

Master’s Degree programme — Second Cycle

(D.M. 270/2004)

in Informatica — Computer Science

Final Thesis

Client-Side Security Using CORS

Supervisor

Prof. Focardi Riccardo

Candidate

Mohamed Abdelhamied

Matriculation number 849656

Academic Year

2014/201

Università

Ca’Foscari

Venezia

ii

Abstract:

Nowadays web security is an important issue, as everyone uses

computers to access different websites such as news, social networks, bank

accounts, etc. It becomes crucial to keep sensitive information, cookies and

passwords, protected against any kind of web threat including malware and

web-specific attack patterns such as Cross-Site Request Forgery (CSRF) or

Cross-Site Scripting (XSS). There are different mechanisms for preventing or

mitigating this type of attacks, among which the standard same-origin policy

of browsers that limits accesses performed by scripts executed in a web page

to other web pages that share the same origin. In practice, however, web

application might need to access other origins through JavaScript. For this

reason, W3C has recently introduced a new mechanisms called Cross-Origin

Resource Sharing (CORS) that permits a controlled access to cross-origin

web pages. In this thesis, we illustrate CORS and investigate its main

advantages with respect to the standard same-origin policy. To support our

study we have performed a number of experiments that point out the

flexibility and potential of CORS when applied to typical web-application use

cases.

Acknowledgments

First of all, I would like to thank and express my deepest appreciation to my

supervisor Professor Focardi Riccardo, who is really rich of ideas and possesses a

very good personality. I am sure that without his systematic supervision, positive

approach and guidance this work would not have been possible and also I want to

thank him for his significant help in curving my future career path in the field of

Computer Security. I would also like to give my thanks and appreciation to the

Informatics Department of Ca’ Foscari for providing a stimulating environment full

of passionate people.

I would also like to thank Stefano Calzavara, for his support during my work in my

thesis and my best friend Phu Nguyen who has always patiently helped me during

my Master degree study providing the best solutions to my problems. I would also

like to extend my gratitude to Tinsu Gare, Kameran Lak, and Federico Pistone, for

covering my living expenses during the early months of my study. I would also like

to thank my friends Ismail Elezi, Alberto Meggiato, Phùng Kiên, and Andrea

Lazzarotto, for helping me in the study during my master, in addition I’d like to

thank Miriam Pagano and Mereb Habte for editing the thesis and language

correction.

And last but not least, I would like to thank my family and friends: my father,

Abdelhamied Hassan, my lovely mother Zahira Sadek, my brothers Khaled and

Azat and sisters Rasha and Marwa, who are always happy for the good things

happening to me (more than I am for myself) and always caring for me, supporting

and having my back.

Thank you Allah for being with me in my life!!!

Table of Contents

 Abstract ii

 Acknowledgments iii

 List of Figures vii

 List of Tables x

1 Introduction 1

2 Background Concept

2.1 Communication Mechanisms

2.1.1 Same-Origin Policy

2.1.2 Cross-Site-Request

2.2 Security Attacks

2.2.1 Cross-site scripting (XSS)

2.2.1.1 Stored XSS

4

6

6

11

13

13

13

2.2.1.2 Reflected XSS

2.2.2 Cross-site request forgery (CSRF)

14

16

3 Cross-Origin-Resource-Sharing (CORS)

3.1 Notion of CORS

3.1.1 The Client

3.1.2 The browser

3.1.3 The Server

3.2 Simple Request

3.3 Preflight Request

3.4 Advanced Request

18

19

20

20

21

21

23

25

4 Our Contribution

4.1 Simple CORS Request

4.1.1. Allowed Origin request

27

30

30

4.1.2 Wild-Card request

4.2 Preflight Request

4.3 Advanced Request

34

36

46

5 Conclusion and Future work

5.1 Review

5.2 Conclusion

54

54

55

 Bibliography 57

List of Figures

2.1 Client-browser-server 5

2.2 Domain A and B 5

2.3 Origin 7

2.4 Same Origin 7

2.5 Different Origin 8

2.6 Cross Site Request 11

2.7 XHR request 12

2.8 Stored XSS Attack 14

2.9 Reflected XSS Attack 15

2.10 CSRF Attack 16

3.1 CORS request 19

3.2 CORS simple request based on allowed access origin 22

3.3 CORS simple request using wildcard 23

3.4 CORS preflight-request 24

3.5 CORS advanced request based using credentials header 26

4.1 Server Configuration based on allowed origin 30

4.2 Clients Configuration 31

4.3 CORS Response of Client in origin 1112 using Network tab 32

4.4 CORS Response of Client in origin 1112 using Console tab 33

4.5 CORS Response of Client in origin 1113 using Network tab 33

4.6 CORS Response of Client in origin 1113 using Console tab 34

4.7 Server Configuration using wildcard 35

4.8 CORS Response of Client in origin 1113 using Network tab 35

4.9 Server Configuration for Preflight response 37

4.10 Client Code in origin 1111 38

4.11 Client in origin 1111 preflight request 39

4.12 Actual request using PUT method 40

4.13 Cashed Preflight response 41

4.14 Client Code in origin 1113 42

4.15 Client in origin 1113 preflight request 43

4.16 Actual request using POST method and custom header X-CaFoscari DAIS 44

4.17 Rejecting Preflight-request using method TEST 45

4.18 Server Configuration for Advanced Request 47

4.19 Login Page code of origin 1111 48

4.20 CORS Request for origin 1111 without credentials 49

4.21 Login page of origin 1111 50

4.22 Response of unauthenticated user in origin 1111 50

4.23 Login Page code of origin 1112 51

4.24 CORS Request for origin 1112 include credentials 52

4.25 Login page of origin 1112 52

4.26 Response of unauthenticated user in origin 1112 53

List of Tables

2.1 Browser determine the request if it same origin or no 10

4.1 Technical Description of clients and server 29

1

CHAPTER 1

Introduction

Nowadays web security is an important issue, as everyone uses

computers to access different websites such as news, social networks,

bank accounts, etc. It becomes crucial to keep sensitive information,

cookies and passwords, protected against any kind of web threat

including malware and web-specific attack patterns such as Cross-Site

Request Forgery (CSRF) or Cross-Site Scripting (XSS). There are

different mechanisms for preventing or mitigating this type of attacks.

The Internet is a huge network that gives clients the possibility to share

information or exchange data among themselves. Users would not like to

give unauthorized people the permission to access their own private data

and so to manipulate them. This is one of the main relevant issues to be

solved due to the rapid increase of techniques implemented for

communications. A lot of researchers and scientist are trying to tackle

this problem through different approaches and, at the same time, they are

trying to make the security policy simple, efficient and easy for the users.

In fact, another point which is also crucial is the trade-off between

security policy and the server structure since increasing the strength of

security policies typically make applications more complex and hard to

maintain. One of the solution to this problem is using a mechanism that

can be responsible of the security policy and at the same time does not

affect the structure of the server.

In this thesis we investigate the Cross-Origin-Resource Sharing (CORS)

mechanism. The advantage of this mechanism is to make cross site

requests possible between two different origins, unlike the standard Same

Origin Policy (SOP) of browser, which is more restricted. In additions, it

offers a security policy for accessing the resources based both on

credentials and on access origin.

The thesis is organized as follows. In the next chapter we will present the

basic concept of Same Origin Policy, Cross site request and Client-

Security and Browser Security Policy. Chapter 3 is about the very notion

of CORS (Cross-Origin Resource Sharing) and it shows the difference

between a simple request and a more advanced request and the

acceptance or denial of this request. Chapter 4 presents the mechanism

with some experimental results based on the type of the request the

mechanism offer it. Finally, Chapter 5 concludes our work, and gives a

guideline for web developer.

CHAPTER 2

Background Concept

In this chapter we will discuss the difference between two mechanisms

for communication between sites. First, we will start by illustrate Same

Origin Policy (SOP) mechanism, by showing how two sites in same

origin communicate, then we will show the second mechanism Cross-

Site- Request, and we will illustrate, what will happen if two sites in

different origin want to exchange information such as (web-fonts,

stylesheet, etc.). Later in this chapter we will show two different kind of

possible attacks and illustrate how they are work. But before we start to

speak about that, I’d like first to speak about how two site exchange

information. This process of exchanging information usually occurs in 3

parties: Client, Server, and Browser.

Every element of this process has its own role in making this process

successful. Figure (2.1) shows how those elements interact during the

process.

Figure 2.1: Client-server-browser

The client wants to access the website (www.example.com). In order to

do that he sends a request to the browser and the browser checks the

website and sends the response back to the client. This is what we do

every day when accessing a website. The previous scenario is between

Client and Server only, but what if two servers want to interact so to

retrieve information? Figure (2.2) below shows what happens in reality

when domain A wants to get information from domain B.

Figure 2.2: domain A and domain B

http://www.example.com/

In this situation the previous scenario changes based on two conditions:

1- Same-origin Policy.

2- Cross-site request.

2.1 Communication Mechanism:

2.1.1 Same-Origin Policy:

The concept of Same-Origin Policy[1], is an important notion from the

security point of view. Generally, it checks if the request between the

two domains have the same origin or not; then, the origin is defined by

W3C [1] as a combination between three parameters:

1- URL Scheme.

2- Host name.

3- Port number.

The figure (2.3) below shows the combination of the three parameters.

Figure 2.3: Origin

Each parameter has its own relevance. Let’s be back at the example of

two domains, in order to understand in which way each parameter is

decisive to make the browser consider the request as having the same

origin or not.

In the previous example, we have a web app and the server in figure

(2.4)

Figure 2.4: Same origin

We can see that both the web app and the server have the same origin,

because, based on the previous definition [1], they have the same URL

scheme, Hostname, and port number. As we can see in the figure (2.4),

the URL scheme for both app and server is the same (http), plus they

have the same hostname (example.com) and port number (80). In this

situation the Browser, the second member of the process, can easily

recognize that they share the same origin, as mentioned in the definition

[1] of the origin above, and so it allows the request between the client

(app) and the server. Now, let’s examine what happens in case the origin

of app is different from the origin of server.

Figure 2.5: Different Origin

As shown in figure (2.5) above, the request is rejected from the browser,

because the app and the server have different origins.

 Even if they have the same hostname (example.com), yet the origin of

the app has a different URL scheme (https) from the server (http) and

also a different port number (81) in the app and (80) in the server, so the

request is denied because the browser treats the app and the server not

having the Same Origin. Thus, in brief, we can say that the role played

by the browser in responding to the request consists mainly in checking

the origin for both the app and the server. Anyway, at this point, we still

need to go a step further and investigate how the browser can determine

if the request is coming from the same origin or not and why all this

happens.

To examine the first part of the previous consideration, Table (2.1)

illustrates how the browser works out the same-origin request when the

app makes a request to the server by sending it to

http://www.example.com:80

http://www.example.com/

Incoming request Result Reason

http://www.example.com/app1:80 Success Same origin

http://www.example.com/app2:80 Success Same origin

https://www.example.com/app3:80 Failed Different URL Scheme

http://www.example.com/app4:81 Failed Different Port Number

http://www.example.it/app:80 Failed Different Host Name

Table 2.1: Browser determine the request if it same origin or no

With regard to the reason why the browser prevents incoming requests

from different Origin [1], we can say that in doing so the browser only

permits the access to apps and scripts, in order to prevent any kind of

attacks, such as cross-site request forgery (CSRF) or Cross-site scripting

(XSS).

http://www.example.com/app1:80
http://www.example.com/app2:80
https://www.example.com/app3:80
http://www.example.com/app4:81
http://www.example.it/app:80

2.1.2 Cross-Site-Request:

Considering again our example of domain A and domain B. Based on the

previous scenario, if they want to communicate, they cannot, because

each domain lives in different origin. This is the so called “Cross-site

request”. The concept of “Cross-site request” has become an important

issue for big companies and web developers, who are now advancing in

coming up with new methods to be able to exchange and make requests

from different origins, by using XMLHttpRequest (XHR) object. This

method gives the developers the possibility to retrieve information from

different origins, as shown in figure (2.6)

Figure 2.6: Cross-Site request

The figure (2.6) above shows what is called “cross-site request”. Web

App in domain A wants to get some information or data from server in

domain B such as (HTML page, web-font, stylesheet script, etc). Figure

(2.7) shows a simple request using XMLHttpRequest (XHR)

Figure 2.7: XHR Request

But from a security point of view it can lead to Cross-site scripting

(XSS) or Cross-site request forgery (CSRF) vulnerabilities. This happens

because we cannot trust any request from different domains, since it may

be sending malicious script to leak important information or sensitive

data, such as cookies or passwords.

2.2 Security Attacks:

2.2.1 Cross-site scripting (XSS):

According to the previous scenario, Cross-site scripting is considered to

be one of the most important issues related to security. In our work, XSS

vulnerability is a very dangerous attack [2] [3], as it gives the attacker

the permission to inject malicious script (e.g., HTML, JavaScript) into

web applications, and doing so to leak sensitive information from the

user, such as cookies and passwords. Once the attacker retrieves

sensitive data, he can use them at will. There are two well-known kinds

of XXS vulnerability: Stored XSS and Reflected XSS.

2.2.1.1 Stored XSS:

From the name of this attack [2] [3], we can recognize that this kind of

attacks happen when the attacker store (inject) his malicious code

permanently on the server. Once the user visit an infected page, the

malicious script is automatically executed, as shown in figure (2.8).

 Figure 2.8: Stored XSS attack

In the figure we can see that the attacker inject his malicious code into

the server, and that once the user request data from it and visit the

infected page, not only the server will respond with the requested data,

but also the malicious script will be executed. This explains how the

attacker gains access to sensitive data.

2.2.1.2 Reflected XSS:

This kind of attack [2] [3] is different from the previous one. Here,

instead of storing the malicious code into the server, the attacker deals

with the client by sending an emergency e-mail or by creating an URL

containing a malicious script that will steal sensitive information, such as

bank or social network account, once the client clicks on it. As the user

ties to access the link given by the attacker, which is a vulnerable

website, the attacker gets the victim data and can have complete access

to his account, as shown in figure (2.9).

Figure 2.9: Reflected XSS attack

2.2.2 Cross-Site Request Forgery (CSRF):

Different from the previous attack, the CSRF attack [4] [5] occurs when

a user accesses a vulnerable web app and creates a session. In doing so

he opens a malicious site in another browser tab. The malicious site first

steals the user’s session cookies and then it makes a request to the

vulnerable app by using the user’s cookies within the session window. In

this way the web app is not able to distinguish if the request is coming

from an authenticated user or from the attacker. Figure (2.10) shows an

example of this kind of attack.

Figure 2.10: CSRF attack

We can see how the attacker accesses the vulnerable app through the use

of cookies stolen from the user.

CHAPTER 3

Cross-origin resource sharing (CORS)

In this chapter we will discuss the standard mechanism established by

W3C [6] that is Cross-Origin resource sharing (CORS), and how it

works.

We have seen so far that, it might be hard for two sites hosted in

different origins to communicate or retrieve information, because of the

same origin policy. Furthermore, to prevent (attacker) from stealing

sensitive data through a malicious script, W3C are working on a new

mechanism which gives the opportunity to make requests from different

origins and at the same time intensifies security policies. We will start

this chapter discussing the notions of the mechanism. After that, we will

show the different kinds of requests used by it.

3.1 Notion of CORS:

CORS [6] [7] is a mechanism that allows resources that are hosted in

different origins to make successful requests. The mechanism is based

on XMLHttpRequest. A simple example can be seen in figure (3.1).

Figure 3.1: CORS request

Figure (3.1) presents how server A make a CORS request using XHR to

retrieve information from server B. Still including its origin

(serverA.com), server B checks if the header origin matches with the

allowed origin or not. In our case, it does match and so it gives server A

the permission to access.

In order to understand better how CORS works, we first need to know

the role of each member of the CORS request. In figure (3.1), we can see

that there are three members participating in the request: the Server, the

Browser and the Client.

3.1.1 The client:

The client role is to send the XHR, including its origin and the method of

the request. Later in this chapter we will understand the importance of

mentioning the method in the request.

3.1.2 The Browser:

The browser is responsible for transmitting the request from the client to

the server and then send back the response. In the meanwhile, the

browser checks if the origin of the client has the permission to access the

data in the server. In case there is no match, the browser does not send

back the response to the client and it will show an error message. We

will address the different types of error messages in the following

chapters.

3.1.3 The server:

The server is where the CORS mechanism is established by setting up

the Allow origin access list and the allowed method. If the request

matches the allow origin and the request method, the server responds to

the request with the right data; if this is not the case, the server responds

with an error message. Now, we will deepen the different kinds of

CORS requests.

3.2 Simple Request:

The simple request [6] [7] follows two methods: The first one is using

allowed access origin defined by the server, the second one based on

wild card which give the permission to any origin to access. We will see

what happens in case of accepting or rejecting the request.

First, let’s start by the analysis of a simple request, using the allowed

access origin. Figure (3.2) illustrates how this type of request, based on

the allowed access origin, works.

 Figure 3.2: CORS simple request based on allowed access origin

The figure (3.2) shows two different servers making a request: server A

and server C. On the other side, we have server B, which only gives the

permission to server A to make the request by using the header Access-

Control-Allow-Origin: www.serverA.com. Under the previous

conditions, the browser sends the response only to server A and gives an

error message to server C. Since the origin is not defined in server B, the

request fail.

When the simple request is based on the wild card [6] [7], it means that

the server allows the access to any origin by using a header (Access-

Control-Allow-Origin: *). Thus, any request from any origin will be

allowed, so it shouldn’t be used, unless there are no sensitive data that

can be leaked. We can see how this scenario works in figure (3.3).

Figure 3.3: CORS simple request using wildcard

Server A and server C make a request to server B where Access-Control-

Allow-Origin uses the wild card *. As W3C [6] mentions, using a wild

card is not secure at all, since anyone can use it to their advantage and

perform malicious attacks, like CSRF.

3.3 Preflight Request:

The main aim of the preflight request [6] [7] is to determine which are

the possible headers, content types, and request methods allowed by the

server. After that, if the preflight matches all the parameters defined by

the server, then the client will send the actual request. Usually, The

HTTP standards request Methods is (GET, POST, HEAD). If the request

method is different from the standard one (e.g, PUT or DELETE) , the

browser recognizes it as OPTIONS requests that because the browser

checks if those method is defined in the server or no if it is defined in the

server then, it will send the actual request. In addition, in case we use the

POST [7] method to make the request using different content type from

the such as (XML payload to the server using application/xml, text/xml,

or using custom headers), In this case the request is preflight. We can see

different types of request in figure (3.4).

Figure 3.4: CORS preflight-request

As we can see, we have two servers: A and C. As the allowed method

defined by server B is POST, GET, HEAD and server A is trying to

make a request using a different request Method (DELETE), it will lead

to a Preflight request [6] [7]. For the same reason, server C will be

considered a preflight-request too [6][7], as it is using a custom header x-

example.

3.4 Advanced Request:

In this section we will discuss the Advanced CORS request [6] [7]

which, differently from the Access-Control-Allow-Origin and the

Access-Control-Allow-Methods, contains more parameters such as:

including credential (cookies) for authenticate the client and making a

request or Max-Age header [6] [7], which is used to indicate how long

the result can be cashed before making a new preflight-request. We can

see an example of it in figure (3.5).

Figure 3.5: CORS advanced request based using credentials header

In this example we can see server A and server C making a request to

server B; the server requires the Credentials to include in the request

otherwise it will fail. Server A makes a request including the Credentials

(cookies) and the response is “Access Granted”; on the contrary, server

C makes the request without including the Credentials and the response

received is “Access Denied”, as it doesn’t meet the requirements for the

request to server B.

CHAPTER 4

Our Contribution

In this thesis we investigate the use of CORS for providing secure, cross-

site interaction in web applications, Furthermore, in this chapter we will

show different experiements using CORS mechanism in practical way,

starting from the simple request, then the preflight request, and finally

the advanced request. More specifically:

1. We devise a set of experiments to illustrate in details the various

mechanisms implemented by CORS;

2. We consider typical web application use cases and show how

CORS can be applied to provide secure cross-site interaction;

3. Based on our experiments, we discuss guidelines for web

developers that intend to adopt CORS in their web applications and

we draw some concluding remarks about the level of security

achieved by the adoption of CORS.

Let’s answer now our question about how two different domains that live

in different origin can interact and communicate in a safe way. Let’s

recall our example of domain A and domain B mentioned in chapter 2,

figure (2.6). In this example, we have made a request from domain A to

domain B and to achieve our objective we have used CORS mechanism.

Now, we start by showing how we can make a simple request and how

the server can respond accepting the request or rejecting it. Then, we

explain the difference between using allowed origins and using the wild

card as discussed in chapter 3.

Before we start speaking about our experiment, we first need to know

how to establish the right environment to do our experiment. Let’s recall

the main players of CORS request discussed in chapter 3:

1. The client: a simple page to retrieve information from the server

page.

2. The browser: Google Chrome Version 48.0.2564.97 m

3. The server: we have created a localhost using Apache and then we

have created a page from which the client can retrieve the data.

In order to show the difference between the response of the server in

case of acceptance or denial of the request, we create two different

clients. The Technical description of the clients and the server is shown

in table (4.1).

URL Description Origin

Localhost:1111/test.php Server 1111

Localhost:1112/test.html Client 1112

Localhost:1113/test.html Client 1113

Table 4.1: Technical Description of clients and server

Considering that each site lives in different origins, based on the

specified port as shown in the previous table.

4.1 Simple Request:

4.1.1 Allowed Origin request:

The request we make is based on Allowed origin. In this request, the

server accepts requests from clients living only in origin 1112. The

following PHP snippet shows the configuration of the server.

Figure 4.1: Server Configuration based on allowed origin

The configuration of CORS is based on the definition of the allowed

origin through the variable $http_origin. Then, it sets the Access-

Control-Allow-Origin header equal to $http_origin to give access to the

client living in the 1112 origin. The following html snippet shows the

configuration for both clients living in 1112 and 1113.

 Figure 4.2: clients Configuration

In the client code, the CORS request starts at line 5 and ends at line 18.

In line 6 we create a function that includes two parameters: the server

page and objID, which is where the response will be shown. After that,

we create the XHR request and assign it to the variable xmlhttp. At line

10 we set the request method to GET. Line 12 is a condition if the

request is successful append the response to the objID. Line 16 is meant

to send the request.

From now on, we will explain how the server responds to requests from

two different clients.

Figure 4.3: CORS Response of Client in origin 1112 using Network tab

In figure (4.3) above, we can see that the URL request

http://localhost:1111/test.php and the origin allowed by the server is

http://localhost:1112. Since the request is successful, origin 1112 gets a

positive response from the server. Furthermore, by using the console tab

we can see that the XHR request is successfully finished, as shown in

figure (4.4).

http://localhost:1111/test.php
http://localhost:1112/

Figure 4.4: CORS Response of Client in origin 1112 using Console tab

On the other hand, when origin 1113 sends a request to the server, it fails

due to the allowed origin defined in the server. As we can see in figure

(4.5), there is no data shown in the page.

Figure 4.5: CORS Response of Client in origin 1113 using Network tab

Even if we check in the console tab, we can still see the error message

shown by the browser. The reason behind this message is that the

browser sends the request to the server to check if this origin matches the

allowed one or not. Then, the server rejects the request, hence the

browser generates the message shown in figure (4.6).

Figure 4.6: CORS Response of Client in origin 1113 using Console tab

We can see that the XHR request fails and the browser shows an error

message (Origin 'http://localhost:1113' is therefore not allowed access.)

4.1.2 Wild-Card request:

The wild card request is the second kind of CORS simple request. This

time the server accepts all the incoming requests from different origins,

as shown in figure (4.7).

Figure 4.7: Server Configuration using wildcard

By using the header("Access-Control-Allow-Origin: *"); in the configuration of

the server, we give the permission to all incoming requests to access the

data stored in the server.

Therefore, this time the request coming from origin 1113 is allowed, as

shown in figure (4.8).

Figure 4.8: CORS Response of Client in origin 1113 using Network tab

According to W3C, the use of wild card should happen only when we

want to give the permission to anyone to access the resource (e.g. web-

fonts). On the contrary, in case the server includes sensitive information

or personal data, wild card should be avoided in CORS requests.

4.2 Preflight-Request:

In this part we investigate the aim of preflight-request. In our example,

we make two experiments for Preflight request: in the first one we use

the method PUT and in the second one we use custom header (X-

Ca’foscari,DAIS). For the server we use a new header (header("Access-

Control-Max-Age: 5")), in order to improve the performance of the request. In

this way, every time the browser makes two requests: the pre-flight one

and the actual request. Thus, this header allows the response of the

preflight within a given time that to be cashed, for instance, in our case

lasts only 5 seconds.

The following PHP snippet shows the configuration of the server

Figure 4.9: Server Configuration for Preflight response

As we can see, there are new headers in the configuration of the server.

The first one (header("Access-Control-Allow-Methods: PUT");) defines the allowed

method; the second one (header('Access-Control-Allow-Headers: X-CaFoscari,

DAIS');) defines the allowed Headers; the last one is (header("Access-Control-

Max-Age: 5");) responsible for caching the response of preflight request.

About the client we have two pages. Let’s start by examining the first

one. This first page has the origin Localhost:1111/sample.html and

makes a request using PUT method. The following snippet code shows

the code of the page.

Figure 4.10: Client Code in origin 1111

As we can see in line 10, the method of the request is PUT, when site1

makes a request through this method, the server considers it as a

preflight request, as we shown in figure (4.11).

Figure 4.11: Client in origin 1111 preflight request

The figure shows the OPTION request (preflight request), with the

request method PUT. As we said before, the browser sends the preflight

request to determine the allowed method, that we can find in the

Response Headers section as (("Access-Control-Allow-Methods: PUT");). Thus,

the allowed method results to be PUT. After that, the browser sends the

actual request to retrieve information, as we can see in figure (4.12).

Figure 4.12: Actual request using PUT method

The figure above represents the actual request with PUT method.

Furthermore, we can see also the (("Access-Control-Max-Age: 5");) header,

which indicates a 5 seconds time response for the preflight request. In

doing so, instead of making the browser send the preflight request and

the actual one every time the client tries to retrieve the information, we

capture it within the time of cached response in figure (4.13). Shows

that the preflight request does not exist.

Figure 4.13: Cashed Preflight response

Now we move to the second page experiment, where we use the custom

header (X-Ca’foscari,DAIS). Here the second client has the origin

Localhost:1113/sample.html and it makes a request by using POST

method with custom header (X-Ca’foscari,DAIS). The following snippet

code shows the code of the page.

Figure 4.14: Client Code in origin 1113

Line 10 shows the method of request, while line 11 shows the custom

header (X-Ca’foscari,DAIS). When site 2 makes a request by using this

method of the custom header, the server considers it as a preflight

request, as shown in figure (4.15).

Figure 4.15: Client in origin 1113 preflight request

The figure shows the OPTIONS request (preflight request), with custom

header (X-Ca’foscari,DAIS) with the method POST, we see in the

Response Headers section, header (('Access-Control-Allow-Headers: X-CaFoscari,

DAIS');), then the browser sends the actual request to retrieve the

information, as we see in figure (4.16).

Figure 4.16: Actual request using POST method and custom header X-CaFoscari DAIS

We can notice that the actual request uses the custom header X-

CaFoscari DAIS, and the same as site one we see the Access-Control-

Max-Age header equal to 5 seconds and within this time the browser will

not send the preflight request again.

The previous two experiments show the server response when accept the

preflight request, the last experiment showing the response in case of

rejecting the preflight request, as we see in figure (4.17)

Figure 4.17: Rejecting Preflight-request using method TEST

As we see, the browser response in this case is (Method TEST is not

allowed in preflight response), because we didn’t define this method in

the server, for this reason the request rejected.

4.2 Advanced Request:

In this experiment, we create a toy site that includes 3 pages. The first

one is the login page, which contains a form of username and password.

The function of this form is to create a cookies based on the username

input and then to send the cookies to the second page. Here the CORS

request can be made including the cookies (credentials) or even without

them. In order to do so, we need to add the following line of code in the

request:

XMLHttpRequest.withCredentials = true;

With regard to the third page, which is stored in the server, it checks the

cookies and, based on them, retrieves information. To make the server

check whether the request includes the cookies (credentials), we use the

following line of code:

header("Access-Control-Allow-Credentials: true");

Now, we will show the difference between including the credentials

(cookies) in the request and not including them. To achieve our aim, we

create two pages responsible for making the CORS request. The first one

includes the credentials in the request; the other one does not include

them. The following snippet code shows the configuration of the server

page.

Figure 4.18: Server Configuration for Advanced Request

We can see that the server includes the header header("Access-Control-Allow-

Credentials: true"); to check whether the cookies are included in the

request. In case the cookies match with the defined one, it leads us to the

profile page of the user.

Let’s examine now a first case that does not include the cookies in the

CORS request. The following snippet code shows the code of the first

page which lives in origin localhost:1111

Figure 4.19: Login Page code of origin 1111

We can notice that the function in line 31 assigns the cookies to the

username input, while in line 32 send it assigns the cookies to another

page, that is where the request of CORS was made.

With regard to the page responsible for the CORS request, the following

snippet code shows that the request does not include the credentials.

Figure 4.20: CORS Request for origin 1111 without credentials

As we can see, the page does not include the line of code which is

responsible for the cookies (credentials), hence the CORS request will

not include it. Consequently, even when the client tries to submit the

form by using one of the defined cookies in the server, as shown in

figure (4.21)

Figure 4.21: Login page of origin 1111

Then make the CORS request, as shown in figure (4.22)

Figure 4.22: Response of unauthenticated user in origin 1111

An error message is displayed to communicate to the user that he cannot

access the page.

Let’s examine now a second case where we include the cookies in the

CORS request. Figure (4.23) shows the code of the login page which

lives in origin localhost:1112

Figure 4.23: Login Page code of origin 1112

The following snippet code shows a CORS request that includes the

credentials.

Figure 4.24 CORS Request for origin 1112 include credentials

Thus, when the client tries to submit the form using one of the cookies

defined in the server, as shown in figure (4.25)

Figure 4.25 Login page of origin 1112

The function defined in the login page redirects the client to the page

where the CORS request was made, as shown in figure(4.26).

Figure 4.26 Response of unauthenticated user in origin 1112

Finally, we can notice that the CORS request is successful and includes

the cookies username, that is Prof. Focardi, so to retrieve information

from his profile page.

CHAPTER 5

Conclusion

5.1 Review

In this thesis we have illustrated the main concepts behind websites

interaction and we have revised typical attack scenarios. We have

illustrated a new mechanism developed by W3C named Cross-Origin-

Resource Sharing (CORS), and discussed the life cycle of this

mechanism, by showing how different kind of requests are dealt with.

We have experimented CORS mechanism by creating a toy site

representing typical web application use cases.

5.2 Conclusions

We implemented our test cases using Apache server as a local host, and

using PHP and JavaScript. One of the aims of our work was to give

guidelines for web developers that intend to adopt CORS mechanism in

their web applications, and to draw some remarks about the level of

security achieved by the adoption of CORS.

In order to adopt CORS in web applications web developers should keep

in mind that:

1. If the application will be accessible from the same origin, there is

no need to implement CORS. By default, the browser allows

requests based on Same origin policy (SOP) without any

restrictions. Otherwise, if it will be accessible from different,

trusted origins, developers can use the first method of CORS

mechanism (i.e., simple request using allowed access origin),

moreover, if the server does not include any sensitive data we can

use the wildcard method which is the second method of CORS

simple request.

2. In case of using a custom header or method different from the

standard HTTP request, the preflight request is the solution in this

case to prevent any kind of manipulation or leakage of sensitive

information by providing what are the available method requests

and the acceptable headers; in order to improve the performance of

the server instead of responding twice for the preflight request and

the actual request we can use the header Max-Age which makes the

browser cash the preflight response in case it matches the defined

parameters.

3. Finally, in order to make the application more secure CORS offers

the credentials header that requires cookies to be included in the

request, in order to check whether or not the request comes from a

trusted user. If the request does not contain the credentials header,

the request will be rejected.

Bibliography

[1] W3C, Same Origin Policy, https://www.w3.org/Security/wiki/Same_Origin_Policy

[2] OWASP, Cross-site Scripting, https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

[3] Security Group, Ca’Foscari University, Cross-Site Scripting,

http://secgroup.dais.unive.it/teaching/security-course/cross-site-scripting-xss/

[4] OWASP, Cross-site Request Forgery,

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

[5] Security Group, Ca’Foscari University, Cross-site Request Forgery

http://secgroup.dais.unive.it/teaching/security-course/cross-site-request-forgery-csrf/

[6] W3C, Cross-Origin Resource Sharing, https://www.w3.org/TR/cors/

[7] Mozilla Developer Network, HTTP access control (CORS) https://developer.mozilla.org/en-

US/docs/Web/HTTP/Access_control_CORS

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

