only, as shown in
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equations (3.12) and (3.13). In this example, the R function ur.pp() from the package urca

is used to run the PP test. The argument use.lag permits to select manually the number of

lags to include for computing the long-run variance from equation (3.15). Otherwise, the lag

length can automatically be set equal to 4(T/100)
1
4 or 12(T/100)

1
4 by choosing lags="short"

or lags="long". The test regressions (3.12) or (3.13) can be selected via the argument model=

c("constant", "trend"). The command line

pp.test <- ur.pp(DJX, type="Z-tau", model="trend", lags="long")

runs the PP test for the DJX price series by estimating the test regression (3.12).

Test Statistics Z(τα) Z(τµ) Z(τβ)

DJX -1.8245 1.5861 1.2771

IP -1.3879 -0.6584 1.0826

M1 0.0292 -1.4598 0.7667

TB3M -2.6951 -1.6728 -1.9114

OIL -2.0538 1.0069 1.6036

CPI -2.3553 1.4309 2.1331

Critical values Z(τα) Z(τµ) Z(τβ)

1% -3.99 3.78 3.53

5% -3.42 3.11 2.79

10% -3.13 2.73 2.38

Table 6.7: PP test: Test statistics and critical values

The test statistics Z(τα), Z(τµ) and Z(τβ) are retrieved with the method summary. The

Z(τα) statistics tests the null hypothesis that ϕ = 1 against the alternative that ϕ ̸= 1, while

Z(τµ) tests the null hypothesis that µ = 0 against the alternative that the true model contains

an intercept. Z(τβ) tests the null hypothesis that the true model is (3.13), i.e. λ = 0, against

the alternative that (3.12) is the true data generating process. The critical values for the Z(τα)

statistics are stored in the slot object@cval, while the critical values for the Z(τµ) and the
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Variable Test Statistic 1% 5% 10%

∆ DJX -17.6772 -3.99 -3.43 -3.14

∆ IP -16.8309 -3.99 -3.43 -3.14

∆ M1 -18.3587 -3.99 -3.43 -3.14

∆ TB3M -12.9117 -3.99 -3.43 -3.14

∆ OIL -11.8993 -3.99 -3.43 -3.14

∆ CPI -10.8506 -3.99 -3.43 -3.14

Table 6.8: PP test: Order of integration

Z(τβ) statistics can be found in Dickey and Fuller (1981). The values of the test statistics in

Table 6.7 confirm the ADF test result of unit root nonstationarity for the considered time series,

while the null hypotheses µ = 0 and λ = 0 are not rejected for all series, which behave as pure

random walks according to the Phillips-Perron test. The results of the PP test applied to the first

difference of each variable, stored in Table 6.8, indicate that the time series are all I(1).

6.2.3 KPSS Test

The KPSS test, introduced in Section 3.3, is a Lagrange multiplier test used for testing the null

hypothesis of trend or level-stationarity against the alternative hypothesis of a unit root. It is

often employed as a countercheck for the ADF and PP test; if the results of the KPSS test are

in contrast with those of unit root tests, the rule of thumb is to rely on the output from the

stationarity test (Pfaff (2006)). The KPSS test is implemented in R with the function ur.kpss()

from the package urca, which estimates the test regression 3.16. The argument type can be

set equal to mu or tau to perform either a level-stationarity or a trend-stationarity test. In both

cases εt in (3.16) is stationary under the null hypothesis, so that yt is level-stationary when

λ = 0 or trend-stationary when λ ̸= 0. The Bartlett window parameter used for estimating the

long-run variance (3.18) can be inputted either manually via the argument use.lag or selected

automatically with lags=c("short", "long"), which produces the values 4(T/100)
1
4 or

12(T/100)
1
4 . The command line
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KPSS.mu <- ur.kpss(DJX, type = "mu", lags="short")

performs the level-stationary version of the KPSS test for the Dow Jones stock index. Since in

Table 6.9 the values of the test statistics are bigger than the critical values, the null hypothesis

of stationarity is rejected for each time series at the 5% significance level.

Test Statistics DJX IP M1 TB3M OIL CPI

LMµ 4.5477 4.5428 4.6162 3.6679 4.6844 5.4024

LMτ 0.9578 1.0728 0.9222 0.1475 0.5965 0.6406

Critical Values 1% 5% 10%

LMµ 0.739 0.463 0.347

LMτ 0.216 0.146 0.119

Table 6.9: KPSS test: Test statistics and critical values

6.2.4 Andrews-Zivot Structural Break Test

Since the presence of a structural break can often corrupt the results of DF-type tests (Perron

(1989, 1990)), we run the unit root test developed by Andrews and Zivot (Section 3.4), which is

robust with respect to endogenous structural shifts. The change is allowed to occur either in the

levels, in the growth rate or in both the levels and the growth rate of a stochastic process. Models

(3.21), (3.22) and (3.23) are specified accordingly to where the break occurs. Under the null hy-

pothesis, the process yt is a random walk with drift and no structural break occurs, while under

the alternative, yt is trend-stationary with a structural shift happening at time λ = TB/T . The

R function ur.za() from the contributed package urca implements the Andrews-Zivot test.

Setting the functional argument model equal to intercept, trend or both, allows to choose

between models (A), (B) and (C), respectively. The number of lagged endogenous variables to

be included in the test regressions (3.21), (3.22) and (3.23) is determined via the argument lags.

In R Code 6.1, Model (C) is estimated for the Dow Jones price series. The optimal lag length

is determined by means of the AIC (command line 2) and the Breusch-Godfrey autocorrelation

test from the package lmtest is used to verify that there is no residual serial correlation in the

89



error process (command line 3).

1za.test <- ur.za(DJX, model = "both", lag = 1)

2AIC(eval(attributes(za.test)$testreg))

3bgtest(attributes(za.test)$testreg, order=1)$p.value

R Code 6.1: Andrews-Zivot test for DJX

As can be seen from the graphs in Figure A.2 in Appendix A, none of the series has a

structural break — which would otherwise be marked by a dashed vertical line, in either the

levels or the growth rate. The unit root test results displayed in Table 6.10 confirm that all series

are non-stationary without a structural break, at all significance levels.

Variable Statistic 1% 5% 10%

DJX -3.5605 -5.57 -5.08 -4.82

IP -3.1806 -5.57 -5.08 -4.82

M1 -2.7801 -5.57 -5.08 -4.82

TB3M -3.3783 -5.57 -5.08 -4.82

OIL -3.7765 -5.57 -5.08 -4.82

CPI -4.658 -5.57 -5.08 -4.82

Table 6.10: Andrews-Zivot test: Test statistics and critical values

6.2.5 HEGY Test for Seasonal Unit Roots

So far we have employed tests that are based on the assumption that the analyzed time series

have only one root at the zero frequency. Since we are working with some series that are not

seasonally adjusted —namely DJX, TB3M and OIL, it is possible that unit roots exist at frequen-

cies other than zero, i.e. that these processes are seasonally integrated. Hylleberg et al. (1990)

have developed a testing procedure that allows to test for the presence of seasonal unit roots,

under the assumption that the DGP is an AR(p) with order p equal to the frequency of the data.
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The HEGY test (Section 3.5) for monthly data is based on the test regression (3.35). Table 3.1

from Section 3.5 summarizes the null hypotheses and corresponding roots for the application

of the HEGY test to monthly data.

The function HEGY.test() from the package uroot implements the HEGY test in R.

Which deterministic terms should be added to the test regression is specified with the argu-

ment itsd, which is a three element vector. Setting itsd=c(1,0,c(0)) includes an intercept

in (3.35), itsd=c(0,1,c(0)) adds a linear time trend while itsd=c(0,1,c(1:11)) allows

to include up to eleven seasonal dummy variables in the test regression. The number of lagged

seasonal differences, used in (3.35) to whiten the error process, can be selected with the argu-

ment selectlags. The methods available for lag selection are the AIC, BIC, the Ljung-Box

statistic or one can specify "signf" to maintain only the significant lags. The command line

hegy.test <- HEGY.test(wts = DJX, itsd = c(1, 0, c(1:11)),

+ selectlags = list(mode = "signf", pmax=NULL))

estimates a test regression with an intercept and eleven seasonal dummies for the Dow Jones

stock index. The critical values for the HEGY test can be found in Franses and Hobijn (1997).

Test Statistics Critical Values

Null Hypothesis DJX TB3M OIL 1% 5% 10%

π1 = 0 -1.719 -2.309 -1.235 -3.28 -2.76 -2.47

π2 = 0 -5.508 -5.503 -5.039 -3.34 -2.76 -2.47

π3 = π4 = 0 20.730 24.656 34.895 8.35 6.27 5.28

π5 = π6 = 0 32.204 18.389 38.675 8.40 6.28 5.22

π7 = π8 = 0 29.388 33.775 29.556 8.32 6.21 5.21

π9 = π10 = 0 25.891 41.811 26.109 8.34 6.22 5.23

π11 = π12 = 0 30.258 36.520 17.084 8.27 6.21 5.26

Table 6.11: HEGY test: Test statistics and critical values

The results of the test are stored in Table 6.11. Rejection of the null hypothesis π1 = 0

indicates that the process has no unit root at the zero frequency, while rejection of the hypotheses
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πi = 0 for i = 2, ..., 12 indicates that the process has no unit roots at frequencies other than zero.

The null hypothesis of a unit root at the zero frequency (π1 = 0) cannot be rejected for all of the

considered series, while the null hypothesis of seasonal unit roots πi = 0 for i = 2, ..., 12 can be

rejected at all significance levels, indicating that the series are not seasonally integrated.

6.3 Cointegration and Error Correction

6.3.1 Engle-Granger Test

In the previous sections, it was established that all of the considered series are I(1) processes

and have neither structural breaks nor unit roots at seasonal frequencies. Now, the series

are pairwise tested for cointegration by means of the Engle and Granger test (Section 6.3.1),

which is aimed at detecting cointegration between the I(1) elements of a (n × 1) vector Y t =

(y1t, y2t, ..., ynt)
′ by estimating the long-run equilibrium equation

y1t = β2y2t + β3y3t + ...+ βnynt + ut (6.4)

and then testing for the presence of a unit root in the residual process ut by means of an ADF

or PP test. The null hypothesis of no cointegration is rejected if ut is found to be stationary.

Following Engle and Granger’s representation theorem (Section 4.4), if the hypothesis of a unit

root is rejected for the residual process of equation (6.4), an error correction model (ECM) can

be specified for the considered variables. For n = 2 the ECM has form

∆y1t = c1 + α1ût−1 +

p−1∑
i=1

γi11∆y1t−i +

p−1∑
i=1

γi12∆y2t−i + u1t

∆y2t = c2 + α2ût−1 +

p−1∑
i=1

γi21∆y2t−i +

p−1∑
i=1

γi22∆y1t−i + u2t

(6.5)

where the error correction term ût−1 = y1t−1 − β̂2y2t−1 is the estimate of the lagged error from

(6.4) for n = 2 and αi (i = 1, 2) is the speed of adjustment coefficient, which measures the

proportion of disequilibrium that is corrected at time t. In order to prevent the divergence of

the system from its long-run equilibrium, the sign of the coefficient α is required to be negative

(Hamilton (1994)). In R Code 6.2, the long-run equation
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DJXt = c1 + β2IPt + u1t

is estimated by OLS and the regression residuals are stored as an object error. Table 6.12

displays the results of the ADF test on the residuals obtained from regressing DJX on the single

macroeconomic variables. In this application, the critical values for the ADF test are provided

by Engle and Yoo (1987) or MacKinnon (1991), since the test is run on the estimated error term

ût from a spurious regression. The values of the test statistics imply that only the Dow Jones

index and the industrial production series are cointegrated.

1eq.1 <- lm(DJX ~ IP)

2error.1 <- ts(resid(eq.1), start=c(1989, 1), end=c(2015, 8),

frequency=12)

R Code 6.2: Engle-Granger Test

Variable ADF 1% 5% 10%

DJX - IP -3.8345 -3.78 -3.25 -2.98

DJX - M1 -1.2239 -3.78 -3.25 -2.98

DJX - TB3M -1.723 -3.78 -3.25 -2.98

DJX - OIL -1.7992 -3.78 -3.25 -2.98

DJX - CPI -1.6454 -3.78 -3.25 -2.98

Table 6.12: Engle-Granger Test: Pairwise regression

Although the Engle-Granger test did only detect cointegration between DJX and IP when

applied pairwise, it is still possible that the stock index is cointegrated with the set of macroe-

conomic factors. Hence, a long-run equilibrium equation of type (6.4) is estimated for the entire

data-set

DJXt = c+ β2IPt + β3M1t + β4TB3Mt + β5OILt + β6CPIt + ut (6.6)

and both and ADF and a PP test are run on the residuals of this equation. In R Code 6.3, the
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series entering the long-run equation are stored as an object dataset and the function window

is used to select the sample period (command line 1). Next, equation (6.6) is estimated by OLS

and the regression residual is stored as error.DJX (command lines 2 and 3). The result of

the ADF and PP test on the residuals from equation (6.6), displayed in Table 6.13, indicate the

presence of a cointegrating vector in the system at the 5% significance level5.

Test Statistic 1% 5% 10%

ADF -4.8444 -4.99 -4.40 -4.14

PP -4.9137 -4.99 -4.40 -4.14

Table 6.13: Engle-Granger Test: Regression of DJX on macro-variables

Since the system of variables is cointegrated, an ECM of the the form of equation (6.5) is

specified with DJX as the dependent variable. In R Code 6.3, the function embed is used to

create a matrix whose elements are the first difference and the lagged first difference of the con-

sidered variables, and the respective column names are assigned to each element (command

lines 4 and 5). Finally, the regression residuals are lagged by one period and the ECM equation

is estimated (command lines 6 and 7). Table 6.14 displays the summary output of the ECM.

The error correction term is highly significant and has the correct sign; its estimated value indi-

cates that approximately 12% of the previous period disequilibrium was corrected. The lagged

first difference of IP and TB3M enter significantly into the ECM equation, whereas the other

regressors do not respond significantly to a change in DJX. When cointegration is detected be-

tween two variables, there should be Granger causality (Section 4.3) in at least one direction

(Enders (1995)). Due to the significant speed of adjustment coefficient and lagged differences

∆IPt−1 and ∆TB3Mt−1, industrial production and interest rates are said to Granger cause the

U.S. stock market index.

5The critical values for the ADF and PP test are retrieved from Phillips and Ouliaris (1990).
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1dataset <- window(cbind(DJX, IP, M1, TB3M, OIL, CPI), start=c(1989,

1), end=c(2015, 8))

2eq.DJX <- lm(DJX ~ IP + M1 + TB3M + OIL + CPI, data=dataset)

3error.DJX <- ts(resid(eq.DJX), start=c(1989, 1), end=c(2015, 8),

frequency=12)

4dataset2 <- ts(embed(diff(dataset), dim=2), start=c(1989, 1), end=c

(2015, 8), freq=12)

5colnames(dataset2) <- c("DJX.d", "IP.d", "M1.d", "TB3M.d", "OIL.d", "

CPI.d", "DJ.d1", "IP.d1", "M1.d1", "TB3M.d1", "OIL.d1" "CPI.d1")

6error.ecm <- lag(error.DJX, k=-1)

7ecm.eq <- lm(DJX.d ~ error.ecm + DJX.d1 + IP.d1 + M1.d1 + TB3M.d1 +

OIL.d1 + CPI.d1, data=dataset2)

R Code 6.3: ECM for the stock index

Variable Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.002496 0.003428 0.728 0.4671

ECT -0.118879 0.027582 -4.310 0.0000219

∆DJXt−1 -0.039561 0.054681 -0.724 0.4699

∆IPt−1 1.817178 0.382837 4.747 0.00000316

∆M1t−1 -0.314277 0.264501 -1.188 0.2357

∆TB3Mt−1 -0.029692 0.012464 -2.382 0.0178

∆OILt−1 -0.032450 0.031055 -1.045 0.2969

∆CPIt−1 0.993127 0.969465 1.024 0.3064

Table 6.14: Engle-Granger Test: ECM for the stock index
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6.3.2 Johansen Test

Although the result of the Engle-Granger test indicated that the Dow Jones index is cointe-

grated with the set of macroeconomic variables, it is possible that more than one cointegrating

relationship exists. In fact, in the instance that a time series vector Y t = (y1t, y2t, ..., ynt) has

n > 2 elements, there may exist up to n− 1 independent linear combinations of the elements of

Y t whose order of integration is lower than that of the original series (Lütkepohl, (2006)). The

drawback of the Engle-Granger procedure is that, even in the case of n > 2, only a single cointe-

grating relationship is found, although the system may contain up to n−1 distinct cointegrating

relationships. The Johansen cointegration test (Section 5.2) allows to determine the number of

cointegrating vectors in a system with n > 2 variables by estimating an vector error correction

model (VECM) such as (5.8) from Section 4.4, which is allowed to contain deterministic terms

such as a vector of constants or seasonal dummy variables. Johansen’s procedure focuses on

the determination of the rank of matrix Π from equation (5.8), which must fulfill the condition

0 < rank(Π) = h < n in order for the (n × h) matrices α and β to exist such that αβ′ = Π

and αβ′Y t ∼ I(0). The rank of Π is equal to the number of cointegrating vectors in the system,

which are contained in β, while α measures the speed of the error correction mechanism. The

trace statistic λtrace from equation (5.9) tests the null hypothesis that there are at least h coin-

tegrating vectors in Y t, whereas the maximum eigenvalue statistic λmax from equation (5.10)

tests the null hypothesis that the number of cointegrating vectors is h against the alternative

that it is h+ 1.

Lag 1 2 3 4 5 6 7 8 9 10 11 12

AIC -46.83 -47.52 -47.54 -47.61 -47.66 -47.58 -47.60 -47.50 -47.44 -47.38 -47.31 -47.22

Table 6.15: VAR order selection by AIC

The R function ca.jo() from the package urca implements Johansen’s procedure for de-

termining the cointegration rank of Y t = (DJ, IP,M1,TB3M,OIL,CPI). The argument type

can be set equal to trace or eigen to select between the trace and the maximum eigenvalue

statistic, and the argument transitory specifies that the levels of Y t enter the VECM at lag

t − 1. The optimal number of lags to be included in the VECM equation is selected with the
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function VARselect() from the package vars, which returned a lag length of 12 according

to the multivariate AIC (Section 4.3), as reported in Table 6.15. As can be seen from Table 6.16

and Table 6.17, the trace statistic rejects the null hypothesis of h ≤ 1 in favor of h = 2 at the

5% significance level, whereas the maximum eigenvalue statistic detects the presence of one

cointegrating vector in the system.

Hypothesis Statistic 1% 5% 10%

h ≤ 5 7.09 6.50 8.18 11.65

h ≤ 4 17.18 15.66 17.95 23.52

h ≤ 3 28.09 28.71 31.52 37.22

h ≤ 2 47.46 45.23 48.28 55.43

h ≤ 1 78.13 66.49 70.60 78.87

h = 0 128.76 85.18 90.39 104.20

Table 6.16: Johansen test: Trace test

Hypothesis Statistic 1% 5% 10%

h ≤ 5 7.09 6.50 8.18 11.65

h ≤ 4 10.09 12.91 14.90 19.19

h ≤ 3 10.91 18.90 21.07 25.75

h ≤ 2 19.37 24.78 27.14 32.14

h ≤ 1 30.66 30.84 33.32 38.78

h = 0 50.63 36.25 39.43 44.59

Table 6.17: Johansen test: Maximum eigenvalue test

Next, the R function cajorls() from the package urca is used to estimate a VECM such

as (5.8) under the rank restriction h = 1. According to the VAR(12) order specification by AIC

from the previous step, twelve lagged differences of the variables are included in the model. Be-
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Variable Estimate Std. Error t-value Pr(>|t|)

∆IPt−1 1.146551 0.480790 2.385 0.017869

∆TB3Mt−1 -0.055165 0.016249 -3.395 0.000803

∆OILt−1 -0.081119 0.036034 -2.251 0.025278

∆CPIt−2 -2.4483594 1.4659072 -1.670 0.096183

∆CPIt−4 -3.192945 1.489003 -2.144 0.033010

∆M1t−5 1.126398 0.327364 3.441 0.000684

∆TB3Mt−6 -0.053017 0.017656 -3.003 0.002958

∆CPIt−6 -2.748904 1.467395 -1.873 0.062239

∆OILt−8 0.085802 0.040807 2.103 0.036541

∆CPIt−8 -4.749164 1.474509 -3.221 0.001455

∆OILt−9 0.087121 0.040976 2.126 0.034511

∆IPt−10 -0.947484 0.471873 -2.008 0.045772

∆OILt−11 0.088659 0.041491 2.137 0.033625

∆CPIt−11 -2.188399 1.267127 -1.727 0.085444

Table 6.18: VECM: Significant regressors in the VECM equation for DJX

sides the cointegratig rank, reg.number=1 is imposed as an argument so that only the VECM

equation for DJX is shown. Table B.1 in Appendix B displays the estimated VECM equation

for DJX, while Table 6.18 reports only the significant lags of each regressor. As can be seen,

the lagged differences of each of the selected macroeconomic variables enter significantly in the

VECM equation for the stock index. The industrial production coefficient is significant at lags 1

and 10 and has a negative sign at lag 10, which is in contrast to what is assumed in the litera-

ture (see Section 6.1). The coefficient of money supply enters the VECM at lag 5 with a positive

sign, in accordance with the findings of Mukherjee and Naka (1995), Maysami et al. (2004) and

Ratanapakorn and Sharma (2007), among others. The first difference of interest rates is signif-

icant at lags 1 and 6 and is consistently negative, as predicted by Mukherjee and Naka (1995)
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and Fama and Schwert (1977). Crude oil price enters the VECM at lags 1, 8, 9 and 11 and has a

negative sign only in the first lag, in accordance with what is assumed by Gjerde and Saettem

(1999). As hypothesized in the literature, inflation rate has a negative effect on the stock price

at each significant lag.

1dataset <- cbind(DJX, IP, M1, TB3M, OIL, CPI)

2H1.trace <- ca.jo(dataset, type="trace", ecdet="none", K=12, spec="

transitory")

3vecm <- cajorls(H1.trace, r = 1)

4beta <- H1.trace@V[,1]

5alpha <- H1.trace@W[,1]

6resids <- resid(vecm$rlm)

7N <- nrow(resids)

8sigma <- crossprod(resids)/N

9beta.se <- sqrt(diag(kronecker(solve(crossprod(H1.trace@RK[, -1])),

solve(t(alpha)%*% solve(sigma)%*%alpha))))

10beta.t <- c(NA, beta[-1]/beta.se)

11alpha.se <- sqrt(solve(crossprod(cbind(H1.trace@ZK%*%beta, H1.

trace@Z1)))[1, 1]*diag(sigma))

12alpha.t <- alpha/alpha.se

R Code 6.4: Estimated VECM with h = 1

DJXt−1 IPt−1 M1t−1 TB3Mt−1 OILt−1 CPIt−1

β 1.000000 −3.562367
(−10.759460)∗∗∗

−0.497635
(−4.455171)∗∗∗

−0.063711
(−4.419530)∗∗∗

−0.025205
(−0.319059)

1.018790
(1.454542)

α −0.125331
(−4.3792969)∗∗∗

0.001301
(0.3250324)

0.021102
(3.8071084)∗∗∗

0.034419
(0.2972556)

−0.098349
(−1.6574874)

−0.005619
(−3.6395815)∗∗∗

Note: An ’***’ denotes statistical significance at the 0.1 percent. T-values are in parenthesis.

Table 6.19: VECM: Normalized eigenvector, weights and t-statistics
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Table 6.19 displays the estimated cointegration matrix β and the loading matrix α with their

respective t-statistics in parenthesis, which are computed according to the procedure shown in

R Code 6.4. Since the speed of adjustment coefficient α is significant in the VECM equation for

DJX, the stock index responds to deviations from long-run equilibrium and the proportion of

disequilibrium that is corrected within one time period is 13%. The cointegrating vector is

β = (1.00, −3.56, −0.50, −0.06, −0.03, 1.02)′

which can alternatively be expressed as

DJX = 3.56IP + 0.50M1 + 0.06TB3M+ 0.03OIL− 1.02CPI (6.7)

Due to the logarithmic transformation, the values of the coefficients of DJX, IP, M1, TB3M , OIL

and CPI in the cointegrating relationship can be regarded as long-term elasticities. The values of

the t-statistics reported in Table 6.19 indicate that the long-run coefficients of IP, M1 and TB3M

are statistically significant, whereas the coefficients of OIL and CPI are not significantly different

from zero. A LR test by Johansen (1988) is performed on the cointegrating vector in order to

determine if the coefficients in β contribute to the long-run equilibrium relationship. The test is

implemented via the R function blrtest() from the package urca, which tests the validity of

placing n−m linear restrictions on the eigenvectors in β by estimating a restricted VECM with

n variables and m restrictions on the cointegrating space. The null hypothesis of the LR test is

defined as

H0 : R′β = 0 or β = Hϕ (6.8)

where H = R⊥ and R⊥ is the orthogonal complement of R such that R′R⊥ = 0 and R′H =

0. In (6.8), the restrictions placed on β are defined in the known (n × m) matrix H , while

the unknown (m × h) matrix ϕ contains the reduced parameters that result from imposing

m restrictions, where h ≤ m ≤ n. The null hypothesis H0 is tested against the alternative

hypothesis H(h) : π = αβ′ of h unrestricted cointegrating vectors by means of the λres test

statistic from equation (5.12). Testing the significance of each element in β is equivalent to

considering the set of hypotheses
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H0,1 : β1 = 0 vs H1,1 : β1 ̸= 0

H0,2 : β2 = 0 vs H1,2 : β2 ̸= 0

H0,3 : β3 = 0 vs H1,3 : β3 ̸= 0

H0,4 : β4 = 0 vs H1,4 : β4 ̸= 0

H0,5 : β5 = 0 vs H1,5 : β5 ̸= 0

H0,6 : β6 = 0 vs H1,6 : β6 ̸= 0

and requires the specification of six different matrices of restrictions H0,j , j = 1, ..., 6,, of the

form

H0,1 =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


H0,2 =



1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


H0,3 =



1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



H0,4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1


H0,5 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1


H0,6 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0



Put differently, assume for example that we wish to test the hypothesis that the long-run

coefficient of IP is zero. This is equivalent to testing the null hypothesis H0,2, which can alter-

natively be expressed in terms of the cointegrating relationship as

β = (β1, 0, β3, β4, β5, β6)
′
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without placing any restrictions on the other long-term coefficients. Following the parametriza-

tion of (6.8), the matrix of restrictions H is constructed as H0,2 and the matrix of unknown

parameters becomes ϕ = (β1, β3, β4, β5, β6)
′, such that the constraint β = Hϕ is satisfied.

Variable Statistic p-value

DJX 14.79 0.000120

IP 17.7 0.000026

M1 2.8509 0.001142

TB3M 5.1903 0.008077

OIL 1.856 0.841478

CPI 6.6493 0.338327

Table 6.20: LR test of linear restrictions in β

The resulting p-values in Table 6.20 indicate that the restrictions placed on β are rejected

for IP, M1 and TB3M, whereas they are not rejected for OIL and CPI, suggesting that the co-

efficients of oil price and inflation are not significantly different from zero in the cointegrating

vector. Additionally, the validity of the VECM is established given that the coefficient of DJX

significantly contributes to the cointegrating relationship (Maysami and Koh (2000)). A test of

the null hypothesis that the long-term relationship is given by

β = (β1, β2, β3, β4, 0, 0)
′

entails specifying the restriction matrix

H0,7 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0



and yields a test statistic of 4.58 and a p-value of 0.10, confirming the assumption that OIL
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and CPI do not participate to the error correction mechanism. Similar results were obtained

by Chen et al. (1986), who found that the oil price does not influence U.S. stock prices, and

by Mayasami and Koh (2000) and Humpe and Macmillan (2007), who failed to establish the

existence of a long-term relationship between inflation and the stock exchange of Singapore

and Japan, respectively. In accordance to what is hypothesized in the literature (see Section 6.1),

the long-run coefficient of industrial production in (6.7) has a positive sign. In our empirical

results, money supply has a positive influence on stock returns, consistently with the findings

of Mukherjee and Naka(1995), Maysami et al. (2004) and Ratanapakorn and Sharma (2007).

The positive sign of the interest rates coefficient can be explained by the possibility that an

increase in interest rates is followed by the anticipation of higher dividend returns (Shiller and

Beltratti (1990)) and is in accordance with the empirical results of Asprem (1999), Mayasami

and Koh (2000) and Aspergis and Eleftherion (2002). Although the coefficients of oil price is

not significant, its positive sign confirms the theoretical findings of Gjerde and Saettem (1999),

who maintain that an increase in oil price positively influences stock returns in oil exporting

countries. Similarly to the results of Fama and Schwert (1977), Chen et al. (1986), Nelson (1976),

Jaffe and Mandelker (1976) and Mukherjee and Naka (1995), the long-run relationship between

stock prices and inflation is negative, albeit not significant.

6.4 Diagnostic Tests

Once the VECM model has been estimated, diagnostic tests can be performed in order to check

whether the model adequately describes the relevant features of the process generating the ana-

lyzed data-set. Many of these tests focus on the residuals of the single or joint VECM equations

and aim at ensuring that the residual process underlies the required assumptions. Formally, it

is assumed that the error process ut from a VECM such as (5.8) is i.i.d. and normally distributed

with mean 0 and covariance matrix Σ. In order to conduct diagnostic tests on the residuals of a

VECM in R, it is necessary to express the estimated VECM as a VAR model in levels. In Section

4.4, the procedure of deriving a VECM from a VAR model in levels has been shown; hence, it

is possible to retransform a VECM in its level-VAR representation. The R function vec2var()

from the package vars achieves this transformation, provided that the cointegration rank h of

the VECM is supplied as an argument. Table B.2 in Appendix B displays the estimated coeffi-
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cients of the VECM for Y t = (DJX, IP,M1,TB3M,OIL,CPI), expressed in its level-VAR form.

Variable Mean Std Dev Minimum Maximum Skewness Kurtosis

DJX 0.000000 0.033791 -0.145236 0.094666 -0.33 0.39

IP 0.000000 0.004728 -0.030099 0.015263 -0.74 5.08

M1 0.000000 0.006544 -0.034191 0.032393 0.11 4.28

TB3M 0.000000 0.136718 -0.480816 0.698258 0.08 3.60

OIL 0.000000 0.070060 -0.234624 0.358915 0.24 1.97

CPI 0.000000 0.001823 -0.006024 0.007794 0.19 1.58

Table 6.21: Descriptive statistics of VAR residuals

As a preliminary check of the VAR model adequacy in representing the DGP of the un-

derlying data-set, the descriptive statistics of the single residual series are calculated and the

residual plots, empirical densities and autocorrelograms are visually inspected. According to

simulation studies, statistical inference in relation to VAR models is especially sensitive with

respect to validating the assumptions of constant parameters, serially uncorrelated residuals

and zero residual skewness, while it quite robust with respect to heteroskedastic residuals and

excess kurtosis (Juselius and Hendry (2001)). As it is displayed in Table 6.21, the mean is not

significantly different from zero for any of the considered time series. Although the residual

distributions are quite symmetrical, the skewness and excess kurtosis do not correspond to a

normal value of 0. From inspecting the residual plots of the time series, stored in Appendix A,

there appears to be some significant outlier observations. One large outlier in the residuals of

IP appears around 2007, the year of the outbreak of the global financial crisis. Money supply

has one outlier in year 2002, TB3M has two long spikes in 1998 and 2008, OIL has one outlier

in 1989 and CPI seems to have more than one between 2005 and 2010. The residual volatility of

DJX and IP appears to be rather constant in time, but money supply has one period of higher

variance between 2005 and 2010, and the volatility of the residuals of TB3M is very dissimilar

in various parts of the sample period, indicating that the series is likely to be heteroskedastic.

The presence of some ARCH effects in the residual series of OIL and CPI is not excluded, albeit
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this cannot be established by graphical inspection alone. The assumption of serially uncorre-

lated error terms is investigated by inspecting the autocorrelations and partial autocorrelations

of the residual series. When there is no serial correlation in the residual series, most of the au-

tocorrelations and partial autocorrelations will lie within an interval of width ±2/
√
T , where T

is the number of observations, which corresponds to a 95% confidence interval. Although few

exceptions are permitted, values that exceed ±2/
√
T in the first lags are considered particularly

suspicious and usually indicate model inadequacy (Lütkepohl and Krätzig (2004)). Although

the small values of the autocorrelation coefficients are consistent with a white noise process for

all residual series, the autocorrelations of the squared residuals clearly trespass the confidence

band, which possibly signalizes a dependence structure in the second order moments of the

residual distribution. Serial correlation is especially significant in the squared residuals of the

interest rate series, giving rise to concern about the presence of volatility clusterings.

6.4.1 Jarque-Bera Normality Test

Although financial time series frequently do not to comply with Gaussian assumptions due

to outliers, skewness, kurtosis and volatility clusters, many statistical techniques employed in

cointegration analysis rely on the assumption of normality. For example, Johansen’s likelihood

ratio tests for determining the cointegration rank and Johansen’s maximum likelihood (ML)

estimator for VECM coefficients (Section 5.2) are derived under the assumption that the inno-

vations follow an i.i.d. normal distribution. Nevertheless, there is evidence that both techniques

are still valid under non-normality. The impact of a non-Gaussian cointegration error distribu-

tion on the size and power of Johansen’s cointegration rank test was investigated by Cheung

and Lai (1993) and Gonzalo (1994). They found that the likelihood based trace and maximum

eigenvalue statistics are robust with respect to skewness and kurtosis in the VECM residuals. In

addition, Gonzalo (1994) provides Monte Carlo evidence that the ML estimate of a cointegrat-

ing relationship outperforms single equation methods and multivariate methods6, in addition

to being robust to non-Gaussian innovations. This is due to the fact that Johansen’s ML esti-

mator can be derived as a special case of a reduced rank simultaneous least squares estimator,

6Besides full information ML, the other estimation methods examined in Gonzalo’s paper are ordinary

least squares (Engle and Granger (1987)), nonlinear least squares (Stock (1987)), principal components

(Stock and Watson (1988)) and canonical correlations (Bossaerts (1988)).
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which underlies no specific assumptions about the distribution of the disturbance terms (ibid.).

Variable Statistic p-value

DJX 8.0067 0.01825

IP 366.14 2.2× 10−16

M1 241.29 2.2× 10−16

TB3M 170.39 2.2× 10−16

OIL 54.503 1.5× 10−12

CPI 34.96 2.6× 10−8

Multivariate 826 2.2× 10−16

Skewness 41.203 2.6× 10−7

Kurtosis 784.8 2.2× 10−16

Table 6.22: Univariate and multivariate Jarque-Bera test

In this section, the residuals of each individual VECM equation and the residual matrix of

the VECM are tested for normality by means of the univariate and multivariate Jarque-Bera test

from Section 2.3.1. The R function normality.test() from the package vars implements

both versions of the Jarque-Bera test. When the argument multivariate.only is set equal to

FALSE, the test statistics for the single residual series are computed along with the VECM resid-

ual matrix. The results of the univariate and multivariate Jarque-Bera test statistics are stored

in Table 6.22. Due to the extremely low p-values, the null hypothesis that the residuals of the

VECM and of the single VECM equations follow a normal distribution must be rejected. Also

the test statistics for the skewness and kurtosis of the residual distribution are not in compli-

ance with the third and fourth moment vectors of a normally distributed variable. This results

are not surprising considering the values for the skewness and kurtosis from the descriptive

statistics in Table 6.21.
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6.4.2 Heteroskedasticity Test

The presence of conditional heteroskedasticity in economic and financial time series has re-

ceived much attention in the literature ever since the introduction of the ARCH model by Engle

(1982). It is by now well-documented that inhomogeneous variance can be the cause of inva-

lidity of standard asymptotic tests in time series models 7. In practice, is quite common that

the residual process of financial time series like interest rates exhibit ARCH effects, and their

presence does not necessarily indicate that the model is inadequate for describing the underly-

ing DGP (Lütkepohl (2004)). Although Cavaliere et al. (2010a, 2010b) establish the validity of

the likelihood ratio (LR) tests proposed by Johansen (1996) even in the presence of conditional

heteroskedasticity in the residual series, they find that the tests are oversized in small and finite

samples, i.e. they tend to overreject the null hypothesis, which may lead to finding too many

cointegrating relationships. Also the empirical size of the Dickey-Fuller test tends to be higher

than the nominal size in the presence of ARCH errors, and the null hypothesis of no cointe-

gration is more frequently rejected (Kim and Schmidt (1993)). Furthermore, standard model

selection criteria (Section 4.3) may be biased towards selecting a large number of lags when

the variables exhibit ARCH effects (Catani (2013)). However, Lee and Tse (1996) examined the

size and power of Johansens’s LR test when the cointegration residuals were modeled by a

GARCH(1,1) with student-t and normal distribution, and found that, in spite of its tendency to

overrejection, the test performance is still higher with respect to other cointegration tests such

as the Dickey-Fuller (DF) test and the cointegration regression Durbin-Watson (CRDW) test.

Moreover, Cheung and Lai (1993) and Gonzalo (1993) report that Johansen’s maximum like-

lihood estimation method of the cointegrating vector is robust with respect to non-normality,

overparametrization as well as heteroskedasticity. Monte Carlo simulation studies demonstrate

that the performance of the ML estimator remains superior to that of other methods even when

the standard assumptions for VECM disturbances are violated (ibid.).

The multivariate ARCH-LM test for residual heteroskedasticity (Section 2.3.2) is a Lagrange

multiplier (LM) test used to test the null hypothesis of no ARCH effects in the residual matrix

7See for example, Pantula (1988), Haldrup (1994), Kim et al. (2002), Busetti and Taylor (2003) and

Cavaliere and Taylor (2006, 2007).
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Variable Statistic p-value

DJX 15.175 0.232

IP 3.5526 0.9902

M1 20.487 0.05842

TB3M 54.754 2.0× 10−7

OIL 26.399 0.009422

CPI 20.875 0.05224

Multivariate 5407.9 0.1303

Table 6.23: Univariate and multivariate ARCH-LM test

of a VECM model at lags ranging from 1 to q,

H0 : B1 = ... = Bq = 0

against the alternative of significant residual heteroskedasticity,

H1 : Bi ̸= 0 (i = 1, ..., q)

based on the auxiliary test regression (2.9). The R function arch.test() from the package

vars computes the univariate and multivariate ARCH-LM test statistics. Setting the argument

multivariate.only equal to FALSE returns the results of both the univariate and multivari-

ate ARCH-LM test. The number of lags to be included in the auxiliary regressions (2.8) and (2.9)

is set to 12 via the functional arguments lags.single and lags.multi. Table 6.23 contains

the results of the ARCH-LM test applied on the single residual series and on the residual matrix

of the VAR-level model. As it was expected, there are no significant ARCH effects in the residu-

als of DJX, IP and M1 and the null hypothesis of homoskedasticity is not rejected for the residual

matrix of the VECM. However, the residual series of TB3M presents considerable ARCH effects

and the null hypothesis of homoskedasticity must be rejected, at the 5% significance level, for

the residuals of OIL also.

As aforementioned, the presence of conditional heteroskedasticity in the cointegration er-

ror can cause the DF test and Johansen’s LR test to overreject the null hypothesis. However,
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this problem does not arise in our application of the Engle-Granger cointegration test, since a

Phillips-Perron (PP) test, which is robust with respect to heteroskedasticity, was performed on

the residuals of the long-run equilibrium equation along with an ADF test. In Section 6.3.1, the

results of both tests indicate the presence of a cointegrating vector. Moreover, in Section 6.3.2

the cointegrating relationships and loading matrix were estimated with the R function ca.jo()

using the ML estimator, which is robust to departures from the standard model assumptions as

well as to overparametrization (Gonzalo (1994)). This findings may indicate that, although the

variance of some of the single residual series is likely to be inhomogeneous, conditional het-

eroskedasticity is not significant in the cointegration error of the VECM model, as it is, as a

matter of fact, confirmed by the results of the multivariate ARCH-LM test. On these grounds,

we hold that the problem of ARCH effects, which mainly concerns the interest rate residual se-

ries, appears not to have any significant repercussion on the validity of the standard asymptotic

tests used in this application and does hence not nullify the beforehand conducted analysis as

well as subsequent operations.

6.4.3 Autocorrelation Test

Residuals DJX IP M1 TB3M OIL CPI

Statistic 3.7042 5.3611 3.0679 5.1564 1.6245 6.5672

p-value 0.9882 0.9448 0.995 0.9525 0.9998 0.8848

Squared Residuals DJX IP M1 TB3M OIL CPI

Statistic 17.749 4.5823 21.638 85.584 18.207 24.17

p-value 0.1235 0.9705 0.0418 3.51× 10−13 0.1096 0.0193

Multivariate Portmanteau Adj. Portmanteau

Statistic 110.86 114.02

p-value 2.2× 10−16 2.2× 10−16

Table 6.24: Univariate and multivariate serial correlation test
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The absence of serial correlation in the residuals of a VAR or VECM model can be tested

by means of the multivariate Portmanteau test, described in Section 2.3.3. The test considers

the null hypothesis of zero residual autocorrelations at lags 1 to m against the alternative hy-

pothesis that at least one autocorrelation coefficient is non-zero. Besides the classical multivari-

ate Portmanteau statistic from equation (2.10), an adjusted statistic with superior small sample

properties is proposed in equation (2.11). As in the univariate Portmanteau test, the number of

lags m included in the multivariate test statistic can affect the power of the test. The R function

serial.test() from the packages vars implements the multivariate Portmanteau test. The

default is to compute the standard Portmanteau statistic (2.10), but the adjusted version can be

chosen by setting the argument type equal to "PT.adjusted". The argument lags.pt=12

specifies that the number of lags that should enter the test statistic is set equal to the frequency

of the data. Additionally, the single residual series are tested for zero autocorrelation in lags

1 to 12 by means of the univariate Ljung-Box statistic from Section 2.3.3, which is computed

via the R function Box.test contained in the package stats. The results of the univariate

and multivariate autocorrelation test are reported in Table 6.24. As implied by the autocorrelo-

grams in Appendix A, serial correlation appears not to be an issue for any of the residual series.

However, when the squared residuals are considered, M1, TB3M and CPI have significant resid-

ual autocorrelation at the 5% significance level. This confirms the result of the ARCH-LM test

that the residuals of the interest rate series are highly heteroskedastic. The low p-values of the

multivariate Portmanteau and adjusted Portmanteau test indicate that serial correlation in the

residuals of the level-VAR is significant, which might be a consequence of the presence of ARCH

effects in some of the considered time series. However, the results in Table 6.24 clearly indicate

that residual autocorrelation is not significant for all of the considered time series. Therefore,

the contradictory result of the multivariate test can be explained by the presence of some degree

of dependency in the second order moments of the residual distribution, caused by inhomoge-

neous variance. Since in this case the presence of conditional heteroskedasticity has been shown

not to be of such entity as to affect previous analysis (Section 6.4.2), the estimated VECM model

is considered adequate for describing the true DGP.
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6.5 Structural Analysis and Forecasting

6.5.1 Granger Causality

Formally, the existence of Granger causality from a variable y2t to another variable y1t entails

that, for some forecast horizon h, a better forecast of y1t is achieved by including information

about past values of y2t to the set of information about y1t. In this section, we intend to test if the

selected macroeconomic factors are causal to the U.S. stock market index, such that past values

of the macroeconomic variables help improve the forecast of DJX. Besides a Granger causality

test, an instantaneous causality test is used to inspect whether adding information about fu-

ture economic activity to current and past values of the macroeconomic factors has a positive

impact on the forecast of DJX. The concept of Granger causality and instantaneous causality in

the context of VAR models has been already introduced in Section 4.3. Under the null hypoth-

esis of no Granger causality between the sub-vectors y1t and y2t from a bivariate VAR such as

(4.10), α1j = 0 for j = 1, ..., p, while under the alternative hypothesis, ∃ α1j ̸= 0, j = 1, ..., p. The

absence of instantaneous causality between y1t and y2t is determined by testing that the correla-

tion between the error terms u1t and u2t in (4.10) is different from zero (see Section 4.3). For this

purpose, a Wald-type test is used. As it is demonstrated in Lütkepohl (2006), an equivalent rep-

resentation of instantaneous causality is achieved by placing zero restrictions on σ = vech(Σu),

where vech is the column-stacking operator for symmetrical matrices and Σu is the variance-

covariance matrix of the error process from (4.10). The Wald test for no instantaneous causality

tests the null hypothesis H0 : Cσ = 0 against the alternative H1 : Cσ ̸= 0, were C is a matrix of

dimensions (K ×n(n+1)/2) and rank K, which singles out the relevant covariances of u1t and

u2t. The Wald statistic is defined as

λw = T σ̃′C ′[2CD+
n (Σ̃u ⊗ Σ̃u)D

+′

n C ′]−1Cσ̃

where D+
n is the Moore-Penrose inverse of the (n2 × 1

2n(n + 1)) duplication matrix Dn, Σ̃ =

T−1
∑T
t=1 ûtû

′
t, n is the number of variables in a VAR(p) and T is the number of observations.

The test statistic λw is asymptotically distributed as a χ2 with K degrees of freedom.

The R function casuality() from the package vars implements a causality test as well

as an instantaneous causality Wald-type test. The first argument is an object of class varest,

which is generated by the function VAR(). Hence, a VAR model with 12 lags and an intercept is
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Statistic p-value

Variable Granger Instant Granger Instant

IP–DJX 5.086 0.70133 0.0004889 0.4023

M1–DJX 2.5076 3.3823 0.01515 0.0659

TB3M–DJX 1.8246 0.02080 0.06103 0.8853

OIL–DJX 0.056759 0.25237 0.9448 0.6154

CPI–DJX 0.84984 0.52495 0.467 0.4687

v1–DJX 2.6403 2.2014 0.0001033 0.8206

Note: v1 = (IP, M1, TB3M, OIL, CPI)

Table 6.25: Granger causality from macroeconomic variables to DJX

estimated for the analyzed variables before conducting the Granger causality test, as it is shown

in the R code snippet below. The character vector cause is used to select the variable string that

is believed to be causal to the other variables in the system.

dataset <- cbind(DJX, IP)

var.model <- VAR(dataset, p=12, type="constant")

causality(var.model, cause="IP")

The results of the test in Table 6.25 show that there is Granger causality from industrial produc-

tion and money supply to the Dow Jones stock index at the 5% significance level, TB3M Granger

causes DJX at the 10% significance level, whereas the contribution of past values of OIL and CPI

to the optimal forecast of DJX is not significant.

When the set of macroeconomic variables v1 = (IP,M1, TB3M,OIL,CPI) is considered,

the output of the Granger causality test indicates that past macroeconomic information helps

determining future stock prices. On the other hand, the null hypothesis of no instantaneous

causality could not be rejected at the 5% significance level, which entails that the optimal fore-

cast of DJX is not sensitive to the inclusion of future information about the set of macroeconomic

factors. The results of examining reverse causality from the U.S. stock index to macroeconomic

variables, displayed in Table 6.26, suggest that the lagged levels of DJX have some influence
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Statistic p-value

Variable Granger Instant Granger Instant

DJX–IP 13.802 0.7013 8.73× 10−11 0.4023

DJX–M1 1.2979 3.3823 0.2488 0.0659

DJX–TB3M 2.3248 0.0208 0.0142 0.8853

DJX–OIL 2.0694 0.2524 0.1271 0.6154

DJX–CPI 2.4512 0.5250 0.0625 0.4687

Table 6.26: Granger causality from DJX to macroeconomic variables

in predicting future values of IP and TB3M, at the 5% significance level. The optimal forecasts

of the other variables, however, are not responsive to historical stock prices and instantaneous

causality is not detected for any of the considered macroeconomic variables.

6.5.2 Impulse Response Analysis

Impulse response functions are used to quantify the response of one or more variables to an

impulse of another variable, caused by an exogenous shock, when both variables are in the

same system. As was outlined in Section 4.3.2, when the shocks do not occur in isolation, or-

thogonal innovations, which are by definition uncorrelated, are used in an impulse response

analysis. Since in this application the level-VAR representation of a VECM is considered, the

stability condition for VAR(p) processes, outlined in Section 4.3, is not satisfied. In the instance

of a nonstationary cointegrated process, shocks may have a permanent effect on the system.

Although the Wold moving average representation from (4.24) does not hold for nonstationary

VAR models (Lütkepohl and Krätzig (2004)), the impulse response matrices Φk can still be com-

puted according to (4.22). In this application, the short-term behavior of DJX in response to a

shock in the system is of interest. Since we are using orthogonal impulse response functions,

the variables composing the system must be ordered from the most to the least exogenous in or-

der for the impulse response function to be meaningful. It is common practice to rely on either

economic theory, statistical tests or a combination of both to determine a reasonable ordering
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(Lütkepohl (2006)). According to Darby (1982), an increase in the price of crude oil is considered

to be one of the main causes of economic recession, due to the fact that oil is an essential input

for energy production in almost all sectors. Cologni and Manera (2008) examined the dynamic

relationship between the UK Brent price of oil, short term interest rates, money supply, infla-

tion rate and real gross domestic product by estimating a structural VECM and found that the

world price of oil significantly influenced the long-term equilibrium relationship between the

economic variables. On these grounds, it seems reasonable to consider oil price as the most ex-

ogenous variable and DJX as the least exogenous, since the stock price is believed to be directly

influenced by the other variables in the system (see Section 6.1 for a discussion). The degree

of exogeneity of the remaining variables is determined by means of a Granger causality test.

The concept of Granger causality and instantaneous causality is treated in Section 4.3, while

the procedure for performing a causality test in R is shown in Section 6.5.1. By testing the null

hypothesis that the single time series are not causal to the other variables in the system, we

attempt to achieve a reasonable ordering. According to the test results displayed in Table 6.27,

the analyzed variables should be ordered according to Yt = (OIL, IP,TB3M,CPI,M1,DJX).

Due to the difficulty of establishing the precise placement of TB3M and CPI when the vari-

ables are regarded as singularly causal to the others, a causality test has been run on the vectors

v1 = (OIL, IP,TB3M) and v2 = (OIL, IP,CPI), whose result is shown in Table 6.27.

An impulse response analysis is implemented in R with the function irf() from the pack-

age vars. The character vectors impulse and response specify which variables should be

considered as the impulses and responses, respectively. By default, the argument ortho=TRUE

computes orthogonal impulse responses, whose output is influenced by the ordering of the

variables in the time series vector Yt. The significance of the impulse response analysis can be

assessed by estimating a confidence interval for the IRF via the function boot=TRUE, which by

default returns a 95% confidence band, plotted as a dotted red line in Figure 6.3. The length of

the impulse response, which is controlled by the argument n.ahead, is set to 3 years. Figure

6.3 shows the responses of DJX to a unit shock in each of the variables. The estimated impulse

response functions and the relative confidence bands are stored in Tables B.3–B.8 in Appendix

B. In Figure (a), the DJX series is seen to respond to a one standard deviation shock in its own

value with a very sharp decrease from month 1 to 7, where it reaches a minimum of 0.019 units.

A succession of higher and lower values can be noticed during months 7 to 14, after which the

114



Statistic p-value

Variable Granger Instant Granger Instant

IP 1.9821 14.128 0.0000172 0.01481

M1 0.85991 12.346 0.7683 0.03034

TB3M 1.67 9.4709 0.001201 0.09169

OIL 2.7564 65.673 5.65× 10−11 8.12× 10−13

CPI 1.4766 70.782 0.01141 7.05× 10−14

(OIL, IP, TB3M) 2.953 76.101 2.2× 10−16 9.56× 10−13

(OIL, IP, CPI) 1.7815 20.954 0.0000037 0.01286

Table 6.27: Granger causality test

series displays a more regular increasing pattern until it reaches a value of 0.027 in year 3 —

0.007 points below its initial value. A shock in IP (Figure (b)) is immediately followed by an

increase in the value of DJX, which peaks after 9 months, reaching a maximum of 0.020, drops

to a value of 0.015 in month 19 and then gradually starts rising again before settling for a value

of 0.014 in year 3. A one-unit innovation in M1 (Figure (c)) prompts a 0.002 units drop in the

value of DJX during the first two months, which is followed by a steep increase that peaks in

month 9, where a value of 0.013 is reached. Starting from period 25, the value of DJX begins to

rise in a steady fashion and at a much slower rate, until it becomes 0.015 in year 3.

A decline in DJX, whose value became negative for the first 10 months, follows an impulse

in the short term interest rates, as shown in Figure (d). The decrease eventually reversed in

month 11, the series grew to a maximum of 0.014 after 20 months, and began descending again

towards zero afterwards. After an initial 0.005 units drop in period 2, followed by a small

increase in periods 3 and 4, the value of DJX started to decline at a reasonably fast pace in

response to a shock in the price of oil, as displayed in Figure (e). After reaching a minimum

of -0.023 in periods 16 and 17, the value of the stock index diverted its path and began moving

upwards until it reached a value of -0.022 in the last month of the IRF. A one-unit shock in the

rate of inflation clearly had a negative effect on the stock price index, driving its value below
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zero immediately after the first period (Figure (f)). A rather sharp decrease can be noticed from

month 1 to 10, followed by an alternation of higher and lower values between periods 11 and

19, after which the DJX series started to decrease at an approximately constant rate until the

end of the third year, where its value added up to -0.009. In accordance with the nonstationary

nature of the analyzed time series, shocks appear to have a permanent effect on the system

and the response variable is not seen to revert back to the original value after an innovation

occurred. Roughly, the confidence bands follow the same direction as the impulse response

functions for all series, indicating that the IRF is quite stable, although there are occasional

widenings of the confidence intervals around the IRF. For the most, the confidence interval is

relatively tight around the IRF during the first year of the analysis, and starts becoming more

outspread afterward. Periods in which the confidence bands do not follow the IRF closely

suggest a lack of accuracy in the impulse response analysis as well as a loss in predictive power.

This is confirmed by the estimated values of the confidence intervals in Appendix B.2, which

are particularly outstretched in year 2 and 3.

6.5.3 Forecast Error Variance Decomposition

The forecast error variance decomposition (FEVD), described in Section 4.3.3, is used to assess

the contribution of innovations in variable j to the h-step forecast error variance of variable

i. The calculated value of the FEVD is a percentage figure, since the FEVD results from the

quotient between the elements of the squared orthogonal impulse response matrix Ψk (Section

4.3.2) and the forecast error variance of yi,T+h, as in equation (4.26). The R function fevd()

from the package vars implements the FEVD analysis. In this example, the argument n.ahead

is set equal to 36, so that the FEVD is computed for a 3 years ahead forecast. The graphical

results are displayed in Figures 6.4 and 6.5, whereas the calculated values of the FEVD are

shown in Tables B.9–B.14 in Appendix B.

The forecast errors of the considered time series are mostly attributable to own innovations,

with the only exception of CPI. As it is shown in Figure 6.4, the largest contribution to the

forecast error variance of the Dow Jones index stems from shocks in industrial production and

the price of oil, with a maximum of 18% and 13%, respectively. On average, IP is responsible for

15% of the variance in the forecast error of DJX, while OIL accounts for 9% of it. The contribution
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Figure 6.4: Forecast error variance decomposition of DJX

of money supply did not exceed 6% during the first half of the observation period, but increased

dramatically during the second part of the forecast horizon and reached a value of 14% in year

3. On average, 7% of U.S. stock price variability is caused by CPI, 6% is caused by M1 and 4%

is caused by TB3M. Hence, over the 3 years of the FEVD, shocks in macroeconomic variables

were accountable for an average of about 40% of the variance in DJX. The stock index plays a

large role in determining the forecast error variance of industrial production: up to a maximum

of 16% of the variance in the forecast of IP is due to shocks in DJX, while at most 14% is due

to shocks in M1. On average, DJX contributes to explaining 12% of the variance in IP, while

the contribution of TB3M, OIL and CPI never exceeds 5%. On average, 14% of the variance in

the forecast error of money supply is explained by shocks in industrial production, about 20%

is jointly explained by shocks in TB3M, OIL and CPI, whereas DJX accounts for less than 1%

of the variability in M1, as is it shown in Figure 6.5. Own innovations appear to be the main

explanatory factor of the forecast error in TB3M during the entire horizon; the percentage of

variance which is due to TB3M never goes below 83% and is 86% on average. The other main

explanatory factor of the variance σ2
TB3M(3) is industrial production with a mean value of 9%,

while less than 5% of the interest rate volatility is due to shocks in DJX, CPI, M1 and OIL 8. In

Figure 6.5, the oil price seems to be responsible for the largest part of its forecast error variance,

8The notation σ2
TB3M(3) indicates the 3-step ahead forecast error variance of TB3M and is used in Sec-

tion 4.3.3.
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Figure 6.5: Forecast error variance decomposition of macroeconomic factors
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with an average value of 81% and a minimum value of 75%. The other main contributors are

IP, CPI and TB3M, with 9%, 6% and 2%, on average. The Dow Jones stock index and money

supply are not significantly involved in the determination of the variance σ2
OIL(3) and their

contribution is lower than 1%. Of all variables, the consumer price index is the least involved in

explaining its own forecast error variance. Its contribution is only 13% on average and reaches

a minimum of 4% in year 3. The proportion of the variance in the forecast error of CPI that

is caused by shocks in the OIL price adds up to 56% on average and has a maximum value of

71%. About 15% of the variance in CPI is explained by IP, 11% is explained by M1, and less

than 1% is explained by DJX. On the grounds of this analysis, it can be concluded that the result

of the FEVD for DJX support the argument that the analyzed macroeconomic variables help

explaining stock market movements to a certain extent.

6.5.4 Forecasting

The existence of Granger causality from the selected macroeconomic variables to the U.S. stock

market index, established in Section 6.5.1, suggests that the estimated VECM may be an efficient

tool for forecasting purposes. The calculation of forecasts and forecast confidence intervals for

a VAR model with either known or estimated parameters was treated in Section 4.3.1. In order

to assess the forecasting ability of the VECM from Section 6.3.2, an out-of sample forecast is

performed for the analyzed time series via the R function predict(), included in the package

vars. In particular, a 3-years ahead forecast is conducted from 2012 to 2015, based on the

data from the sample from 1989 to 2012. The length of the forecast horizon is selected via the

argument n.ahead and a 95% confidence interval for the forecasted series is computed by

default. Note that the function predict() does not provide for a correction of the estimation

error in the VAR model coefficients, resulting in smaller confidence intervals than otherwise.

In Figures 6.6 and A.9 (Appendix A), the forecasts of the analyzed time series are compared

to their observed time path. The values of the forecasts, along with the observed values of

each time series and the confidence intervals, are stored in Appendix B.4. In general, a VAR

model is considered adequate for forecasting purposes when all its observed values are within

the forecast interval (Lütkepohl (2006)). In this application, the observed values of DJX, IP,

M1 and TB3M lie within the 95% forecast interval for the whole forecast horizon, while the
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Figure 6.6: Out-of-sample forecast of DJX

realizations of OIL and CPI trespass the confidence bands 27 and 14 months after the forecast

origin, respectively (Figure A.9, Appendix A). As it is shown in Figure 6.6, the VECM provides

a reasonably accurate forecast of the Dow Jones price series, since the discrepancies between

the forecast and the actual realizations of the stock price series are of small size. This leads us

to conclude that the selected macroeconomic factors possess a remarkable explicative power

over the stock market and are helpful predictors of future stock price movements when they

are considered in the framework of a cointegrated VECM.
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Conclusions

This study was aimed at examining the long-run relationship between the U.S. stock market,

represented by the Dow Jones Industrial Average, and a set of selected macroeconomic variables

composed of industrial production, money supply, short-term interest rates, crude oil price and

the consumer price index as a proxy for inflation. To this purpose, the methodological frame-

work of cointegration analysis and a vector error correction model (VECM) were employed.

The data-set used in the analysis consists of monthly observations of the stock index and the

macroeconomic factors collected during the period from January 1989 to August 2015. The re-

sults of the cointegration test and the vector error correction model indicate that the stock price

index is cointegrated with the set of macroeconomic variables, implying that a long-run equilib-

rium relationship between the U.S. stock market index and the selected macroeconomic factors

exists such that information about relevant economic indicators is reflected in stock prices. The

VECM demonstrates the existence of a simultaneous and interactive relation between the eco-

nomic variables and the stock price index, showing that the U.S. stock market signals changes

in economic activities and these changes are significantly priced in the stock market index. The

effort of determining the existence of a long-term linkage between the Dow Jones index and the

single macroeconomic variables by means of an Engle-Granger test unfolded the existence of a

significant relationship between the stock index and industrial production only. Nevertheless,

Johansen’s cointegration test applied to the system of variables revealed that the U.S. stock in-

dex forms a cointegrating relationship with the selected economic variables and the presence

of one cointegrating vector in the data-set was detected by Johansen’s maximum eigenvalue

test. In an attempt to assess the contribution of the single variables to the cointegrating vec-

tor, a likelihood ratio (LR) test of linear restrictions was performed, whose output revealed a

non-significant coefficient for the price of oil and inflation and consequently, a lack of partic-
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ipation to the error correction mechanism. The significant long-run coefficients of industrial

production, money supply and interest rates, however, illustrate that these variables respond to

short-term deviations from the equilibrium relationship, which is confirmed by the statistically

significant speed of adjustment coefficient associated with the first eigenvector in the VECM

equation for the Dow Jones index. Additionally, the hypothesis that past changes in macroeco-

nomic variables do not influence the current value of the stock index, i.e. that the coefficients of

lagged differences and the error correction term are zero, is rejected in our empirical analysis.

The estimate of the VECM illustrates that the error correction term and some of the lagged dif-

ferences are significant in the Dow Jones equation, showing that there are meaningful short-run

dynamic effects such that the stock index adjusts to the previous equilibrium error. Consistently

with economic theory and previous empirical surveys, it is observed that the stock price is pos-

itively influenced by industrial production, 3-month Treasury bill rates, oil price and money

supply, in the long run, while it is negatively related to inflation. The adequacy of the estimated

VECM for describing the DGP of the underlying data-set was verified by testing the model

residuals for normality, heteroskedasticity and serial correlation. Although the hypothesis of

non-normality could not be rejected, the multivariate ARCH-LM test and the Ljung-Box test

for residual autocorrelation did not highlight any significant violations of the standard model

assumptions, confirming the validity of the VECM for analysis purposes. The results of exam-

ining whether the single macroeconomic variables Granger cause the U.S. stock index showed

that the optimal forecast of the Dow Jones index is sensitive to the inclusion of historical val-

ues of industrial production, money supply and interest rates, while it is not influenced by

past values of oil price and inflation as well as by information about future economic activity,

establishing the absence of instantaneous causality. It has been shown that the selected macroe-

conomic factors are significant indicators of stock price movements; however, it appears from

inspecting the reverse causality from the stock market to the macroeconomic variables that the

Dow Jones index also has some explicative power over industrial production, interest rates and

inflation, while future stock price levels are shown to influence the optimal forecast of money

supply. The existence of significant short-run dynamic effects between the U.S. stock index and

the set of macroeconomic variables was inspected by performing an impulse response analysis,

whose output suggests a positive short-term response of the Dow Jones index to an exogenous

shock in industrial production and money supply, a negative response to innovations in infla-
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tion and the price of oil and mixed reactions to a shock in interest rates. In accordance with the

nonstationary nature of the analyzed data-set, the effect of an exogenous shock on the system is

not seen to die out quickly and the stock market index does not revert back to the original equi-

librium value after an innovation occurred, at least in the short run. A forecast error variance

decomposition was realized in order to examine the contribution of shocks in macroeconomic

activity to the forecast error variance of the stock index. The results of the analysis revealed

that, over a period of 3 years, 15% of the variance in the forecast error of the Dow Jones index is

caused by innovations in industrial production, 9% is caused by innovations in the price of oil,

7% is caused by inflation, 6% is caused by money supply and 4% can be attributed to innova-

tions in interest rates, on average. The fact that about 40% of the forecast error variance of the

stock index can be explained by shocks in macroeconomic variables indicates that U.S. stock

price variability is fundamentally linked to changes in economic variables. In the context of

an out-of-sample 3 years ahead forecast based on the sample period 1989–2012, the forecasting

ability of the estimated VECM was tested. The adequacy of the model for forecasting purposes

is established by the accuracy of the forecasted U.S. stock price series and the hypothesis that

the selected macroeconomic variables possess a certain explanatory power over stock market

movements and are relevant factors in the determination of future stock prices is validated.
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Appendix A

Graphical Results
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Figure A.1: Time plot of the untransformed series
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Figure A.2: Andrews-Zivot test
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Residuals of DJX
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Figure A.3: Residual diagnostic of DJX
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Figure A.4: Residual diagnostic of IP
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Residuals of M1
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Figure A.5: Residual diagnostic of M1
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Residuals of TB3M
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Figure A.6: Residual diagnostic of TB3M
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Residuals of OIL
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Figure A.7: Residual diagnostic of OIL
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Residuals of CPI
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Figure A.8: Residual diagnostic of CPI
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Forecast of IP
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Figure A.9: Out-of-sample forecast of macroeconomic factors
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Appendix B

Tables of Results

Vector Error Correction Model

Table B.1: VECM for DJX

Variable Estimate Std. Error t-value Pr(>|t|)

∆DJXt−1 0.0319821 0.0659554 0.4849052 0.6281859

∆IPt−1 1.1465510 0.4807900 2.3847229 0.0178695

∆M1t−1 −0.3042460 0.3285425 −0.9260474 0.3553516

∆TB3Mt−1 −0.0551654 0.0162485 −3.3951002 0.0008026

∆OILt−1 −0.0811189 0.0360335 −2.2512064 0.0252779

∆CPIt−1 0.0527777 1.4088442 0.0374617 0.9701480

∆DJXt−2 0.0435315 0.0669810 0.6499090 0.5163726

∆IPt−2 0.6956373 0.4947078 1.4061579 0.1609706

∆M1t−2 −0.0197584 0.3278311 −0.0602700 0.9519908

∆TB3Mt−2 −0.0216771 0.0174657 −1.2411256 0.2157711

∆OILt−2 0.0639366 0.0399661 1.5997697 0.1109652

∆CPIt−2 −2.3955259 1.4564257 −1.6447979 0.1013206

∆DJXt−3 0.0914785 0.0680346 1.3445886 0.1800275

∆IPt−3 −0.2885297 0.4930937 −0.5851419 0.5590021

∆M1t−3 0.1284715 0.3227972 0.3979946 0.6909880

135



∆TB3Mt−3 0.0269467 0.0174731 1.5421828 0.1243466

∆OILt−3 0.0362581 0.0391849 0.9253084 0.3557350

∆CPIt−3 0.8944347 1.4680298 0.6092756 0.5429181

∆DJXt−4 −0.0271752 0.0700561 −0.3879064 0.6984291

∆IPt−4 −0.4929328 0.5045803 −0.9769163 0.3295943

∆M1t−4 0.3550148 0.3278252 1.0829393 0.2799222

∆TB3Mt−4 −0.0160806 0.0181843 −0.8843122 0.3774127

∆OILt−4 0.0066085 0.0400328 0.1650766 0.8690227

∆CPIt−4 −3.1929453 1.4890033 −2.1443508 0.0330096

∆DJXt−5 0.0032384 0.0699191 0.0463164 0.9630966

∆IPt−5 0.7723521 0.5019502 1.5387027 0.1251943

∆M1t−5 1.1263978 0.3273645 3.4408065 0.0006839

∆TB3Mt−5 0.0038492 0.0177081 0.2173695 0.8281051

∆OILt−5 0.0155443 0.0401890 0.3867795 0.6992622

∆CPIt−5 −0.6722318 1.4547198 −0.4621040 0.6444254

∆DJXt−6 −0.1074813 0.0679296 −1.5822467 0.1149101

∆IPt−6 −0.4866436 0.5053903 −0.9629064 0.3365636

∆M1t−6 0.1145940 0.3254810 0.3520760 0.7250903

∆TB3Mt−6 −0.0530174 0.0176560 −3.0027960 0.0029580

∆OILt−6 0.0257269 0.0399648 0.6437389 0.5203594

∆CPIt−6 −2.7489042 1.4673952 −1.8733224 0.0622393

∆DJXt−7 0.1221818 0.0678719 1.8001827 0.0730875

∆IPt−7 0.8316570 0.5068069 1.6409741 0.1021126

∆M1t−7 0.4320244 0.3275496 1.3189590 0.1884399

∆TB3Mt−7 0.0135290 0.0181039 0.7472981 0.4556152

∆OILt−7 0.0591002 0.0405134 1.4587817 0.1459327

∆CPIt−7 −1.3700052 1.4816598 −0.9246422 0.3560808

∆DJXt−8 0.0615284 0.0676185 0.9099348 0.3637698

∆IPt−8 0.3631409 0.5037103 0.7209321 0.4716529

∆M1t−8 0.4583730 0.3246921 1.4117158 0.1593288
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∆TB3Mt−8 −0.0021290 0.0179365 −0.1186965 0.9056151

∆OILt−8 0.0858023 0.0408074 2.1026169 0.0365412

∆CPIt−8 −4.7491641 1.4745094 −3.2208437 0.0014549

∆DJXt−9 0.0129937 0.0667753 0.1945887 0.8458795

∆IPt−9 −0.1610417 0.4726544 −0.3407177 0.7336142

∆M1t−9 0.0100405 0.3116104 0.0322214 0.9743223

∆TB3Mt−9 0.0222797 0.0175173 1.2718664 0.2046516

∆OILt−9 0.0871205 0.0409756 2.1261564 0.0345114

∆CPIt−9 −1.7682170 1.4992050 −1.1794364 0.2393923

∆DJXt−10 −0.0284766 0.0647989 −0.4394608 0.6607231

∆IPt−10 −0.9474843 0.4718728 −2.0079233 0.0457723

∆M1t−10 −0.2102656 0.3149620 −0.6675903 0.5050366

∆TB3Mt−10 0.0139669 0.0172256 0.8108251 0.4182694

∆OILt−10 −0.0517784 0.0409461 −1.2645500 0.2072593

∆CPIt−10 −0.9541594 1.4734578 −0.6475648 0.5178854

∆DJXt−11 −0.0039194 0.0640912 −0.0611529 0.9512884

∆IPt−11 −0.2608196 0.4575072 −0.5700886 0.5691509

∆M1t−11 0.2170435 0.3153972 0.6881593 0.4920171

∆TB3Mt−11 0.0025740 0.0163016 0.1578974 0.8746704

∆OILt−11 0.0886585 0.0414910 2.1368144 0.0336247

∆CPIt−11 −2.1883986 1.2671270 −1.7270555 0.0854443
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B.1 VAR Model in Levels

Table B.2: Level-VAR representation of VECM

Variable DJX IP M1 TB3M OIL CPI

∆DJXt−1 0.9066513 1.5930255 −0.2418769 −0.0471804 −0.0779599 −0.0749080

∆IPt−1 0.0071386 0.9572864 0.0143214 0.0045752 0.0002959 0.3041546

∆M1t−1 0.0047637 −0.0318564 0.9727415 −0.0004026 0.0033055 −0.4554129

∆TB3Mt−1 0.4647997 4.3817119 0.1107167 1.3362003 0.1022029 3.6006534

∆OILt−1 0.0397886 0.8857655 −0.0855667 −0.0152129 1.3827288 −6.4836238

∆CPIt−1 0.0073103 0.0137052 0.0056905 0.0009318 0.0145767 1.1437803

∆DJXt−2 0.0115494 −0.4509138 0.2844876 0.0334883 0.1450555 −2.4483036

∆IPt−2 0.0056936 0.1857665 −0.0168187 −0.0022387 −0.0040008 −0.2898696

∆M1t−2 −0.0086804 −0.0894097 0.0444209 0.0014609 −0.0161772 0.9700084

∆TB3Mt−2 0.1614771 −3.0969026 −0.3860334 −0.3717272 −0.0498586 −6.9744896

∆OILt−2 0.1266821 −0.4989582 −0.2381794 0.0586563 −0.3746889 10.2806822

∆CPIt−2 −0.0053566 0.0530032 0.0132621 0.0004685 −0.0143433 −0.2264857

∆DJXt−3 0.0479470 −0.9841670 0.1482299 0.0486238 −0.0276785 3.2899606

∆IPt−3 0.0274399 0.0484525 −0.0343454 −0.0064640 −0.0050539 0.2357711

∆M1t−3 −0.0027302 −0.1679236 0.1125611 −0.0065865 0.0040162 −0.0640603

∆TB3Mt−3 −0.8262902 0.6656406 1.1408976 0.2836868 0.0628688 −1.4892289

∆OILt−3 −0.0721292 1.3097608 0.0590737 −0.0812850 0.0392022 −7.9877012

∆CPIt−3 −0.0037408 −0.0194995 0.0012423 −0.0041405 0.0055467 −0.1081179

∆DJXt−4 −0.1186537 −0.2044030 0.2265433 −0.0430273 −0.0296496 −4.0873800

∆IPt−4 −0.0248723 −0.1162195 0.0259733 0.0019951 0.0033062 −0.1318094

∆M1t−4 0.0243812 0.1357587 −0.2383032 0.0076535 0.0048974 0.2672539

∆TB3Mt−4 −0.1417868 −4.8612402 −0.9705920 −0.2828924 −0.2919757 5.2938578

∆OILt−4 −0.1881070 −1.9820424 1.3033724 0.0338444 −0.1906826 6.4085300

∆CPIt−4 −0.0027237 −0.0524578 −0.0088132 0.0020282 −0.0064266 0.2987169

∆DJXt−5 0.0304136 1.2652848 0.7713829 0.0199298 0.0089358 2.5207135

∆IPt−5 −0.0050749 −0.0915181 0.0457749 0.0035946 0.0077415 −0.3563153
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∆M1t−5 −0.0154320 0.1214152 0.1154087 −0.0026760 −0.0024924 −0.3759436

∆TB3Mt−5 −0.0535758 0.9466862 0.1508376 −0.0511483 0.0304185 −2.3495756

∆OILt−5 0.0167486 1.2406769 −1.0779556 −0.0432567 0.1807473 −8.2879136

∆CPIt−5 −0.0004148 0.0011441 −0.0020966 0.0007211 0.0044328 −0.3264725

∆DJXt−6 −0.1107197 −1.2589957 −1.0118037 −0.0568666 0.0101826 −2.0766723

∆IPt−6 0.0090904 0.0688702 −0.0565136 0.0045449 −0.0028795 0.0438805

∆M1t−6 −0.0002013 −0.0577823 0.0827954 0.0028013 −0.0167824 0.0888895

∆TB3Mt−6 0.3736393 0.8604236 −0.4645220 0.2240416 0.3382246 −0.5252445

∆OILt−6 0.0376949 −0.7117733 0.8311309 0.0570476 −0.0032989 3.6225113

∆CPIt−6 −0.0005904 −0.0186034 −0.0061893 −0.0002852 0.0000284 0.1619895

∆DJXt−7 0.2296631 1.3183006 0.3174304 0.0665464 0.0333732 1.3788990

∆IPt−7 −0.0103916 −0.1809603 0.0022308 −0.0073897 0.0062227 −0.0068128

∆M1t−7 0.0335082 0.0042080 −0.0961898 −0.0054966 0.0271644 −0.6414430

∆TB3Mt−7 0.2137423 3.2611217 0.3515946 −0.0686367 0.0791775 0.8251013

∆OILt−7 −0.1884533 1.2111308 −0.7829518 −0.0030955 0.0441002 3.3629463

∆CPIt−7 0.0001893 0.0907228 0.0024118 0.0005227 0.0001276 0.1106807

∆DJXt−8 −0.0606534 −0.4685161 0.0263486 −0.0156580 0.0267021 −3.3791590

∆IPt−8 −0.0021734 0.0365171 0.0082247 −0.0002641 −0.0113265 0.0922530

∆M1t−8 −0.0053589 0.1644124 0.0275635 0.0004187 −0.0069996 1.0908443

∆TB3Mt−8 −0.0716867 −2.5632359 0.2639982 0.0447179 −0.5230630 1.5419355

∆OILt−8 0.1195372 0.2768965 0.7477269 0.0246530 −0.1091532 −0.6776440

∆CPIt−8 −0.0010279 −0.0212286 −0.0013249 0.0013057 −0.0068717 −0.1009224

∆DJXt−9 −0.0485347 −0.5241826 −0.4483325 0.0244087 0.0013183 2.9809471

∆IPt−9 0.0001458 0.1807325 0.0946323 0.0011936 0.0137269 0.0269402

∆M1t−9 −0.0101846 −0.1111001 0.0649137 −0.0018994 −0.0133131 −1.0734075

∆TB3Mt−9 −0.1930081 2.1579470 0.9132471 −0.0969781 0.4938007 −0.1654646

∆OILt−9 0.0163019 −3.9961345 −2.0131380 −0.0246940 0.0213395 −6.8958596

∆CPIt−9 0.0033436 −0.0708094 −0.0186001 −0.0027028 0.0029643 −0.0086340

∆DJXt−10 −0.0414703 −0.7864426 −0.2203061 −0.0083128 −0.1388989 0.8140576

∆IPt−10 −0.0026529 −0.1072024 −0.0709701 0.0026455 −0.0046504 −0.1925917
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∆M1t−10 −0.0041652 0.0192560 −0.1066362 0.0019204 0.0155255 0.6038354

∆TB3Mt−10 −0.0715338 −4.1181587 −0.9264807 −0.1675074 −0.0689820 −3.7253267

∆OILt−10 0.0947556 0.8362993 1.3447430 0.0111884 0.2790320 5.9210939

∆CPIt−10 0.0043291 0.0604376 0.0372138 0.0027674 0.0014605 0.1720155

∆DJXt−11 0.0245572 0.6866647 0.4273090 −0.0113930 0.1404369 −1.2342392

∆IPt−11 0.0114305 −0.0098830 −0.0395133 −0.0047928 −0.0053725 0.4466090

∆M1t−11 0.0186378 −0.0995707 0.0744419 0.0088701 −0.0130863 −0.5490644

∆TB3Mt−11 0.3729669 2.0994588 0.1830286 0.1518513 −0.0316543 6.2856308

∆OILt−11 −0.2032017 1.6285527 0.6473651 −0.0181108 −0.1778579 −0.5462967

∆CPIt−11 −0.0076759 −0.0394912 −0.0078872 −0.0018157 −0.0003750 −0.1249999

∆DJXt−12 0.0039194 0.2608196 −0.2170435 −0.0025740 −0.0886585 2.1883986

∆IPt−12 −0.0144721 0.0235220 0.0263560 0.0025174 0.0019575 −0.1708836

∆M1t−12 −0.0134367 0.0374211 −0.0642185 −0.0074084 0.0134102 0.1599982

∆TB3Mt−12 −0.1943245 0.1439329 −0.3838205 −0.0038007 −0.1420269 −2.2827826

∆OILt−12 0.1020333 0.1501804 −0.6866785 0.0065312 −0.0889896 1.1830785

∆CPIt−12 0.0007383 0.0230952 −0.0121128 0.0005568 −0.0009787 0.0027245
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B.2 Impulse Response Functions

Table B.3: Response of DJX to an impulse of DJX and confidence bands

Period DJX Lower Upper

1 0.0335566 0.0261048 0.0317865

2 0.0304241 0.0214031 0.0308910

3 0.0274562 0.0174220 0.0289765

4 0.0257116 0.0145414 0.0281682

5 0.0241596 0.0128655 0.0277845

6 0.0239539 0.0124097 0.0285683

7 0.0190586 0.0067158 0.0238168

8 0.0217930 0.0106942 0.0267594

9 0.0234915 0.0121478 0.0282972

10 0.0224248 0.0118661 0.0282656

11 0.0218760 0.0100347 0.0279957

12 0.0229560 0.0113121 0.0303047

13 0.0246289 0.0118500 0.0312572

14 0.0235090 0.0094040 0.0291397

15 0.0230720 0.0089364 0.0292084

16 0.0231804 0.0097840 0.0298265

17 0.0231816 0.0098284 0.0295308

18 0.0226323 0.0083286 0.0307969

19 0.0226618 0.0087525 0.0301505

20 0.0236649 0.0098210 0.0310279

21 0.0241216 0.0098171 0.0314293

22 0.0240765 0.0099903 0.0312266

23 0.0245622 0.0098977 0.0329190

24 0.0256009 0.0094953 0.0335900

25 0.0259732 0.0097436 0.0339133

26 0.0258907 0.0100821 0.0336195
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27 0.0264324 0.0103352 0.0342567

28 0.0268616 0.0106816 0.0343443

29 0.0268427 0.0111172 0.0342179

30 0.0269671 0.0114897 0.0342224

31 0.0273038 0.0113055 0.0346241

32 0.0275295 0.0114818 0.0354725

33 0.0275178 0.0114574 0.0352733

34 0.0275545 0.0113639 0.0354516

35 0.0276624 0.0114124 0.0361795

36 0.0277098 0.0115628 0.0361980

37 0.0275370 0.0112068 0.0358933

Table B.4: Response of DJX to an impulse of IP and confidence bands

Period DJX Lower Upper

1 0.0004983 −0.0033819 0.0046448

2 0.0075872 0.0009575 0.0115161

3 0.0108070 0.0034780 0.0165895

4 0.0108517 0.0022776 0.0169933

5 0.0113482 −0.0003080 0.0181180

6 0.0173624 0.0059612 0.0236347

7 0.0158495 0.0046302 0.0222071

8 0.0195541 0.0057700 0.0254454

9 0.0200075 0.0060658 0.0260417

10 0.0181832 0.0045918 0.0240382

11 0.0161176 0.0034888 0.0221743

12 0.0153591 0.0002101 0.0230780

13 0.0165996 0.0002377 0.0245699

14 0.0160208 0.0001482 0.0240044

15 0.0164065 −0.0012662 0.0256952

16 0.0152725 −0.0025077 0.0256209
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17 0.0152299 −0.0018121 0.0270601

18 0.0153673 −0.0009903 0.0275583

19 0.0145138 −0.0015626 0.0270130

20 0.0150459 −0.0010084 0.0276871

21 0.0156981 −0.0008254 0.0289236

22 0.0155657 −0.0028760 0.0288634

23 0.0155739 −0.0029923 0.0290862

24 0.0157331 −0.0030826 0.0299482

25 0.0161339 −0.0025415 0.0299695

26 0.0161385 −0.0020780 0.0302082

27 0.0165100 −0.0017529 0.0306937

28 0.0165761 −0.0016524 0.0310153

29 0.0164015 −0.0021333 0.0312630

30 0.0161841 −0.0031976 0.0309152

31 0.0155946 −0.0035708 0.0303957

32 0.0151357 −0.0042939 0.0299565

33 0.0149392 −0.0046153 0.0300155

34 0.0145274 −0.0046654 0.0296021

35 0.0142549 −0.0052378 0.0291119

36 0.0140932 −0.0051092 0.0289725

37 0.0136192 −0.0052847 0.0280423
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Table B.5: Response of DJX to an impulse of M1 and confidence bands

Period DJX Lower Upper

1 −0.0004354 −0.0035738 0.0038497

2 −0.0019338 −0.0060318 0.0038160

3 −0.0012869 −0.0057519 0.0060012

4 0.0001961 −0.0062446 0.0074073

5 0.0018468 −0.0051678 0.0080908

6 0.0080884 −0.0001886 0.0143489

7 0.0088202 0.0008145 0.0150041

8 0.0104171 0.0009189 0.0174097

9 0.0125788 0.0028919 0.0207850

10 0.0097282 −0.0002721 0.0187247

11 0.0092367 −0.0022206 0.0197271

12 0.0097110 −0.0019606 0.0220245

13 0.0091033 −0.0027111 0.0210656

14 0.0099386 −0.0023142 0.0208394

15 0.0112667 −0.0018354 0.0231963

16 0.0109617 −0.0026707 0.0229777

17 0.0119853 −0.0029680 0.0237311

18 0.0121765 −0.0027635 0.0239094

19 0.0109139 −0.0047747 0.0240718

20 0.0112872 −0.0046883 0.0237342

21 0.0115210 −0.0042233 0.0240959

22 0.0111397 −0.0042824 0.0233659

23 0.0118048 −0.0038813 0.0246664

24 0.0118272 −0.0040740 0.0255174

25 0.0119544 −0.0043397 0.0255720

26 0.0127197 −0.0042454 0.0269318

27 0.0128041 −0.0048771 0.0275227

28 0.0130734 −0.0054212 0.0282380
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29 0.0135329 −0.0054947 0.0290932

30 0.0136386 −0.0059509 0.0293959

31 0.0136199 −0.0064601 0.0295366

32 0.0139611 −0.0061468 0.0300999

33 0.0140578 −0.0061693 0.0302127

34 0.0141735 −0.0064575 0.0303463

35 0.0145091 −0.0063506 0.0310066

36 0.0147297 −0.0061479 0.0314028

37 0.0147950 −0.0060655 0.0316912

Table B.6: Response of DJX to an impulse of TB3M and confidence bands

Period DJX Lower Upper

1 −0.0006712 −0.0037529 0.0031768

2 −0.0069103 −0.0108738 −0.0018679

3 −0.0088414 −0.0135418 −0.0028679

4 −0.0038982 −0.0094091 0.0026465

5 −0.0045947 −0.0115983 0.0027172

6 −0.0045290 −0.0115558 0.0039019

7 −0.0074714 −0.0145019 0.0022936

8 −0.0042885 −0.0120200 0.0051830

9 −0.0037538 −0.0116420 0.0054080

10 −0.0018282 −0.0097058 0.0070537

11 0.0016008 −0.0079712 0.0112339

12 0.0073545 −0.0019829 0.0171210

13 0.0088836 −0.0013492 0.0193885

14 0.0084291 −0.0020689 0.0179829

15 0.0087012 −0.0021609 0.0188837

16 0.0100181 −0.0032010 0.0205270

17 0.0096032 −0.0034416 0.0193445

18 0.0104908 −0.0028626 0.0214360
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19 0.0128584 −0.0015024 0.0245146

20 0.0135873 −0.0011997 0.0248014

21 0.0131577 −0.0025421 0.0248016

22 0.0130020 −0.0021036 0.0255692

23 0.0128604 −0.0030433 0.0248095

24 0.0120220 −0.0037975 0.0240994

25 0.0113615 −0.0048946 0.0236304

26 0.0108948 −0.0053129 0.0238079

27 0.0113012 −0.0056907 0.0247880

28 0.0110705 −0.0057248 0.0241491

29 0.0103257 −0.0069286 0.0241561

30 0.0099623 −0.0084894 0.0246673

31 0.0099013 −0.0090653 0.0248032

32 0.0093390 −0.0099850 0.0241276

33 0.0088529 −0.0103834 0.0240541

34 0.0089653 −0.0105173 0.0243321

35 0.0088457 −0.0110439 0.0243201

36 0.0084604 −0.0119242 0.0240657

37 0.0082493 −0.0122326 0.0240632

Table B.7: Response of DJX to an impulse of OIL and confidence bands

Period DJX Lower Upper

1 −0.0030488 −0.0071445 0.0011723

2 −0.0083212 −0.0131297 −0.0026015

3 −0.0067876 −0.0131103 0.0002276

4 −0.0044049 −0.0108640 0.0038135

5 −0.0062102 −0.0127865 0.0040616

6 −0.0079707 −0.0148089 0.0015533

7 −0.0085404 −0.0150088 0.0016787

8 −0.0099676 −0.0158379 0.0015528
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9 −0.0124815 −0.0189244 0.0011508

10 −0.0129929 −0.0205180 0.0018992

11 −0.0170558 −0.0258505 −0.0010636

12 −0.0183326 −0.0274191 −0.0001127

13 −0.0197898 −0.0299773 −0.0018388

14 −0.0218773 −0.0315773 −0.0032056

15 −0.0205954 −0.0298531 −0.0023460

16 −0.0226945 −0.0308461 −0.0040597

17 −0.0226256 −0.0316685 −0.0047664

18 −0.0222908 −0.0310414 −0.0027780

19 −0.0217925 −0.0305521 −0.0014150

20 −0.0212621 −0.0298898 −0.0000375

21 −0.0209792 −0.0309936 −0.0004908

22 −0.0193083 −0.0306703 0.0007355

23 −0.0196976 −0.0315754 0.0008937

24 −0.0203146 −0.0327209 0.0001914

25 −0.0200220 −0.0317688 0.0009817

26 −0.0205355 −0.0321396 0.0004097

27 −0.0206681 −0.0320576 −0.0001902

28 −0.0204201 −0.0315588 −0.0000028

29 −0.0203197 −0.0319916 0.0001735

30 −0.0198480 −0.0315107 0.0008340

31 −0.0200893 −0.0326206 0.0009971

32 −0.0202213 −0.0336892 0.0010338

33 −0.0203883 −0.0340492 0.0014602

34 −0.0209883 −0.0353088 0.0012249

35 −0.0215463 −0.0357773 0.0010832

36 −0.0218595 −0.0363798 0.0006391

37 −0.0220886 −0.0366821 0.0006861
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Table B.8: Response of DJX to an impulse of CPI and confidence bands

Period DJX Lower Upper

1 −0.0013868 −0.0040205 0.0020083

2 −0.0016384 −0.0060456 0.0041751

3 −0.0038982 −0.0082705 0.0026299

4 −0.0029603 −0.0076650 0.0030934

5 −0.0057161 −0.0111951 0.0013696

6 −0.0054531 −0.0116345 0.0028098

7 −0.0084944 −0.0150481 0.0016874

8 −0.0089691 −0.0165280 0.0020780

9 −0.0132331 −0.0188574 0.0001165

10 −0.0150708 −0.0210405 −0.0005149

11 −0.0126039 −0.0199456 0.0008859

12 −0.0126115 −0.0198128 0.0006543

13 −0.0130283 −0.0196572 −0.0001987

14 −0.0111984 −0.0178408 0.0022843

15 −0.0099205 −0.0160840 0.0037719

16 −0.0102629 −0.0176287 0.0039592

17 −0.0089966 −0.0186402 0.0053357

18 −0.0092176 −0.0174614 0.0052002

19 −0.0094265 −0.0178956 0.0064225

20 −0.0093902 −0.0189180 0.0071129

21 −0.0088109 −0.0191231 0.0078814

22 −0.0086266 −0.0189741 0.0074529

23 −0.0084227 −0.0195064 0.0066178

24 −0.0083170 −0.0193724 0.0070937

25 −0.0078436 −0.0193248 0.0082727

26 −0.0076489 −0.0189353 0.0084134

27 −0.0080157 −0.0187952 0.0089828

28 −0.0083785 −0.0189065 0.0094438
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29 −0.0085390 −0.0192888 0.0101726

30 −0.0089505 −0.0196474 0.0100605

31 −0.0093475 −0.0199569 0.0100285

32 −0.0094204 −0.0200226 0.0095359

33 −0.0096129 −0.0200710 0.0096299

34 −0.0096257 −0.0205065 0.0096595

35 −0.0096217 −0.0209719 0.0096579

36 −0.0094509 −0.0210566 0.0097332

37 −0.0093759 −0.0209656 0.0093154
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B.3 Forecast Error Variance Decomposition

Table B.9: Forecast error variance decomposition of DJX

Period DJX IP M1 TB3M OIL CPI

1 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

2 0.9445513 0.0208773 0.0009871 0.0203348 0.0131655 0.0000840

3 0.8978678 0.0451947 0.0013637 0.0382901 0.0141367 0.0031471

4 0.8868073 0.0608969 0.0011335 0.0345741 0.0121118 0.0044763

5 0.8681465 0.0730866 0.0010075 0.0337374 0.0127346 0.0112874

6 0.8214568 0.1057689 0.0084226 0.0314832 0.0152517 0.0176168

7 0.7740594 0.1253686 0.0147448 0.0360759 0.0185149 0.0312364

8 0.7282885 0.1520545 0.0220209 0.0332038 0.0223606 0.0420716

9 0.6820448 0.1689994 0.0300671 0.0294550 0.0283552 0.0610786

10 0.6506350 0.1778529 0.0314152 0.0260293 0.0340335 0.0800340

11 0.6280089 0.1804389 0.0326426 0.0234115 0.0466820 0.0888162

12 0.6074043 0.1796142 0.0338653 0.0249222 0.0590005 0.0951936

13 0.5889316 0.1796064 0.0341978 0.0273015 0.0705306 0.0994321

14 0.5719206 0.1791438 0.0362134 0.0286955 0.0836685 0.1003581

15 0.5572544 0.1803644 0.0402812 0.0301911 0.0919018 0.1000071

16 0.5434438 0.1790039 0.0438275 0.0323097 0.1017726 0.0996425

17 0.5315105 0.1780703 0.0490217 0.0336913 0.1096205 0.0980857

18 0.5197589 0.1776740 0.0542213 0.0355706 0.1158770 0.0968983

19 0.5096722 0.1765541 0.0578141 0.0392833 0.1207923 0.0958840

20 0.5008624 0.1758301 0.0615605 0.0431229 0.1239902 0.0946339

21 0.4930835 0.1759787 0.0655469 0.0461462 0.1262830 0.0929617

22 0.4868869 0.1765773 0.0693381 0.0488342 0.1268334 0.0915301

23 0.4810666 0.1768701 0.0737173 0.0510474 0.1273626 0.0899360

24 0.4764437 0.1769990 0.0780487 0.0523589 0.1279950 0.0881547

25 0.4724245 0.1775394 0.0826038 0.0531199 0.1281505 0.0861618

26 0.4680540 0.1779022 0.0878570 0.0535114 0.1285352 0.0841402
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27 0.4638211 0.1783447 0.0928841 0.0540511 0.1286950 0.0822041

28 0.4599179 0.1787551 0.0980250 0.0544239 0.1284395 0.0804387

29 0.4561057 0.1790604 0.1035213 0.0544402 0.1280469 0.0788254

30 0.4526017 0.1793138 0.1089965 0.0543593 0.1272905 0.0774382

31 0.4494825 0.1791190 0.1143216 0.0542738 0.1265974 0.0762056

32 0.4465992 0.1786460 0.1198750 0.0539871 0.1258829 0.0750098

33 0.4437471 0.1781575 0.1254183 0.0535720 0.1252159 0.0738892

34 0.4408529 0.1774279 0.1309489 0.0532322 0.1247962 0.0727419

35 0.4378792 0.1765343 0.1366177 0.0528717 0.1245361 0.0715609

36 0.4348829 0.1756361 0.1424211 0.0524222 0.1243265 0.0703112

Table B.10: Forecast error variance decomposition of IP

Period DJX IP M1 TB3M OIL CPI

1 0.0001045 0.9998955 0.0000000 0.0000000 0.0000000 0.0000000

2 0.0011026 0.9834095 0.0008910 0.0076393 0.0020905 0.0048671

3 0.0077800 0.9615155 0.0011674 0.0194409 0.0035919 0.0065042

4 0.0452482 0.9257982 0.0009448 0.0149884 0.0023148 0.0107055

5 0.0690368 0.9044953 0.0011176 0.0101863 0.0015418 0.0136222

6 0.0840939 0.8930846 0.0022895 0.0079878 0.0011131 0.0114311

7 0.1001981 0.8776766 0.0026311 0.0093876 0.0016941 0.0084125

8 0.1141207 0.8643289 0.0031731 0.0089509 0.0025902 0.0068364

9 0.1253555 0.8495346 0.0044307 0.0082258 0.0054958 0.0069576

10 0.1302846 0.8378511 0.0077971 0.0083144 0.0073442 0.0084085

11 0.1328195 0.8229903 0.0108202 0.0099717 0.0101186 0.0132797

12 0.1385166 0.8041128 0.0144184 0.0109107 0.0147130 0.0173285

13 0.1435005 0.7873990 0.0176424 0.0119055 0.0184368 0.0211158

14 0.1475095 0.7707005 0.0212439 0.0139279 0.0230652 0.0235530

15 0.1505406 0.7534374 0.0251458 0.0168307 0.0283591 0.0256865

16 0.1523565 0.7380613 0.0293232 0.0200616 0.0329119 0.0272856

17 0.1535157 0.7230101 0.0337557 0.0235650 0.0373466 0.0288068
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18 0.1542049 0.7092479 0.0384271 0.0267142 0.0418392 0.0295667

19 0.1543943 0.6962021 0.0435985 0.0295116 0.0462198 0.0300737

20 0.1538366 0.6843868 0.0488843 0.0324457 0.0500250 0.0304216

21 0.1532981 0.6732801 0.0543775 0.0351259 0.0532422 0.0306762

22 0.1529478 0.6622362 0.0594481 0.0378993 0.0568467 0.0306219

23 0.1528585 0.6517495 0.0645852 0.0406723 0.0598594 0.0302751

24 0.1528304 0.6421074 0.0699019 0.0430502 0.0623881 0.0297220

25 0.1530177 0.6330591 0.0752972 0.0451141 0.0644717 0.0290401

26 0.1533601 0.6245430 0.0806489 0.0469494 0.0661531 0.0283454

27 0.1538560 0.6165277 0.0862515 0.0482016 0.0676045 0.0275586

28 0.1544157 0.6089972 0.0919639 0.0490707 0.0688258 0.0267267

29 0.1549925 0.6018026 0.0978027 0.0496876 0.0698196 0.0258950

30 0.1556294 0.5948501 0.1036779 0.0500499 0.0706610 0.0251317

31 0.1562374 0.5882832 0.1096622 0.0501555 0.0712817 0.0243800

32 0.1568341 0.5819326 0.1156688 0.0500823 0.0718136 0.0236686

33 0.1574812 0.5757124 0.1216937 0.0498595 0.0722716 0.0229816

34 0.1581784 0.5695985 0.1277577 0.0494942 0.0726439 0.0223273

35 0.1588772 0.5636151 0.1338218 0.0490207 0.0729763 0.0216889

36 0.1595579 0.5577286 0.1398826 0.0484574 0.0732920 0.0210816

Table B.11: Forecast error variance decomposition of M1

Period DJX IP M1 TB3M OIL CPI

1 0.0007596 0.0163042 0.9829362 0.0000000 0.0000000 0.0000000

2 0.0003841 0.0149792 0.9788594 0.0000384 0.0002724 0.0054664

3 0.0008856 0.0240058 0.9635851 0.0000262 0.0080423 0.0034549

4 0.0023052 0.0637447 0.9142969 0.0028053 0.0105363 0.0063117

5 0.0019206 0.1028648 0.8657460 0.0037233 0.0085197 0.0172257

6 0.0029773 0.1267385 0.8311190 0.0046508 0.0064075 0.0281070

7 0.0051710 0.1472293 0.8006195 0.0049063 0.0049838 0.0370900

8 0.0044290 0.1652714 0.7811907 0.0051160 0.0044490 0.0395438
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9 0.0037229 0.1716785 0.7620880 0.0090732 0.0050265 0.0484110

10 0.0031459 0.1778562 0.7428478 0.0190181 0.0048894 0.0522426

11 0.0031652 0.1814857 0.7214288 0.0302893 0.0059818 0.0576492

12 0.0029212 0.1835417 0.7080305 0.0369591 0.0060522 0.0624953

13 0.0027054 0.1841168 0.6958511 0.0441429 0.0053124 0.0678714

14 0.0023485 0.1838121 0.6838890 0.0515107 0.0049029 0.0735369

15 0.0020608 0.1825304 0.6743949 0.0571383 0.0045796 0.0792961

16 0.0018199 0.1799561 0.6661247 0.0636293 0.0048368 0.0836332

17 0.0016061 0.1776117 0.6586937 0.0703365 0.0051885 0.0865635

18 0.0014541 0.1768340 0.6498398 0.0770929 0.0055315 0.0892477

19 0.0012979 0.1757406 0.6425681 0.0832411 0.0058766 0.0912758

20 0.0011621 0.1750426 0.6349928 0.0894195 0.0059418 0.0934412

21 0.0010481 0.1737383 0.6296663 0.0946505 0.0059168 0.0949799

22 0.0009519 0.1715624 0.6255948 0.0997370 0.0058498 0.0963041

23 0.0008676 0.1695410 0.6221972 0.1040437 0.0056899 0.0976605

24 0.0007934 0.1673720 0.6193284 0.1078330 0.0054601 0.0992131

25 0.0007282 0.1653765 0.6164008 0.1116240 0.0052502 0.1006204

26 0.0006713 0.1634887 0.6137048 0.1148715 0.0051291 0.1021346

27 0.0006215 0.1617963 0.6114745 0.1176178 0.0050050 0.1034849

28 0.0005774 0.1601140 0.6096108 0.1200202 0.0049070 0.1047706

29 0.0005385 0.1585384 0.6079074 0.1221553 0.0048382 0.1060221

30 0.0005037 0.1568249 0.6067268 0.1239330 0.0047610 0.1072505

31 0.0004725 0.1550694 0.6058296 0.1256362 0.0046890 0.1083033

32 0.0004445 0.1532259 0.6052775 0.1271270 0.0046040 0.1093211

33 0.0004193 0.1512708 0.6049750 0.1284504 0.0045153 0.1103693

34 0.0003961 0.1493215 0.6048275 0.1295794 0.0044203 0.1114551

35 0.0003749 0.1473905 0.6048817 0.1304576 0.0043299 0.1125654

36 0.0003555 0.1454153 0.6051669 0.1311596 0.0042575 0.1136452
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Table B.12: Forecast error variance decomposition of TB3M

Period DJX IP M1 TB3M OIL CPI

1 0.0006935 0.0098816 0.0027708 0.9866541 0.0000000 0.0000000

2 0.0019229 0.0307730 0.0020308 0.9628730 0.0019369 0.0004634

3 0.0140167 0.0508026 0.0020854 0.9277530 0.0050258 0.0003164

4 0.0164154 0.0795617 0.0016813 0.8951609 0.0064593 0.0007215

5 0.0159189 0.0957751 0.0013886 0.8802490 0.0053443 0.0013241

6 0.0151813 0.1033616 0.0011364 0.8743607 0.0042203 0.0017397

7 0.0140668 0.1057743 0.0008979 0.8726108 0.0037372 0.0029131

8 0.0129097 0.1110092 0.0007565 0.8672390 0.0030456 0.0050400

9 0.0123562 0.1129159 0.0006818 0.8631901 0.0032473 0.0076086

10 0.0121387 0.1166066 0.0008076 0.8577109 0.0029947 0.0097416

11 0.0124347 0.1184802 0.0009763 0.8524120 0.0024936 0.0132031

12 0.0134973 0.1177546 0.0012048 0.8491353 0.0021945 0.0162135

13 0.0146489 0.1160950 0.0015124 0.8470025 0.0019771 0.0187641

14 0.0154732 0.1138558 0.0018777 0.8459534 0.0018501 0.0209899

15 0.0162079 0.1116250 0.0025108 0.8452350 0.0017107 0.0227107

16 0.0169720 0.1097984 0.0033720 0.8443558 0.0015387 0.0239632

17 0.0175893 0.1081993 0.0044392 0.8430614 0.0014037 0.0253072

18 0.0179734 0.1066182 0.0059044 0.8415571 0.0013047 0.0266421

19 0.0183235 0.1052991 0.0077540 0.8396017 0.0012064 0.0278153

20 0.0187102 0.1032856 0.0094030 0.8383631 0.0011194 0.0291188

21 0.0191565 0.1006506 0.0110250 0.8379081 0.0010445 0.0302153

22 0.0196293 0.0979158 0.0125918 0.8378097 0.0009822 0.0310711

23 0.0201325 0.0950355 0.0140798 0.8380550 0.0009316 0.0317655

24 0.0206563 0.0921211 0.0156675 0.8382548 0.0008826 0.0324177

25 0.0211988 0.0894136 0.0174636 0.8381802 0.0008379 0.0329059

26 0.0217307 0.0868374 0.0194090 0.8379539 0.0007993 0.0332696

27 0.0222467 0.0843482 0.0215423 0.8375922 0.0007710 0.0334997

28 0.0227692 0.0819783 0.0237957 0.8370567 0.0007508 0.0336492
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29 0.0232665 0.0796686 0.0260324 0.8366144 0.0007341 0.0336840

30 0.0237577 0.0774041 0.0282606 0.8362163 0.0007191 0.0336422

31 0.0242796 0.0752246 0.0304146 0.8358204 0.0007027 0.0335581

32 0.0248288 0.0731307 0.0325139 0.8353950 0.0006829 0.0334488

33 0.0253804 0.0711485 0.0346213 0.8348643 0.0006632 0.0333222

34 0.0259411 0.0692879 0.0367320 0.8341977 0.0006450 0.0331963

35 0.0265168 0.0675374 0.0388290 0.8334298 0.0006291 0.0330579

36 0.0271073 0.0659005 0.0409669 0.8325272 0.0006176 0.0328804

Table B.13: Forecast error variance decomposition of OIL

Period DJX IP M1 TB3M OIL CPI

1 0.0077764 0.0008158 0.0002229 0.0010953 0.9900895 0.0000000

2 0.0054781 0.0059328 0.0010191 0.0006965 0.9795392 0.0073343

3 0.0033431 0.0100651 0.0022613 0.0018237 0.9747739 0.0077331

4 0.0027501 0.0219241 0.0045708 0.0014939 0.9596574 0.0096038

5 0.0027369 0.0315784 0.0041372 0.0011890 0.9505825 0.0097760

6 0.0027968 0.0476096 0.0037929 0.0012987 0.9301505 0.0143515

7 0.0029188 0.0654476 0.0033446 0.0019022 0.9039623 0.0224245

8 0.0027449 0.0862387 0.0035393 0.0027051 0.8760759 0.0286961

9 0.0028276 0.1088841 0.0048712 0.0025113 0.8489750 0.0319308

10 0.0026399 0.1215796 0.0047307 0.0027702 0.8298191 0.0384606

11 0.0025277 0.1261996 0.0043497 0.0041802 0.8169479 0.0457949

12 0.0023507 0.1271076 0.0040097 0.0052123 0.8068312 0.0544885

13 0.0021375 0.1247410 0.0036540 0.0073629 0.7985865 0.0635181

14 0.0019548 0.1206590 0.0033437 0.0109039 0.7904854 0.0726532

15 0.0018216 0.1174368 0.0031155 0.0134474 0.7845915 0.0795871

16 0.0017768 0.1151428 0.0029752 0.0153191 0.7800924 0.0846938

17 0.0019773 0.1146206 0.0030464 0.0170170 0.7740391 0.0892997

18 0.0022453 0.1151454 0.0035443 0.0191088 0.7669364 0.0930198

19 0.0026065 0.1160172 0.0041227 0.0215168 0.7606252 0.0951116
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20 0.0029793 0.1159162 0.0045781 0.0240737 0.7564161 0.0960366

21 0.0032775 0.1146902 0.0046619 0.0269386 0.7537461 0.0966856

22 0.0035326 0.1124872 0.0045900 0.0298411 0.7528970 0.0966521

23 0.0037929 0.1098793 0.0044733 0.0324081 0.7529616 0.0964848

24 0.0040538 0.1070615 0.0043198 0.0344758 0.7536540 0.0964351

25 0.0042043 0.1045199 0.0041888 0.0361748 0.7543447 0.0965675

26 0.0043273 0.1026077 0.0041679 0.0371665 0.7552698 0.0964607

27 0.0044737 0.1014335 0.0042627 0.0376710 0.7557317 0.0964274

28 0.0046348 0.1007228 0.0044344 0.0381241 0.7556651 0.0964189

29 0.0047421 0.1001759 0.0046692 0.0385612 0.7555975 0.0962542

30 0.0047896 0.0996913 0.0048916 0.0389156 0.7558857 0.0958261

31 0.0048240 0.0989424 0.0050351 0.0392373 0.7565929 0.0953684

32 0.0048458 0.0979268 0.0051218 0.0394987 0.7576574 0.0949495

33 0.0048475 0.0967026 0.0051713 0.0396344 0.7589916 0.0946527

34 0.0048528 0.0954068 0.0051998 0.0396575 0.7603649 0.0945183

35 0.0048740 0.0941328 0.0052471 0.0395468 0.7616263 0.0945731

36 0.0048974 0.0930196 0.0053361 0.0393887 0.7626259 0.0947323

Table B.14: Forecast error variance decomposition of CPI

Period DJX IP M1 TB3M OIL CPI

1 0.0072822 0.0224617 0.0209445 0.0071996 0.2363361 0.7057759

2 0.0023668 0.0111886 0.0162670 0.0023084 0.4657367 0.5021326

3 0.0014962 0.0113057 0.0166290 0.0030879 0.5742931 0.3931881

4 0.0013432 0.0273638 0.0180573 0.0020518 0.6474259 0.3037581

5 0.0010407 0.0414126 0.0201454 0.0026356 0.6804291 0.2543366

6 0.0008711 0.0508442 0.0245168 0.0031684 0.6995501 0.2210494

7 0.0010833 0.0588999 0.0294089 0.0055793 0.7096453 0.1953833

8 0.0024285 0.0720657 0.0367975 0.0095140 0.7069807 0.1722138

9 0.0053016 0.0949462 0.0446757 0.0088221 0.6924112 0.1538432

10 0.0064171 0.1153312 0.0517833 0.0078930 0.6778328 0.1407426
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11 0.0058099 0.1336798 0.0585766 0.0077510 0.6627340 0.1314486

12 0.0051892 0.1458343 0.0664928 0.0076868 0.6521493 0.1226476

13 0.0047393 0.1554916 0.0730276 0.0081420 0.6467882 0.1118114

14 0.0045280 0.1623317 0.0789334 0.0097670 0.6421982 0.1022417

15 0.0045498 0.1676928 0.0850036 0.0120102 0.6362968 0.0944468

16 0.0049723 0.1717809 0.0918914 0.0139819 0.6288972 0.0884763

17 0.0057594 0.1763715 0.0996590 0.0164262 0.6185241 0.0832599

18 0.0066645 0.1829031 0.1088379 0.0195135 0.6041234 0.0779577

19 0.0076462 0.1902798 0.1187038 0.0227297 0.5878756 0.0727649

20 0.0086402 0.1969116 0.1280739 0.0263476 0.5715159 0.0685109

21 0.0093156 0.2018554 0.1361569 0.0306012 0.5568501 0.0652207

22 0.0096556 0.2052160 0.1430747 0.0352372 0.5441574 0.0626590

23 0.0099852 0.2078494 0.1491812 0.0396828 0.5331454 0.0601559

24 0.0103263 0.2104810 0.1547687 0.0441868 0.5225335 0.0577037

25 0.0105565 0.2127369 0.1602198 0.0485797 0.5124960 0.0554111

26 0.0106730 0.2150660 0.1661793 0.0522811 0.5023378 0.0534627

27 0.0108056 0.2176249 0.1726979 0.0550415 0.4921443 0.0516858

28 0.0109823 0.2204325 0.1793226 0.0574623 0.4819005 0.0498998

29 0.0111003 0.2232573 0.1861557 0.0597930 0.4715011 0.0481926

30 0.0111290 0.2260840 0.1928749 0.0620701 0.4611536 0.0466884

31 0.0110867 0.2285609 0.1993430 0.0642922 0.4513113 0.0454059

32 0.0109887 0.2306589 0.2054929 0.0665162 0.4421407 0.0442026

33 0.0108432 0.2324613 0.2114264 0.0686023 0.4336675 0.0429992

34 0.0106942 0.2340797 0.2172470 0.0704744 0.4257098 0.0417949

35 0.0105545 0.2354281 0.2231437 0.0721303 0.4180677 0.0406758

36 0.0104090 0.2365744 0.2291785 0.0736180 0.4105755 0.0396445
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B.4 Out-of-Sample Forecast

Table B.15: Forecast of DJX and confidence bands

Period Forecast Observed Value Lower Upper

1 9.5088668 9.5057770 9.4406420 9.5770916

2 9.5248279 9.4800972 9.4275236 9.6221323

3 9.5622979 9.4746704 9.4438082 9.6807877

4 9.5886066 9.4806835 9.4550985 9.7221148

5 9.5992625 9.5368041 9.4522400 9.7462850

6 9.6210286 9.5506972 9.4590695 9.7829878

7 9.6376681 9.5873059 9.4641884 9.8111478

8 9.6473575 9.6050680 9.4602248 9.8344903

9 9.6438888 9.6234806 9.4409045 9.8468731

10 9.6582275 9.6097606 9.4411749 9.8752802

11 9.6567093 9.6485656 9.4263555 9.8870632

12 9.6639369 9.6030788 9.4199643 9.9079095

13 9.6898132 9.6244130 9.4309161 9.9487102

14 9.6956453 9.6515426 9.4228858 9.9684048

15 9.7075994 9.6857301 9.4224156 9.9927833

16 9.7196329 9.7157510 9.4218716 10.0173942

17 9.7242104 9.6613427 9.4143893 10.0340315

18 9.7336971 9.7002514 9.4124733 10.0549210

19 9.7403445 9.7085463 9.4082362 10.0724528

20 9.7497945 9.7160031 9.4068069 10.0927821

21 9.7603091 9.7241916 9.4065793 10.1140388

22 9.7697284 9.7307162 9.4062300 10.1332267

23 9.7784613 9.7149447 9.4051419 10.1517807

24 9.7880803 9.7467431 9.4047940 10.1713667

25 9.7979191 9.7434890 9.4048957 10.1909426

26 9.8049376 9.7636805 9.4022198 10.2076554
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27 9.8127138 9.7885390 9.4001904 10.2252371

28 9.8234985 9.7882490 9.4011550 10.2458421

29 9.8303052 9.7506248 9.3984486 10.2621617

30 9.8373567 9.7950897 9.3962878 10.2784255

31 9.8459851 9.7943282 9.3958464 10.2961239

32 9.8521337 9.7964874 9.3930781 10.3111894

33 9.8586393 9.8050315 9.3909075 10.3263711

34 9.8649112 9.7940755 9.3886194 10.3412030

35 9.8709476 9.7866739 9.3861342 10.3557610

36 9.8772900 9.7445850 9.3840825 10.3704976

Table B.16: Forecast of IP and confidence bands

Period Forecast Observed Value Lower Upper

1 4.6088247 4.6043589 4.5994317 4.6182176

2 4.6140680 4.6070464 4.6012193 4.6269168

3 4.6164110 4.6115846 4.5996170 4.6332051

4 4.6224810 4.6137136 4.6007879 4.6441740

5 4.6277075 4.6144569 4.6009738 4.6544412

6 4.6312589 4.6185059 4.5996148 4.6629029

7 4.6364977 4.6206596 4.5993048 4.6736906

8 4.6416197 4.6204380 4.5995774 4.6836620

9 4.6458037 4.6197523 4.5988447 4.6927627

10 4.6482800 4.6216546 4.5962775 4.7002825

11 4.6540292 4.6177754 4.5970677 4.7109908

12 4.6570247 4.6254061 4.5951138 4.7189355

13 4.6603895 4.6311897 4.5938380 4.7269410

14 4.6641141 4.6313583 4.5930131 4.7352151

15 4.6676375 4.6339160 4.5920584 4.7432166

16 4.6709289 4.6365613 4.5909306 4.7509272

17 4.6739534 4.6347746 4.5897377 4.7581691
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18 4.6762065 4.6425421 4.5879254 4.7644876

19 4.6792579 4.6507313 4.5870473 4.7714684

20 4.6810525 4.6526214 4.5851125 4.7769925

21 4.6827206 4.6563014 4.5832163 4.7822249

22 4.6847137 4.6607563 4.5816975 4.7877298

23 4.6870198 4.6641964 4.5806311 4.7934085

24 4.6893567 4.6645121 4.5797174 4.7989959

25 4.6911762 4.6698112 4.5784031 4.8039493

26 4.6934767 4.6713914 4.5776703 4.8092831

27 4.6954260 4.6802739 4.5767087 4.8141433

28 4.6973035 4.6813050 4.5757819 4.8188250

29 4.6991923 4.6784234 4.5749519 4.8234327

30 4.7010755 4.6769028 4.5741939 4.8279572

31 4.7026063 4.6750451 4.5731675 4.8320450

32 4.7044434 4.6733885 4.5725272 4.8363597

33 4.7060138 4.6698328 4.5716986 4.8403290

34 4.7077362 4.6698346 4.5710929 4.8443795

35 4.7092656 4.6775913 4.5703636 4.8481675

36 4.7107451 4.6784857 4.5696538 4.8518363

Table B.17: Forecast of M1 and confidence bands

Period Forecast Observed Value Lower Upper

1 7.7635834 7.7763672 7.7505222 7.7766445

2 7.7702533 7.7896616 7.7518572 7.7886493

3 7.7751813 7.7928443 7.7521592 7.7982034

4 7.7812587 7.8069812 7.7522980 7.8102195

5 7.7842540 7.8110013 7.7501398 7.8183682

6 7.7904440 7.8121354 7.7512228 7.8296653

7 7.7946346 7.8139149 7.7494285 7.8398407

8 7.8014492 7.8284364 7.7510109 7.8518874
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9 7.8079631 7.8328075 7.7519885 7.8639376

10 7.8127796 7.8311805 7.7504603 7.8750990

11 7.8161273 7.8423966 7.7475804 7.8846741

12 7.8198546 7.8474109 7.7447812 7.8949279

13 7.8226406 7.8555834 7.7409998 7.9042813

14 7.8287761 7.8709678 7.7408902 7.9166620

15 7.8329670 7.8717689 7.7387172 7.9272168

16 7.8362714 7.8840116 7.7355420 7.9370008

17 7.8414630 7.8959573 7.7345034 7.9484227

18 7.8438157 7.9090854 7.7304144 7.9572170

19 7.8478653 7.9187014 7.7281470 7.9675836

20 7.8519276 7.9282979 7.7259249 7.9779302

21 7.8556536 7.9330439 7.7234879 7.9878193

22 7.8586660 7.9431437 7.7203573 7.9969746

23 7.8623882 7.9525096 7.7180846 8.0066918

24 7.8660096 7.9442084 7.7157200 8.0162993

25 7.8698953 7.9588216 7.7136402 8.0261504

26 7.8731743 7.9612307 7.7110678 8.0352808

27 7.8765185 7.9667601 7.7086807 8.0443562

28 7.8801675 7.9787565 7.7067558 8.0535793

29 7.8839252 7.9847353 7.7050525 8.0627978

30 7.8874430 8.0056340 7.7032156 8.0716704

31 7.8913243 8.0039647 7.7018580 8.0807906

32 7.8950641 8.0065675 7.7004746 8.0896536

33 7.8985517 8.0015895 7.6989040 8.0981993

34 7.9024043 8.0095625 7.6978197 8.1069890

35 7.9064458 8.0203691 7.6970443 8.1158472

36 7.9103946 8.0262682 7.6962885 8.1245006
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Table B.18: Forecast of TB3M and confidence bands

Period Forecast Observed Value Lower Upper

1 0.2462298 0.11 −0.0342278 0.5266874

2 0.4805894 0.10 0.0099353 0.9512434

3 0.5501131 0.09 −0.0775088 1.1777350

4 0.5648962 0.07 −0.2402380 1.3700303

5 0.6828832 0.07 −0.2870235 1.6527900

6 0.7536096 0.10 −0.3503944 1.8576137

7 0.7407817 0.09 −0.5020029 1.9835663

8 0.7666285 0.06 −0.6287568 2.1620138

9 0.8108193 0.04 −0.7450803 2.3667188

10 0.8777745 0.05 −0.8585876 2.6141366

11 0.9598530 0.04 −0.9491539 2.8688599

12 0.9929476 0.04 −1.0810798 3.0669749

13 1.0505633 0.02 −1.1825433 3.2836700

14 1.1144013 0.05 −1.2676973 3.4964998

15 1.1308752 0.07 −1.3916814 3.6534319

16 1.1417704 0.07 −1.5209583 3.8044990

17 1.1908127 0.04 −1.6083408 3.9899662

18 1.1977010 0.05 −1.7322688 4.1276708

19 1.1849431 0.05 −1.8713445 4.2412307

20 1.1916016 0.03 −1.9865629 4.3697660

21 1.1837892 0.03 −2.1107808 4.4783593

22 1.1736894 0.04 −2.2312709 4.5786498

23 1.1669883 0.03 −2.3442076 4.6781842

24 1.1567045 0.03 −2.4574842 4.7708933

25 1.1408595 0.02 −2.5720190 4.8537381

26 1.1280544 0.02 −2.6779361 4.9340449

27 1.0945965 0.02 −2.7993439 4.9885370

28 1.0603323 0.03 −2.9171730 5.0378375
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29 1.0254954 0.03 −3.0318565 5.0828473

30 0.9869142 0.02 −3.1469312 5.1207596

31 0.9478252 0.03 −3.2593440 5.1549944

32 0.9160510 0.02 −3.3614862 5.1935883

33 0.8777744 0.02 −3.4665941 5.2221429

34 0.8362810 0.02 −3.5713529 5.2439149

35 0.7943871 0.03 −3.6734540 5.2622282

36 0.7481311 0.07 −3.7769787 5.2732409

Table B.19: Forecast of OIL and confidence bands

Period Forecast Observed Value Lower Upper

1 5.3488043 5.3007145 5.2140626 5.4835461

2 5.3831782 5.2733072 5.1631053 5.6032511

3 5.3889960 5.2519069 5.1048475 5.6731444

4 5.4744225 5.2512782 5.1333402 5.8155048

5 5.4913602 5.2878124 5.1117384 5.8709820

6 5.5121322 5.3129104 5.1009627 5.9233017

7 5.5304794 5.2645020 5.0970457 5.9639130

8 5.5101733 5.2268751 5.0583036 5.9620430

9 5.4958698 5.2310017 5.0279617 5.9637779

10 5.5385250 5.2347384 5.0588834 6.0181666

11 5.5520098 5.2869025 5.0586841 6.0453355

12 5.5702286 5.3138954 5.0591548 6.0813024

13 5.5798828 5.3209591 5.0509750 6.1087907

14 5.6012933 5.2906380 5.0547494 6.1478371

15 5.6152303 5.2642434 5.0542656 6.1761950

16 5.6222540 5.2917458 5.0486969 6.1958111

17 5.6252398 5.2604078 5.0415009 6.2089786

18 5.6247997 5.2842184 5.0317274 6.2178719

19 5.6258220 5.2766851 5.0236380 6.2280061
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20 5.6279044 5.2851815 5.0170815 6.2387273

21 5.6334920 5.2927016 5.0132084 6.2537755

22 5.6387119 5.3172863 5.0073887 6.2700350

23 5.6467389 5.2879640 5.0037800 6.2896978

24 5.6507891 5.2382488 4.9962825 6.3052958

25 5.6639566 5.1953983 4.9982584 6.3296548

26 5.6671381 5.0877815 4.9915405 6.3427358

27 5.6717208 4.9748008 4.9869745 6.3564672

28 5.6728983 4.7351453 4.9797534 6.3660431

29 5.6740973 4.4903203 4.9730265 6.3751681

30 5.6783065 4.6392817 4.9697125 6.3869005

31 5.6845797 4.6009613 4.9683678 6.4007917

32 5.6885261 4.6832417 4.9642274 6.4128249

33 5.6925970 4.7678841 4.9598944 6.4252996

34 5.6967131 4.7478843 4.9556423 6.4377839

35 5.7006291 4.6302530 4.9514135 6.4498447

36 5.7032117 4.4559739 4.9462083 6.4602151

Table B.20: Forecast of CPI and confidence bands

Period Forecast Observed Value Lower Upper

1 5.4420859 5.4428678 5.4386009 5.4455709

2 5.4455195 5.4456204 5.4393984 5.4516406

3 5.4489359 5.4432918 5.4407657 5.4571061

4 5.4527916 5.4431317 5.4427804 5.4628028

5 5.4553775 5.4443379 5.4437170 5.4670380

6 5.4584797 5.4501926 5.4455314 5.4714280

7 5.4609127 5.4477928 5.4469465 5.4748790

8 5.4624723 5.4453226 5.4474562 5.4774884

9 5.4641232 5.4466943 5.4481813 5.4800651

10 5.4671350 5.4492472 5.4504864 5.4837837

164



11 5.4710444 5.4509526 5.4537951 5.4882938

12 5.4739943 5.4528094 5.4560553 5.4919333

13 5.4769219 5.4543506 5.4582395 5.4956043

14 5.4795904 5.4549065 5.4602300 5.4989509

15 5.4824481 5.4554835 5.4624404 5.5024557

16 5.4852008 5.4582953 5.4645720 5.5058296

17 5.4878613 5.4601300 5.4666454 5.5090773

18 5.4903955 5.4610993 5.4685364 5.5122546

19 5.4929113 5.4629416 5.4703731 5.5154495

20 5.4951861 5.4648482 5.4719631 5.5184091

21 5.4979591 5.4678491 5.4740813 5.5218369

22 5.5006969 5.4695274 5.4761566 5.5252373

23 5.5033716 5.4705718 5.4781320 5.5286112

24 5.5059711 5.4697844 5.4800150 5.5319273

25 5.5087516 5.4706980 5.4820825 5.5354207

26 5.5115037 5.4712323 5.4841266 5.5388808

27 5.5141263 5.4683428 5.4860414 5.5422111

28 5.5166449 5.4650345 5.4878555 5.5454344

29 5.5190583 5.4582101 5.4895662 5.5485504

30 5.5215415 5.4603767 5.4913572 5.5517258

31 5.5241154 5.4627295 5.4932537 5.5549772

32 5.5266894 5.4637555 5.4951592 5.5582197

33 5.5291727 5.4681909 5.4969680 5.5613774

34 5.5316812 5.4713711 5.4988091 5.5645532

35 5.5340824 5.4726866 5.5005585 5.5676064

36 5.5365118 5.4719807 5.5023510 5.5706725
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