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ABSTRACT

The Stochastic Ordinary and Partial Differential Equations turn out to be a very

important tool in the understanding and modeling the Climate System. The resolution

of this kind of problems is far from trivial. The only meaningful quantities are those

derived by ensemble mean over the noise using the probability density function of

the problem computed . In order to address these issues, three different methods of

investigation are presented.

The first one is inspired by the Statistical Mechanics and Quantum Field Theory. Its

power resides in the fact that it introduces a generating functional, from whom, using

functional differentiation, all the n-points functions of the problem can be found. This

technique has been used in Navarra et al. (2013b) to find correlation and variance of a

(0d+1) simple model of ENSO with stochastic forcing. In this work, I have applied this

method to a more complicated system, (2d+1), described by the Stochastic Barotropic

Vorticity Equation into a channel. Periodic boundaries in the longitudinal direction

and rigid walls bounding the channel to the north and south are used. I have solved

the problem of finding the generating functional and I have used it to get analytical

expressions for variance and correlation functions. I have presented here the study for

three configurations of the Stochastic Barotropic Vorticity Equation, obtained adding

or neglecting damping and mean flow. I have shown that this technique is applicable

but with many technical difficulties. For this reason I have preferred to use a simple

ENSO model to test the other two techniques and to study in depth ENSO itself.
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The second method is based on the resolution of the Fokker-Planck equation related

to the stochastic system via eigenfunctions expansion. The ENSO model studied has

been derived using a rotation in the space of variables of the Recharge Oscillator. It

is suggested a new way to consider ENSO, as a system that can jump between two

states, one positive and one negative, represented by a double potential wells which

arise by the non-linearity that damps the system. The jumps are possible thanks to

the stochastic fluctuations. It is suggested a possible mechanism that could explain

the asymmetry in the Sea Surface Temperature Anomalies probability density func-

tion in the ENSO zone. In particular, taking into account the MJO effect, the double

well potential is modified becoming asymmetric producing an asymmetric probabil-

ity density function for the anomalies. Using this model, exploiting a periodic growth

rate, also the possible cause of the predictability barrier is studied, another important

feature of ENSO.

The investigation prompted the idea that ENSO could be a system described by a

sequence of state, rather than a simple oscillation. To check this idea, the third method

has been introduced. It shows how the transition probability matrices can be used to

deal climatic phenomena. Temperature anomalies are divided into four blocks, states,

and the probability to move from one state to another has been calculated both for

observations and General Circulation Model. In particular, these matrices have been

used to define a predictability index of ENSO using their entropy. Not only the long-

time seasonal PDF could be checked, but also the single transitions for different states

in different periods.
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CHAPTER 1

INTRODUCTION

Some of the most important aspects that strongly characterize weather and climate

are variability and chaos. The equations that govern the evolution of the atmosphere

and the ocean have been known for a long time and they have been extensively inves-

tigated. These equations showed a strong sensitivity to small perturbations, both in

the initial conditions and in the parameters that define them, giving rise to the entire

field of dynamical chaos (Lorenz, 1963). The temporal and spatial scales, associated

with changes in weather and climate, include a wide range of values. For example,

tornados are characterized by spatial scales of a few hundred meters and time scale

of the order of the hour, or planetary waves with a time scale of months and spatial

scales of the order of tens of thousands kilometers. Other climatic phenomena, that

can appear as fluctuations in specific patterns of pressure and temperature on Earth,

can be identified only with annual, decadal or multi-decadal time scales.

It is now well known that important variations in atmospheric and oceanic circula-

tion in some regions may actually be the result of a connection with specific variations

of atmospheric variables that happen in a different part of the Earth, as happens for El

Niño Southern Oscillation (ENSO). This phenomenon is a large scale oceanic warming

in the tropical Pacific Ocean correlated to a see-saw in the tropical sea level pressure

between the western and eastern Pacific, that dramatically affects the Earth’s climate

1



on a global scale.

The chaotic nature of the dynamics has stimulated the application of methods and

ideas derived from statistics and statistical dynamics. For instance, to make weather

predictions, extensive ensemble systems are recently used, that are designed to sam-

ple the phase space around the initial conditions. Such an approach has been shown

to substantially improve the usefulness of the forecasts, allowing forecasters to issue

probability-based forecasts. The implicit assumption is that the presence of various

sources of errors, coupled with the intrinsic sensitivity of the evolution equations to

small errors (Lorenz, 1963), makes a single forecast not very useful (Epstein, 1969;

Leith, 1974). Ensemble experiments are now commonly used in numerical experi-

ments driven by external forcing, like those used with prescribed SST (Sea Surface

Temperature) or even prescribed concentration of greenhouses gases in climate change

experiments, (Rodwell and Doblas-Reyes, 2006; Toth and Kalnay, 1993). These works

have been modifying the dominant paradigm of interpretation of the evolution of at-

mospheric flows (and to some extent also of the ocean, see (Pinardi et al., 2008)), at-

tributing more and more importance to the probability distribution of the variables of

interest rather than to a single representation. Chaos is an important aspect when the

equations of the atmosphere and ocean are considered, even if it is not the only one.

It has been shown (Hasselmann, 1976) that “the slow climate variability can be ex-

plained as the response to continuous integral random excitations due to short-term

weather disturbance”. Stochastic Partial Differential Equations (SPDE) seem to be a

basic tool for modeling climate systems. The deterministic climate/weather evolution

equations with a stochastic component can be considered to correctly describe some

aspects of the atmosphere in mechanical models (Farrell and Ioannou, 1995; DelSole,

2001; Penland, 2003; Duane and Tribbia, 2004; Schneider and Fan, 2007; Sura and New-

man, 2008). Extensive works have been done also in estimating the stochastic compo-

nent from observations (Kravtsov et al., 2005; Gritsun and Branstator, 2007).

The main goal of this work is to study ENSO, as a model system to test these

ideas and methods. Because of ENSO irregularities, that let suppose the presence of

a stochastic forcing component, this study is conducted using stochastic equations to

describe the system. These mathematical entities are closely linked to a deterministic

evolution equation for the Probability Density Function (PDF) of the system, namely
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the equation of Fokker-Planck (FP). In this way it is possible to study directly the

only real fundamental quantity, from which all the statistical information needed to

describe the system under consideration, as the mean, variance, skewness and corre-

lation function, could be derived. For such a system, the only meaningful variables

are those found using ensemble averages over the noise. If you could find a generat-

ing function as in Statistical Mechanics, all the interesting quantities could be written

using a simple derivation.

The analytical analysis of this kind of equations is far from trivial. Hochberg et al.

(1999) showed how, from the formal solution of the FP equation, associated to a generic

SPDE, it is possible to derive a generating functional, which can be written in terms

of Path Integral (PI). This generating functional is analogous to the one well known in

Quantum Field Theory (QFT), by using functional differentiation on it, one can obtain

all the meaningful quantity describing the stochastic system. Fortunately, as it often

happens, it is possible to apply the formalism and technology already developed in a

particular branch of physics, to treat different problems. The application of this frame-

work to the dynamics of ocean and atmosphere could lead to important results. This

method has been used in (Navarra et al., 2013b) to find correlation and variance of a

(0d+1) simple model of ENSO with stochastic forcing. In this work, I have applied this

method to a more complicated system, (2d+1), described by the Stochastic Barotropic

Vorticity Equation (SBPVE) into a channel. The periodic boundary condition in the

longitudinal direction has been considered. This problem could be considered as a

starting point to study a more complex model of ENSO with stochastic forcing in

a future work. The simplest (2d+1) system of equations that is able to describe the

equatorial dynamics is the Shallow Water Equations (SWE), from which, using the

QG approximation, the Barotropic Vorticity Equation can be derived. The effect of the

boundary reflections can not be seen using the channel structure, but I have solved

the problem of finding the generating functional and I have used it to get analytical

expressions for variance and correlation functions. In general with this method I have

been able to find all the n-points functions of the problem. I have presented here the

study for three configurations of the SBPVE, obtained adding or neglecting damping

and mean flow. I have shown that this method is applicable to the SBPVE but with

many technical difficulties, even if the interesting analytical expressions for variance

and correlation functions have been found.
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The ENSO model has been extensively studied. The works written about it can be

loosely grouped into two big frameworks: a deterministic one, for example (Cane and

Zebiak, 1985; Cane et al., 1986; Zebiak and Cane, 1987) and a stochastic one. Both

frameworks involve a positive ocean-amosphere feedback (Bjerknes, 1969). Bjerknes

hypothesized that an initial positive Sea Surface Temperature Anomaly (SSTA) in the

equatorial eastern Pacific reduces the east-west SST gradient and hence the strength

of the Walker circulation, resulting in weaker trade winds around the equator. The

Walker circulation is the typical wind circulation across the tropical Pacific Ocean.

It can be schematized as rising air in the tropical western Pacific, upper-level winds

blowing from the west to the east, and the sinking air returned back to the surface

in the tropical eastern Pacific. The reduction of SST gradient and the weakening of

the Walker circulation drive the ocean circulation changes that further reinforce SSTA.

This positive ocean-atmosphere feedback leads the equatorial Pacific to a warm state,

i.e., the warm phase of ENSO called El Niño.

In the former case, ENSO is seen as a self-sustained, naturally oscillatory mode of

the coupled ocean-atmosphere system (Wang et al., 2012). Several mechanisms, able to

reproduce the basic characteristic of ENSO, have been proposed for this deterministic

oscillation, explaining the dynamics in terms of delayed oscillator (Schopf and Suarez,

1988; Suarez and Schopf, 1988; Battisti and Hirst, 1989; Philander, 1990; Jin and Neelin,

1993; Neelin et al., 1994; Tziperman et al., 1994a; Jin et al., 1994a; Neelin et al., 1998), in

terms of a recharge mechanism (Jin, 1996, 1997a), in terms of advective-reflective os-

cillator (Picaut et al., 1997) and other conceptual models. These models basically differ

in the negative feedback used to limit the growth of the oscillation, respectively using

reflected Kelvin waves, discharging process due to Sverdrup transport, or anomalous

zonal advection. Wang (2001) showed the existence of the unified oscillator model that

includes the physics of all oscillator models discussed above.

Since the ENSO indices present lots of irregularities, changes of phase and intensity,

the second framework was proposed. In this view, ENSO is considered as a stable or

damped mode interacting with stochastic forcing, in particular a linear system forced

by noise is used (Penland and Sardeshmukh, 1995; Moore and Kleeman, 1999b,a;

Thompson and Battisti, 2000, 2001; Penland, 1996). Some authors (Tziperman et al.,

1994a; Jin et al., 1994a) suggested that all those irregularities could be the manifesta-
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tion of the quasi-periodic route to chaos. The natural oscillator (a delayed oscillator)

of the equatorial Pacific Ocean could non-linearly interact with the seasonal cycle and

manifests non-linear resonance at several periods of the oscillator. The jumps between

these periods result in chaotic behaviour. However, Stone (1998) showed that the same

natural oscillator, driven by natural environmental fluctuation, could explain aperiod-

icity and chaos in the ENSO index, and it also results in burst and change of regime,

common in the more complex ENSO model.

Probably the right framework and mechanism is a mixture of both (Chang et al.,

1996; Philander and Fedorov, 2003). However, Jin, (Jin, 1997b), showed that the model

containing a time delay can not be derived theoretically from a shallow water model

with the wind forcing (with the addition of a further equation which takes into account

thermodynamics), if not ignoring the boundary east of reflection, in practice ignoring

the South America, that is really a strong assumption.

For these reasons, the second method used to study ENSO is based on a model with

a lower dimensionality that contains the positive Bjerknes feedback, non-linearity and

stochastic forcing. Part of these results have been published in (Navarra et al., 2013a).

The Recharge Oscillator with the non-linear damping term and noise has been consid-

ered as a starting point. From this model with a rotation in the space of variables, one

single stochastic equation has been obtained. The associated FP equation has studied

by eigenfunctions expansion. A new way to consider ENSO is suggested. It can be seen

as a system that can jump between two states, one positive and one negative, thanks to

the stochastic forcing. These two states are represented by a potential generated by the

non-linearity that damps the system. In this framework, the natural way of thinking

is the one that refers to the potential that arises from the drift term of the FP equation.

Using this tool, it has been shown that the Madden-Julien Oscillation (MJO) (Madden

and Julian, 1971b) can be considered at least one of the causes that generate the asym-

metry in the PDF that characterize SSTA of the ENSO region. It has also been shown

that a periodic growth rate is able to produce the predictability barrier that affects this

phenomenon. Usually the coupling parameter introduced in all these models assumes

values that allow the system to oscillate. Even if the damped oscillations are not con-

sidered, this simple model shows that also a strong coupling between atmosphere and

ocean, that would bring to decay oscillation, by means stochastic fluctuation, would
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allow again a finite motion between two stable points.

Although I have used additive noise as stochastic component, it has not been ad-

vocated as the only forcing mechanism for ENSO. However, the used framework is

completely general and allows a theoretical investigation of various kind of noise, ad-

ditive, or multiplicative, or colored that can be involved to developed a fully ENSO

theory.

The investigation prompted the idea that ENSO could be a system described by a

sequence of state, rather than a simple oscillation. For this reason, I have presented a

third method of study. Temperature anomalies are divided into four blocks, states, and

the probability to move from one state to another has been calculated both for obser-

vations and General Circulation Model (GCM). Transition probability matrices for the

ENSO process has been built in this way highlighting which were the most likely tran-

sitions, with the changing seasons, and which ones, if not forbidden, very rare. From

these matrices, it is possible to build a Markovian process allowing the study of the

mean sojourn time and variance for the four states. Comparing the matrices obtained

from the observations and from the model, I have been able to classify the capability

of numerical model to reproduce and make good forecast of ENSO. This kind of com-

parison has been done using the CMCC-CMS couple model, (Davini et al., 2013), that

is a Coupled General Circulation Model (CGCM). I have used a 500-years simulation

to build the matrices.

One of the most interesting things that emerge from this kind of analysis is the so

called Spring Predictability Barrier (SPB), the reduced capability to make good forecast

passing through the spring, that in some way evens out the possibility to go in any

state. I have suggested a way to define a predictability index based on the entropy of

these matrices.

In chapter 2, the PI method and the results inherent the SBPVE in a channel are pre-

sented. In chapter 3 and 4, it is shown the simple rotated model of ENSO with whom it

is investigated, by means the FP equation, the possible mechanisms that could explain

the asymmetry that characterizes SSTA of the ENSO region, and the one that pro-

duces the predictability barrier that affects this phenomenon. In chapter 5, it is shown

the work on the transition probability matrices, how they have been found and how

they can be used to characterize ENSO and compare model with observations. It is
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also suggested a way to define a predictability index. In chapter 6 the conclusions are

shown.
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CHAPTER 2

PATH INTEGRAL AND THE STOCHASTIC BAROTROPIC VORTICITY

EQUATION

2.1 Introduction

Some of the peculiar features of climate and weather are variability and chaos. The

Lorenz’s works (Lorenz, 1963, 1984, 1987), to quote some of them, have marked a

fundamental step in the history of the last century physics. Chaos is an important

aspect when the equations of the atmosphere and ocean are considered, even if it is

not the only one.

The study of the equations of atmosphere, ocean and their interaction, requires ap-

proximations deducted from the spatial and temporal scales of the phenomenon under

study. For some of them, the non-linear effects, proper of the dynamical equations, can

be considered as a disturbance, a stochastic forcing. It has been shown (Hasselmann,

1976) that “ the slow climate variability can be explained as the response to continuous

integral random excitations due to short-term weather disturbances". The determinis-

tic climate/weather evolution equations with a stochastic component can be consid-

ered to correctly describe some aspects of the atmosphere in mechanical models (Far-

rell and Ioannou, 1995; DelSole, 2001; Penland, 2003; Duane and Tribbia, 2004; Schnei-
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2.1. Introduction

der and Fan, 2007; Sura and Newman, 2008), and extensive works have been done

also in estimating the stochastic component from observations (Kravtsov et al., 2005;

Gritsun and Branstator, 2007). Hartmann (2001) used a stochastic linearized barotropic

model to investigate the relationship between wind variation associated to the Mad-

den Julien Oscillation (MJO), and the eddy kinetic energy in the tropics. Another im-

portant effect that a stochastic forcing can have, is the generation of the zonostrophic

instability (Srinivasan and Young, 2012).

The Stochastic Partial Differential Equations (SPDE) seem to be a basic tool for mod-

eling climate systems. It is clear that for such a system the only meaningful variables

are those found using ensemble averages over the noise. If you could find a generat-

ing function as in Statistical Mechanics, all the interesting quantities could be written

using simple derivations.

The analytical analysis of this kind of equations is far from trivial. It has been pre-

sented (Martin et al., 1973) a formalism to write SPDE as a field theory formulated

using the Path Integral, (PI). Zinn-Justin (1993) have shown that the SPDE is associ-

ated to a Fokker-Plank (FP) equation, whose formal solution can be written in term of

PI and can be used to write a generating functional. After these works, a simple way

to extend this method and handle a generic SPDE has been shown (Hochberg et al.,

1999, 2000a,b). This method has been used in (Navarra et al., 2013b) to find correlation

and variance of a (0d+1) linear and non-linear simple model of ENSO with stochastic

forcing.

In this work, I have applied this method to a more complicated system, (2d+1), de-

scribed by the Stochastic Barotropic Vorticity Equation (SBPVE) into a channel. The pe-

riodic boundary condition in the longitudinal direction is used. This problem could be

considered as a starting point to study a more complex model of ENSO with stochas-

tic forcing in a future work. The simplest (2d+1) system of equations that is able to

describe the equatorial dynamics is the Shallow Water Equations (SWE), from which,

using the QG approximation, the Barotropic Vorticity Equation (BPVE) can be derived.

The effect of the boundary reflections can not be seen using the channel structure, but

I have solved the problem of finding the generating functional and I have used it

to get analytical expressions for variance and correlation functions. In general with

this method I have been able to find all the n-points functions of the problem. I have
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2.2. Method

presented here the study for three configurations of the SBPVE, obtained adding or

neglecting damping and mean flow. I have shown that this method is applicable to

the SBPVE but with many technical difficulties, even if the interesting analytical ex-

pressions for variance and correlation functions have been found.

For this work I have used Gaussian white noise, but the framework is generalizable

to a generic kind of noise. It has been shown that the generating functional can be

written in terms of particular Green’s functions, and then the problem of finding the

variance and correlation for the stochastic system has been basically traced back to

find these Green’s functions.

2.2 Method

The deterministic part of the equation object of this chapter, as mentioned in the

introduction, is the barotropic vorticity equation in β plaining approximation

∂

∂t
∇2ψ + J (ψ,∇2ψ) + β

∂

∂x
ψ + α−1∇2ψ = 0, (2.1)

where J here indicates the Jacobian operator

J (A,B) =
∂A

∂x

∂B

∂y
−
∂A

∂y

∂B

∂x
. (2.2)

ψ(x, t) is the stream function, from which it is possible to recover the information about

the zonal and meridional component of the wind by simple derivation

u = −
∂ψ

∂y
(2.3)

v =
∂ψ

∂x
, (2.4)

and the last two terms of Eq. (2.1) represent the effect of the Earth curvature and the

Rayleigh damping, that is a damping that takes into account the effect of the surface

friction and radiation. If U is a characteristic scale for the horizontal velocity, L the

characteristic scale length for the system, then, ψ is scaled with UL , x and y are scaled

with L, while t is scaled with 1
βL , and the governing equation (2.1) after the scaling
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2.2. Method

becomes:
∂

∂t
∇2ψ + εJ (ψ,∇2ψ) +

∂

∂x
ψ + µ−1∇2ψ = 0 . (2.5)

Now all the variables are dimensionless and

ε =
U

βL2
=

(

δI
L

)2

(2.6)

µ−1 =
α−1

βL
=

(

δs
L

)

. (2.7)

The two parameters ε, and µ−1 measure the relative importance of non-linearity, and

damping due to friction and radiation. Each of them can be written as a ratio between

two length scales to some power (Pedlosky, 1996). The major atmospheric phenomena,

like the large scale waves, have a characteristic horizontal scale of L ≈ 104 km, U ≈ 10

m s−1 and at high latitude the beta parameter is β ≈ 10−11 s−1L−1. The typical value

for the damping term is α ≈ 10−6 s−1, that corresponds to eleven days. With this

choice of the scale, ε ≈ 10−2 and µ−1 ≈ 10−2.

To simplify the computation, I have chosen a unique spatial scale, so x ∈ [0, 1] and

y ∈ [0, 1]. I have considered the structure of a channel, then the following boundary

condition for ψ should be used

ψ(0, y, t) = ψ(1, y, t) (2.8)

ψ(x, 0, t) = ψ(x, 1, t) = 0, (2.9)

that means periodic boundary in the longitudinal direction and rigid wall at north and

south of the channel.

Even if it is difficult to manage the full non-linear BPVE, it is possible to characterize

the basic flow and consider a particular situation. This allows to linearize Eq. (2.5)

around a mean flow. Introducing the decomposition,

ψ(x, y, t) = ψ̄(x, t) + ψ′(x, t), (2.10)

it is possible to characterize the flow as a background ψ̄(x, t), plus a perturbation
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ψ′(x, t). After the decomposition, Eq. (2.5) gets the following form:

∂

∂t
∇2ψ′ +

∂

∂x
ψ′ + ε

( ∂

∂x
ψ′ ∂

3

∂y3
ψ̄ −

∂

∂y
ψ̄
∂

∂x
∇2ψ′

)

+ µ−1ψ′ = 0 ,

If the background flow profile depends only on y, it is possible to write

∂3ψ̄

∂y3
= −

∂2Ū

∂y2
(2.11)

∂ψ̄

∂y
= −Ū , (2.12)

where Ū is the zonal mean velocity, and Eq. (2.5) becomes:

∂

∂t
∇2ψ′ +

∂

∂x
ψ′ − ε

(∂2Ū

∂y2
∂

∂x
ψ′ − Ū

∂

∂x
∇2ψ′

)

+ µ−1ψ′ = 0 . (2.13)

Eq. (2.13) is completely general, and it is correct for the whole class of stream functions,

describing the basic flow, depending only on the y variable.

Note that the particular case of a constant mean flow, Ū = const, can be traced back

to an equation with zero zonal mean flow using a Galilean transformation; in fact, if

the equation can be written as

[

∂

∂t
+ Ū

∂

∂x
+ µ−1

]

∇2ψ′ +
∂

∂x
ψ′ = 0, (2.14)

using the Galielan transformation of variables







t′ = t

x′ = x− Ū t,
⇒







∂
∂x = ∂

∂x′

∂
∂t =

∂
∂t′ − Ū ∂

∂x′ ,
(2.15)

and then
[

∂

∂t′�
�
�
�

−Ū
∂

∂x′
+
�
�
�

Ū
∂

∂x′
+ µ−1

]

∇′2ψ′ +
∂

∂x′
ψ′ = 0. (2.16)

The effect of stochastic forcing can be taken into account adding the noise η(x, y, t) in

the right hand side of Eq. (2.13). From now on, it is assumed that the noise is Gaussian

and in particular white. This is to simplify the computation. Then it is possible to
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2.2. Method

characterize the noise writing:

〈η(x, t)〉 = 0 (2.17)

〈η(x, t)η(x′, t′)〉 = Qδ(t− t′)δ(x − x′) , (2.18)

where Q is a constant that represents the strength of the noise correlation. Following

Hochberg (1999), the Eq. (2.13) with stochastic forcing is

Dψ(x, t) = Fψ(x, t) + η(x, t) (2.19)

where I have neglected the apex over the stream function, and

D =
∂

∂t
(∇2 − λ−2) +

∂

∂x
+ µ−1 (2.20)

F = ε
(∂2Ū

∂y2
∂

∂x
ψ − Ū

∂

∂x
∇2ψ

)

. (2.21)

The separation in F and D is arbitrary, physics does not change. However, if you

consider D as a linear differential operator involving arbitrary time and space deriva-

tives (eventually linear terms in the field), while F is considered as an operator that

can be linear or not (but it does not contain time derivatives), the computation of the

PDF P [ψ(x, t)], and the generating functional Z[J ], related to the system, presents less

problems.

A particular FP equation, that governs the evolution for the PDF of the stochastic

field ψ(x, t), (Zinn-Justin, 1993; Hochberg et al., 1999), is associated to the stochastic

Eq. (2.19), whose formal solution, in case of Gaussian white noise, is

P [ψ(x, t)] = N exp

(

−
1

2Q
S(ψ(x, t))

)

= N exp

(

−
1

2Q

∫

dxdt
(

Dψ(x, t)−Fψ(x, t)
)2
)

,

(2.22)

where N is a normalization constant and S can be considered as the action of the

system. It is useful separating the two operators D and F now mixed into the action.
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To do this, I have applied the so called Hubbard-Stratonovich transformation

exp

(

−
1

2Q
S(ψ(x, t))

)

= C

∫

D[φ] exp

[

−

∫

dxdt
Q

2
φ(x, t)2

− iφ(x, t)

(

Dψ(x, t)− Fψ(x, t))

)]

. (2.23)

This allows to linearize the action integral introducing a fictitious field φ, that is de-

fined over the entire time and space axes. The transformation introduces new integra-

tions that can be summarized as D[ϕ]. This symbol means that the integration must

be carried out considering all the possible configurations of the field, or better, all the

possible paths that the field can follow. The probability density function becomes

P [ψ(x, t)] = N ′

∫

D[φ] exp

[

−

∫

dxdt
Q

2
φ(x, t)2

− iφ(x, t)

(

Dψ(x, t)− Fψ(x, t))

)]

. (2.24)

It is useful to consider the F term separately as another forcing term aside from the

noise, and separate the action integral in a free part and an interacting part as

P [ψ] = N ′

∫

D[φ] exp
(

−Sfree[ψ, φ]
)

exp
(

−Si[ψ, φ]
)

= N ′

∫

D[φ] exp

(

−

∫

dxdt
Q

2
φ(x, t)2 − iφ(x, t)Dψ

)

exp

(

−

∫

dxdt iφ(x, t)Fψ(x, t)

)

,

(2.25)

with obvious meaning of the quantity Sfree[ψ, φ] and Si[ψ, φ]. Once the PDF is known,

all the ensemble averages over the noise can be computed. As in statistical mechanics

or in QFT, maybe the most important quantity that it is possible to obtain is the gener-

ating functional, from which all the statistical quantity, for example variance, correla-

tion function, and in general the n-moment describing the system, can be obtained by

derivation of this functional.

The generating functional is nothing more than the expectation value over the noise
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of the following functional

exp

(

J (x, t) · Φ(x, t)>

)

= exp

(

∫

Jψ(x, t)ψ(x, t) + Jφ(x, t)φ(x, t)]

)

, (2.26)

where Φ(x, t) = (ψ(x, t), φ(x, t)) and J (x, t) = (Jψ(x, t), J(x, t)φ) is the so called source

vector. The expectation values of this functional is the generating functional

Z[J ] = N ′

∫

D[φ]D[ψ] exp
(

−Sfree[ψ, φ]
)

exp
(

−Si[ψ, φ]
)

exp

(

J (x, t) · Φ(x, t)>

)

(2.27)

and since Z[0] = 1, N ′ = Z−1[0]. The advantage to have introduced the generating

functional consists in transforming the computation of correlation function from com-

plicated integral to functional derivation. For example, to compute the so called two-

points function at equal time, from which you can find the variance and correlation at

equal time, it is possible using the following equation

〈ψ(x, t)ψ(x′, t)〉 =
δ

δJψ(x, t)

δ

δJψ(x′, t)
Z[J ]

∣

∣

∣

∣

∣

J=0

. (2.28)

Acting on the generating functional with more functional derivative of the source

field, all the other statistical moments can be found.

If F = 0, Z[J ] = Z0[J ] is Gaussian and it is possible to perform the integration on

the fields bringing back the problem to that of finding some Green’s functions. Let’s

consider

Z0[J ] = M

∫

D[φ]D[ψ] exp
(

−Sfree[ψ, φ]
)

exp

(

J (x, t) · Φ(x, t)>

)

, (2.29)

the generating function of the free part, with M the normalization constant. If

∆−1 =





0 (iD)†

−iD Q



 , (2.30)
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where the hermitian product is implied,

Z0[J ] = M

∫

D[Φ] exp

(

−

∫

dxdt
1

2
Φ(x, t)∆−1Φ>(x, t)− J (x, t) · Φ(x, t)>

)

, (2.31)

where D[Φ] = D[ψ]D[φ]. The last functional integral is clearly gaussian and it is possi-

ble to perform explicitly the computation of the integral, obtaining

Z0[J ] = M
√

det(2πG) exp

(

1

2

∫ ∫

dxdt dx′dt′ J (x, t)G(x, x′, t, t′)J (x′, t′)

)

, (2.32)

where G(x, x′, t, t′) is the matrix

G(x, x′, t, t′) =





Gψψ(x, x
′, t, t′) Gψφ(x, x

′, t, t′)

Gφψ(x, x
′, t, t′) Gφφ(x, x

′, t, t′)



 , (2.33)

that satisfies

∆−1G(x, x′, t, t′) = δ(t− t′)δ(x − x′)I , (2.34)

and M =
(

√

det(2πG)
)−1

since Z0[0] = 1. The problem is reduced to the search of

Green’s functions.

When F 6= 0, the computation of the statistical moment is complicated. However, it

is possible to prove that

Z[J ] = N ′ exp

(

−Si

[

δ

δJψ(x, t)
,

δ

δJφ(x, t)

])

Z0[J ]. (2.35)

The computation of this quantity is quite hard and usually is done expanding in power

series both the functional operator that represents the interacting action with fields

derivatives in place of the fields, and Z0[J ]. An example of this procedure is shown in

the next section.

I have applied this tool to Eq. (2.13) considering three particular situations. At the

beginning I have set the mean flow equal to zero and studied the equation in case the

damping term is present or not. Then I have added also the mean flow.
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2.3. Application

2.3 Application

2.3.1 SBPVE with µ−1
= 0 and ψ̄ = 0

The D operator without damping is

D =
∂

∂t
∇2 +

∂

∂x
. (2.36)

The operator, ∆−1, that must be inverted to find the Green’ functions in this case, can

be read as

∆−1 =





0 iD

−iD Q



 . (2.37)

The problem that must be solved is































iDGφψ = δ(x − x′)δ(t− t′)

DGφφ = 0

−iDGψψ +QGφψ = 0

−iDGψφ +QGφφ = δ(x − x′)δ(t− t′) ,

(2.38)

with 0 < x, x′ < 1, 0 < y < 1 and 0 < t, t′, where the boundary conditions are











G(0, y, x′, t, t′) = G(L, y, x′, t, t′)

limy→0
y→1

|G(x, x′, t, t′)|= 0 ,
0 < t′, t (2.39)

and the conditions in time are homogeneous

G(x, x′, 0, t′) = 0 . (2.40)

To find the elements of the G matrix it must be noted that, since the channel struc-

ture is considered, all the functions could be expressed by a Sine Fourier series in the

meridional component y. Looking at the ∆−1 operator in the Fourier space, that means

transforming the operator in a common matrix with complex number, it is possible to

guess that Gψφ = −Gφψ and Gφφ = 0.

A decoupled equation for Gψψ is found applying the operator iD to both sides of

18



2.3. Application

the third equation in the system (2.38) and then using the first equation

D2Gψψ = −Qδ(x − x′)δ(t− t′) (2.41)

where

D2 =
∂2

∂t2
∇4 +

∂2

∂x2
+ 2

∂2

∂t∂x
∇2 , (2.42)

and ∇4 represents the Laplacian of a Laplacian. To solve this equation, together with

Eq. (2.40,2.39), another condition in time is used,

G(x, x′, T, t′) = 0 . (2.43)

Once Gψψ is found, Gφψ is determined from the third equation of the system above.

Let’s start to solve Eq. (2.41). Taking into account the following expansion series for

the Dirac delta functions

δ(y − y′) = 2

+∞
∑

n=1

sin(lny) sin(lny
′) , 0 < y, y′ < 1 , (2.44)

δ(x− x′) =

+∞
∑

m=−∞

eikm(x−x′) , 0 < x, x′ < 1 , (2.45)

with ln = nπ and km = 2πm, to ensure the proper boundary condition, it is possible

expanding Gψψ in a Sine Fourier series in y and in a Fourier series along the x direction

Gψψ(x, x
′, t, t′) =

∞
∑

m=−∞

∞
∑

n=1

eikmx sin(lny)gmn(x
′, t, t′) (2.46)

with

gmn(x
′, t, t′) = 2

∫ 1

0

∫ 1

0
dxdy Gψψ(x, x

′, t, t′)eikmx sin(lny) . (2.47)

Substituting the series above into Eq. (2.41), an ordinary differential equation for the

coefficient gmn is found

∂2gmn
∂t2

− 2i
km

k2m + l2n

∂gmn
∂t

−
k2m

(k2m + l2n)
2
gmn = −

2Q sin(lny
′)e−ikmx

′

(k2m + l2n)
2

δ(t− t′) (2.48)
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The solution, with the proper time condition, Eq. (2.40), is

gmn(x
′, t, t′) =

2Q sin(lny
′)(T (t′ − t)Θ(t− t′) + t(T − t′)Θ(T − t′))e−ikmx

′

e
ikm

k2m+l2n
(t−t′)

T (k2m + l2n)
2 .

(2.49)

Here Θ is the Heaviside function. For equal time t = t′, this expression is reduced to

gmn(x
′, t, t) =

2Qte−ikmx
′

(T − t)Θ(T − t) sin(lny
′)

T (k2m + l2n)
2 . (2.50)

Considering the evolution for a semi-infinite domain, when T becomes very large, I

have obtained

gmn(x
′, t, t) =

2Qte−ikmx
′

sin(lny
′)

(k2m + l2n)
2 . (2.51)

Reassuming the Green’s function of the problem:

Gψψ(x, x
′, t, t′) =

∞
∑

m=−∞

∞
∑

n=1

2Qeikm(x−x′) sin(lny) sin(lny
′)e

ikm

k2m+l2n
(t−t′)

T (k2m + l2n)
2

(T (t′ − t)Θ(t− t′) + t(T − t′)Θ(T − t′)), (2.52)

Gφψ =
i

Q
DGψψ (2.53)

Gψφ = −Gφψ (2.54)

Gφφ = 0 . (2.55)

The two-points correlation function for the stream function ψ is found simply consid-

ering

〈ψ(x′, t′)ψ(x, t)〉 =
δ

δJ(x′, t′)

δ

δJ(x, t)
Z0[J ]

∣

∣

∣

∣

∣

J=0

=
1

2

δ

δJ(x′, t′)

(

∫∫

dzdτdz′dτ ′δ(x − z)δ(t− τ)Gψψ(z, z
′, τ, τ ′)J(z′, τ ′)

+

∫∫

dzdτdz′dτ ′J(z, τ)Gψψ(z, z
′, τ, τ ′)δ(x − z′)δ(t− τ ′)

)

Z0[J ]

∣

∣

∣

∣

∣

J=0

=
1

2

(

Gψψ(x, x
′, t, t′) + Gψψ(x

′, x, t′, t)
)

.

(2.56)
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Then if the variance is searched, x = x′ and t = t′

〈ψ(x, t)ψ(x, t)〉 =
∞
∑

m=−∞

∞
∑

n=1

2Q sin2(lny)

T (k2m + l2n)
2 t(T − t)Θ(T − t) (2.57)

Considering the evolution for a semi-infinite domain, it is obtained

〈ψ(x, t)ψ(x, t)〉 =
∞
∑

m=−∞

∞
∑

n=1

2Q sin2(lny)

(k2m + l2n)
2 t . (2.58)

It would be nice finding a more compact expression for the variance. A simple upper

limit can be found with the help of the following inequality

2 sin2(lny)

(k2m + l2n)
2 ≤

2

(k2m + l2n)
2 , (2.59)

if

S1 = 2
∞
∑

m=−∞

∞
∑

n=1

1

(k2m + l2n)
2 =

2

π4

∞
∑

m=−∞

∞
∑

n=1

1

(4m2 + n2)2

=
2

π4

∞
∑

n=1

(

π coth
(

nπ
2

)

4n3
+
π2csch2

(

nπ
2

)

8n2

)

<
2

π4

∞
∑

n=1

(

π coth
(

π
2

)

4n3
+
π2csch2

(

π
2

)

8n2

)

=
1

24
csch2

(π

2

)

+
ζ(3)

2π3
coth

(π

2

)

= SM1 ,

(2.60)

then

〈ψ(x, t)ψ(x, t)〉 < tQSM1 = tQ

(

1

24
csch2

(π

2

)

+
ζ(3)

2π3
coth

(π

2

)

)

. (2.61)

In Fig. (2.1) and in Fig. (2.2) the behavior in time of the variance and its analytical

upper limit are found using Eq. (2.61), in the horizontal central line of the channel

(yc = 0.5), and out of it (y = 0.2). Using a noise fluctuation of order one, in respect to

the tendency of the vorticity, after t ≈ 43, that with our scaling means five days, the

standard deviation into the central band of the channel is of the order of the stream

function.

Since the upper limit found is not able to take into account the meridional structure

of the variance, it is possible to refine a little bit the approximation used.
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Variance

Analytical upper limit

10 20 30 40
t0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

<ΨHx,yc,tLΨHx,yc,tL>
Variance in the central band: yc=1�2

Figure 2.1: Behaviour in time of the variance and its analytical upper limit in the central
horizontal line of the channel yc = 0.5. Q = 1.

Variance

Analytical upper limit

10 20 30 40
t0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

<ΨHx,y,tLΨHx,y,tL>
Variance in the central band: y=0.2

Figure 2.2: Behaviour in time of the variance and its analytical upper limit out of the central
horizontal line of the channel y = 0.2. Q = 1.
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Full Variance

Approximation

0.2 0.4 0.6 0.8 1.0
y0.0

0.2

0.4

0.6

0.8

1.0

1.2

Variance for t=40, no damping case

(a) Variance for the case without damping..

0.2 0.4 0.6 0.8 1.0
y0.0

0.2

0.4

0.6

0.8

1.0

1.2

Full Variance

Mode 1

Mode 2

Mode 3

Mode 4

(b) Modes of the variance.

0.2 0.4 0.6 0.8 1.0
y0.0

0.2

0.4

0.6

0.8

1.0

1.2

Full Variance

Mode 1 +Mode 2

Mode 3

Mode 4

(c) Using the first two modes the variance is well

approximated.

Figure 2.3: In Fig. 2.3a the full variance up to t=40 compared with Eq. (2.79) is shown, in which
the summation on km has been carried out and an upper limit is considered for the
hyperbolic functions. Fig. 2.3b shows the latitudinal modes of the variance found
using Eq. (2.79). Using just the first two leading modes, the full variance is well
approximated, Fig. (2.3c).

If






A =
coth(π

2
)

2π3

B =
csch2(π2 )

4π2 ,
(2.62)

then

〈ψ(x, t)ψ(x, t)〉 < Qt

+∞
∑

n=1

(

A
sin2(nπy)

n3
+B

sin2(nπy)

n2

)

. (2.63)

Fig. 2.3a shows this upper limit at work. In Fig. 2.3b the first four modes of this upper

limit are shown. The first two are clearly the biggest and then it is possible to approx-

imate the whole variance using just n = 1, 2:

〈ψ(x, t)ψ(x, t)〉 ≈ Qt

[

(A+B) sin2
(πy

δ

)

+

(

A

8
+
B

4

)

sin2
(

2πy

δ

)]

. (2.64)

In Fig. 2.3c, Eq. (2.64) is shown and compared with the correct variance.
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In the free theory, the one that does not consider the interaction with the mean flow,

the only interesting quantities are those that involve Gψψ. However, how it is showed

in the following, when a perturbation expansion is considered, the other Green func-

tion are important and must be computed.

2.3.2 SBPVE with µ−1 6= 0 and ψ̄ = 0

In this case the operator D gets the following form

D =
∂

∂t
∇2 +

∂

∂x
+ µ−1∇2 . (2.65)

Now

∆−1 =





0 (iD)†

−iD Q



 , (2.66)

where

(iD)† = i

(

∂

∂t
∇2 +

∂

∂x
− µ−1∇2

)

. (2.67)

The problem that must be solved to find the Green’s functions is































(iD)†Gφψ = δ(x − x′)δ(t− t′)

(iD)†Gφφ = 0

−iDGψψ +QGφψ = 0

−iDGψφ +QGφφ = δ(x − x′)δ(t− t′) ,

(2.68)

with the boundary condition in space given by Eq. (2.39) and in time by Eq. (2.40). The

problem (2.68) is a little bit more complicated.

The third equation can be decoupled multiplying it for the operator (iD)†

(iD)†(−iD)Gψψ = −Qδ(x − x′)δ(t− t′) , (2.69)

that is

(

∂2

∂t2
∇4 + 2

∂2

∂t∂x
∇2 +

∂2

∂x2
− µ−2∇4

)

Gψψ = −Qδ(x − x′)δ(t− t′) , (2.70)
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if

Gψψ(x, x
′, t, t′) =

∞
∑

m=−∞

∞
∑

n=1

eikmx sin(lny)g
ψψ
mn(x

′, t, t′) , (2.71)

the equation for the coefficient gψψmn is

(

∂2

∂t2
−

2ikm
(k2m + l2n)

∂

∂t
−

k2m
(k2m + l2n)

2
− µ−2

)

gψψmn = −
2Q sin(lny

′)e−ikmx
′

(k2m + l2n)
2

δ(t − t′) ,

(2.72)

which has for solution

gψψmn(x
′, t, t′) =

2Q sin(lny
′)e−ikmx

′

e
ikm(t−t′)

k2m+l2n

µ−1 (k2m + l2n)
2

(

Θ(T − t′) sinh
(

µ−1 t
)

csch
(

µ−1 T
)

sinh
(

µ−1 (T − t′)
)

−Θ(t− t′) sinh
(

µ−1 (t− t′)
)

)

. (2.73)

and when the evolution for a semi-infinite domain is considered, when T becomes

very large

gψψmn(x
′, t, t′) =

2Q sin(lny
′)e−ikmx

′

e
ikm(t−t′)

k2m+l2n

µ−1 (k2m + l2n)
2

[

e−µ
−1 t′ sinh

(

µ−1 t
)

−Θ(t− t′) sinh
(

µ−1 (t− t′)
)

]

. (2.74)

Note that for equal time, t = t′, this expression is reduced to

gψψmn(x
′, t, t′) =

2Q sin(lny
′)e−ikmx

′

µ−1 (k2m + l2n)
2

e−µ
−1 t′ sinh

(

µ−1 t
)

=
Q sin(lny

′)e−ikmx
′

µ−1 (k2m + l2n)
2

(

1− e−2µ−1 t

)

.

(2.75)

When µ−1 → 0, the damping disappears and Eq. (2.75) must reduce to Eq. (2.51). In

fact, in this case the argument of the exponential function is approximately near to

zero, and the Taylor expansion can be used

e−2µ−1 t ≈ 1− 2µ−1 t+ 2µ−2 t2 −
4µ−3 t3

3
+O(µ−4t4) (2.76)
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so that in the limit µ−1 → 0

gψψmn(x
′, t, t′) ≈

2Q sin(lny
′)e−ikmx

′

(k2m + l2n)
2

(

t− µ−1 t2 +
2µ−2 t3

3
+O(µ−4t2)

)

. (2.77)

The first term of the expansion gives exactly Eq. (2.51), while the others give the cor-

rections for small value of the damping. However, in this case the whole series can be

considered and the variance can be written

〈ψ(x, t)ψ(x, t)〉 =
Q

µ−1

(

1− e−2µ−1 t

)

∞
∑

m=−∞

∞
∑

n=1

sin2(lny)

(k2m + l2n)
2
. (2.78)

As before, you can try to sum or at least to eliminate one of the two summations

〈ψ(x, t)ψ(x, t)〉 ≈
Q

2µ−1

(

1− e−2µ−1 t

)

[

(A+B) sin2
(πy

δ

)

+

(

A

8
+
B

4

)

sin2
(

2πy

δ

)]

,

(2.79)

where the coefficient A and B correspond to Eq. (2.62).

Another interesting quantity, is the two-points correlation function, when the evo-

lution for a semi-infinite domain is considered

〈ψ(x, t)ψ(x′, t′)〉 =
Q

µ−1

∞
∑

m=−∞

∞
∑

n=1

sin(lny) sin(lny
′)

(k2m + l2n)
2

{

eikm(x−x′)e
ikm(t−t′)

k2m+l2n

[

e−t
′µ−1

sinh
(

tµ−1
)

−Θ(t− t′) sinh
(

(t− t′)µ−1
)

]

+ eikm(x′−x)e
ikm(t′−t)

k2m+l2n

[

e−tµ
−1

sinh
(

tµ−1
)

−Θ(t′ − t) sinh
(

(t′ − t)µ−1
)

]}

(2.80)

In Fig. (2.4), it is shown how the variance, computed from Eq. (2.80), changes with

time and with different truncation of the series. Due to the damping term, there is

not an infinite growth for the variance, which now settles at a plateau after t ≈ 200,

that are approximately twenty days with our scaling. In Fig. (2.5), it is possible to

observe the periodic behaviour of the horizontal correlation for different truncations

of the series. This correlation is obtained normalizing the two-points function with the

variance. In Fig. (2.6), the space correlation at fixed x′ and t is shown. In Fig. 2.7, it is

shown a comparison of variances in the central band of the channel between the two

cases studied, the BPVE with and without the damping term. When µ−1t� 1, the two
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Figure 2.4: Variance for the damped case computed from Eq. (2.80). In this example it is used
y = y′ = yc =

1
2 , x = x′ = xc =

1
2 , Q = 1 and µ−1 = 0.01, and t = t′ = 40.

0.2 0.4 0.6 0.8 1.0
x0.80

0.85

0.90

0.95

1.00
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x'=0 yc=
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Figure 2.5: Horizontal correlation computed from Eq. (2.80). In this example it is used y =
y′ = yc =

1
2 , x′ = 0, t = 40, Q = 1 and µ−1 = 0.01.
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< Ψ Hx, y, tLΨ Hxc , yc , tL >

< Ψ Hxc , yc , tLΨ Hxc , yc , tL >
, for: xc=

1

2
, yc=

b

2 L
, kmax=lmax=10 t=40

0.0
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0.0
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1.0

y

0.0

0.5

1.0

Figure 2.6: Space correlation for x′ = xc = 0.5, y′ = yc
1
2 , t = 40, Q = 1 and µ−1 = 0.01.

Without Damping

With Damping
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Variance in the central band: yc=1�2

Figure 2.7: Comparison of the variance for the cases with and without damping. When
µ−1t� 1, the two variances have the same linear behavior.

variances have the same linear behavior.

From the third equation of the system (2.68) it is possible to relate Gφψ with Gψψ

Gφψ =
i

Q
DGψψ . (2.81)

A similar relation can be found for Gψφ. Subtracting the fourth equation of the system
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(2.68) to the first

(iD)†Gφψ + iDGψφ = 0 , (2.82)

and using Eq. (2.81)

(iD)†
i

Q
DGψψ + iDGψφ = 0 , (2.83)

multiplying from right for −iD−1

Gψφ = −
1

Q
(iD)†Gψψ . (2.84)

Note that when µ → ∞, (iD)† = iD and then, thanks to the minus in the relation

above, the asymmetry is restored Gψφ = −Gφψ. For a similar motivation done in the

previous section Gφφ = 0.

Reassuming

Gψψ(x, x
′, t, t) =

∞
∑

m=−∞

∞
∑

n=1

µ2Qeikm(x−x′) sin(lny) sin(lny
′)e

ikm(t−t′)

k2m+l2n

(k2m + l2n)
(

Θ(T − t′) sinh
(

µ−1 t
)

csch
(

µ−1 T
)

sinh
(

µ−1 (T − t′)
)

−Θ(t− t′) sinh
(

µ−1 (t− t′)
)

)

(2.85)

Gφφ(x, x
′, t, t) = 0 (2.86)

Gφψ(x, x
′, t, t) =

i

Q
DGψψ(x, x

′, t, t) (2.87)

Gψφ(x, x
′, t, t) = −

1

Q
(iD)†Gψψ(x, x

′, t, t). (2.88)

2.3.3 SBPVE with µ−1 6= 0 and ψ̄ 6= 0

Consider the full linear operator

D =
∂

∂t
∇2 +

∂

∂x
− ε

(

∂2Ū

∂y2
∂

∂x
− Ū

∂

∂x
∇2

)

+ µ−1 , (2.89)
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in which all terms are maintained. As for the damped example

∆−1 =





0 (iD)†

−iD Q



 , (2.90)

where

(iD)† = i

(

∂

∂t
∇2 +

∂

∂x
− ε

(

∂2Ū

∂y2
∂

∂x
− Ū

∂

∂x
∇2

)

− µ−1

)

. (2.91)

The only interesting mathematical entity, if all the terms of the equation in the D oper-

ator are considered, is Gψψ, from which it is possible to find variance and correlations

of the stream function. However, the decoupled equation that must be considered to

find Gψψ, similarly to the Eq. (2.69) involves the operator (iD)†(−iD). This kind of

equation can be solved easily just for a constant mean flow; otherwise it is impossible

to solve it analytically.

If the mean flow profile is not constant, it is better to take a step back and rewrite

the initial equation as

∂

∂t
∇2ψ′ +

∂ψ′

∂x
+ µ−1ψ′ = ε

(∂2Ū

∂y2
∂ψ′

∂x
− Ū

∂∇2ψ′

∂x

)

+ η . (2.92)

If the Rayleight condition for the stability is hold, that is

1−
∂2Ū

∂y2
U

L2β
(2.93)

doesn’t change sign in the channel, no exponential growth from the Jacobian part of

the equation will rise and then a perturbation expansion to find the generating func-

tional, and the correlation functions, is possible. It is possible to define

D =
∂∇2

∂t
+

∂

∂x
+ µ−1 (2.94a)

F [ψ] = ε

(

∂2Ū

∂y2
∂ψ′

∂x
− Ū

∂∇2ψ′

∂x

)

(2.94b)

Considering these definition, I have been able to use the results already obtained for

the free Green’s functions. In fact, remembering Eq. (2.35), the whole generating func-
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tional can be written as

Z[J ] = N ′e
−εi

∫

δ
δJφ(x,t

)
(

∂2Ū
∂y2

∂
∂x

−Ū ∂∇2

∂x

)

δ
δJψ(x,t)

dxdt
e

1
2

∫∫

J>(x,t)G(x,t,x′,t′)J (x′,t′)dxdtdx′dt′ ,

(2.95)

where N ′ = Z[0]. Eq. (2.95) is only a formal expression whose validity must be verified

case by case. From a practical point of view, its series expansion, that can be eventu-

ally represented graphically using Feynman diagram is defined by means. Only con-

nected graphs, that are not separated in different parts (basically the Green’s functions

involved must be linked together by means some common points of the space time),

are interesting. All the others are simplified by the normalization. Since

〈ψ(x, t)ψ(x′, t′)〉 =
δ

δJψ(x, t)

δ

δJψ(x′, t′)
Z[J ]

∣

∣

∣

∣

∣

J=0

, (2.96)

the first correction to the correlation function is of order ε, more precisely, it is obtained

by the order ε of the interaction operator expanded perturbatively and the second

order of the expansion in J of the free part. This is because the second order expansion

of the free part gives terms containing exactly three sources Jψ and one Jφ that will

be hit by the correspondent functional derivatives coming from the expansion of the

interaction part and from Eq.(2.96) . Then, when the source is put to zero, those terms

will survive. To save writing, are introduced the abbreviations Jxψ for Jψ(x, t),
∫

x for
∫

dxdt, Gabψψ for Gψψ(x, t, x′, t′) and similarly for the other Green’s functions. Since the

interaction involves also derivatives, it will be useful to use x = (x0, x1, x2) = (t, x, y).

With this in mind, it is possible to write down the correlation between two fields as

follow:

〈ψaψb〉 =
1

2
(Gabψψ +Gbaψψ)−

εi

8

δ

δJaψ

δ

δJbψ

∫

c

δ

δJcφ

(

∂2Ūc
∂y2

∂

∂c1
− Ūc

∂∇2
c

∂c1

)

δ

δJcψ
∫

d

∫

e

∫

f

∫

g
2JdψG

de
ψψJ

e
ψ(J

f
ψG

fg
ψφJ

g
φ + JfφG

fg
φψJ

g
ψ) +O(ε2) . (2.97)

If you call

Oc =
∂2Ūc
∂c22

∂

∂c1
− Ūc

∂∇2
c

∂c1
, (2.98)
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and considering only connected graphs, you have

〈ψaψb〉 =
1

2
(Gabψψ+G

ba
ψψ)−

(

εi

4

∫

c
(Gbcψφ + Gcbφψ)Oc(G

ac
ψψ + Gcaψψ) + a↔ b

)

+O(ε2) , (2.99)

The first term of the two-points function is independent by the mean flow that act only

at ε.

A quick estimate of the behavior of the correction into Eq. (2.99) can be done making

some simplifications. In particular, it is interesting to see how the variance changes

with different mean flow, then b = a. I have considered just the leading harmonic, n =

1 and m = −1, 0, 1 for this estimate. It is easy to check that the quantity above is real.

The complex exponentials into the Green’s functions represent bounded oscillations,

and to simplify further the computation, the time oscillations are substituted with the

constant 1.

The basic Green’s function used in the computation is

Gacψψ =
2µQ

π425
sin (πa2) sin (πc2) f(a0, c0) (2 cos(2π(a1 − c1)) + 25) , (2.100)

where

f(a0, c0) = e−c0µ
−1

sinh
(

a0µ
−1
)

−Θ(a0 − c0) sinh
(

(a0 − c0)µ
−1
)

. (2.101)

The other functions appearing in Eq. (2.99) are computed starting from the equation

above using the relations in Eq. (2.87) and in Eq. (2.88).

After the integration of c1 between 0 and 1, also the first order correction appears

to be independent by the longitudinal variable a1 (at least considering just the leading

modes), and remain

O(ε) =
16εµ2Q

625π6

∫ +∞

0
(f(a0, c0) + f(c0, a0))

2 dc0

∫ δ

0
sin2 (πa2) sin

2 (πc2)

(

∂U(c2)

∂c22
+ 5π2U(c2)

)

dc2. (2.102)

The temporal integration can be carried out easily dividing the integration interval

in two parts and simplifying the integrand which contains the Heaviside functions
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Θ(a0 − c0) and Θ(c0 − a0)

∫ +∞

0
(f(a0, c0) + f(c0, a0))

2 dc0 = µ− e−2a0µ−1
(2a0 + µ). (2.103)

The integrations along c1 and c0 are equal for every kind of mean flow, if a mean

flow that depends just on the meridional component and it is constant in time and

longitude is considered. If you want to compute the correction for a generic stable

mean flow, now, you just need to carry out the integration on the meridional variable:

O(ε) = εQ
16µ2

625π6
(µ− e−2a0µ−1

(2a0 + µ)) sin2 (πa2)
∫ 1

0
sin2 (πc2)

(

∂U(c2)

∂c22
+ 5π2U(c2)

)

dc2. (2.104)

In order to show a simple application of Eq. (2.104), a mean stream function with

parabolic profile is used, Fig. 2.8, described by the following function:

ψ̄(c2) = −4(c2 − 1)c2. (2.105)

From Eq. (2.105) you can read the zonal mean flow profile, which is a simple linear

shear,

U(c2) = −
∂ψ̄(c2)

∂c2
= −4 + 8c2, (2.106)

and the second derivatives of the mean flow, which is a constant equal to zero meaning

that the mean flow is stable. In this particular case, the integrand appearing in Eq.

(2.104) depends just on the zonal mean flow, that is asymmetric along the meridional

direction of the channel, and by the the square of the sin function, that is symmetric

along the meridional direction. In this case the integral is null, and no corrections

appear to the leading modes at O(ε). For corrections different from zero, it is necessary

to consider the interaction between different harmonic at higher order.

2.4 Summary

In this chapter I have shown how it is possible to associate a generating functional

to SPDE in atmospheric field. The utility of this mathematical entity resides in the fact
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Figure 2.8: Parabolic meridional profile of the mean stream function used in the example on
the left panel, the correspondent mean flow zonal velocity in the center panel, and
the second meridional derivative of the mean flow profile on the right.
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that, using simple functional differentiation, all the statistical quantities describing the

stochastic field can be found.

This method has been used in (Navarra et al., 2013b) to find correlation and variance

of a (0d+1) linear and non-linear simple model of ENSO with stochastic forcing. In this

work, I have applied this method to a more complicated system, (2d+1), described by

the Stochastic Barotropic Vorticity Equation (SBPVE) into a channel. Periodic bound-

aries in the longitudinal direction and rigid walls bounding the channel to the north

and south are used. I have solved the problem of finding the generating functional and

I have used it to get analytical expressions for variance and correlation functions. In

general with this method I have been able to find all the n-points functions of the prob-

lem. I present here the study for three configurations of the SBPVE, obtained adding

or neglecting damping and mean flow:

1. ψ̄ = 0 µ−1 = 0,

2. ψ̄ = 0 µ−1 6= 0,

3. ψ̄ 6= 0 µ−1 6= 0.

I have shown that this method is applicable to the SBPVE but with many technical

difficulties.
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The problem is reduced to find the Green’s functions which reverse a particular op-

erator. For each of these configurations the analytic form that describes the variance

and correlation of the stochastic field is found. The first configuration, the simplest,

shows a variance which grows linearly in time, the typical behavior of systems subject

to white noise where there is not a term of damping. The meridional structure is ex-

panded in series of sin, since the field must go to zero to the to meridionals boundaries.

The solution is written using two summations, but fortunately, also using only the

leading harmonics, you can well describe the variance and then find a more compact

analytical form that describes it. If the term of damping is different from zero, variance

and correlation are stable over time and do not grow indefinitely. When µ−1t � 1, i.e

damping for the time is small, the expression for the variance is reduced to the one

found for the first configuration. So initially there is a linear increase of the variance

before changing behavior when time increases. As regards the third configuration, it

is possible to write an approximate form of variance and correlation using a pertur-

bation expansion of the generating functional. This functional can be written as an

operator, which depends on the part considered to be interacting (in this case the part

of the equation containing the mean flow), which acts on the free part of the gener-

ating functional ( already studied in the previous configurations). By expanding the

operator and the free functional, using a parameter ε which naturally arises from the

scaling used, it is possible to find the searched expressions. For this third configura-

tion I have used an average flow of example with a parabolic profile. The correction is

reduced to the calculation of an integral in y, that, in this simple case, it is null if you

use only the first harmonic of the Green’s functions associated with the problem.

The interacting part considered here, is the Jacobian, that appears in the SBPVE

linearized around the mean flow. I have had to assume that the fluid is stable, but also

in case of instability, if you know the typical time scale associated with it, τi, you could

apply this method considering t < τi for an initial investigation.
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CHAPTER 3

ATMOSPHERE-OCEAN INTERACTIONS AT STRONG COUPLINGS

IN A SIMPLE MODEL OF ENSO

The contents of this chapter have been published in Journal of Climate, (Navarra

et al., 2013a).

3.1 Introduction

Simple models of ENSO (El Niño / Southern Oscillation) were able to reproduce

the basic characteristic behavior and scale of ENSO (Cane and Zebiak, 1985; Cane

et al., 1986; Zebiak and Cane, 1987) and a dynamical framework was developed to

explain the underlying dynamics in terms of delayed oscillators (Schopf and Suarez,

1988; Suarez and Schopf, 1988; Battisti and Hirst, 1989; Philander, 1990; Jin and Neelin,

1993; Neelin et al., 1994, 1998) or in terms of the recharge mechanism (Jin, 1996, 1997a).

Other conceptual models have also been proposed, like for instance the advective-

reflective oscillator (Picaut et al., 1997), but they have been shown to be equivalent

representation of a more general oscillatory dynamics (Wang, 2001).

However, the observations show that the time series of the ENSO indices is strongly

irregular and the differentiation from one event to the next is strong, with significant
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differences in the termination and start up of the different phases. These observations

prompted the hypothesis that ENSO could instead be described as a stochastically

forced linear system (Penland and Sardeshmukh, 1995; Moore and Kleeman, 1999b,a;

Thompson and Battisti, 2000, 2001; Penland, 1996). It is still unclear if the nature of

ENSO is therefore a deterministic system with strong nonlinearities or a linear systems

stochastically forced (Chang et al., 1996; Philander and Fedorov, 2003).

The issue of the statistical distribution of the ENSO phenomenon has been con-

sidered several times. Early works (Burgers and Stephenson, 1999) showed there is

considerable deviation from normality in the west and east Pacific, but some notice-

able deviations exist also in the central Pacific region where widely used indexes like

ENSO3 and ENSO3.4 are computed. They also showed that histograms are suitable

to identify deviations from normality and to estimate the probability distribution of

the SST in each point or region. Monahan and Dai (2004) investigated the nongaus-

sian character of ENSO using principal component analysis. The skewness has been

attributed to nonlinear interactions by An et al. (2005), showing that probably a clear

distinction between the previous choices may not be necessary and the final conclu-

sion is still unclear (Kapur et al., 2012).

A simple linear model proposed by Jin (1997a) can sustain oscillations as a function

of the interaction parameter between the wind stress and the SST. A single oscillatory

mode exists for most of the range of the parameter except for regions of large val-

ues, corresponding to a very tight coupling between SST and wind stress, and also for

very small values, corresponding to relative independence. The model shows oscil-

lations also when a cubic nonlinear terms is introduced following Suarez and Schopf

(1988). Jin concentrated on the oscillatory range to develop further his theory deeming

unphysical both weak and strong coupling since they could not sustain oscillations.

Available evidence indicates that ENSO is indeed coupled, so it is reasonable to ignore

the weak coupling limit, but the high end of the parameter range (strong coupling) is

more puzzling. Strong dynamical constraints are required to prevent the system to

exit the range of values for which oscillations exist, but no explanation has been put

forward. On the other hand, the estimation of the interaction coefficient has proven

elusive. It is difficult to reduce the complex relation between wind and SST to a single

simple parameter that could be diagnosed from observation and models. It is possi-
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ble that energy based approaches (Fedorov et al., 2003; Brown and Fedorov, 2010) can

shed some light on the issue, but they have still to deliver a definitive answer that

would allow to assess the interaction regime for observations or the models.

There is however a third possibility. It is possible that the coupled system is not so

finely tuned, but it goes through different stages as the evolution of the basic state on

longer time scales, like interdecadal variation and their interaction with anthropogenic

climate change, progresses. It would be then conceivable that that there will be phases

of strong interactions and phases of moderate interaction and so it is worthwhile to

investigate more the strong interaction phase. In this phase the system does not have

oscillations, but can have a number of stable or unstable critical points and in the case

of Jin model it will have two stable points. Transitions from one point to the other are

impossible in the deterministic dynamical system, but however becomes possible if

we introduce a stochastic forcing that allows fluctuations between two different states.

In this theory what we call ENSO events are the transitions between two different

states driven by noise. We will develop in this paper a theory of a stochastic ENSO

showing that we can get realistic probability distributions and that we can identify

different ENSO states in the observations. A suitable equation for the evolution of the

probability distribution will be developed. In this sense we are proposing that ENSO

is stochastically driven system with strong nonlinearities.

Though we are using additive noise as the stochastic component, we do not advo-

cate it as the only forcing mechanism for ENSO. Most probably multiplicative noise

will need to be considered (Penland and Sardeshmukh, 1995; Penland, 2003; Sura et al.,

2005; Berner, 2005), but the framework that we introduce here is not limited to additive

noise and it can be extended to consider other kind of noises. It is a framework that

allows a theoretical investigation of various kind of noise, additive, multiplicative or

colored that can be involved in developing a full theory of ENSO. We show that even

a drastically simplified model has some of the features found in the behaviour of a

NINO index.

The asymmetry of the positive and negative ENSO events has also been discussed

by several studies, though the issue has often been discussed together with the irregu-

larity of the oscillations. Jin et al. (1994b, 1996) and Tziperman et al. (1994b) proposed

that the interactions of the seasonal cycle with the chaotic dynamics of the system
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caused the irregularity, whereas Penland and Sardeshmukh (1995), Moore and Klee-

man (1999b,a), Kleeman (2010) and Thompson and Battisti (2000) discussed the effect

of stochastic forcing onto the non normal modes of the linear system. The role played

by the nonlinear component of the thermal advection has been investigated by Jin

et al. (2003) and An and Jin (2004). Timmermann et al. (2003) proposed an intermittent

nonlinear theory and Majda et al. (2006) investigated stochastic effects in deterministic

systems. Other nonlinear mechanisms that generate an asymmetry between El Niño

e La Niña cases have been proposed, such as vertical mixing processes (Wang and

McPhaden, 2000) and asymmetric atmospheric responses (Kang and Kug, 2002).

Recently, some interest has arisen on the interaction of the Madden-Julian oscilla-

tion (Madden and Julian, 1971a)with ENSO (Kapur et al., 2012). The MJO can con-

tribute to the generation of positive anomalies in the east and central Pacific (Zhang

and Gottschalck, 2002; Zhang, 2001) and models tend to have a better representation

of ENSO events if MJO variability is enhanced or better represented (Zavala-Garay

et al., 2008; Lengaigne et al., 2004). Correlations between ENSO and MJO activity has

been detected in the observations(Zhang and Gottschalck, 2002; Hendon et al., 2007),

whereas models have advanced significantly the capability to describe MJO (Subra-

manian et al., 2011; Sperber et al., 2005; Gualdi et al., 1997) and recently models have

shown a capacity to improve both MJO and ENSO (Neale et al., 2008). This correlation

has led to the consideration of multiplicative stochastic noise as a generalization of

the additive noise more generally used. However, many of the techniques that we are

going to describe are not dependent on additive or multiplicative nature of the noise.

In this paper we are proposing a new approach to the ENSO variability that centers

on the hypothesis that ENSO can be described as a non-linear system that can sustain

oscillations as a function of the coupling strength, but that can also generate fluctu-

ations when oscillations cannot be sustained between different states via stochastic

fluctuations. The probability distribution of the ENSO will be obtained directly via

solving the Fokker-Planck equation of a simplified model and it will be shown that the

asymmetry can be explained in terms of a simple parameter that can be interpreted as

related to the average seasonal MJO activity. The general picture that emerges is that

ENSO is acted on by different mechanisms as coupling strength and intensity of the

stochastic forcing varies, providing possible explanations for the variety of behaviour

40



3.2. The probability distribution of ENSO

that we experience in models and in the observations.

Though strict realism is not the purpose of this paper, we will be able to offer a new

framework for investigating ENSO from a different angle and the model shows some

interesting properties.

3.2 The probability distribution of ENSO

Considering the non normalized 1871-2011 NINO3.4 index1 computed from the

HadISST1 data set (Rayner et al., 2003) as the area averaged from 5S-5N and 170-120W,

we can estimate the stationary component of the empirical probability distribution by

computing the histogram of the NINO3.4 anomalies. A 5-month running mean to re-

move the high frequency components has been applied. The estimated probability

distribution is an asymmetric shape with a marked shift toward negative anomalies

that generates a peak around -0.2. A good fit can be obtained with a superposition of

two normal distributions, suitably weighted,

P (x) = p exp(−
(x− x1)

2

s21
) + (1− p) exp(−

(x− x2)
2

s22
) (3.1)

with the mixing parameter p constrained as 0 < p < 1, resulting in the superposed

line visible in Fig.3.1. The bottom panel shows also the same fit applied to the residual

obtained subtracting the filtered components from the total anomalies. In this case

there is no sign of a double gaussian nature and a single gaussian has a good fit. This

result suggests that variability faster than 5-months may be described by gaussian

stochastic fluctuations, whereas the slower variability is well captured by two states

represented by the gaussians.

However, the models tell a different story. Just to give an appreciation of the vari-

ability that different models can exhibit we show in the the following figures the esti-

mated probability distribution obtained from long simulations of the CMCC-SINTEX

model (Navarra et al., 2008; Gualdi et al., 2003). In these experiments a different reso-

lution atmospheric model was coupled to the same ocean model. It is a T106 spectral

resolution for Fig.(3.2) and spectral T30 for Fig.3.3. It is possible to note that the T106

1Available from www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Nino34
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Figure 3.1: The estimated probability distribution of the NINO3.4 index for observations. The
monthly mean NINO3.4 data have been obtained from Climate Predictions Cen-
ter (NOAA) for the period 1871-2012, the seasonal cycle has been removed and
a 5-months running mean has been applied. The top panel shows the PDF of the
filtered data estimated as a normalised histogram. The bottom panel is the same
estimate applied to the residual signal after the running mean has been subtracted.
In both panels, the line represents the best fit of a mixture of two normal distribu-
tions. The deviations from the running mean appears to be represented well by a
single normal distribution. The parameters of the fit have been determined at 99%
confidence level.

models shows some signs of developing an asymmetry as the observations whereas

the T30 model appear to be rather symmetric, resembling a pure normal distribution.

The results can also be understood in terms of the two gaussians composing the

probability distribution. If we plot the individual states, combined with the weights

obtained from the fit, we get Fig.3.4. The probability of a particular observed value

can therefore be understood as the probability of being in one state or the other. It is

interesting to note that the variability in the T30 case is so poor that the second state

is almost disappearing, indicating that in fact there is little difference from a simple

normal distribution with zero mean in this case.

We can shed some light on the interpretation of these results by considering some
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Figure 3.2: As in Fig.3.1, but for the monthly mean NINO3 index obtained from a 200-years
simulations of the CMCC coupled spectral T106 model (Navarra et al., 2008;
Gualdi et al., 2003)

simple idealized cases. Let us consider the case of an oscillation on which some gaus-

sian white noise with zero mean is added (top panel, Fig.3.5). The time series of the

oscillation shows variability, but the probability histogram has a noticeable two peak

structure, that can be readily identified as two separate states. However, the states

are symmetric, both in the location of their maximum and in the amount of probabil-

ity they explain. The two states are equally probable. The result is rather insensitive

to the amount of noise, as the histogram in this case easily capture the signature of

the underlying oscillation even in the case of strong noise (not shown). As the noise

becomes dominant the probability distribution loses track of the oscillation showing

only the gaussian distribution of the noise. The result is rather insensitive to the par-

ticular shape of the oscillation, a square wave yields the same symmetric two-peak

result, with a better separation between the peaks due to the faster transition between

high and low states.

The only way to get an asymmetric distribution like the observations, within the as-
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Figure 3.3: As in Fig.3.1, but for the monthly mean NINO3.4 index obtained from a 200-years
simulations of the CMCC coupled spectral T30 model (Navarra et al., 2008; Gualdi
et al., 2003)

sumptions of additive gaussian white noise and a two state ENSO, is to allow different

resident times in the two different states. Fig.3.6 shows the same as in Fig.3.5 but in

this case the noise has been superposed onto a square wave with different lengths of

the extreme states. We can see how the asymmetry can be easily identified and the

relative weight of the states found. The probability distribution signature of a pure

oscillation can also easily be identified, even if there is a considerable amount of noise

superposed. The observation seems to indicate the asymmetry is intrinsic and cannot

be explained with stochastic forcing.

Visual inspection of the T30 time series will not give the same impression and also

a false impression can be obtained from spectral analysis of the same experiments

(Navarra et al., 2008) that yields peaks with some significance. In reality there is almost

no oscillations in the case of the T30. This simple diagnostic is also showing a very

powerful method to evaluate the quality of the performance of models.
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Figure 3.4: Representation of the two normal distribution entering the best fit in the previous
pictures. The gaussians are well separated and they can be interpreted as possible
states of the system. The pictures shows estimated states for Observations (top),
T106 model (middle) and T30 (bottom). We can interpret the warm states as El
Niño and and the cold state as La Niña .

3.3 An equation for the probability distribution

We will describe in this section how we can formulate an equation that will al-

low us to investigate the properties of the probability distribution itself. In general

terms a system describing ENSO and an additive stochastic forcing can be written as

a Langevin-like equation:

ẋµ(t) = fµ(x(t)) +
√

Qεµ(t) (3.2)

where x(t) = (x1(t), · · · , xK(t)) represents the instantaneous state of the system

and fµ(x) a differentiable function of x for µ = 1, ...,K. The noise functions εµ(t) are

defined by their correlation functions as

γµν(t, t
′) = 〈εµ(t)εν(t

′)〉ε = 2Qδµνδ(t− t′) (3.3)

and they have zero means, 〈.〉ε is an average with respect to the probability distribution
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Figure 3.5: A time series for a sinusoidal oscillations with noise (top) for an arbitrary fre-
quency and unit amplitude.The estimated probability distribution show clearly
two peaks (middle), that can be readily identified as two symmetric, equal-
amplitude states (bottom).

of the realizations of the stochastic variables εµ(t).

3.3.1 The Fokker-Planck equation

We are interested in the transition probability distribution for the stochastic process

P (x, t,x0, t0), describing the probability for the system to be in x at time t, given that

it was in x0 at time t0. In what follows we shall often omit the dependence on the

initial data and use the simplified notation P (x, t). Using the gaussian nature of the

noise it is possible to write a Fokker-Planck equation for P (x, t) (Risken, 1989) with an

implied summation over repeated indices:

∂P (x, t)

∂t
=

∂

∂xµ

[

Q
∂P (x, t)

∂xµ
− fµ(x)P (x, t)

]

. (3.4)
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Figure 3.6: The same as in Fig.(3.5), but for the case of a square wave of the same frequency
and amplitude, but with different staying time for the positive and negative val-
ues.

The Fokker-Planck equation can be written also for multiplicative noise, but we will

consider only the additive case here, Q represent here a constant diffusion coefficient

while fµ is the drift term. In principle, the solution of this equation contains all the

information we need on the probability distribution and its evolution in time, but

explicit solution can often be very difficult except simple cases. However, we might

see the situation from a different angle, by realizing that the solution of this equation

can be written as a path integral (Haken, 1976; Navarra et al., 2012)

P (x, t) =

∫

[Dx(τ)] exp(−S(x))P (x, t0) (3.5)

where the integration is done over all paths x(t) that go from an initial state x0 at time

t0 to a final state xf at time tf . The functional S(x) is the continuous Onsager-Machlup

action that can then be defined in the white noise case as

S(x) =
1

4Q

∫ tf

0

[

[ẋµ − fµ(x)]δµν [ẋν − fν(x)] + 2Q
∂fµ
∂xµ

]

dt. (3.6)
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3.3. An equation for the probability distribution

The extra divergence term in the action is generated by the difficulty of defining the

derivative of a stochastic process and it corresponds to the choice of the Stratonovich

differentiation for the stochastic process. It is worthwhile to mention here that the

introduction of noise into a differential equation changes profoundly the character of

the equation. In particular individual realizations have little meaning and it opens a

classification between quantities that can be measured in a repeatable and consistent

manner (observables) and quantities that cannot really be measured.

Equation (3.4) can be solved by separating the time dependence and solving a sta-

tionary problem:

P (x, t) =

∞
∑

n=0

exp (−λnt)φn(x, t) (3.7)

Where the φ are the eigenfunctions and eigenvalues of the Fokker-Planck stationary

operator

LFP =
∂

∂xµ
Q

∂

∂xµ
−

∂

∂xµ
[fµ(x)(.)] (3.8)

LFP is not self adjoint and therefore we would need to consider also the eigenvectors

of its adjoint. However, a self-adjoint system can be obtained if the drift term can be

expressed in terms of a drift potential U(x, t) according to fµ = −∂U(x,t)
∂xµ

. In this case it

is then possible to use the transformation

P (x, t) = exp

(

−
U(x)

2Q

)

ψ(x, t), (3.9)

obtaining
∂ψ

∂t
= Lψ = Q

∂2ψ

∂x2
− V (x)ψ, (3.10)

where

V (x) =
1

4Q

(

∂U(x)

∂x

)2

−
1

2

∂2U(x)

∂x2
(3.11)

The operator L is now selfadjoint and it has the same eigenvalues as LFP ,. Their eigen-

functions are linked so that

φn(x) = exp

(

−
U(x)

2Q

)

ψn(x) (3.12)
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3.3. An equation for the probability distribution

and they form an orthonormal system such that

∫

ψnψmdx =

∫

exp

(

U(x)

Q

)

φnφm = δmn (3.13)

The operator L can be expressed in a compact way as

L = −âa (3.14)

where

a =
√

Q exp

(

−
U

2Q

)

∂

∂x
exp

(

U

2Q

)

(3.15)

â = −
√

Q exp

(

U

2Q

)

∂

∂x
exp

(

−
U

2Q

)

(3.16)

The existence of stationary solutions depends on the asymptotic behavior of the

potential V (x). For natural boundary conditions where the potential goes to very large

values for x → ∞ the operator â becomes the adjoint of a and stationary states exist.

However, also in the opposite case when the potential becomes very negative it is

possible to find eigenfunction and eigenvalues.

Defining the eigenfunction and eigenvalues of L as

Lψn = −λψn (3.17)

we can write the transition probability as

P (x, t|x′t′) = e(U(x)−U(x′))/2Q
∑

n

ψn(x)ψn(x
′)e−λn(t−t

′). (3.18)

The transition probability allows us to compute all the joint probability distributions

that express the probability Wn of the system assuming the values (x1, t1), (x2, t2), . . .,

(xn, tn). There is an infinite hierarchy of joint distribution factors that collectively de-

fines the property of the stochastic system, however for a Markov system all the higher

order W’s can be obtained from the 2-point distribution W2 that describes completely
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3.3. An equation for the probability distribution

the system at equilibrium according to

W2(x, t|x
′, t′) = P (x, t|x′, t′)Wst(x

′) t ≥ t′ (3.19)

where Wst is the stationary distribution, corresponding to the eigenvalue zero. It is

easy to show that a solution of the eq. 3.8 for the eigenvalue zero is:

Wst(x) = exp

(

−
U(x)

2Q

)

. (3.20)

However, such a solution exists only for suitable boundary conditions. The so called

natural boundary conditions correspond to the potential going to very large values

as |x| → ∞, reflecting boundary conditions requiring ψ → 0 can then guarantee the

existence of a stationary solution.

In terms of eigenfunctions and using the explicit form of the stationary solution we

get

W2(x, t|x
′t′) = e(U(x)+U(x′))/2Q

∑

n

ψn(x)ψn(x
′)e−λn(t−t

′) (3.21)

and the correlation function is therefore given by the expectation value

< x(t+ τ)x(t) >=

∫ ∫

xx′W2(x, t+ τ |x′, t)dxdx′ (3.22)

The expectation value of any function g(x, t) can be readily calculated as follows

〈g(x, t)〉 =

∫ ∞

−∞
g(x, t)P (x, t)dx (3.23)

in a similar way one can obtain 〈f(x)〉, simply integrating over time.

3.3.2 The relation with the Schrödinger equation

The modified form of the FP (3.10) is suggestive of a possible link to other appli-

cations in physics. It closely resembles the Schrödinger equation used in quantum

mechanics and this observation is maybe worth investigating a little bit more since

both equations describe the evolution of probability or of quantities closely related

to it. There is also another reason to look further in this relation. There are an enor-

mous amount of methods developed to deal with problems involving the Schrödinger
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3.4. A self-excitation ENSO model with a cubic nonlinear term

equation and a multidecadal expertise in discussing the concepts and interpretations

required. The potential of trying to use some of this wealth for application in our field

is simply too large to ignore.

The detail of the relation linking the two equations can be made explicit. The Schrödinger

equation for a point particle of mass m can be written as

i~
∂ψS
∂t

=
−~

2

2m

∂2ψS
∂x2

+ V (x, t)ψS , (3.24)

where m is the mass of the particle, ~ is the Planck constant divided by 2π and ψS is

the quantum wave function.

An analytical continuation of the time t = −iτ (sometimes known as Wick’s rotation

in the physics literature) will transform this form of the Schrödinger equation into

∂ψS(x, τ)

∂τ
=

~

2m

∂2ψS(x, τ)

∂x2
−

1

~
V (x, τ)ψS(x, τ), (3.25)

We can recover (3.10) in form by substituting ~

2m → Q and rescaling the potential

V by ~. It is interesting to note that the stochastic parameter Q plays the same role

than Planck’s constant ~. They are the controlling parameters of the uncertainty of

the system. The limit Q → 0 will yield the deterministic solution of the evolution

equations in a similar sense that the limit ~ → 0 yields the classical (deterministic)

solutions in the case of Schrödinger equation.

The remaining difference is the interpretation of the wave function ψS . The proba-

bility distribution can be obtained from to the solution of (3.24) by PS = |ψS |
2 whereas

the solution of the Fokker-Planck equation (3.10) is directly the probability distribu-

tion itself. Therefore the evolution of the probability for a stochastic system is given

by a Schrödinger -like equation, but whose solution ψ represents the probability dis-

tribution itself (scaled by an exponential factor), rather than its density.

3.4 A self-excitation ENSO model with a cubic nonlinear term

A simple model of the ENSO system based on the recharge theory was proposed by

Jin (1997a). The model is a nonlinear system in terms of nondimensional variables T, h.

T is representing the anomaly SST in the Eastern Pacific, whereas h is the anomaly of
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3.4. A self-excitation ENSO model with a cubic nonlinear term

the depth of thermocline in the Western Pacific.

dh

dt
= −rh− αµb0T

dT

dt
= (γµb0 − c)T + γh− (bT + h)3

(3.26)

The coupling strength will be measured by a parameter µ according to τ = b0µT . µ

measures the strength of the interaction between the SST and the wind stress relative

to a scale b0. The parameters can then be expressed as non-dimensional values c =

1, γ = 0.75, r = 0.25, α = 0.125, b0 = 2.5 using the same choices of scales made by Jin

(1997a).

Jin (1997a) studied the bifurcation diagram of the stationary solution of this system

as a function of the interaction parameter µ and he found that the system has a single

oscillatory solution for values of µ < 16/15 and then two exponential solutions that are

stable for large values of µ > 19/15. The delayed oscillator theory focus on the param-

eter space below this threshold that allows oscillations and therefore the appearance

of something like an ENSO cycle, but the introduction of stochastic noise also makes

the regime with stable stationary states capable producing ENSO variability. They also

investigated the behavior of the system under a stochastic forcing of strength Q, but

still with a linear system to describe ENSO.

The addition of gaussian white noise to the two equations in (3.39) will allow the

system to vacillate between one stable point and the other. Fig.3.7 and Fig.3.8 show the

trajectory for increasing values of the noise strength Q. The corresponding probability

distributions are peaked in correspondence of the stationary points (not shown). The

fluctuation between the two stable states can be clearly seen and also the degradation

of the bimodal nature of the distribution as the noise gets large, making the transi-

tion from one stable point to the other much easier. For larger values of the noise a

completely normal distribution can be reached.

The variations of the trajectory are however confined and the path taken by the

variables from one point to the other seems rather limited in a direction normal to the

line joining the two centers. This suggests that if we could transform variables in such
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Figure 3.7: Trajectory plot of a solution from (3.39) considering noise. Q = 0.1, µ = 21/15.

a way to introduce new variables (θ, z), obtained with a rotation

h = z + 0.8θ
µ

T = θ − 0.8 z
µ

(3.27)

we will be able transform the system in such a way that the stationary states in the

(z, θ) coordinates are given by

(0, 0) (
1

2

√

15µ− 16

5
, 0) (−

1

2

√

15µ− 16

5
, 0) (3.28)

along the z axis. We can then transform the system to a single equation for z by assum-

ing that θ ≈ 0. This approximation implies that h ≈ z and T ≈ − µ
0.8z that is consistent

with the solution of the original system (3.39) as described in (Jin, 1997a).

We can now apply the arguments developed in Section 3.3. Using the approxima-

tions just described we can get a one-variable stochastic equation:

ż = f(z) +
√

Qε(t), (3.29)
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Figure 3.8: Trajectory plot of a solution from (3.39) considering noise. Q = 0.001, µ = 21/15.

with

f(z) =
z(−80µz2 + 60µ− 64)

100µ2 + 64
(3.30)

defining the parameters,

β2 =
60µ− 64

200µ2 + 128
δ2 =

40µ

60µ− 64
. (3.31)

we can get a compact form

f(z) = −4β2δ2z3 + 2β2z (3.32)

This forcing function f(z) admit a potential U(z) that can be obtained from f(z) by

integration

U(z) = −

∫

f(z)dz = β2z2(δ2z2 − 1), (3.33)

and therefore we can use the self-adjoint form of the Fokker-Planck equation (3.10)

V (x) =
1

4Q

(

∂U(x)

∂x

)2

−
1

2

∂2U(x)

∂x2
(3.34)
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that in our case becomes

V (z) = 250
(

2β2δ2z3 + 2β2z
(

δ2z2 − 1
))2

+ β2 − 6β2δ2z2 (3.35)

The complete Fokker Planck equation for our simple model can then be written as

∂ψ

∂t
= Q

∂2ψ

∂z2
−
[

250
(

2β2δ2z3 + 2β2z
(

δ2z2 − 1
))2

+ β2 − 6β2δ2z2
]

ψ. (3.36)

The probability distribution can be obtained from the solutions of (3.36) via

P (x, t) = exp

(

−
U(z)

2Q

)

ψ(z, t). (3.37)

The one dimensional system has an oscillatory solution for µ < 16/15 and two

stable solutions for µ > 16/15. There is also a critical point at z = 0 that is stable for

µ < 16/15 that becomes unstable for µ > 16/15. The dependence of the potential on

the coupling parameter is shown in Fig.3.9. Crossing the threshold at 16/15 reveals a

couple of symmetric stable points whose separation increases with µ. The depth of the

two potential wells is identical and the height of the central barrier also increases with

increasing values of the coupling.

The solution for the Fokker Planck equation is a transition probability density dis-

tribution that can be expressed in terms of eigenfunctions. The eigenfunctions of the

transformed operator L are a complete set and they allow the representation of any

initial probability but because of the positive definite nature of the probability every

initial condition will always be a mixture of different eigenfunctions. The first five

eigenfunctions transformed back using (3.12) to the eigenfunction of LFP are shown

in Fig.3.10. They basically represent an ascending order of orthogonal functions sam-

pling the region around the potential. Except for the mode corresponding to the eigen-

value zero, i.e. the stationary solution, they all have oscillatory character.

It is important to note here that the solution cannot collapse to a single oscillatory

eigenvector because only combinations of eigenvectors that preserve the positive def-

initeness of the probability distribution will be described by the equation.

The different stationary solution obtained for various values of µ are shown in

Fig.3.12. The probability has a single maximum for values below the threshold where
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Figure 3.9: The dependence of the potential of the one-dimensional model from the coupling
parameter µ. The symmetry is broken for µ = 16/15, for values larger the potential
has two stable points in symmetric positions with respect to the ordinate axis. The
separation increases with increasing values of the coupling.

there is only one critical point and an oscillation, but they become a doublet when µ

is large. The dependence from the value of the noise, Q, can be easily guessed from

(3.20): large values of the noise will tend to flatten and eliminate the double peaks,

resulting in a single normal distribution centered at the origin. The stationary density

probability distribution from the one-dimensional model is therefore very consistent

with the probability distribution obtained from the numerical experiments.

The evolution of the probability density distribution can be obtained from the tran-
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Figure 3.10: The first five eigenfunction for the symmetric case. The first eigenfunction corre-
sponds to the eigenvalue zero and therefore is the stationary distribution.

sition probability (3.18) as

W (x, t) =

∫

P (x, t|x′, 0)WIC(x
′, 0)dx′ (3.38)

Fig.3.13 shows the evolution of the probability for an initial distribution centered at

x = −0.7. The coupling is set at µ = 21/15 and it generates a rather well defined

potential with a high barrier. For this value of the noise (Q = 0.15) the stationary

solution is still not fully achieved at a final time of 60 months.

Several factors can influence the evolution for a given value of the coupling co-

efficient. Increasing the strength of the forcing will make easier the transition to the
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Figure 3.11: As in Fig.3.10 but for the asymmetric case

neighboring potential well, resulting in a faster convergence to the stationary state.

Localization of the initial condition also affects the following evolution. In general, a

well localized distribution will have a slower transition outside of the region where

the stationary solution exist, like those in Fig.3.13 will have a slower evolution. An

extremely localized distribution,δ(x) will project equally on all eigenfunctions and the

convergence to the zero eigenvalue will be influenced by higher eigenvalues with long

decay scales. On the other hand, an initial condition that projects better on the slower

mode will have a faster evolution (Fig.3.14) showing a rapid convergence to the equi-

librium distribution.
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Figure 3.12: The stationary solution for the probability distribution for various values of the
coupling parameter µ. The solution is unimodal for values below the threshold
and becomes bimodal for stronger coupling. It follows of course closely the po-
tential distribution in Fig.3.9 according to Eq. 3.20.

3.5 The origin of the asymmetry

The model shown in the previous section shows some of the aspects of the El Niño

variability, but it lacks the difference between cold and warm states that the observa-

tions have (Fig.3.1). An et al. (2005); An and Jin (2004) have proposed that the effects

of the neglected nonlinear terms in the advection can explain some of the amplified

magnitude that warm events show. Intraseasonal variations in convection has also re-

ceived considerable attention for the forcing that they can exert, once their effects is

rectified in the seasonal mean, to the inter annual variability.
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Figure 3.13: The evolution of the probability distribution for an initial distribution centered
at x = −0.7 and for different times in months. The value of the coupling constant
used here (µ = 21/15) and the level of the stochastic forcing (Q = 0.15) result in
a time to achieve the stationary distribution of about 60 months.

The Madden-Julian Oscillation, in particular has been the subject of observational

and modeling studies. In general, it has been considered to be a component of the

stochastic forcing, however, it does seem to have a systematic, rather than stochastic

effects on the anomaly SST in the Eastern Pacific. Zhang and Gottschalck (2002) and

Zhang (2001) have shown that it is the seasonal activity of the MJO that is correlated

with positive SST anomalies in the East Pacific. These results implies that the rectified

effect of the MJO is rather of one sign, tending to push the system towards warmer

states. This systematic effect seems to indicate that it is more reasonable to extract the
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Figure 3.14: As in Fig.3.13, but for an initial distribution centered at x = 0.

MJO from the stochastic forcing and try to reproduce its effect more directly.

The nonlinear system (3.39) can then be easily modified to take into account the ef-

fect of the MJO by adding a constant term in the temperature equation. However, this

would not be consistent with the dynamics of the MJO perturbation on the equatorial

pacific ocean. A simple constant in the temperature equation will force a change in the

thermocline depth of opposite sign, as it is required by the inter-annual dynamics. In

order to get a constant response it is necessary to add a term also in the thermocline

equation in order to represent the change in depth produced at seasonal scales by the

MJO forcing. The model equations (3.39) can therefore be modified adding a constant

term γT in the temperature equation and another constant term γh in the thermocline
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3.5. The origin of the asymmetry

equation such as
dh

dt
= −rh− αµb0T + γh

dT

dt
= (γµb0 − c)T + γh− (bT + h)3 + γT .

(3.39)

It is still possible to obtain a one-dimensional model such that:

ż =

(

25µ2γh − 20µγT
)

25µ2 + 16
+ z

(15µ− 16)

25µ2 + 16
− z3

20µ

25µ2 + 16
(3.40)

The scale of the constants can be derived from the observations (Zhang, 2001) and it

is estimated to be of the order of 0.1C at seasonal scale for the SST and of the order of

2m for the average effect on the thermocline.

The potential that can be obtained using the above constant is shown in Fig.3.15. The

presence of the MJO breaks the symmetry and makes the potential well for the warm

stable case deeper. (The variable z is proportional to the negative of the temperature

anomalies). Increasing the coupling intensifies the asymmetry and the separation be-

tween the states, making it more difficult to overcome the central barrier.

Breaking the asymmetry creates a different situation, The initial condition at neu-

tral conditions (x = 0) in Fig.3.16 is showing a faster adjustment to the the equilib-

rium than the previous case. This is more evident in the initial condition centered at

x = −0.7 (Fig. 3.17) that is showing clear signs of a faster transition, even if it is yet

not completely finished at 48 months. The inspection of these solutions seems to in-

dicate that breaking the symmetry has changed the structure of the eigenvalues that

represent the inverse time scales of the evolution of each eigenfunction.

It is possible to analyse the dependence of the skewness of the theoretical distribu-

tion as a function of the coupling parameter µ. Table 3.1 shows the skewness, com-

puted as the normalised third moment of the distribution, for increasing coupling

strength. The value for the observations based on the NINO3.4 set already used in the

paper is also shown at the bottom. The skewness is largely a function of the coupling

parameter and of the symmetry parameter γ, whereas for larger values of the noise

it tends to become smaller. Realistic values of skewness can be obtained within the

parameter range of the coupling.
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Figure 3.15: The potential for the one-dimensional model including the effect of the MJO. The
presence of the MJO breaks the symmetry and makes the potential well for the
warm stable case deeper. (The variable z is proportional to the negative of the
temperature anomalies).Increasing the coupling intensifies the asymmetry and
the separation between the states, making more difficult to overcome the central
barrier.

3.5.1 Time correlations

Correlations can be easily obtained from the joint probability in the stationary state.

The autocorrelation length, for instance, can be written as:

〈x(τ)x(0)〉 =

∫ ∫

xx′e(U(x)+U(x′))/2Q
∑

n

ψn(x)ψn(x
′)e−λnτdxdx′

∫ ∫

xx′ψ0ψ0

∑

n

ψn(x)ψn(x
′)e−λnτdxdx′

(3.41)
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Figure 3.16: As in Fig.3.14, for the asymmetric potential.

This relation reduces to the covariance for τ = 0, whereas the value at different τ ’s

depend on the contribution of each eigenfunction. For very large lags τ → ∞ it is

interesting to see that we can recover easily the Onsager regression hypothesis so that

lim
τ→∞

〈x(τ)x(0)〉 =

∫ ∫

xx′ψ0(x)ψ0(x
′)ψ0(x)ψ0(x

′)dxdx′ = 〈x〉2 (3.42)

The autocorrelation in general tends to be shorter for increasing noise and increasing

asymmetry. The asymmetric potential yield shorter autocorrelations than the symmet-

ric potential for the same value of the coupling and asymmetry parameter γ. The best

results are obtained for relatively large values of gamma, in this case 0.06 was used.
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Figure 3.17: As in Fig.3.13, but for the asymmetric potential.

Fig.3.18 shows the autocorrelation for the symmetric and asymmetric potential with

Q = 0.1 and µ = 27/15. The asymmetric model has some correspondence with the ob-

servations for lags up to 10 months, but the symmetric model decays too slowly. The

simple asymmetric model captures the main behaviour, but it does not fall quickly

enough and it does not cross the zero line.

The behaviour of the autocorrelation is determined by the eigenvalue structure.

Fig.3.19 shows the structure of the first eigenvalue in the symmetric and in the asym-

metric case corresponding to the autocorrelation in Fig.3.18. The physical interpre-

tation of these eigenvalues in the quantum mechanic case is that they represent the

energy levels of the states, in this case they can be interpreted as the decay time scale
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Figure 3.18: Autocorrelation function for the two models. The asymmetric model has shorter
correlation length for the same value of the coupling constant µ indicating that
the asymmetry is also introducing a faster decorrelation that brings the system to
a realistic value of 10-12 months. Horizontal lines indicates the 95% confidence
level for the observed autocorrelations.

for each eigenfunction that contributes to the probability distribution. The symmetric

case on the left in Fig.3.19, tends to have larger eigenvalues and so the second one has

also a very long decay scale of about 38 months inverse. In general the decay scales

in the asymmetric case are shorter and so the result is that the autocorrelation as a

function of the lag (Fig.3.18) is showing a faster drop, of the order of 10 months for the

asymmetric case.
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Figure 3.19: The eigenvalues structure for the symmetric model (left) and the asymmetric
model (right). It is possible to see how breaking the symmetry has increased the
separation between the eigenvalues.

3.5.2 Transition from warm and cold cases

The probability of transition from one probability distribution to another can be

obtained from the density probability distribution (Eq.3.18 or 3.38) inserting an initial

distribution. In the simplest case we can assume for the initial distribution a delta

function in a particular value WIC = δ(x′ − x0), so that the distribution at time t is
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3.5. The origin of the asymmetry

given by

W (x, t) =

∫

P (x, t|x′, 0)δ(x′ − x0)dx
′ = P (x, t|x0, 0) (3.43)

It is of particular interest to evaluate the probability to evolve starting from one po-

tential well (a warm El Niño state) to the other well (a cold La Niña state).

In the symmetric case we expect that these two probabilities be the same because of

the symmetry, but the asymmetric case is more interesting. The probability distribu-
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Figure 3.20: The probability distribution for a transition from a sharp, δ-like distribution at
t = 0 in the cold well (solid) to t = 12 months, compared with the same transition
from the warm well to the cold well (dashed). The final probability density of
the cold to warm transition is smaller than the probability of a warm to cold
transition, indicating that El Niño is more probable to be followed by a La Niña
than the other way around. The peaks indicate the position of the cold and warm
well respectively.
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tion for a transition from a sharp, δ-like distribution at t = 0 in the cold well located

around z = 0.5 (solid line in Fig.3.20) to a later time (in this case 12 months later), is

showing a secondary peak in the warm well (located around z = −0.5), indicating

tunneling across the potential barrier induced by the stochastic noise. This is to be

expected as we have seen in the previous sections, however the opposite transition,

from the warm well to the cold well (dashed line) is also showing a secondary peak,

but the probability density is smaller, indicating that warm states are more probable

to be followed by cold states than the opposite. This feature tend to be stronger as the

asymmetry increases (growing values of µ) or the noise becomes larger. Observations

show a similar feature if the probability of the two transitions is estimated from the

data (Choi and Vecchi, 2012).

3.6 Conclusions

The probability distribution of the NINO3.4 index, considered as an indicator of

ENSO dynamics, can be reproduced by a simple nonlinear system stochastically forced

by gaussian noise. A probability distribution with many properties similar to the ob-

served NINO3.4 can be obtained also in a regime that does not support self-sustained

oscillations, characterized by large values of the coupling constant between stress and

surface temperature. This regime has usually been neglected in the past as a regime

where ENSO dynamics could not be deployed because of the absence of oscillations,

but we show that indeed this maybe the case if stochastic forcing is included. The the-

oretical probability distribution allows the calculation of time correlation and other

quantities, showing that the asymmetry is necessary to achieve the time scales that

are typical of ENSO. The skewness of the distribution is increasing with the coupling

parameter and realistic values can be obtained.

It was not the intention of this paper to advocate a bimodal probability distribution

for ENSO, in fact the distribution is probably unimodal. We propose instead here a

representation of ENSO as transitions between states, even as low as only two, that

can be a viable framework to study it. Further work is required to clarify what will be

the total number of states that will be needed for the final theory.

The Madden-Julian oscillation has a systematic effect on the eastern Pacific SST and
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Table 3.1: Skewness parameter for the asymmetric distribution and various values of the cou-
pling parameter and for Q = 0.15 and γ = 0.01. The skewness increases for larger
couplings and it becomes smaller for increasing noise. The skewness for the esti-
mated probability distribution for the observation shown in Fig.3.1 is included at
the bottom.

µ Skewness

17/15 0.3692
19/15 0.3803
21/15 0.3898
23/15 0.3981
25/15 0.4055
27/15 0.4122
29/15 0.4185
Obs 0.3633

on the depth of the thermocline in the Western pacific that can be represented in this

model in the simplest way with a constant forcing. The presence of the forcing breaks

the symmetry, producing a more realistic asymmetric probability distribution between

cold and warm states that also explains the gap in the probability of the warm to cold

and cold to warm transition. The theoretical autocorrelation is also impacted by the

asymmetries and it tends to be closer to the observations. In this hypothesis, the recti-

fied seasonal effect of the MJO activity has a systematic impact on the ENSO dynamics

producing the asymmetries observed in the probability distribution.

The theory proposed here unifies in a simple logical framework the hypothesis

that ENSO is a chaotic nonlinear system or a linear, but stochastically forced case,

in fact both these cases can be obtained as limiting cases of the system proposed here.

Weak noise, and/or weak coupling will result in a self-sustained oscillation, whereas

weak nonlinearities (though we did not discuss this case here) will recover the linear

stochastic system. This study shows that the dynamics of ENSO is possibly far richer

than previously thought and different regimes can be active at different times as the

coupling constant and the magnitude of the noise varies. We also think that this ap-

proach can be extended in a number of ways, considering higher dimensional system,

multiplicative or coloured noise and more realistic approaches, but this will be the

subject of our next papers.
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CHAPTER 4

EFFECTS OF PERIODIC GROWTH RATE IN THE SIMPLE ENSO

MODEL AT STRONG COUPLING

4.1 Introduction

In the previous chapter a simple system is proposed that retains the main charac-

teristics of El Niño-La Niña variations, such as the skewness and the autocorrelation,

and it is shown how solutions for the probability distribution can be obtained using a

Fokker-Planck equation.

Several ENSO’s studies consider the seasonal cycle into their deterministic models.

Munich (Munnich et al., 1990) studied ENSO as it was described by an iterative map,

derived from a more complex model, which combines the linear ocean dynamic in the

β-plane approximation with the Bjerknes hypothesis. In this model they also consid-

ered the case of a periodic correction into the coupling factor, to take crude account of

the mean annual cycle in the SST and of the wind speed. Another interesting explana-

tion of the importance of adding a seasonal cycle in the model, was given Tziperman

et al. (1994a). They used a model with delayed equation including an idealized sea-

sonal forcing to evaluate whether ENSO might be a low-order chaotic process driven

by the seasonal cycle. The added phenomenological cycle was able to introduce inter-
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4.2. Effects of periodic Growth Rate on the Potential

esting features at strong coupling, that means strong interaction between ocean and

atmosphere with consequent strong non-linearity. In fact, in this case the system be-

came mode-locked. The frequency of the non-linear oscillator changes slightly to a

simple rational multiple of the driven annual forcing. However such a model with

time delay and seasonal cycle could not reproduce the changes in regimes typical of

ENSO events. Another forcing, a stochastic one, must be taken into account together

with the seasonal cycle, (Stone et al., 1998). Galanti and Tziperman (2000) investigated

the phase locking of ENSO to the seasonal cycle in three different dynamical regimes.

The Delayed Action Oscillator (DAO) was modified to include the annual cycle and

stochastic forcing, as external influences which allowed to better model ENSO dynam-

ics. Since El Niño events typically appear in late December - early January, the annual

cycle plays an important role in the onset of El Niño (Boutle et al., 2007). Recently a

stochastic Recharge Oscillator (RO) has been used to explain the role of the annual cy-

cle in ENSO growth rate in the formation of the spring predictability barrier. The RO

used is linear and the growth rate considered is almost always negative (Levine and

McPhaden, 2015).

I have completed the study started in the previous section making some consider-

ations about the effect of the annual cycle on our simple model. The periodic growth

rate used is always positive, in order to implement the Bjerknes positive feedback hy-

pothesis described in chapter 1, but now is modified to be be periodic. If non-linearity

and strong coupling are used, this hypothesis can be conserved because the system is

damped also without considering a negative growth rate. I have shown that a periodic

growth rate produces a periodic, and not static, PDF for the ENSO system, and also

in this case with the positive feedback, it is able to explain the Spring Predictability

Barrier (SPB) and the spread of the PDF in a particular month of the year.

4.2 Effects of periodic Growth Rate on the Potential

I have considered as starting point the RO with the parameter estimation used in the

previous chapter (in A.2 you can find a more detailed explanation of the parameters

appearing in the RO), using the cubic non-linear term that for strong coupling is able to

damp the system, but I have added a periodic term to the growth rateR = (γµb0−c) to
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4.2. Effects of periodic Growth Rate on the Potential

take into account the annual cycle. The new periodic term, called λ(t), is the combined

effect of the periodic coupling and the collective damping term c. The total growth rate

can be written as

R→ (γµb0 − c) + λ(t), (4.1)

where

λ(t) = λ0 + λ1 cos(ωt+ ω), (4.2)

with ω = 2π
6 , since I have used the scaling of Jin (Jin, 1997a). The shape of λ(t) has

chosen following the suggestion of Stein, (Stein et al., 2010). They estimated that the

growth rate should decrease in the first part of the year and then becomes bigger

during autumn. They used a linear stochastic model and the growth rate is almost

always negative, while I have wanted to conserve the positive Bjerknes feedback in

the model, so λ(t) acts to decrease the estimation of the growth rate in the first part

of the year but is always positive the total growth rate. The initial decreasing could

be justified thinking to the impairment of the wind stress, that should decrease in

that period. This could be seen as an impairment of the coupling between ocean and

atmosphere and then the growth rate should be smaller. In Fig. 4.1, it is shown the

total and the mean behavior of the growth rate. From here the parameter used are

λ0 = −0.5 and λ1 = 1.4, µ = 24
15 , γh = γT = 0.02 and Q = 0.015.
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Figure 4.1: Growth Rate periodic variations and mean. With this parameter the growth rate is
small during the first part of the year and becomes bigger during autumn.

If now the transformation performed in the previous section is used, a simple model

described by a unique equation is found

ż = −z3
20µ

16 + 25µ2
+ z

(16λ1 cos(tω) + 16λ0 + 15µ− 16)

25µ2 + 16
+

25µ2γh − 20µγT
25µ2 + 16

. (4.3)
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Now in the growth rate appears the periodic annual cycle. The effect of this periodic

term is that of modifing the potential previously found, making it time dependent, Eq.

(4.4)

U(z, t) =
5µz4

25µ2 + 16
−
z2
(

8λ1 cos(tω) + 8λ0 +
15µ
2 − 8

)

25µ2 + 16
−
z
(

25γhµ
2 − 20γTµ

)

25µ2 + 16
. (4.4)

In Fig. 4.2, it is shown the behavior of the periodic potential, derived from the peri-

odic drift of Eq. (4.3). Remember that the time scale used here is [t] = 2 months. Now
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t=2

t=5

t=6

Figure 4.2: Periodic drift potential Eq. (4.4).

the potential modifies its shape during the year. During autumn it becomes more and

more asymmetric and gradually becomes parabolic in spring. This behavior influences

the PDF periodically and it is able to modify the persistence of the initial condition.

The systematic MJO effect, taken into account with the two constants γh andγT , mod-

ifies the symmetry of the potential.

Numerically solving the FP equation associated to the stochastic Eq. (4.3), the peri-

odic PDF can be found. In Fig. 4.3, it is shown a contour of the evolution of the PDF

using as initial condition a Gaussian distribution centered in z = 0. When z ≈ ±1.5

the potential act as a wall for the system and then we set as boundaries for the FP

equation that the PDF must go continuously to zero in those points. After approxi-

mately one year the system loses information about the initial PDF distribution, and

the long-term periodic behavior of the PDF is reached. In Fig. 4.4, temporal slices of

the PDF evolution are shown. During December periods, time slices t = 24 and t = 30,

the system has more chances to make rise strong events than in August periods t = 28

and t = 34. This respects the observed behavior, Fig. 5.1a of the next chapter.
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Figure 4.3: Contour of the evolution of the PDF associated to Eq. (4.3).
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Figure 4.4: Temporal slices of the PDF evolution.

As mentioned above, and suggested by Levine and McPhaden (Levine and McPhaden,
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4.2. Effects of periodic Growth Rate on the Potential

2015), the effect of the periodic growth rate is reflected in a difference persistence in the

initial condition during the year. This means that the periodic growth rate produces a

predictability barrier. A straightforward explanation of this effect can be done looking

at the potential. When the growth rate decreases, the drift potential becomes parabolic

and the system is more locked, it can not easily jump in different configurations, and

the system is more persistent. On the contrary, when the potential is asymmetric and

away from the parabolic configuration, the system, with the aid of noise, can jump be-

tween two potential wells that correspond to events of strong anomalies. To examine

this effect, the ensemble Normalized Temperature Persistence (NTP) has been used

for every month m, defined here by the following quantity

NTPm(τ) =
1

Ny − 1

Ny−1
∑

i=1

T i(m+ τ)− T i(m)

T i(m)
, (4.5)

where Ny is the total number of years of the series, and T i(m) (zi(m) if the model is

considered) is the temperature during the year i at month m. In Fig. 4.5, it is shown

the behavior of the quantity defined above, computed both for the NINO3.4 time se-

ries and for a 4000 years time series generated with the model. Both the pictures show

evidence of the so called Spring Predictability Barrier. A periodic growth rate can gen-

erate the predictability barrier.

For completeness I have to remark a few problems related with this simple model.

With the value of the parameter used here, the standard deviation of the time series

generated with the simple model is σM ≈ 1.4 ◦C (once z is converted in dimensional

temperature), while the one computed from the observations is σO ≈ 0.8 ◦C. Look-

ing at Fig. 4.5, it can also be noted that the autocorrelation of the observations must

decrease faster than the one of the model. Increasing the value of Q, the parameter

more difficult to estimate, the right value of the correlation can recovered but σM is

amplified and the PDF results to be less asymmetric (not shown here). Decreasing the

Q value, the asymmetry increases and decreases σM , but the model is strongly auto-

correlated.
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(b) Ensemble NTP computed using the a 4000 years time series generated with the simple
model.

Figure 4.5: Comparison of the Ensemble NTP computed both for the observations and for the
model. Both the pictures show the so called Spring Predictability Barrier.

4.3 Summary

In the last two chapter a new way to consider ENSO is suggested; it can be seen

as a system that can jump between two states, one positive and one negative, thanks
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to the stochastic forcing. These two states are represented by a potential generated by

the non-linearity that damps the system. Since the noise is an important ingredient

in studying ENSO, we have studied the system by means the FP equation associated

with it. In this framework the natural way of thinking is the one that refers to the

potential that arises from the drift term of this FP equation.

The model studied has been derived using a rotation in the space of variables of the

Recharge Oscillator. This starting model is based on the positive Bjerknes feedback

and does not consider explicitly retarded waves, but their cumulative effect into the

parameters definitions. To the rotated model the stochastic forcing has been added

to sustain the oscillation otherwise damped. This damping is granted thanks to the

strong coupling between atmosphere and ocean used and the non-linear term. into

the equation.

We have tried, using this rotated model described by just one equation, to suggest a

possible mechanism that could explain the asymmetry in the PDF typical of ENSO. In

particular, taking into account the MJO effect into the equations we have been able to

set the different depth of the double well potential that describes the system, generat-

ing in this way a PDF that is asymmetric.

Using this model, I have also tried to exploit a periodic growth rate as cause of

the predictability barrier, another important feature of ENSO. It is important to re-

mark that before the rotation in the variable space, I have modified the growth rate

maintaining it positive to respect the positive Bjerknes hypothesis. The predictability

barrier could be explained by means the potential well. During autumn it becomes

more and more asymmetric and gradually becomes parabolic in spring. This behavior

influences the PDF periodically and it is able to modify the persistence of the initial

condition.

It is impossible to obtain the exactly values of all the observables that character-

ize ENSO using more sophisticated Coupled General Circulation Model (CGCM), so

we have no hope to explain exactly ENSO using such a simple model. A perfect re-

production of ENSO is not the aim of this work but rather trying to highlight all the

mechanisms that together with the Bjerknes positive feedback are able to characterize

ENSO, in particular the asymmetry of the PDF and the SPB.
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CHAPTER 5

ENSO’S TRANSITION PROBABILITY MATRICES

5.1 Introduction

The long-term predictability and the study of the variability generated by the inter-

action between atmosphere and ocean, are one of the big challenges of our time. Being

able to deeply understand and to provide predictions of phenomena such as El-Niño

Southern Oscillation (ENSO), which is able to change the normal weather variability

on global scales causing damage to agriculture and therefore to the socio-economic

system of entire countries, could mean limiting the damages generated by these phe-

nomena.

Lorenz started to show the difficulty in making weather forecast, explaining the

chaotic nature of the dynamic that governs the atmosphere and the ocean (Lorenz,

1963, 1984, 1987). Because of small, but inevitable, errors committed in defining the

initial state, the solution of the simulation quickly moves away from the real solution.

He also estimated that the small errors generally tend to amplify as time goes by: he

estimated that they tend to double in 2.5 days (Lorenz, 1969).

Despite these problems, Shukla (1981), extended the classical concept of predictabil-

ity to the predictability of time averages. He showed that the predictability limit for
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the synoptic-scale wave is only about two weeks, while the predictability limit of the

low-frequency planetary waves could be longer than one month; these observations

lay the physical foundations to make dynamical prediction of monthly means.

Two years later, Miyakoda et al. (1983) highlighted that some large-scale quasi-

stationary anomalous circulation features could have been successfully predicted us-

ing initial conditions, without considering any boundary conditions; but, later than

one month, the focus of the problem should be more on boundary conditions than the

atmospheric initial conditions (Shukla, 1985).

Assuming that the Sea Surface Temperature (SST), provides the major lower bound-

ary for the atmosphere Stern and Miyakoda (1995) showed the feasibility of seasonal

forecast using multiple General Circulation Model (GCM) simulations.

Now a new field called “Decadal Prediction” is using initialize climate model to

produce future climate projections (Meehl et al., 2009).

Even tough there have been lots of advances in the predictability, there are still mat-

ters that are not completely understood, in particular about the seasonal predictability

affected by the Spring Predictability Barrier (SPB). This phenomenon is one of the most

important causes of prediction uncertainties in ENSO forecasting. It often experienced

by most ENSO-forecasting models, and it is characterized by an apparent drop in pre-

diction accuracy during April and May (Webster and Yang, 1992; Webster, 1995). After

the spring (or the autumn in the Southern Hemisphere), the ability of the models to

predict becomes increasingly better. SPB , “shakes" the system that looses part of the

information about its state.

It must also be considered that all the models inherit uncertainty associated with

a finite resolution and with the approximation in the physical equations used. These

elements could introduce some fictitious effects that distort the results obtained with

the simulations.

I have wanted to present how to use the probability transition matrices associated

with a particular climatic phenomenon for an its description and characterization. In

particular I have focused on ENSO, since the investigation of the previous chapter

prompted the idea that ENSO could be a system described by a sequence of states,

rather than a simple oscillation (even if this framework can be extendable to all the
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other climate phenomena). The transition considered between different seasons are

one year long or less. From these matrices the SPB effect can be recognized and a sort

of index of predictability using the entropy associated to these matrices can be written.

Nicolis (1990) developed a systematic method for mapping deterministic chaos in

general, and atmospheric and climate dynamics in particular, into a Markovian pro-

cess. He casted a multivariate system continuously evolving in time in a discrete it-

erative form, monitoring successive extrema of some of the variables, as done also by

Fraedrich (1988), or reducing the dimensionality of the system using Poincaré map.

From the map obtained, using appropriate partition of the possible state he mapped

the deterministic chaotic system into a stochastic one, described as a Markov process.

However, some interesting systems, such as ENSO, seem to be described by damped

oscillations sustained by noise. The stochastic forcing in this phenomenon is really

important. Instead of describing it considering an iterative map derived by monitoring

its extrema, I have divided Sea Surface Temperature Anomaly (SSTA), in four states;

then, I have computed the transition probability matrices for these states for different

transitions periods. These matrices not necessarily describe a Markovian process, but

if this is the case, more information, as the mean sojourn time and variance, can be

easily extracted. As it will be explained in the next section, using only two states, the

extreme events could bring an over-estimation of this mean sojourn time.

This statistical approach is applied both to the NINO3.4 index ( the mean SST in

the region 5◦N− 5◦S and 170◦W− 120◦W with the seasonal cycle removed) computed

from the observations, and to the same index computed from a long run simulation

of a General Circulation Model (GCM). These matrices can be used to compare mod-

els and observations. From the comparison, it is possible to see in detail the statistic

related to the dynamic of ENSO, the persistence of a state or its capabilities to tran-

sit in another one. The stationary distribution for every season can also be extracted,

but here there is more information. Comparing the matrices obtained from the model

and observations, it is possible to have a more detailed picture of the wrong kind of

transition that could happen in the model for a particular transition time.

These matrices are also computed for a time series obtained disturbing a simple

oscillation with noise. This is done to highlight the signature which could be left by

that kind of signal in these matrices.
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A statistic for small population is applied to the entries of the observation and model

matrices to compute the confidential interval of each transition probabilities.

5.2 Methods

One of the possible ways of studying the ENSO phenomenon, by means NINO3.4

index, passes through the use of the transition probabilities matrices. I have assumed

that the SSTA can fall just in four states defined in Tab. 5.1b. The A− state repre-

sents a strong negative anomaly that could be considered as a La Niña event, ac-

cordingly to the definition of http://www.cpc.ncep.noaa.gov, while A+ is a

strong warm event that could be considered as an occurrence of El Niño. The in-

termediate states N− and N+ , respectively negative and positive, are the so called

neutral states, characterised by too small anomalies to consider the Pacific Ocean in

a state of La Niña or El Niño. The SSTA jumps in each of these states with the sea-

sons changing Tab. 5.1a. From NINO3.4 index, it can be found a new series in which

the time unit leads in the next season and where the SSTA can assume four values.

I have started with a monthly data time series of 159 years, from January 1856 to

December 2014. The period 1856-1949 is a reconstruction (Kaplan et al., 1998) while

the period 1950-up to now is taken by the Climate Prediction Center of the NOAA,

http://www.cpc.noaa.gov/data/indices/.

Convention Months

s1 DJF

s2 MAM

s3 JJA

s4 SON

(a) .

States T Range SSTA [C]

A− (∞ − 0.5)

N− [−0.5 0]

N+ [0 0.5]

A+ (0.5 +∞]

(b) .

Table 5.1: Conventions for the name used to indicate different seasons and division of the
continuos interval of SSTA variation in four different discrete states.

I have denoted with W
nk the matrix that contains the transition probabilities be-

tween states considering the starting season sn and the ending season sk. If n < k,
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both seasons belong to the same year, if n ≥ k the convention used here is that sk

belongs to the next year. The elements of this matrix are

(Wnk)ij = P(i, sn|j, sk), i, j ∈ T, and, n, k ∈ {1, 2, 3, 4}, (5.1)

where T is the space of the possible states, and P(i, sn|j, sk) is the conditional proba-

bility to reach the state j during the season sk starting from the state i in the season sn,

with the convenience that the time of the transition must not be longer than one year.

The transition probability matrix is unknown, and the matrix elements have to be

empirically found. Since there is a 159 years time series of monthly data, it is possible

to assist to 12x159-1 monthly transitions. The best estimate for these transition prob-

abilities is found considering the number of transitions mnk
ij made from the state i,

during one of the months belonging to the season sn, to the state j in one of the three

months of the season sk, and the total number of transitions made out of state i during

this period mnk
i =

∑

j∈Tm
nk
ij . The empirical transition matrix can be used to construct

an estimate of the transition probability matrix:

(Ŵnk)ij =
mnk
ij

mnk
i

, i, j ∈ T, and, n, k ∈ {1, 2, 3, 4} (5.2)

this is just estimating a binomial proportion. Finding an error for these matrices is

more complicated, since the conditions for a Bernoullian sampling like this

mnk
i (Ŵnk)ij > 10 ∧ mnk

i (1− (Ŵnk)ij) > 10 (5.3)

are not satisfied for all the elements of the matrix. The violations of these conditions

tell that the low of 3σ, where σ is the estimate of the standard deviation, can not be

used. An estimation of the probability from a small population is done, but the uni-

versal confidence levels are not well defined. This is because of the strong dependence

of the binomial distribution for small population on the number of sampling mnk
i and

on the probability (Ŵnk)ij . This problem can be solved finding directly the solution of

the confidence level problem transcribed for a discrete variable (Rotondi et al., 2001).

If CL is the confidence level required, the extreme values (Ŵnk
1 )ij , (Ŵnk

2 )ij of the cor-
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respondent confidence interval are determined by:

mnki
∑

m=mnkij

(

mnk
i

m

)

(Ŵnk
1 )mij (1− (Ŵnk

1 )ij)
mnki −m = c1 (5.4)

mnkij
∑

m=0

(

mnk
i

m

)

(Ŵnk
2 )mij (1− (Ŵnk

2 )ij)
mnki −m = c1 , (5.5)

with c1 = c2 = 1−CL
2 . This system can be solved with a simple recursive algorithm

of dichotomous search. Fixing the starting values for the extremes of the confidence

level (Ŵnk
1 )ij = (Ŵnk

2 )ij = 0.5, and a step size s = 0.5, after each iteration it is added

or subtracted half step to the probability values until Eqs. (5.5) are satisfied less than a

certain small amount ε = 10−6. If the problem for each value of the transitions matrices

is solved, it is possible to say that

(Ŵnk)ij ∈
[

(Ŵnk
1 )ij (Ŵnk

2 )ij

]

, (5.6)

with the required confidence level.

These transition matrices may show some important features about ENSO; for ex-

ample, using just four states, the spring barrier could be highlighted by the values of

the probabilities and how they move through the matrix considering different seasons

transitions.

One way to quantify this loss of information is considering the distance between

the different transitions matrix and the one that represents the complete lack of infor-

mation, that it can be seen as the matrix that has the maximum entropy, that is the

uniform distribution matrix

ME =

















0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

















. (5.7)

The distance considered here between the two matrices A, B is the ordinary d2 distance

d2(A,B) =

√

√

√

√

4
∑

i=1

4
∑

j=1

(aij − bij)2 . (5.8)
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The seasonal transition that suffers more from the SPB effect should have the smallest

distance. To estimate the true distance and the error for each matrix, it is necessary to

consider an ensemble obtained varying the probabilities contained in the matrix under

study according to their confidence interval, in such a way that the sum of each row is

equal to one. For all the ensembles, the distance is computed so that one can consider

the distance average and standard deviation.

Another more useful way to compute the loss of information for the different tran-

sition matrices is using the entropy of the matrices computed as

S(Ŵnk) = −
∑

i,j

(Ŵnk)i,j loge[(Ŵ
nk)i,j ], i, j ∈ T . (5.9)

From these quantities it is easy to build a clear index for the predictability of ENSO as

follow:

ENSOidx = 1−
S(Ŵnk)

S(ME)
. (5.10)

When this index is equal to one, the maximum information is obtained and you are

sure about the possible transition that occurs.

A simple test to verify the goodness of these matrices is to recover the long-time

Probability Density Function (PDF) for the states in T, computed from the time series

of the NINO3.4 index for different seasons. Fig. 5.1a shows the behavior of the PDF of

the SSTA for the four seasons of Tab. 5.1a, while Fig. 5.1b shows the PDF computed

for the four states considered. One of the most important facts is that the ENSO PDF

is more asymmetric during autumn and winter than in spring and summer. This is

a consequence of the occurrence in phase of the strong anomaly. If P(sk) is the row

vector that represents the long-time PDF for the four states in the season sk,

P(sk) = E[P0(sn)W
nk]0 , (5.11)

whereE[ ]0 is the mean obtained considering all the possible initial distributions P0(sn)

in the season sn. If the matrices Ŵ are a good estimation of the real matrices W, Eq.

(5.11) must hold also for these matrices.

Fig. 5.2 is the same as Fig. 5.1b but for the NINO1+2 and NINO4 indices. These

data series are also used to describe ENSO. The domains of definition are 10◦N −
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(a) Long-time seasonal PDF computed from the NINO3.4 index.
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(b) Long-time seasonal discrete probability for the state T computed from the
NINO3.4 index.

Figure 5.1: Long-time PDF and discrete PDF (for the state T) computed from the NINO3.4
index.
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(a) Long-time seasonal discrete probability for the state T computed from the
NINO1+2 index.
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(b) Long-time seasonal discrete probability for the state T computed from the
NINO4 index.

Figure 5.2: Long-time discrete PDF (for the state T) computed from the NINO1+2 and NINO4
indices. For these ones the changes in the seasonal discrete probability density are
not highlighted as in Fig. 5.1b, they seem to be more stationary.

10◦S, 80◦W − 90◦W and 5◦N − 5◦S, 160◦E − 150◦W respectively. With these domains

of definition NINO3.4 results to be more sensitive during time, because is computed

in a more central region than the other two indices. In fact, the change in concavity

for the discrete PDF in Figs. 5.2a and 5.2b is really reduced, and this pushed me to

analyze further, via the transition probability matrices, the NINO3.4 data series. The

other two regions (NINO1+2 and NINO4 indices) are too much locked to appreciate

jumps between the four states described above.

A particular group of transition matrices is the one for which n = k; these are

the one-year transitions. Since the ENSO autocorrelation decays exponentially fast,
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these kind of matrices could be considered associated to homogeneous discrete-time

Markov chains with time step of one year. Homogeneous in the sense that Ŵ do not

change in time, and they are the same for every step. This consideration allows us to

study some temporal characteristics of ENSO without using the spectrum. In partic-

ular, it can be computed the mean sojourn time of this discrete-time chain, that is the

mean total number of steps that one chain at state i stays there at each visit. If the di-

agonal elements of these matrices are different from zero, at any time step the system

may remain in its current state. At each time step, the probability of leaving any state

i is independent from what occurred at previous time step, and is equal to

∑

i 6=j

(Ŵnn)ij = 1− (Ŵnn)ii . (5.12)

The evolution of the system may be identified with a sequence of Bernoulli trials

(Stewart, 2009), with probability to exit from the state i equal to 1 − (Ŵnn)ii. The

probability that the sojourn time is equal to l steps is that of having l − 1 consecu-

tive Bernoulli failures, followed by a single success. This means that the sojourn time

at state i for the chain associated with the transition between the seasons n, that I have

denoted with Tnni , is geometrically distributed with parameter 1− (Ŵnn)ii. From this

distribution, the mean and the variance of the sojourn time can be easily computed:

E[Tnni ] =
1

1− (Ŵnn)ii
, (5.13)

V ar[Tnni ] =
(Ŵnn)ii

(1− (Ŵnn)ii)2
. (5.14)

It is also interesting to recall that the geometric distribution has the memoryless prop-

erty, that means that a sequence of l − 1 unsuccessful trials does not affect the success

of the lth jump. This sojourn time can give indications about the mean time that one

state of ENSO can stay there when occurs in a given season. The analysis of the mean

sojourn time for ENSO requires just a little attention about the fact that four chains

referred to the transitions in different seasons are considered. Since strong events oc-

cur more frequently during winter and autumn, the correspondent chains will tend to

give a longer sojourn time; this happens because the original series can give succes-

sive strong events, if examined in the subspace of the winter and autumn seasons that

correspond to different events and not necessarily to the same event that persists in
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time. This means that one strong event can be suppressed during spring and summer

and it can arise again in the next autumn-winter period, so the sojourn time referred to

the chain of autumn-winter will be overestimated. However, this overestimation can

give information about the time in whom you can find extreme events consecutively.

Since the transition matrices are affected by error, to compute the mean sojourn time

and its variance and keep into account this intrinsic uncertainty, the method of the

ensemble is used again. For each of the four matrices, it is built an ensemble varying

the probability in the range of the confidence level, considered with the constraint that

the sum of each row must be equal to one. Then, for each member of the ensemble,

the mean sojourn time and variance are computed, and an average of these two sets is

done.

Another interesting property that must be considered, is that a transition matrix,

defined on a finite number of states, always possess at least one invariant density

probability. A discrete density probability πnn = (πnnA− , π
nn
N− , π

nn
N+ , π

nn
A+) is said to be

invariant for the transition matrix Ŵnn when

πnn = πnnŴnn (5.15)

that implies

πnn = πnn(Ŵnn)l, ∀l . (5.16)

If the transition matrix is regular, this invariant probability is the only one. Looking

for these invariant probability means, again, to find the long-time PDF for the different

seasons. This can be seen as an another check, a test to verify that these matrices are

able to reproduce the asymmetry of the probability distributions along the time.

In the following, some important elements that contribute to characterize a Markov

chain are recalled. I have defined with fn,(s)i the probability that the chain associated

to the transition matrix (Ŵnn), with initial state i ∈ T, returns to the state i after s-step

for the first time. This probability is different from Ŵ
nn
ii , which can contain any returns
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in the state i also before the step s. In general, fn,(s)i can be found iteratively:

f
n,(1)
i = (Ŵnn)ii (5.17)

f
n,(s)
i = [(Ŵnn)s]ii −

s−1
∑

r=1

f
n,(r)
i [(Ŵnn)(s−r)]ii, s ≥ 2. (5.18)

With this definition, the probability that the chain returns back at the state i at any

time is

fni =
+∞
∑

r=1

f
n,(r)
i . (5.19)

If fni = 1 ,the return is ensured and the state i is defined as recurrent or persistent,

while if fni < 1, the state i is defined as transient.

If all states are reachable from the other ones in a finite number of steps, and the

system can not be trapped in a particular ensemble of states, the chain is said to be

irreducible.

The states can also be classified as periodic or a-periodic; this is an important feature

in the studying of ENSO. A state i has a period of d, with d > 0, if, starting from the

state i, the chain can only revisit it sd-steps later for some positive integer s: d is the

greatest common divisor of s for which [(Ŵnn)s]ii > 0. A state i is said to be periodic

if its period d > 1; otherwise the state is a-periodic.

After these preliminaries, these matrices are used to highlight, with a simple exam-

ple, the predictability properties of the system during the 1997. In this period a strong

El Niño event occurred and the model had big difficulty in its prediction. Clearly,

nowadays the more and more powerful and accurate GCMs are able to do really amaz-

ing forecast, but these matrices can be used to quickly understand the difficulties in

the predictability for those forecast.

Once the transition matrices for the real phenomenon are obtained, it could be in-

teresting comparing them with the one obtained by a simple sinusoidal signal with

noise and by a GCM. The first comparison helps us to understand how much ENSO

can be seen as an oscillatory phenomenon while the second comparison can highlight

the difference between the model and the reality.
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5.3 Application

5.3.1 A simple experiment

Before starting to characterize ENSO by means the transitions probability matrices

and compare them with the matrices of the GCM model, it could be interesting looking

for the signature that a periodic signal modified by noise could leave in these matri-

ces. This signature can help us in detecting trace of simple oscillatory behavior of the

phenomenon under study, both in the observations and in the models. To do this, I

have performed a simple experiment. I have used a monthly data time series build up

with the following periodic function disturbed by strong noise:

SSTA(t) =
1

2
sin(ωt) + η, (5.20)

where ω = 2π
12 is the pulsation corresponding to a one-year period, and η is a stochastic

forcing with a Gaussian distribution centered in zero and with a standard deviation

equal to 0.6. I have used a period of 105 years for this time series to write down the

transition probability matrices. In Fig. 5.3 it is shown a little period of this evolution.
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Figure 5.3: An example of the time series evolution for the sinusoidal experiment with noise,
Eq. (5.20).

The values of amplitude, frequency or the value of the phase of the sinusoidal signal
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in this experiment are not important . I have just wanted to see how an oscillatory

noisy signal is represented in these matrices. Clearly, different phase, frequency or

amplitude would shift coherently the probability into the matrices. The values for

the amplitude and noise, however, are chosen to be sufficiently hight to allow the

experiment time series to span the four states of the ENSO time series. If the amplitude

of the signal or the one of the noise are too short only few entrances of the matrices

are different from zero, and the transitions become trivial.

In Fig. 5.4, the probability transition matrices for this experiment are shown. In this

case, the signature of the deterministic periodic function used in Eq. (5.20) is reflected

in the fact that some matrices tend to be equal, in particular Ŵ
n,k with k fixed and

n = 1, 2, 3, 4.
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Figure 5.4: Transition probability matrices obtained from a time series generated with a sim-
ple sinusoidal function with one-year period and noise. The signal to noise ratio
used here is 0.6.

In Fig. (5.5), the one-year transitions are shown. In this case, I have plotted the ma-

trices using graphs, as usually done to represent a Markovian chain; this choice is due

to the fact that the one-year transition matrices for the observation can be considered

as Markovian, due to the exponential decreasing of the autocorrelation function for

the NINO3.4 time series, and I have used this kind of plot in these cases.
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Figure 5.5: Transition probability matrices for the one-year transition. The typical graph plot
is used to represent the Markov transition matrices. All the nodes (states) are con-
nected each other; for this reason the same color (yellow) has been used to indicate
them. The blue, cyan, orange and red arrows respectively highlight the most prob-
able transition for the states A−, N−, N+, A+.

Some transitions are almost prohibited (and they are indicated by an arrow with

zero value for the probability, since are reported values with just two digits in these

plots), and the states tend to be non-persistent, the system prefers to transit in different

states at every step.

Due to the high value of the noise variance that has been used, the entrance of this

one-year transition matrices are all different from zero, and some values are really

small but different from zero. For this reason, the states are recurrent, and these graphs
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are irreducible. The states for these subchains result to be a-periodic, using the defini-

tion of the previous paragraph. The periodicity of the deterministic part of the oscilla-

tion is detected in the equivalence of some matrices, as explained above, and the fact

that the states of the one-year transitions are a-periodic, is a consequence of the noisy

part of the signal.

5.3.2 ENSO’s transition probability matrices

In the following, I have treated the case of the NINO3.4 index computed from the

observations. In Fig. 5.6, the transition probability matrices for transition period less

than one year are shown. These matrices are found using Eq. (5.2), and the confidence

interval with confidence levelCL = 95% using Eq. (5.5). The numerical values of these

matrices with the errors are shown in the appendix ??. The first column of the figure

shows the two-seasons transitions, which are the transitions that involve two seasons:

the starting season and the ending one. The highest values of the probabilities are

denser around the diagonal of these matrices. This means that this first set of matrices

shows the persistence of the system. After one season, the system does not change

too much; this is particularly true for the autumn-winter transition matrix Ŵ
14, while

the less persistence is shown in the spring-summer transition matrix, Ŵ23. This quick

loss of information, in the sense that more final states are accessible now with a similar

probability, is due to the SPB. This interesting feature also appears with just four states.

The second column shows the three seasons transition. The effect of the loss of in-

formation, due to the SPB, appears more evident here, in particular in the matrix Ŵ
24

where the loss of information due to the SPB has already started in the previous transi-

tion. For this matrix the state A− is the most stable. In this column another interesting

feature appears. The matrix Ŵ
42 seems to be again diagonal, or better still, the favored

transitions are denser along the diagonal. In this case the a bit of persistence appears

also here, although an inevitable homogenization of the probability has begun. The

period autumn-winter is particularly stable.

The third column of the figure, the four-seasons transition, highlights the feature

discussed above. The matrix Ŵ
14 has now the probabilities spread all around the ma-

trices, this is because two seasons after spring are involved, while the matrix Ŵ
32,

that passes through autumn and winter, tends to becomes more diagonal; the transi-
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Figure 5.6: Transition probability matrices computed with Eq. (5.2) for the 159-years NINO3.4
time series. The period 1856-1949 is a reconstruction (Kaplan et al., 1998) while the
period 1950-up to now derives by the NOAA Climate Prediction Center.

tions that have bigger probabilities values are the persistent ones, from one state to

the same state. However, the discrete probability for every row of the matrix is always

more uniform like.

In these matrices the information loss is continuos, while for an oscillations dis-

turbed by noise, as in the simple experiment performed in the previous section, this

is not true. The one-year transition matrices are shown, using graphs, in Fig. 5.7. The
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Figure 5.7: As Fig. 5.5, but considering the NINO3.4 observations.
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four states have again the same color because they are all related, being these matrices

are irreducible. As before, the colored arrows highlight the highest probability transi-

tion for each states, and you can see another important difference from the experiment

performed in the previous section. Here, all the Markovian subchains show that the

persistence is the favorite transition. The preferred final state is the initial one, for all

the states. For the matrices in the previous experiment the final preferred state is dif-

ferent from the initial one, except for one of the states. Something similar is obtained

also if a lower frequency for the sin is used, not shown here.

Since the probability distribution for the winter and autumn period is larger, as

shown in Fig. 5.1, El Niño and La Niña events appear more frequently in the subchains

represented by the matrices Ŵ11 and Ŵ
44. This is why the value of the probability for

the persistence in these two plots is higher than in the matrices Ŵ
22 and Ŵ

33 for the

spring and summer subchains where the PDF is more gaussian.

All these matrices turn out to be irreducible, with recurrent and a-periodic states.

The role of the stochastic forcing in the ENSO phenomenon is really important.

All these processes admit a limit discrete PDF,

πnn = lim
l→+∞

[Ŵnn]l, (5.21)

shown in Fig. 5.8. In these pictures the discrete PDF computed directly from the data

is shown for comparison, Fig 5.1b. All the matrices seem to be able to describe the

behavior of ENSO in the four seasons. Even though the time series used, is not really

long, just 159 years, the matrices obtained provide a valid estimate of the real ones.

Applying Eq. (5.10), I have been able to compute a clear index for the predictability

of the ENSO evolution, as shown in Fig. 5.9. For every starting season, ordered in the

abscissa, I have computed the ENSOidx for each transition, represented with a differ-

ent color line. The longer the period of the transition is, the less information remains

in the system, that means that the phenomenon is less predictable. Actually, this is

not completely true, since the yellow line, that represents the five-season transition,

appears to be above the three and two-seasons transition for the first two-season, s1

and s2, and above the four-seasons transition if starting from season s4. This could be

the consequence of the probability of the persistence in these subchains.
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Figure 5.8: Comparison between the limit distributions of the one-year transitions probability
matrices and the one directly obtained from the observation as in Fig. 5.1b. The
limit distribution plotted is the mean of a distribution ensemble obtained varying
the matrices according to their 95% confidence level interval. The error on each
state of the limit distribution is one standard deviation of the obtained ensemble
of states.

s1 s2 s3 s4

0.0

0.1

0.2

0.3

0.4

0.5

Starting Season

1
-

S S
0

ENSO Predictability Index

5 seasons trans.

4 seasons trans.

3 seasons trans.

2 seasons trans.

Figure 5.9: ENSO index computed using Eq. (5.10). On the abscissa the starting seasons are
indicated, while different lines represent the number of seasons involved in the
transition. The entropy used for every matrix is the mean of the entropy ensembles
obtained varying the matrices according to their 95% confidence level interval. The
errors on the entropies are one standard deviation of these ensembles.
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But the most interesting things are in the blue and magenta curves, that show the

index for the two and three-season transition. The effect of the SPB is clearly evident

in the two-season transition starting from spring, s2. In fact, for this matrix the curve

has a well-defined minimum. The stability of the autumn-winter transition can be

appreciated looking at the maximum of the blue line.

The effect of the SPB is also evident in the magenta line, three-seasons transition.

Now it is the first point of the line that passes through spring and loses more informa-

tion in respect to the other starting point, while the transition involving summer, as

starting point, goes through the autumn-winter transition and limits more the loss of

information than the others.

Looking at this index, an accurate long time prediction of ENSO seem to be im-

possible. This index gives an idea of the predictability for different transition periods,

starting in different periods of the year. This is useful to compare the different seasons

of the year. Clearly, in this plot is contained the global information of the different

matrices. The index gives a relative information between different seasons transitions,

but for different matrices the real discriminating for a good prediction is the initial

state. Let us consider the matrix Ŵ
41. If you start considering the initial state in au-

tumn that is a strong event, A−, A+, the peaks in the probability for the final favorite

state in winter can reach the 90% of the total probability, but if you consider as initial

states the neutral ones, the peaks in the final probability represent just the 40%, more

or less, of the total probability. This is the reason why the global index shown in the

plot for this matrix is the highest one but the value is small.

The matrix Ŵ
14 exhibits the maximum loss of information in respect to all the other

matrices. Just as a further test, presented by the Eq. (5.11), I have tried to compute the

long-time distribution using this matrix, Fig. 5.10. Also with this matrix, it is possible

to recover the right result.

The mean sojourn time and variance can be computed using Eqs. (5.14). The right

sojourn time, as explained, should be read from the matrices Ŵ22 and Ŵ
33. The value

can vary from six months to three years into a standard deviation, and that is a rea-

sonable estimate.

Finally, it is shown a little example of forecast using these matrices. I have tried to

analyze the year 1997, in which a strong ENSO event was missed by models. Only
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of the worst (in terms of distance from the uniform matrix) probability transition
matrices, W1,4. The mean distribution is computed considering 104 random ini-
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Figure 5.11: Mean sojourn time and standard deviation for the one-year transition matrices.
Here the means and standard deviations of the sojourn time are plotted consid-
ering the means of mean sojourn time and variance ensembles obtained varying
the matrices according to their 95% confidence level interval.
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(b) Ŵ13.

A
-

N
-

N
+

A
+

A
-

N
-

N
+

A
+

0.20

0.25

0.30

0.35

(c) Ŵ14.
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Figure 5.13: Transition probability matrices for the SSTA obtained with CMCC-CMS model.

The general behavior of these matrices seems to be good but there is a too fast de-

terioration in the information brought by these matrices. This can be appreciated in

the Tab. 5.2 in which the distance Eq. (5.8) is used to compare the matrices obtained

from the observation and the matrices obtained from the model. In Fig. 5.14, they are

shown the graphs that represent the one-year transition matrices for the CMCC-CMS

run. The persistence is present also here for almost all the states. Only the Ŵ
44 ma-

trix exhibits for all the states a preference for the persistence. The problem here is the
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Figure 5.14: As Fig. 5.7, but considering the SSTA time series obtained from the CMCC-CMS
model experiment.

same: these values are smaller than in the observation. The model changes state in an

easier way in respect to the observations, but at the same time the negative states are

always preferred. This is evident looking at the limit distribution for the four seasons,

Fig. 5.15. Also during spring and summer the preferred states are not the neutral ones,

as in the observation.

In Tab. 5.2, it is shown the distance between the probability transition matrix com-

puted from the observations and the one computed from the CMCC-CMS model. It is

remarkable that the transition that brings the system into spring presents the biggest

distance. This is because in the model the effect of the SPB is quicker than in the ob-

servations and spring is a critical season.
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Figure 5.15: As Fig. 5.8, but considering the SSTA time series obtained from the CMCC model
experiment.

d2(Ŵ
nk
Obs, Ŵ

nk
CMCC) k

1 2 3 4

n

1 0.29± 0.02 1.13± 0.03 0.17± 0.02 0.41± 0.02
2 0.19± 0.02 0.48± 0.03 0.37± 0.02 0.41± 0.02
3 0.65± 0.03 0.59± 0.02 0.18± 0.01 1.05± 0.03
4 1.28± 0.05 0.94± 0.03 0.13± 0.02 0.49± 0.03

Table 5.2: Summary table of comparison between the transition probability matrices com-
puted from the NINO3.4 series and the one computed from the SSTA series of the
CMCC model. The numbers in the table are the mean distances of the distances en-
sembles generated varying the two matrices according to the their 95% confidence
level interval. The error is one standard deviation computed from these ensembles.
The gray background highlights the highest distance once the starting seasons have
been chosen.
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Figure 5.16: Long-time seasonal PDF computed from the NINO3.4 index, computed from the
model time-series.

These asymmetries in the seasonal distribution can be highlighted also looking at

the PDF for each season computed from the model time series, Fig. 5.16. The advan-

tage of the transition probability matrices is that the whole process is seen in a more

detailed way.

5.4 Discussion and Conclusion

I have tried to analyze an important climatic phenomenon, ENSO, by means of the

probability transition matrices. For each season I have computed the transition proba-

bility matrices for the process that involves two, three, four and five (one-year transi-

tion) seasons. These matrices are not necessarily Markovian, even if with Markovian

matrices more information could be extracted.

The values of the NINO3.4 series are grouped in four states, in such a way that

the matrices considered have 4x4 entrances. Since I have been able to compute the

probability considering a time series of only 159 years, a more fine discretization did

not make sense. Using only four states the statistic for small population was necessary

to identify the confidence interval for the entries of the matrices, that represent the

probability to move from one state to another one. Although this coarse discretization
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5.4. Discussion and Conclusion

is used, important features of the transitions are found and a general way to write

index for the predictability of a phenomenon is presented.

The SPB appears clearly in these matrices and more clearly in the index found using

the entropy of these matrices. The ENSO index for the predictability presented here

brings the global information for the whole matrix considered. It is a measure of the

predictability that considers all the possible initial and final states. Clearly if you are

interested in a particular transition, for example the transition autumn-winter starting

from a strong event, the peak of the final discrete probability density function could

explain the 90% of the total probability. In this case the predictability should be re-

ally hight; however, if you consider all the possible transitions, from all the possible

states this is not true, neither for the two-seasons transition matrices. The intrinsic un-

predictability of ENSO, due to the strong stochastic component in its signal, is high-

lighted with a little fast forecast for the preferred state of the SSTA in the autumn of

1997, starting from one, two and three seasons before. In this particular case, the-two

seasons transition, from summer to autumn, is the only forecast that is really able to

catch the right final state with a clear peak in the probability distribution for that state.

Another feature, as the persistence or the capability of the system to move in others

states starting from different seasons, appears clearly using these matrices. In particu-

lar, using the one-year transition matrices, that it is possible to suppose to be Marko-

vian since the exponential decreasing of the autocorrelation function for the NINO3.4

index, the mean sojourn time for the four states can be estimated. The values obtained

are reasonable, and this time scale arises naturally from the matrices without the use of

Fourier analysis. This mean sojourn time, however, has also a big standard deviation;

in fact, this time can vary into a standard deviation, from six months to three years.

The scale appears to be reasonable looking at the time series, but highlights again the

difficulties in ENSO prediction.

From the one-year transition matrices, it is computed also the limit distribution that

matches with the one computed directly from the observations. This has been done to

check ulteriorly the validity of these matrices.

To understand the trace left from an oscillatory signal disturbed by noise, a time se-

ries of this kind has been reproduced and the transition matrices have been used. One

of the important differences between a signal of this kind and the one generated by
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ENSO is that the probability transition matrices of ENSO tend to become uniform after

long time transition, while for the other one this does not occur. Also the persistence

of the four states is really different; this is to indicate that ENSO signal is generated by

a more complex mechanism than a simple oscillation.

Finally, the transition matrices have been used to compare the NINO3.4 index com-

puted from a GCM and the one obtained with the observations. Once computing the

distance from the respective matrices, you can have an idea of how the phenomenon

under study is well represented by the model, observing in a more detailed way in

which state and in which period the model has a different behavior.

This tool is extendible to the study of the characterization of each climatic phe-

nomenon and it is able to give a clear index regarding the predictability of the phe-

nomenon under study.

This work can be extended to consider time series of field. Instead of studying a

simple time series of a temporal varying quantity, it is possible to consider how it is

varying a full field, that has also spatial information. One of the possible way should

be to consider as states a certain set of Empirical Orthogonal Function (EOF), and

looking at the probability that these particular states have to transit in another one.

This could be an interesting subject to elaborete in a future work.
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CHAPTER 6

CONCLUSIONS

The Stochastic Partial Differential Equations result to be a very important tool in the

understanding of Climate System. The resolution of this kind of problems is far from

trivial. In order to address these problems, I have proposed three different methods of

investigation and I have applied them to Climate Dynamics with a particular focus on

ENSO used as a model to test those ideas.

The first method, discussed in chapter 2, has been inspired by the Statistical Me-

chanics and Quantum Field Theory. Its power resides in the fact that it introduces a

generating functional, from whom, using functional differentiation, all the n-points

functions of the problem can be found. The generating functional is defined in terms

of Path Integral, generally hard to evaluate. However, the computation can be carry

out dividing the stochastic equation in two parts: the first one that involves linear dif-

ferential operators (eventually also a linear term in the fields) and the other one, the

interaction, that involves all the other terms also non-linear, but does not contain time

derivatives. In this case, if a parameter, that can be used to label the interaction as a

perturbation term into the equation, can be found, the computation of the generating

functional can be related to the problem of finding a few Green’s functions.

This method has been used in Navarra et al. (2013b) to find correlation and variance
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of a (0d+1) simple model of ENSO with stochastic forcing. In this work, I have ap-

plied this method to a more complicated system, (2d+1), described by the Stochastic

Barotropic Vorticity Equation into a channel. Periodic boundaries in the longitudinal

direction and rigid walls bounding the channel to the north and south are used. I have

solved the problem of finding the generating functional and I have used it to get ana-

lytical expressions for variance and correlation functions. In general, with this method

I have been able to find all the n-points functions of the problem. I have presented

here the study for three configurations of the SBPVE, obtained adding or neglecting

damping and mean flow:

1. ψ̄ = 0 µ−1 = 0,

2. ψ̄ = 0 µ−1 6= 0,

3. ψ̄ 6= 0 µ−1 6= 0,

where µ−1 is the damping and ψ̄ the mean flow. For each of these configurations I have

found the analytic form that describes the variance and correlation of the stochastic

field. When µ−1t � 1, i.e. damping for the time is small, the expression for the vari-

ance is reduced to the one found for the first configuration. Initially there is a linear

increase of the variance before changing behavior when time increases. This is a typ-

ical behavior of the system subjected to Gaussian white noise. This framework could

be extended to other kinds of noise. For the third case, if a mean flow profile, depend-

ing only on the meridional direction, the correction to the variance and correlation is

basically reduced to the computation of an integral over the meridional direction. The

interacting part considered here is the Jacobian, that appears in the SBPVE linearized

around the mean flow. I have had to assume that the fluid is stable, but also in case

of instability, if you know the typical time scale associated with it, τi, you could apply

this method considering t < τi for an initial investigation.

I have shown that this technique is applicable to the SBPVE but with many technical

difficulties. For this reason, instead of using the generating functional to analyze a

more complicated model of ENSO, in respect to the one already treated in Navarra

et al. (2013b), I have chosen others methods to study in depth a simpler ENSO model.

The second method, discussed in chapter 3 and 4, is based on the resolution of the

Fokker-Planck equation, related to the stochastic system, via eigenfunctions expan-
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sion. The content of chapter 3 has been published in Journal of Climate, (Navarra

et al., 2013a). The ENSO model studied has been derived using a rotation in the space

of variables of the Recharge Oscillator. This starting model is based on the positive

Bjerknes feedback and does not consider explicitly delayed waves, but their cumula-

tive effect into the parameters definitions. The stochastic forcing has been added to the

rotated model to sustain the oscillation otherwise damped. This damping is granted

thanks to the strong coupling between atmosphere and ocean used and the non-linear

term into the equation. It is suggested a new way to consider ENSO, as a system that

can jump between two states, one positive and one negative, represented by a poten-

tial which arises by the non-linearity that damps the system. The jumps are possible

thanks to the stochastic fluctuations.

A probability distribution with many properties similar to the observed NINO3.4

can be obtained also in a regime that does not support self-sustained oscillations, char-

acterized by large values of the coupling constant between stress and surface temper-

ature. This regime has usually been neglected in the past as a regime where ENSO

dynamics could not be deployed because of the absence of oscillations, but we have

shown that indeed this may be the case if stochastic forcing is included. The theoretical

probability distribution allows the calculation of time correlation and other quantities,

showing that the asymmetry is necessary to achieve the time scales that are typical of

ENSO.

Taking into account the MJO effect into the equation, we are able to set the different

depth of the double well potential that describes the system, generating in this way a

probability density that is asymmetric. The presence of the forcing breaks the symme-

try, producing a more realistic asymmetric probability distribution between cold and

warm states that also explains the gap in the probability of the warm to cold and cold

to warm transition. The skewness of the distribution is increasing with the coupling

parameter and realistic values can be obtained. We suggest MJO as a possible cause of

the asymmetry in NINO3.4 probability distribution.

Using this model, I have also tried to exploit a periodic growth rate as cause of the

predictability barrier, another important feature of ENSO. It is important to remark

that before the rotation in the variable space, we modify the growth rate maintaining

it positive to respect the positive Bjerknes hypothesis. The predictability barrier could
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be explained by means the potential well. During autumn it becomes more and more

asymmetric and gradually becomes parabolic in spring. This behavior influences the

probability density function periodically and it is able to modify the persistence of the

initial conditions. In particular, when the potential is more parabolic, the initial condi-

tions result to be more persistent. It is impossible to obtain the exactly values of all the

observables that characterize ENSO using more sophisticated CGCM, so there is no

hope to explain exactly ENSO using such a simple model. A perfect reproduction of

ENSO is not the aim of this work but rather trying to highlight all the mechanisms that,

together with the Bjerknes positive feedback, are able to characterize ENSO, in partic-

ular the asymmetry of the probability density function and the spring predictability

barrier.

The investigation prompted the idea that ENSO could be a system described by a

sequence of state, rather than a simple oscillation. To check this idea, I have presented

a third method of study discussed in chapter 5. It shows how the transition probability

matrices can be used to deal climatic phenomena. Temperature anomalies are divided

into four blocks, states, and the probability to move from one state to another has

been calculated both for observations and General Circulation Model. In particular,

these matrices have been used to define a predictability index of ENSO using their

entropy. This index shows clearly the effect of the spring predictability barrier. For

each season I have computed the transition probability matrices for the process that

involves two, three, four and five (one-year transition) seasons. These matrices are not

necessarily Markovian, even if with Markovian matrices more information could be

extracted. Since I have been able to compute the probability considering a time series

of only 159 years, a more fine discretization did not make sense. Using only four states

the statistic for small population has been necessary to identify the confidence interval

for the entries of the matrices, that represent the probability to move from one state to

another one.

From these matrices one can read the capability of the system to transit or the per-

sistence of the states. These matrices turned out to be a possible instrument for check

models in respect to the observations. In particular, not only the the long-time sea-

sonal probability density function could be checked, but also the single transitions for

different states in different periods. Furthermore to understand the trace left from an
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oscillatory signal disturbed by noise, a time series of this kind has been reproduced

and the transition matrices have been used. One of the most important differences

between a signal of this kind and the one generated by ENSO, is that the probabil-

ity transition matrices of ENSO tend to become uniform after a long time transition,

while for the other one this does not occur. Also the persistence of the four states is

really different. This is to indicate that ENSO signal is generated by a more complex

mechanism than a simple oscillation.

This work can be extended to consider time series of field. Instead of studying a

simple time series of a temporal varying quantity, I could consider how it is varying

a full field, that has also spatial information. One of the possible way should be to

consider as states a certain set of Empirical Orthogonal Function (EOF), and looking

at the probability that these particular states have to transit in another one. This could

be an interesting subject to elaborate in a future work.
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APPENDIX A

A BRIEF DESCRIPTION OF ENSO PHENOMENON

During the ENSO cycle, the two opposite phenomena, El Niño and La Niña, re-

fer to the coherent and annual effects in sea-surface temperature, convective rainfalls,

surface air pressure and atmospheric circulation that take place across the equatorial

Pacific Ocean (http://www.cpc.ncep.noaa.gov). El Niño represents the warm

phase of the ENSO cycle, and it takes place when the above-average sea-surface tem-

peratures periodically develop across the east-central equatorial Pacific. On the con-

trary, La Niña refers to the periodic cooling of sea-surface temperatures and it repre-

sents the cold phase of the ENSO cycle. The periods when neither El Niño nor La Niña

are present, are called ENSO-neutral and often coincide with the transition between El

Niño and La Niña events. During these neutral phases, the ocean temperatures, tropi-

cal rainfall patterns, and atmospheric winds over the Equatorial Pacific Ocean are near

the long-term average. During El Niño phase, the ocean presents a deep layer of warm

water across the east-central equatorial Pacific, with sea-surface temperatures that ex-

ceed 1.5 − 2.5 ◦C the average, and subsurface ocean temperatures typically 3 − 6◦C

above average at the depth of the oceanic thermocline. NOAA’s Climate Prediction

Center, which is part of the National Weather Service of the USA, considers the be-

ginning of an El Niño episode when the 3-month average sea-surface temperature

departure exceeds 0.5 ◦C in the east-central equatorial Pacific (between 5◦N − 5◦S and
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Figure A.1: NINO3.4 index, SST anomalies in 5◦N − 5◦S and 170◦W − 120◦W, 1856-1949: Ka-
plan reconstruction, 1950-now: CPC (Reynolds OI SST), SSTA [C]

170◦W−120◦W). This average, when the climatological cycle is removed, is also called

NINO3.4 index. During this period, also a deeper than average oceanic thermocline

(with depths typically ranging from 150 − 175m) crosses the east-central equatorial

Pacific. This phase lasts 9 − 12 months (even though some prolonged episodes of El

Niño have lasted 2 − 4 years) and, as the opposite phase La Niña, typically develops

during March-June; it is more intense during December-April (because the equatorial

Pacific sea-surface temperatures are normally warmest at this time of the year), and

then weakens during May-July. La Niña, the opposite phenomenon, tends to develop,

reaches peak intensity and weaken during the same periods in the year as El Niño,

but it typically lasts 1-3 years. It is characterized by a deep layer of cooler ocean tem-

peratures that crosses the east-central equatorial Pacific; sea-surface temperatures are

typically 2-4C below average at the depth of the oceanic thermocline which is shal-

lower than average and it crosses the east-central equatorial Pacific, with depths rang-

ing from 50 − 100m. In Fig. A.1, it is shown the NINO3.4 index since 1856 up to now.

Data in the period 1856-1949 derive from a reconstruction (Kaplan et al., 1998) and the

ones from 1950 up to now from the observation of the Climate Prediction Center of

the NOAA, (http://www.cpc.noaa.gov/data/indices/).
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A.1. ENSO as a damped oscillation sustained by the noise

Changes in the ocean surface temperatures influence tropical rainfall patterns and

atmospheric winds, which in turn impact the ocean temperatures and currents, chang-

ing the weather patterns; during December-April, when the equatorial Pacific sea-

surface temperatures are normally warmest, a slight warming of the waters due to

El Niño can result in a major redistribution of tropical convective rainfall, whereas a

slight cooling due to La Niña can restrict the tropical convection to Indonesia. Fur-

thermore, in the period December-April, during El Niño, the Pacific warm pool and

associated area of deep tropical convection expand to well east of the date line, while

during La Niña they are confined to well west of the date line; the tropical easterly

trade winds are weakest during El Niño, while they are strongest during La Niña.

The fact that El Niño and La Niña-related sea-surface temperature and tropical rain-

fall anomalies have effects on the wind patterns that in turn further amplify the sea-

surface temperature anomalies, is a very important aspect of both the phenomena.

These extreme climate episodes have an huge impact on the economic costs of the

United States; advances in improved climate predictions could save a large amount

of dollars in damage costs and they could also result in heightened economic oppor-

tunities for agriculture (plan for, avoid or mitigate potential losses), fishing, forestry,

energy sectors and social benefits.

A.1 ENSO as a damped oscillation sustained by the noise

If ENSO must be simulated, what are the main elements that have to be taken into

account? How the parameters of the model have to be chosen? Must a simple model

have parameters set up to sustain the neutral oscillations, that make grow indefinitely

the trajectory and needs stochastic forcing to recover oscillations, or must they set up

to obtain a damped or stable oscillator? What is the regime of this model? Probably,

real ENSO must be described by parameters that change in time, that are able to bring

the system in different regimes in different periods of time.

However, Burgers et al. (2005) showed that a linear fit to observations leads to the

remarkably simple picture of ENSO represented by a classical damped oscillator, with

sea surface temperature and thermocline depth playing the roles of momentum and

position, respectively.
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A.1. ENSO as a damped oscillation sustained by the noise

There is also evidence that random atmospheric disturbances could influence the

development of El Niño in some occasions (McPhaden and Yu, 1999), as happened in

1997.

ENSO could have its source of irregularities given by non-linear terms in its dynam-

ics, but that is not the only cause.

ENSO should be seen as a damped oscillator sustained by the noise. In Fig. A.2, it

is shown a phase diagram considering the sea surface temperature anomalies (SSTA)

and its first derivative in time. There is not evidence of deterministic cycles, but it is

possible to appreciate a region that seems to contain at least an attractor fixed point,

around which stochastic forcing stretches the system. In Fig. A.3, it is shown a phase-
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Figure A.2: Phase plot considering SSTA and its first derivative in time. There is not evidence
of deterministic cycles , but it is possible to appreciate a region that seems to con-
tain an attractor fixed point, around which, stochastic forcing stretches the system.

space diagram obtained by plotting the SSTA(t) versus SSTA(t-τ ), where τ is a delay

time chosen here to be one year. The time series for the SSTA has been subsampled at

the frequency of one year, that is the frequency of the annual cycle forcing. There is no

evidence here of natural oscillation, that should be manifested here as a single point

in the plot, or cycle, that should rise as a consequence of a second frequency incom-

mensurate with the frequency of the annual cycle. There is not even evidence of pure
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A.1. ENSO as a damped oscillation sustained by the noise

chaos, usually highlighted by some patterns that manifest the mixing property of the

system. Here, there is strong irregularity. This does not mean that chaos, or locking

between the annual cycle forcing and frequency of the non-linear system describing

ENSO, are not important for this system, but that noise must be an important com-

ponent of it. The time series used considers the NINO3.4 index since 1856 up to now.

The data related to the period 1856-1949 derive from a reconstruction (Kaplan et al.,

1998) and the ones from 1950 up to now from observation NOAA. To further empha-
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Figure A.3: Phase-space diagram obtained by plotting the SSTA(t) versus SSTA(t − τ),
where τ is a delay time chosen here to be one year. The time series for the SSTA
has been subsampled at the frequency of one year.

size these features, it is possible looking at the observed western anomaly depth of

the thermocline, hw, and the observed sea surface temperature anomaly (SSTA) of the

NINO3.4 zone. For the anomaly depth, it is considered the average of it over the re-

gion 120◦E − 180◦E and 10◦S − 10◦N above the 20 ◦C isotherm. It has been considered

the period from February 1982 to August 2014, using the data of the IRI/LDEO Cli-

mate Data Library. These are considered the key variables for the explanation of the El

Niño Southern Oscillation. In Fig. A.4, it is shown how the system described by these

two variables, hw and SSTA, could be summarized by a damped oscillator subject to

some stochastic forcing.
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A.2. Recharge Oscillator as starting point for the ENSO explanation
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Figure A.4: Scatter plot of the two most important variables supposed to describe the ENSO
system. There is not a clear sustained oscillation, but rather lots of damped oscilla-
tions exited stochastically. Along the axis is also plotted the histogram distribution
for the variable considered. These histograms show an important asymmetry that
characterizes ENSO.

A.2 Recharge Oscillator as starting point for the ENSO expla-

nation

With the instrument briefly discussed in the previous section, I have studied the

simple model discussed in Navarra et al. (2013a). Let’s start with the Recharge Oscil-

lator (RO) (Jin, 1997a). This model can be theoretically derived using the shallow wa-

ter model under the long wave approximation on the equatorial β-plane (Jin, 1997b).

One of the peculiarity of the RO is that no time-delay must be introduced. The de-

scription of slow ocean dynamics differs from the one introduced for example by Bat-

tisti and Hirst (1989), in which the western thermocline hw is simply proportional to

f̂(t − τ) where f̂ is proportional to the zonal integrated wind stress in the ENSO re-

gion and τ is a delay (the time for Rossby waves from the center of the forced region

to the western boundary). This wave-delay, empirically added, can be theoretically

justified with the two-strips model (Jin, 1997b) only neglecting the eastern boundary

reflection, which means neglecting South America. This is a very strong hypothesis;

moreover, this time-delay introduces an infinite number of degrees of freedom, each

of them representing the different spatial scales of the Rossby waves. In the RO, the

pressure gradient force accompanying the thermocline depth tilt along the equator

is considered in Sverdrup balance with the equatorial wind stress, this is written as

120



A.2. Recharge Oscillator as starting point for the ENSO explanation

hE − hW = f̂ (hE and hW are the eastern and western thermocline depth). The last

relation fits very well the observation, and no wave-delay appears. Here the explicit

waves propagation is omitted, and the collective role of the equatorial wave in achiev-

ing the quasi-equilibrium adjustment dynamics is accounted with a proper parameter

that represents the time scale of the process. Because of these reasons, in my opinion,

the RO is a good starting point to find out a simple model of ENSO, described with

just one variable. In the following, the subscriptE, for the eastern SSTA, that from here

is indicated with T , and W for the western thermocline depth variable are neglected.

The modified RO can be written as

dh

dt
= −rh− αµb0T + γh + η′ (A.1)

dT

dt
= (γµb0 − c)T + γh− (µb0T + h)3 + γT + η′ . (A.2)

1
r is interpreted as a damping timescale for the wave adjustment process, α is the pro-

portional parameter between the wind stress and f̂ the zonal integrated wind stress,

while b0 is the proportional parameter between the wind stress forcing and the tem-

perature. The coupling constant µ regulates the strength of the interaction between the

ocean and atmosphere. The parameter γ takes into account the thermocline upwelling

process, while 1
c is the timescale for the relaxation of the SSTA toward the climatology

(or zero anomaly). The parameters described above are also presented in the original

system, and the same non-dimensional values are used (Jin, 1997a), while γT , γh are

the idealized effect of the MJO on the equatorial dynamics. Here η′ is the Gaussian

white noise that has to be characterized by the value of its correlation strength.
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APPENDIX B

STABILITY ANALYSIS

In this appendix, I have discussed some features not shown in the published paper

(Navarra et al., 2013a), in particular in the following, a stability analysis of the rotated

model is presented

dz

dt
= −

20µ

25µ2 + 16
z3 +

15µ− 16

25µ2 + 16
z +

25µ2γh − 20µγT
25µ2 + 16

. (B.1)

For the sake of simplicity the equation above has been written as

dz

dt
= −a(µ) z3 + d(µ) z + g(µ), (B.2)

with the obvious values of the parameters.

This stability analysis is carried out with a linear analysis of the behavior of the Eq.

(B.1) around a fixed point z̄. If

f(z) = −a z3 + d z + g , (B.3)

a fixed point for the deterministic system is defined to be one point z̄ for which

f(z̄) = 0 . (B.4)
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This means that the time derivative of z around these kinds of points is zero, z̄ is an

equilibrium point. Expanding f(z) around one of these points, ignoring terms more

than linear order in z, gives

f(z) ≈ f(z̄) +
df(z)

dz
|z=z̄(z − z̄) +O(z − z̄)2 (B.5)

=
df(z)

dz
|z=z̄(z − z̄) +O(z − z̄)2 , (B.6)

and then
dz

dt
≈
df(z)

dz
|z=z̄(z − z̄) . (B.7)

The approximate solution should be

z ≈ c et
df(z)
dz

|z=z̄ + z̄ , (B.8)

which shows that if df(z)dz |z=z̄ is real and negative, or a complex quantity with negative

real part, the fixed point z̄ is a stable equilibrium point, while if the contrary occurs,

the equilibrium point becomes unstable and the system grows indefinitely.

From Eq. (B.4), three solutions have been obtained. In Fig. B.1, it is shown the real

part of these three fixed points. If the equilibrium point is complex, the real part is

reported in red. Initially just one of the point is real, the other two are complex conju-

gate. Around µ ≈ 1.14 the solutions become different and real. In Fig. B.2 the values

of df(z)dz |z=z̄ computed for the different equilibrium points (the same marker is used for

the fixed point and its derivative) are shown. After µ ≈ 1.14, the fixed point nearest to

zero becomes unstable while the other two are stable.
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Figure B.1: Fixed point obtained by solving the third degree equation (B.4). Until µ ≈ 1.14
there is just one real solution; the other two are complex conjugate, for two values
of µ these solutions cross the z̄ = 0 axis. Then arise three different real solutions.
In red it is shown the real part of the two complex solutions. The three solutions
are marked with the diamond, the cross and the circle.
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Figure B.2:
df(z)
dz

|z=z̄ computed for the different equilibrium points, the same marker is used
for the fixed point and its derivative. After µ ≈ 1.14, the fixed point nearest to
zero, denoted with the diamond in Fig. B.1, gives real positive derivative of f .
This means that this point, when the coupling increases, becomes unstable while
the other two, one positive (cross) and one negative (circle), become stable.

125





APPENDIX C

OBSERVED TRANSITION PROBABILITY MATRICES
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Two seasons transition (Persistence):
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These are the two-seasons transition probability matrices computed for the observed NINO3.4 series of 159 years. The confidence level

used to find the error is CL = 95%.
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Three seasons transition:
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These are the three-seasons transition probability matrices computed for the observed NINO3.4 series of 159 years. The confidence level

used to find the error is CL = 95%.129



Four seasons transition:
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These are the four-seasons transition probability matrices computed for the observed NINO3.4 series of 159 years. The confidence level

used to find the error is CL = 95%.
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One year probability transition matrices:
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These are the one-year transition probability matrices computed for the observed NINO3.4 series of 159 years. The confidence level used to

find the error is CL = 95%.131
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