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Abstract

The Atlantic Multidecadal Variability (AMV) is a coherent pattern of variability

of the North Atlantic Sea Surface Temperature (NA SST) field affecting several

components of the climate system in the Atlantic region and the surrounding areas.

Our current knowledge of the AMV is based on a relatively short observational

record, which severely limits our understanding of the mechanisms involved, as

well as the characterisation of the low-frequency tail of the variability spectrum.

In order to quantify accurately the contribution of anthropogenic forcings to the

observed climatic changes, it is essential to understand better the natural climate

variability occurring at long time scales. Here, AMV is examined in a set of

multi-century preindustrial climate simulations performed with different coupled

general circulation models. In these simulations the AMV exhibits a non-stationary

behaviour, which is objectively assessed via a statistical test starting from the null

hypothesis of a statistically stationary AMV, whose modulation is entirely random.

The large-scale teleconnection patterns associated with the AMV evolution and

the relationship between the detected AMV behaviour and the variability of the

Atlantic meridional overturning circulation (AMOC) are inspected. A multi-model
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analysis of the AMV allows us to investigate similarities and differences across an

ensemble of state-of-the-art climate models and to identify the prominent simulated

modes of variability involving different atmosphere-ocean interactions over decadal

and longer time scales. In most of the models a shorter time scale mode (∼20

years) seems to alternate with a longer time scale mode (∼60 years) with a gradual

shift from one to another across different epochs. The shorter time scale appears to

be associated to a NA SST tripole pattern that corresponds to a NAO-like forcing;

whereas the longer time scale features an AMV-like monopole for the SST spatial

pattern, which corresponds to a weaker coupling with the atmosphere. Since these

modes are particularly evident in the MPI-ESM-P model, this is chosen as a case

study to deepen the dynamical explanation of AMV behaviour: its AMV spectrum

presents two distinct peaks, corresponding to a short time scale (20-40-year band)

and a long time scale (40-80-year band). Results show that the non-stationarity of

the entire time series is mostly due to the long time scale, and that the difference

between the two modes is due to the driving role of salinity on circulation that

prevails at the long time scale. The non-stationary behaviour identified in most

models suggests that the character of the observed AMV may undergo significant

changes in the future. This ongoing analysis will provide further insight into the

dynamics of the AMV variability.



Sommario

La variabilità multidecadale dell’Atlantico (Atlantic Multidecadal Variability, AMV)

è un pattern coerente di variabilità della temperatura superficiale del Nord Atlantico

(North Atlantic Sea Surface Temperature, NA SST), che incide su diverse com-

ponenti del sistema climatico nella regione dell’Atlantico e nelle aree circostanti.

La nostra conoscenza attuale dell’AMV è basata su un record di osservazioni

relativamente breve, che limita duramente la nostra comprensione dei meccanismi

coinvolti, così come la caratterizzazione della coda a bassa frequenza dello spettro

di variabilità. Allo scopo di quantificare accuratamente il contributo antropogenico

ai cambiamenti climatici osservati, è essenziale capire meglio la variabilità climatica

naturale che avviene a scale temporali lunghe. In questo studio, l’AMV è esaminato

in un insieme di simulazioni climatiche multisecolari e preindustriali, ottenute da

diversi modelli accoppiati di circolazione generale. In queste simulazioni l’AMV

mostra un comportamento non stazionario, che è valutato oggettivamente mediante

un test statistico. Sono analizzati i pattern di teleconnessione a larga scala as-

sociati all’evoluzione dell’AMV e la relazione tra il comportamento dell’AMV e

l’Atlantic meridional overturning circulation (AMOC). Un’analisi multi-modello
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dell’AMV ci permette di investigare le somiglianze e le differenze in un insieme di

modelli climatici allo stato dell’arte e di identificare i modi di variabilità prevalenti

che implicano diverse interazioni atmosfera-oceano su scale decadali e più lunghe.

Nella maggior parte dei modelli, una scala temporale più corta (∼20 anni) sembra

alternarsi a una scala temporale più lunga (∼60 anni) con un passaggio graduale da

una all’altra attraverso le varie epoche. La scala più corta appare essere associata

a un pattern di tripolo per le NA SST che corrisponde a un forzante di tipo-NAO;

mentre la scala più lunga presenta un pattern monopolare per le SST, tipo-AMV,

che corrisponde a un accoppiamento più debole con l’atmosfera. Poiché questi modi

sono particolarmente evidenti nel modello MPI-ESM-P, questo è stato scelto come

caso studio per approfondire la spiegazione dinamica del comportamento dell’AMV:

il suo spettro dell’AMV presenta due picchi distinti, corrispondenti a una scala

temporale corta (nella banda 20-40 anni) e una scala temporale lunga (nella banda

40-80 anni). I risultati mostrano che la non stazionarietà dell’intera serie temporale

è dovuta principalmente alla scala temporale lunga, e che la differenza tra i due

modi dipende dal ruolo della salinità come guida della circolazione, che prevale

per la scala lunga. Il comportamento non stazionario identificato nella maggior

parte dei modelli suggerisce che il carattere dell’AMV osservato potrebbe subire

cambiamenti significativi in futuro. Quest’analisi, tuttora in corso, fornirà una

nuova comprensione sulla dinamica della variabilità dell’AMV.
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Chapter 1
Introduction

1.1 Motivation

The climate system exhibits considerable variability on a wide range of temporal

scales, ranging from interannual to millions of years. A better comprehension

of mechanisms that determine natural internal climate variability occurring over

multidecadal time scales is critical for the problem of anthropogenic signal de-

tection: it is essential to understand the background natural climate variability

on which external influences are superimposed, so as to better disentangle the

relative contribution of anthropogenic and natural drivers of climate variability.

Additionally, human-induced warming of the climate system in the future will be

modulated by natural climate variability.

Due to the shortness of the observed record, variability on multidecadal time

scales is poorly understood. Since observed records last 100-150 years at most, too

few multidecadal variation cycles of climate variables or indices can be detected;

as a result the multidecadal component of climate variability spectrum is only
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marginally resolved. Moreover, records of observations must also deal with sparse

and changing observing systems. Paleoclimatology provides a mean of assessing

climatic variations before the beginning of instrumental records, but proxy data

have some limitations: they are subject to dating errors and microenvironmental

effects, they often remain limited to the proxy sites and they are also potentially

limited in their ability to represent climatic variations over a range of different time

scales [Jones et al., 1998].

An intriguing aspect of long-term climate variability is the non-stationarity: a

time series is stationary if its mean is constant and its autocorrelation depends

only on the lag (Wide Sense Stationarity WSS). In the climate context, continuous

modifications in the processes influencing that variable potentially result in a non

stationary behaviour where the statistical properties depend on the particular

time in question. In literature various studies, using both models and data, re-

veal this aspect. Among others, two illustrative examples regard the El Niño/La

Niña-Southern Oscillation (ENSO), that is a climate pattern that occurs across

the tropical Pacific Ocean due to the coupled variations of surface sea temperature

and air pressure; and the North Atlantic Oscillation (NAO), that is a fluctuation

in sea level pressure difference between the Icelandic Low and the Azores High.

Based on a 2000-year simulation, performed with the global coupled GFDL-CM2.1

model, Wittenberg [2009] identifies different regimes of different durations, in ENSO

modulations: see in Figure 1.1 multidecadal epochs with hardly any variability

(M5); epochs with intense, warm-skewed ENSO events (M7); epochs with mod-

erate, nearly sinusoidal ENSO events (M2); and epochs that are highly irregular

in amplitude and period (M6). Occasional epochs mimic detailed temporal se-

quences of observed ENSO events (e.g. R2 and M6, R1 and M1), but a different
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150-year interval may not contain the same oscillation. These results suggest that

the observed ENSO over the past 150 years of measurements may be not truly

representative of ENSO longer-term behaviour, since it is not sufficient to resolve

the temporal variability of ENSO.

Figure 1.1: SST (◦C) averaged over the NINO3 region, for (a) observations and (b)
the 20 consecutive centuries (numbered) from the GFDL-CM2.1 model
[Wittenberg, 2009].

With regard to NAO, Hurrell and Van Loon [1997] notice a non-stationary be-

haviour in the time evolution of the NAO over the 130 winters 1865-1994. In

Figure 1.2 the time evolution of NAO is shown as a contour plot of the power

spectra computed for running 60 years: large part of NAO variance at biennial

periods comes from the early part of the record, while the variability between 6
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and 10 years is more prominent over the latter half of the twentieth-century. There

is a shift in the period associated to the largest variability.

Figure 1.2: Power spectra of the winter (December-March) NAO index for running
60-year intervals; variances greater than 0.15 mb2 frequency−1 are stippled
[Hurrell and Van Loon, 1997].

Non-stationary behaviour in low-frequency internal variability appears, therefore,

from studies based both on models and observations.

Another low-frequency mode of variability is the Atlantic Multidecadal Variability

(AMV): it is identified as a coherent pattern of oscillatory changes in North Atlantic

sea surface temperature; during positive (negative) AMV phases the sea surface

temperature is anomalously warm (cold) over most of the North Atlantic. AMV

was found to be a natural mode, internal to the climate system, with a period

of the order of 60-80 years [Schlesinger and Ramankutty, 1994; Kushnir, 1994].

These multidecadal variations have been observed in instrumental data [Enfield

et al., 2001; Trenberth and Shea, 2006; Deser and Blackmon, 1993] and paleo-proxy
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records [Delworth and Mann, 2000; Gray et al., 2004; Kilbourne et al., 2014; Saenger

et al., 2009]. A number of studies have demonstrated the connection between the

AMV and other components of the climate system both within and outside the

Atlantic region. The AMV can, for instance, affect climate multidecadal variability

over both North America and western Europe; it can be linked to worldwide

precipitation (in Sahel, India, North America and North Eastern Brazil) and to

Atlantic hurricane activity [Sutton and Hodson, 2005; Knight et al., 2006; Sutton

and Dong, 2012; Ting et al., 2011; Zhang and Delworth, 2006; Enfield et al., 2001;

Goldenberg et al., 2001; Latif and Keenlyside, 2011]. The AMV is also related to the

Mediterranean sea surface temperatures: Mariotti and Dell’Aquila [2012] find that

Atlantic multidecadal variability is transmitted to the Mediterranean/European

region via atmospheric processes, and analysis by Marullo et al. [2011] reveals a

period of about 70 years in the Mediterranean sea surface temperature time series,

strongly correlated to the AMV.

Besides, AMV is important because its phases of oscillation have alternately ob-

scured and exaggerated the effects of global warming, and made attribution of

global warming more difficult to ascertain. For example, Keenlyside et al. [2008]

suggest that global surface temperature may not increase over the next decade, as

natural climate variations in the North Atlantic and tropical Pacific temporarily

offset the projected anthropogenic warming.

Despite its relevance for the climate variability over the Atlantic sector and adja-

cent regions, the precise nature of AMV needs to be clarified and its underlying

mechanism remains little known. An in-depth examination of the AMV long-term

behaviour in a comprehensive way, i.e. investigating its possible non-stationarity,

is currently missing. The non-stationarity associated with the natural variability
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modes should not be overlooked in order to understand whether the current spectral

features of the AMV variability are potentially subject to major changes in the

future.

1.2 Objectives and methodology

Aim of this study is to analyse the possible existence of non-stationary aspects of the

Atlantic multidecadal variability. Since long time scales variations of Sea Surface

Temperature (SST) exhibit large-scale organization owing to both atmosphere and

oceanic processes, particular emphasis is placed on changes in the relationship

between AMV and the variability of the Atlantic Meridional Overturning Circula-

tion (AMOC); and, in order to explain these changes, large-scale teleconnection

patterns associated with AMV evolution are also examined. Attention is paid on

the possibility that AMV may change in different regimes with different time scales

(periodicities), amplitude and teleconnection patterns with respect to the present

ones.

A climate model is a useful tool to reconstruct the physical mechanisms behind

low-frequency climate variability, suitable for an analysis of the internal variability

because it can run under fixed radiative forcing conditions. Moreover, a model can

provide long multi-century integrations necessary to resolve the multidecadal time

scale of North Atlantic SST variability. Due to the large inter-model differences in

terms of physical parametrizations, numerical schemes, resolution, etc., it is pre-

ferred to resort to different models rather than relying on one single climate model.

A multi-model approach for AMV analysis allows us to investigate similarities and

differences across a large ensemble of state-of-the-art climate models and to identify
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the prominent simulated mechanisms. In this study, eleven multi-century preindus-

trial simulations are used mainly from the Coupled Model Intercomparison Project

Phase 5 (CMIP5) ensemble. In order to better constrain the multidecadal variabil-

ity, only the longest simulations are used (allowing a minimum of 500-year-long

integrations). To isolate the internal, unforced variability, only simulations per-

formed under preindustrial forcing conditions were selected.

Spatial description of AMV, as simulated by this set of models, is obtained using

maps of correlation coefficients; while its evolution in time is given by spectral

analysis of the North Atlantic SST time series with a specific focus on significant

peaks at multidecadal time scale. The AMV time series is often subdivided in

intervals to detect different regimes of variability and look at their characteristics.

Moving these temporal windows allows us a better understanding of how the differ-

ent regimes evolve in time and how the transitions among regimes occur. Since

this approach reveals the non-stationarity as a prominent feature of AMV time

series, which can vary in both amplitude and frequency over long periods of time,

an objective assessment of this aspect is required: the eleven models undergo a

statistical test to check the AMV stationarity. The starting null hypothesis refers to

a statistically-stationary AMV, whose modulation is entirely random, and several

analytical time series with the same spectrum than the true one are generated by

the bootstrap method and used to show that a model simulates a non-stationary

AMV when there are periods that do not keep the same statistical properties of

the entire time series.

Regressions and cross-lagged correlations are performed between AMV and AMOC

indices, to investigate long-term changes in their relationship. Furthermore, Maxi-

mum Covariance Analysis (MCA) is applied to study the role of the atmosphere-
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ocean interactions, since it reveals changes in teleconnection patterns associated to

the AMV index. It is especially used here to show how global sea level pressure

anomaly field can be derived from North Atlantic sea surface temperature anomaly

field.

A dynamical explanation for AMV regimes requires then the computation of lagged

regression maps of several fields onto the AMV index chosen in this study as refer-

ence. This in-depth examination distinguishes the physical mechanisms underlying

different preferred AMV time scales, corresponding to different variability modes.

The thesis is organised as follows. Chapter 2 introduces the framework within

which this thesis takes place, with a literature review of the Atlantic Multidecadal

Variability, its link with the large scale ocean circulation and its coupling with the

atmosphere; a validation of the models that participate in this study is given in

chapter 3, which presents also the evidence of non-stationary AMV behaviours, us-

ing a time-evolving approach for spectral analysis; therefore the models undergo to

a statistical test for AMV stationarity described in chapter 4. Chapter 5 addresses

how the different regimes exhibit by the model AMV are related to long-term

modulations in the oceanic and atmospheric components of climate system; an

in-depth analysis of dynamical mechanisms underlying different modes of variability

is performed in chapter 6 for one model as case study; finally a summary and

discussion of the results are debated in chapter 7.



Chapter 2
Overview of Atlantic Multidecadal

Variability (AMV)

2.1 Definition and impacts

Sea surface temperatures play a key role in regulating climate and its variability

and are governed by both atmospheric and oceanic processes. In the North Atlantic

SSTs multidecadal (10 to 90 years) fluctuations are well documented by studies

based on observations, proxy-reconstructions and numerical simulations [Schlesinger

and Ramankutty, 1994; Kushnir, 1994; Enfield et al., 2001; Trenberth and Shea,

2006; Deser and Blackmon, 1993; Delworth and Mann, 2000; Gray et al., 2004;

Kilbourne et al., 2014; Zhang and Delworth, 2006; Zanchettin et al., 2010; Ting

et al., 2011]. Kerr [2000] named these pronounced multidecadal North Atlantic

SST variations as Atlantic Multidecadal Oscillation (AMO): oscillation because

the climate swings one way then the other, multidecadal because they take roughly

60 years to complete an oscillation, and Atlantic because they are most evident in

9
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and around the North Atlantic. Other authors suggest that Atlantic Multidecadal

Variability (AMV) is a more appropriate term to indicate any repeating fluctuation

in the time series, regardless of whether the fluctuation repeats on a regular basis

or not.

Many differently-constructed indices of AMV are used in literature: most of

them are based on the spatially-averaged North Atlantic SSTs and they can differ

according to the selected North Atlantic domain and to the time window used

to low-pass filter the SSTs; other authors define the AMV index as the principal

component of the leading Empirical Orthogonal Function (EOF) of North Atlantic

SST. Zanchettin et al. [2014] conclude that indices based on the spatial averaging

are more closely related to tropical regions, while EOF-based indices generally

appear more closely related to extra-tropical variability. Figure 2.1 shows on top

the observed AMV index, calculated as the areal-averaged SST over the [0◦-60◦N;

75◦-7.5◦W] domain, low-pass filtered with a 37-point Henderson filter (that is

approximately equivalent to a 19 year running mean), detrended, also removing

the long-term mean; this index explains 53% of the variance in the detrended

unfiltered index. The corresponding SST regression pattern obtained by regressing

the detrended SST data on a normalized (unit variance) version of the index is

shown at the bottom [Sutton and Hodson, 2005]. Observed AMV appears to

have a time scale of around 60-70 years; AMV warm phases occur in the late 19th

Century and from 1931 to 1960, while cold phases occur from 1905 to 1925 and from

1965 to 1990. Anomalies of the same polarity are visible over most of the North

Atlantic basin, featuring a typical “comma-shaped” pattern with largest values

east of Newfoundland. From this regression map it is also important to notice

that North Atlantic SSTs co-vary with the North Pacific and the Mediterranean
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Figure 2.1: (Top) Index of the AMV, 1871 to 2003. The units on the vertical axis are
◦C. (Bottom) Spatial pattern of SST variations associated with the AMV
index shown on top: shown are the regression coefficients (◦C per standard
deviation) [Sutton and Hodson, 2005].

Sea SSTs; indeed, AMV influences climate also outside the Atlantic region: it

has been linked to summer temperatures in western Europe and precipitation

variations in the continental United States [Sutton and Hodson, 2005; Enfield et al.,

2001]; to the occurrence of Sahel drought and Atlantic Hurricane activity, [Knight

et al., 2006; Sutton and Dong, 2012; Ting et al., 2011; Zhang and Delworth, 2006;

Goldenberg et al., 2001; Latif and Keenlyside, 2011]; to the Mediterranean sea

surface temperatures [Mariotti and Dell’Aquila, 2012; Marullo et al., 2011], and to

North East Brazilian rainfall [Folland et al., 2001].

An ongoing debate concerns the nature of the 20th Century evolution of the AMV:

the issue is whether AMV is driven by internal variations or is predominantly

externally-forced. Traditionally, the AMV is thought to describe the internal

contribution to North Atlantic SST variability [Schlesinger and Ramankutty, 1994].
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Also more recently, works by Latif et al. [2006] and Ting et al. [2009] show that

the multidecadal variability in North Atlantic SST is not driven by external

forcings but arises basically from internal variability. Same point is supported by

who relates AMV to the intrinsic multidecadal variability of the North Atlantic

thermohaline circulation [Delworth and Mann, 2000; Medhaug and Furevik, 2011].

However, other studies indicate that external factors, such as changes in greenhouse

gas concentrations, aerosol concentration, volcanic activity and solar insolation,

could also play a role. Otterå et al. [2010] find that volcanism has a strong

influence on Northen Hemisphere climate, not only for short-term changes, but

also for multidecadal AMV-type changes; while Saenger et al. [2009] indicate that

variations in solar activity, volcanism, greenhouse gases and tropospheric aerosols

externally force the background component of SST variability at a lower frequency

with respect to the multidecadal one. Booth et al. [2012], show that models that

represent indirect aerosol effects, as the Hadley Centre Global Environmental

Model, version 2, Earth system configuration (HadGEM2-ES), capture more of

the observed AMV than those that represent only direct aerosol effect, so they

conclude that aerosol emissions and periods of volcanic activity explain 76% of the

simulated multidecadal variance in detrended 1860-2005 North Atlantic sea surface

temperatures. However they are questioned by Zhang et al. [2013], since there

are major discrepancies between the HadGEM2-ES simulations and observations

in the North Atlantic Ocean, that are largely attributable to what appears to be

excessively strong aerosol effects.
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2.2 The Atlantic Meridional Overturning

Circulation (AMOC) and its link with AMV

A widely accepted candidate to explain the detected AMV is the Atlantic Merid-

ional Overturning Circulation (AMOC): a prominent ocean circulation system. The

low-frequency fluctuations of the AMOC are shown to be the main precursor for

the model AMV [Delworth et al., 1993; Timmermann et al., 1998; Latif et al., 2004,

2006; Jungclaus et al., 2005; Knight et al., 2005; Dong and Sutton, 2005; Delworth

and Mann, 2000; Collins et al., 2006; Msadek and Frankignoul, 2009].

AMOC consists of four main branches (Figure 2.2): upwelling processes that trans-

port water from depth to near the ocean surface, surface currents that transport

relatively light water toward high latitudes, deep water formation regions where

waters become denser and sink, and deep currents closing the loop. These four

branches span the entire Atlantic on both hemispheres, forming a circulation system

that consists of two overturning cells, a deep one with North Atlantic Deep Water

(NADW) and an abyssal one with Antarctic Bottom Water (AABW) [Kuhlbrodt

et al., 2007].

Figure 2.2: Schematic representing a zonally averaged picture of the Atlantic Ocean
[Wang et al., 2014].
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In Figure 2.3, estimates of total, atmospheric and oceanic heat transports are

presented (left panel), jointly with the relative contribution of each oceanic basin

(right panel), based on reanalyses from the National Centers for Environmental

Prediction-National Center for Atmospheric Research (NCEP-NCAR).

Figure 2.3: (Left) Total heat transport RT (solid line), ocean heat transport OT
(dashed) and atmospheric transport AT estimated from NCEP reanalyses.
(Right) Zonal annual mean ocean heat transports for the total, Atlantic,
Indian, and Pacific basins from NCEP reanalyses. The 1 standard error
bars are indicated by the dashed curves [Trenberth and Caron, 2001].

The global oceanic contribution dominates the atmospheric contribution at low

latitudes in the northen hemisphere. In the Atlantic ocean, the relative contribution

of the ocean heat transport to the atmosphere is larger than for the global average

[Medhaug and Furevik, 2011]. There is a northward heat transport in the entire

basin related to the overturning circulation, which is exclusive for the Atlantic,

see right panel in Figure 2.3. The AMOC contributes to around 25% of the total

(atmosphere and ocean) poleward heat transport and thus plays a key role in the

global Earth climate, with a maximum 1.3 PW oceanic heat transport occurring

at 24◦-26◦N [Srokosz et al., 2012]. Both vertical mixing in the ocean’s interior

and wind-driven upwelling are likely contributing to drive the observed circulation

[Kuhlbrodt et al., 2007]. The first one is the traditional thermohaline driving
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mechanism: it is that part of the ocean circulation determined by changes in

temperature and salinity, related to the term “Thermohaline Circulation (THC)”

that, therefore, is not synonymous with the AMOC. The AMOC is a descriptive,

geographic term that does not refer to any particular driving mechanism; whereas

the THC is related to one of the mechanisms involved in the overturning. While

THC is not directly measurable, AMOC can be determined in practice, as a zonal

integral of the meridional velocity as a function of depth. Deeper currents and

upwelling in particular are extremely difficult to measure; therefore, although the

AMOC plays a key role in the ocean/climate system, it can be at best indirectly

estimated from sparse observations, and only the mooring array of the ‘Rapid

Climate Change’ (RAPID) Research Programme of the Natural Environment Re-

search Council (NERC) has now observed the AMOC at 26◦N continuously for

10 years. More details on AMOC quantitative definition and measurement are

provided in section 5.1.

According to a dominant paradigm, AMV is driven by coordinate multidecadal

changes in the AMOC strength, via the AMOC modulation of the Atlantic ocean

heat transport. Using a multi-model approach, Zhang and Wang [2013] find the

following AMV/AMOC relationship: a strengthening (weakening) of the AMOC

leads to a warm (cold) phase of the AMV by an anomalously larger (weaker)

heat transport, which in turn determining a slowdown (an acceleration) of the

AMOC by changes in the meridional density gradient, after some time-lag due

to dynamical adjustment. Delworth et al. [1993] authored one of the earliest

studies investigating the relationship between the AMOC and SST changes in the

North Atlantic. They show that the density anomalies in the sinking region of the

overturning circulation drive the (midlatitude) multidecadal or longer time-scale
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AMOC oscillations. Reduced heat transport associated with a weak AMOC leads

to a cold, dense pool throughout the upper 1 km in the central North Atlantic

(30◦-60◦N). This cold pool has an associated cyclonic circulation that transports

salt into this sinking region, thus increasing further the density there. As a result,

AMOC strengthens, leading to the transport of warmer, less dense waters into

the sinking area. In turn, AMOC weakens again, accompanied by reduced heat

transport. In Delworth et al. [1993], the existence of the oscillation crucially

depends on the phase lag between the temperature and salinity contributions

to the total density in the deep-water formation regions, see also Danabasoglu

[2008]. Applying the multi-taper frequency-domain singular value decomposition

(MTM-SVD) approach [Mann and Park, 1999] to a 1400-year simulation, Knight

et al. [2005] find that the maximum of the AMOC is associated to a coherent

large-scale temperature pattern with widespread warm anomalies in the Northen

Hemisphere, considerably similar to the observed positive AMV pattern. Figure 2.4

shows that this pattern first diminishes, then re-establishes in the opposite sense

at the AMOC minimum, when much of the Northern Hemisphere is anomalously

cold: the simulated AMV/AMOC variability evolves coherently. Recently, Ba et al.

[2014] analyse the key elements of the Delworth et al.’s (1993) mechanism in a

multi-model ensemble of coupled general circulation models. They find a certain

degree of cross-model consistency: in most models the mid-latitude SST variations

in the North Atlantic are significantly correlated with fluctuations in the AMOC,

salinity variations control density changes in the convective regions where mixed

layer deepening precedes AMOC strengthening, and the subpolar gyre variations

significantly lead AMOC changes.
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Figure 2.4: Joint MTM-SVD analysis of simulated multidecadal mean surface tempera-
ture and AMOC. Panels a-d show the signal in surface temperature anomaly
in the frequency band from (70 years)−1 to (180 years)−1, at phases of 0◦,
60◦, 120◦, 180◦ respectively. Zero phase corresponds to maximum mean
Northern Hemisphere temperature. Panels e-h show the corresponding
phases of the covarying signal in AMOC anomaly in the same band. In
panel e, the climatological AMOC is shown by contours [Knight et al.,
2005].

2.3 The role of ocean-atmosphere coupling

We have seen that the multidecadal portion of North Atlantic SST variability is

thought to reflect, at least partially, natural internal variations in the Atlantic

meridional overturning circulation. However, AMV is also influenced by direct

atmospheric forcing and other oceanic changes [Msadek and Frankignoul, 2009].

Multidecadal climate variability can be also a coupled ocean-atmosphere system.
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In fact, for a steady Earth’s climate, large anomalies in oceanic heat transport

should be balanced by opposite variations in the atmospheric heat transport on

decadal and longer time scales (Bjerknes’s (1964) compensation); and the character

of large-scale air-sea interaction over the midlatitude (30◦-60◦N) North Atlantic

Ocean differs with time scales. Gulev et al. [2013] confirm this conjecture providing

observational evidence that in the mid-latitude North Atlantic and on time scales

longer than 10 years, surface heat fluxes are driven by the ocean and may force the

atmosphere, whereas on shorter time scales the opposite is true.

Farneti and Vallis [2011] categorise air-sea interactions that take place at the

middle latitudes at decadal and longer time scales. They start from the classical

Hasselmann’s (1976) stochastic model of climate variability: slow changes of climate

are explained as the integral response to continuous random excitation by short

period “weather” disturbances; the atmosphere varies essentially as white noise

and the ocean, of a much higher heat capacity, passively integrates this variability,

producing a red noise spectrum. However, in the presence of internal oceanic

variations, some spectral peaks emerge from the red noise (departures from the

Hasselmann’s (1976) noise paradigm): the ocean dynamics makes the system

more predictable. The ocean circulation can indeed modulate the spectrum of

variability in the overlying atmosphere: the ocean circulation introduces a delay

and modulates SST variability on decadal time-scales. Other authors inspect the

possible coupled ocean-atmosphere interactions in the extra-tropical North Atlantic,

analysing in particular the mechanisms behind coordinated changes between SST

and the North Atlantic Oscillation (NAO), which refers to the pressure gradient

between Iceland and Azores and is associated with changes in the surface westerlies

across the Atlantic onto Europe. Bellucci et al. [2008] suggest that the ocean is not
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passively responding to the atmosphere, showing the existence of significant lead-lag

correlations between NAO index and SST, so that changes in the SST may feed

back on the NAO; and the hypothesis that the ocean acts as a damped oscillator

that is excited by atmospheric variability is expressed by Delworth and Greatbatch

[2000]; Czaja and Marshall [2001]; Johnson and Marshall [2002]; Marshall et al.

[2001].



Chapter 3
Multi-model characterization of AMV

3.1 Model data

In this chapter the behaviour of AMV is investigated in a multi-model set of

simulations. As the focus of this study is the unforced internal component of climate

variability, preindustrial simulations have been selected. They estimate the unforced

variability of the model, imposing constant pre-1850 conditions: greenhouse gases,

aerosols, ozone and solar irradiance are fixed at the year 1850, CO2 concentration

is 286.3 ppm, CH4 concentration is 805.25 ppb and N2O concentration is 276.4 ppb.

Since this study is focused on the multidecadal time scales, multi-century simulations

with a minimum length of 500 years are required to properly resolve the low-

frequency range of the spectrum. Based on this criteria, 11 simulations performed

with as many models were selected (Table 3.1). Out of these, ten models come from

the fifth phase of the Coupled Model Intercomparison Project Phase 5 (CMIP5)

archive, which promote a framework of coordinated climate experiments, providing

a freely available state-of-art multimodel dataset.

20
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model name length Resolution (Ocn) Resolution (Atm)
(years) (lon × lat) (lat × lon)

MPI-ESM-P 1156 1.5◦ L40 T63/1.9◦ L47
CCSM4 1051 1.11◦×(0.27◦÷0.54◦) L60 1.25◦×0.9◦ L26
MPI-ESM-LR 1000 1.5◦ L40 T63/1.9◦ L47
CanESM2 996 1.41◦×0.94◦ L40 T63/2.81◦ L35
NorESM1-M 501 1.125◦ L53 1.9◦×2.5◦ L26
GFDL-ESM2M 500 1◦×(1◦÷ 1/3

◦) L50 2◦×2.5◦ L24
MRI-CGCM3 500 1◦×0.5◦ L50 T159 L48
ACCESS1-0 500 1◦×(1◦÷ 1/3

◦) L50 1.25◦×1.875◦ L38
ACCESS1-3 500 1◦×(1◦÷ 1/3

◦) L50 1.25◦×1.875◦ L38
CESM1-BGC 500 1◦ L60 1.25◦×0.9◦ L26
GFDL-CM2.1 3500 1◦ L50 2◦×2.5◦ L24

Table 3.1: Eleven multi-century preindustrial simulations that partecipate in this study.

In Taylor et al. [2009] the protocols for all the CMIP5 experiments are detailed.

Specifically, preindustrial experiments have the following features:

• Prescribed non-evolving atmospheric concentrations of:

– all well-mixed gases (including CO2),

– some short-lived (reactive) species.

• Prescribed non-evolving emissions or concentrations of:

– natural aerosols or their precursors,

– some short-lived (reactive) species.

• Unperturbed land use: fixed agriculture disturbance mask.

In addition to the selected CMIP5 models, a 3500-year long integrations performed

with the GFDL-CM2.1 model, not available in the CMIP5 archive, is analysed.
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3.2 Observed data

Met Office Hadley Centre’s sea ice and sea surface temperature (SST) data set,

HadISST [Rayner et al., 2003], is used to validate the model results. HadISST is a

combination of monthly globally-complete fields of SST and sea ice concentration

on a 1 degree latitude-longitude grid from 1870 to date. The SST data are

taken from individual ships’ observations from the Met Office Marine Data Bank

(MDB), which from 1982 onwards also includes data received through the Global

Telecommunications System (GTS). In order to enhance data coverage, monthly

median SSTs for 1871-1995 from the Comprehensive Ocean-Atmosphere Data

Set (COADS) (now ICOADS) were also used where there were no MDB data.

HadISST dataset has been made globally complete, since gaps in the SST data have

been interpolated using the reduced space optimal interpolation (RSOI). For 1982

onward, the RSOI technique was applied to the in situ/satellite SST combination

using a two-stage procedure: first reconstructing the global pattern of long-term

change and then the residual interannual variability, followed by superposition of

quality-improved gridded observations onto the reconstructions to restore local

detail.

3.3 Simulated AMV

In order to understand the variability of North Atlantic SST (NA SST), spectral

analysis of the unfiltered NA SST time series is performed via multi-taper method

(MTM) [Thomson, 1982]. Ghil [2002] explains that this method provides useful

tools for the spectral estimation of a time series whose spectrum may contain
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both broadband and line components. MTM is non-parametric, since it does not

use a priori model of the process that generated the time series under analysis

and it attempts to reduce the variance of spectral estimates by using a small

set of tapers rather than the unique data taper or spectral window used by the

classical methods. The data are pre-multiplied by orthogonal tapers constructed

to minimize the spectral leakage due to the finite length of the time series, and a

set of independent estimates of the power spectrum is computed. The spectrum

is computed via multi-taper method also because it relaxes some of the strict

stationary assumptions, so it is particularly well-suited for the spectral analysis of

climatic time series [Mann and Lees, 1996]. In Figure 3.1 the MTM power spectra

of the simulated and observed NA SST time series are shown in colours and the

corresponding red noise spectra are overlapped as thin black lines.
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Figure 3.1: MTM spectrum of North Atlantic SST for the analysed models and the
HadISST observations from 1870-2014. The black thin lines are the AR1
red noise fits.
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Red noise is used to describe noise with enhanced low-frequency fluctuations arising

from the interaction of white noise forcing with the slow-response components of

a system. We have seen in section 2.3 that there is a theoretical justification for

a red noise description of the noise background in climatic time series, since the

thermal inertia of the oceans provides memory. The frequencies with significant

power above red noise indicate that SSTs significantly deviate from the red noise

null-hypothesis postulating that the low-frequency variance is entirely determined

by the integration of the atmospheric white noise [Hasselmann, 1976]. Focusing on

periodicities longer than 10 years, at multidecadal time scale, significant variability

above the red noise can be seen in all the models and in the observations. The

observations have a band of enhanced power between 30 and 50 years, which is not

very well resolved because of the shortness of the record. Flat low-frequency tails

of the spectra are seen in CCSM4, MRI-CGCM3 and CESM1-BGC models, while

peaks are more distinguishable for the rest of models. Depending on the model

considered, power spectrum of AMV index shows peaks at different frequencies

and with different amplitudes. This wide range of variability is found also in Ba

et al. [2014] multi-model comparison.

For each model the AMV index is calculated by averaging annual mean SST over

the region 0◦-60◦N and 75◦-7.5◦W, as in Sutton and Hodson [2005]. The spatial

mean is weighted by grid cell area according to the equation:
∫

A
SST (~x)·dA(~x)∫

A
dA(~x) . Prior

to the analysis, the long-term mean is removed and the resulting time series of SST

anomalies is detrended in order to remove spurious long-term changes associated

with residual model drifts, which are not physically meaningful. In order to isolate

the decadal scale, SSTs are low-pass filtered with a 10-year running mean.
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Figure 3.2 illustrates the spatial patterns of SST associated with the AMV index

for the models and the HadISST observations. Shown are the point-wise correlation

between global SST field and AMV index.
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Figure 3.2: Spatial patterns of SST associated with the AMV index for the models and
the HadISST observations from 1870-2014. Shown are the 95% significant
correlations between normalised AMV index and 10-year running mean
filtered, detrended global SST.

The observed AMV index is calculated in the same manner as for the models;

nevertheless the comparison with models is not completely consistent because

observed record is comparatively short and it accounts for external forcings, which

are instead excluded in models. From observations, there is an overall high positive

correlation between the SST and the AMV index for the entire AMV region (as in

others studies [Medhaug and Furevik, 2011]). Although there are some differences

among the models, their spatial SST patterns resemble the typical basin-scale

pattern of the same positive sign with largest values in the east and midlatitude

region (comma-shaped patterns). The majority of models also show little or slightly
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negative correlations in the Gulf Stream and the Nordic Seas areas. Most of com-

monalities among the models and observations come from the strong correlations

shown in the tropical Atlantic, except for MRI-CGCM3 model; while north of 30◦N

the patterns differ more.

These patterns evolve in time: next, we visually inspect the individual AMV

time series (Figure 3.3); note that the GFDL-CM2.1 AMV index is divided in

1000-year-long segments in order to better discern its features and compare with

the other models.
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Figure 3.3: Normalised AMV index in the CMIP5 preindustrial simulations (top) and
in the GFDL-CM2.1 model (bottom).
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The non-stationarity appears to be a prominent feature of AMV index time series.

Different epochs of different characteristics and duration can be identified in the

evolution of AMV index time series: there are multidecadal epochs with mostly

warm-skewed events; with moderate, nearly sinusoidal events; with intense and

longer-period events; and with small amplitude. Not only the spectral features

display non-stationarity, but also the amplitude of the AMV signal. Analogously

to the epochs found by Wittenberg [2009] for ENSO, these different regimes are

illustrated in Figure 3.4 for MPI-ESM-P model and in Figure 3.5 for CCSM4,

MPI-ESM-LR and CanESM2 models, as an example.
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Figure 3.4: AMV modulation shows epochs with different characteristics.
(a) RED: mostly warm-skewed events; (b) GREEN: moderate, nearly
sinusoidal events; (c) PURPLE: intense and longer-period events; (d)
YELLOW: small amplitude.
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Figure 3.5: As in Figure 3.4, but for CCSM4, MPI-ESM-LR and CanESM2.
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3.4 Evidence of non-stationarity

In the light of Figure 3.4 and 3.5, North Atlantic SST variability is analysed for

different epochs. An objective method to select epochs consists in dividing the

AMV index time series into equal-length intervals. The length of these intervals is

chosen to be 200 years just to be comparable with the length of observations. In

order to underline the AMV non-stationarity, multi-taper method spectral analysis

is carried out for chunks of consecutive, overlapping 200-year-long intervals, shifted

by 50 years; for both models and observations. Figure 3.6 and 3.7 show the results

for the four longest CMIP5 models, for illustrative purposes, since the other models

present an analogous non-stationary behaviour. Spectral analysis is performed

for each interval, for the entire time series and for the observations taken from

HadISST data. Each power spectral density is normalised by its maximum. First

interval refers to the period from year 1 to year 200, second interval refers to period

[50-250] years, third to [100-300], and so on.

This time-evolving view of AMV spectral features highlights a strong dependence to

the selected time interval, emphasizing the non-stationarity of AMV. For example,

looking at the MPI-ESM-P model, we can see that the AMV during the [450-650]

time interval, central year 550, displays almost no variability for periods shorter

than 20 years, while during the [900-1100] time interval the the maximum of

variability is seen at 20 years. Therefore, the preferential periodicity can differ a

lot among the intervals. The spectrum of observations resembles, for example, the

[200-400] time interval spectrum because both show enhanced power in the 30-50

years band. However, the observed spectrum differs substantially, for example,

from the [900-1100] time interval spectrum, which presents the highest power
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Spectra of AMV intervals, for MPI−ESM−P
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Spectra of AMV intervals, for CCSM4
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Figure 3.6: Spectral signature of AMV index by using the multi-taper method for
200-year-long intervals labelled with the central year (shown on top) and for
the entire time series (indicated with “All” on top), for (top) MPI-ESM-P
and (bottom) CCSM4. “Obs” bin refers to HadISST data from 1870-2014.
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Spectra of AMV intervals, for MPI−ESM−LR
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Spectra of AMV intervals, for CanESM2
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Figure 3.7: As in Figure 3.6, but for (top) MPI-ESM-LR and (bottom) CanESM2.
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at higher frequencies (periods shorter than 30 years). It is therefore possible to

understand that the observed AMV spectrum represents only one of the several

possible behaviours that emerge looking at long datasets, suggesting that in the

future AMV might enter a regime remarkably different from the 20th Century.

This method is used by Saenger et al. [2009] in order to characterise changes in

the dominant periodicities of Atlantic SST variability. They analyse a 440-year

reconstruction of Atlantic SST anomalies, based on the Bahamas coral growth rate

measurements, and they find that some periods show multidecadal power similar to

the currently observed AMV, whereas no significant multidecadal power is evident

in other past epochs.

Transitions among these regimes of different variability also emerge from the AMV

autocorrelation, diagnosed with a moving window framework (Figure 3.8). For all

the analysed models, the AMV time series is split again in 200-year-long intervals,

shifted by 50 years, and the autocorrelation function is computed for each interval.

For most of the models, the dominant time scale of the autocorrelation function

changes with the time interval, revealing a modulation of AMV that is irregular and

interval-dependent. For MPI-ESM-LR model is noticeable that a ∼ 50-year time

scale characterises initial part of the record, later shortening down to ∼ 25 years, as

indicated by the sloping contours. Other models display no preferred time scales for

long segments of their evolution, see in particular CCSM4 and ACCESS1-3 models.

On the other hand, NorESM1-M model shows an almost stationary autocorrelation

throughout the whole length of the model record. This kind of spectral analysis

allows to observe the variance peaks in the frequency domain and to verify how

those peaks vary in time. The present results are consistent with Zanchettin

et al.’s (2010) work based on Global Surface Temperature (GST). They show that



33
la

g
s

MPI−ESM−P

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

30
0−

50
0

35
0−

55
0

40
0−

60
0

45
0−

65
0

50
0−

70
0

55
0−

75
0

60
0−

80
0

65
0−

85
0

70
0−

90
0

75
0−

95
0

80
0−

10
00

85
0−

10
50

90
0−

11
00

0

25

50

75

100
CCSM4

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

30
0−

50
0

35
0−

55
0

40
0−

60
0

45
0−

65
0

50
0−

70
0

55
0−

75
0

60
0−

80
0

65
0−

85
0

70
0−

90
0

75
0−

95
0

80
0−

10
00

la
g
s

MPI−ESM−LR

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

30
0−

50
0

35
0−

55
0

40
0−

60
0

45
0−

65
0

50
0−

70
0

55
0−

75
0

60
0−

80
0

65
0−

85
0

70
0−

90
0

75
0−

95
0

0

25

50

75

100
CanESM2

 

 

AMV autocorrelation

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

30
0−

50
0

35
0−

55
0

40
0−

60
0

45
0−

65
0

50
0−

70
0

55
0−

75
0

60
0−

80
0

65
0−

85
0

70
0−

90
0

75
0−

95
0

−1

−0.5

0

0.5

1

la
g
s

NorESM1−M

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

0

25

50

75

100
GFDL−ESM2M

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

MRI−CGCM3

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

la
g
s

ACCESS1−0

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

0

25

50

75

100

time intervals (years)

ACCESS1−3

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

CESM1−BGC

 

 

1−
20

0

50
−2

50

10
0−

30
0

15
0−

35
0

20
0−

40
0

25
0−

45
0

−1

−0.5

0

0.5

1

GFDL−CM2.1

time intervals (years)

la
g
s

 

 

1−
20

0

25
0−

45
0

50
0−

70
0

75
0−

95
0

10
00

−1
20

0

12
50

−1
45

0

15
00

−1
70

0

17
50

−1
95

0

20
00

−2
20

0

22
50

−2
45

0

25
00

−2
70

0

27
50

−2
95

0

30
00

−3
20

0

32
50

−3
45

0
0

25

50

75

100

−1

−0.5

0

0.5

1

Figure 3.8: Autocorrelation function of AMV index for moving and overlapped
200-year-long time windows, for the analysed models.
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observed (Central England Temperature, CET) and simulated (MPI-ESM) climate

time series covering several centuries are often characterized by fluctuations on

time scales that are not homogeneously distributed in time: they appear within

irregularly intermittent temporal intervals, whose duration varies, in general, with

the signal fluctuation frequency.

To conclude, the preferred variability time scales depend not only on the model,

but also on the period considered: this indicates a non-stationary AMV behaviour.

Does this modulation arise by chance? We will address this question in the next

chapter (chapter 4), where the AMV non-stationary behaviour exhibited in these

eleven simulations is objectively assessed, via a statistical test.



Chapter 4
A statistical test for AMV stationarity

The analysis of AMV in the multi-model set of preindustrial integrations, illustrated

in the previous chapter, revealed the alternation of epochs characterized by different

spectral characteristics.

Here, a statistical test to rigorously check the AMV stationarity is described.

The starting null hypothesis (H0) refers to a statistically-stationary AMV, whose

modulation is entirely random and with limited memory. In such a system, apparent

“transitions” would have no underlying “cause” any more than does a long run

of heads or tails when flipping a fair coin. Theoretically, stationarity is defined

as a quality of a process in which the statistical parameters (mean and standard

deviation) of the process do not change with time. The most important property

of a stationary process is that the auto-correlation function depends on lag alone

and does not change with the time at which the function is calculated. Therefore a

practical definition of non-stationarity indicates that the entire time series is not

stationary if there are intervals that do not keep the same statistical properties

(e.g. autocovariance) of the entire time series. This is what the test checks.

35
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First the method is explained for MPI-ESM-P model and then the results for the

entire set of models are presented.

4.1 A detailed explanation, using MPI-ESM-P

4.1.1 True AMV index and analytical AMV indices

The starting point is the AMV index time series, taken in this case from the MPI-

ESM-P model: the index of AMV is calculated by averaging annual mean simulated

sea surface temperature (SST) over the region 0◦-60◦N and 75◦-7.5◦W. The spatial

mean is weighted by grid cell area. The raw time series is only detrended, while

the low-pass filtered time series is also filtered by 10-year running mean and then

normalised by its standard deviation.

The resampling methods are useful to generate random time series that have similar

properties of the members of the population from which the simulated AMV time

series is taken. “Random-phase” test is applied to the analysed AMV time series.

This technique is considered “resampling” in the frequency domain, as it do not

preserve the distribution of values but rather the power spectrum. Therefore the

resampled series retains the same autocorrelation as the original series [Ebisuzaki,

1997]. Basically, after computing the Fourier transform of the original time series,

the following step creates a large number of new Fourier series with random phases

and the same power spectrum as the original series. Inverse Fourier transforms

give the new series that differ from the original series because they have random

phases in each of their Fourier modes. With the bootstrap we are able to find a

number of time series with the same length of the true time series (in this case 1156
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years), and use them to compute confidence intervals in order to robustly assess

the non-stationarity of the true time series. In Figure 4.1, the 1000 bootstrap time

series, in green, share the same spectrum (left plot) and autocorrelation (right plot)

of the original time series (superimposed as a thick black line).

Figure 4.1: (left) Original unfiltered time series spectrum in black and 1000 spectra
associated to the 1000 analytical time series in green, via multi-taper
method. (right) Original time series autocorrelation in black and 1000
autocorrelations associated to the 1000 analytical time series in green. For
autocorrelation, the original and analytical time series are low-pass filtered
by 10 years for plotting issues.

4.1.2 The confidence interval

Having checked, in Figure 4.1, the effectiveness of the bootstrap method, it is possi-

ble to compute a band of confidence for a significance α=10% for the autocovariance

function. In order to have a reasonable number of intervals to plot all together,

here the intervals are shifted by 50 years. Each of the 1000 bootstrap time series

is 10-year low-pass filtered, split in 19 intervals of length equal to 200 years, and

shifted by 50 years. Therefore there are 19000 intervals in total. The autocovariance

function is computed for all them, spanning 60 lags. For each lag there are 19000
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autocovariance values. They are sorted in ascending order and, for each lag, the

inferior limit for the confidence interval is set equal to the autocovariance value

corresponding to the 950th element (0.05 ·19000 = 950): the 5% of the total number

of values, and analogously the superior limit for the confidence interval is set as

the value related to the 18050th element (0.95 · 19000 = 18050): the 95% of the

total number of values. In parallel, also the original 10-year low pass filtered AMV

time series is divided in nineteen 200-year-long intervals and the autocovariance is

computed for all of them.

In Figure 4.2 each plot refers to a different 200-year-long interval, the black line is

the true autocovariance function for that interval, the grey shading is the confidence

interval and the red curve represents the mean behaviour of the original intervals.
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Figure 4.2: Autocovariances for the 10-year low pass filtered time series split in
200-year-long intervals shifted by 50 years (black thick lines). The gray
shading indicates the confidence interval at 90% and the red curve represents
the average of the autocovariance functions of the the original intervals.
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Already from a visual inspection, it is possible to find periods where the autoco-

variance function falls outside the shading, so they do not have the same statistical

characteristics of the whole time series. Instead of looking at the intervals, a

rigorous approach is counting the number of autocovariance values that fall outside

the confidence interval. Taking into account all the 19 intervals, we have 1140

values (that is 19 intervals multiplied by 60 lags). The result is 176 points out, that

corresponds to 15.44 % of the total. Concluding: the 15.44% of the total number

of values falls outside the confidence interval, it is more than the significance 10%

level, so we can reject the null hypothesis and state that the AMV time series for

MPI-ESM-P model is not stationary, where AMV is defined as the 10-year low-pass

filtered North Atlantic SST time series.

Generalising the method, more robust results are obtained using the raw unfiltered

time series and more intervals, shifting the 200-year-long intervals only by 1 year

instead of 50 years. In this manner, the MPI-ESM-P time series contains 957

intervals, corresponding to 57420 total autocovariance values, 6981 of which exceed

the confidence interval, that is a percentage of 12.16, again we can reject the null

hypothesis because the percentage is bigger than the significance 10% level.
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4.2 Summary of method and results

The test applied to check the stationarity in the AMV time series is summarized

as follows, the method involves:

• Generation of 1000 analytical time series with the same spectrum as the

original time series (bootstrap method) [Ebisuzaki, 1997].

• Division of the 1000 analytical time series in 200-year-long intervals (length

similar to the observations) shifted by 1 year.

• Computation of the autocovariance function for all these 200-year-long inter-

vals, for all the 1000 analytical time series, with a maximum lag equal to 60

years.

• Use of their distribution to compute the confidence interval at 90% level,

finding the inferior (superior) threshold as the lowest (highest) 5% of the

total autocovariance value for each lag.

The original NA SST time series are raw, only detrended, and they are also divided

in 200-year-long intervals, which are shifted by 1 year. For all the models, each au-

tocovariance value of NA SST index for each interval and for each lag, is compared

to the corresponding threshold value for that lag. The number of values outside

the threshold are counted. As a result, taking into account the total number of

autocovariance values for the original time series (60 lags multiplied by the number

of intervals), all models present values that exceed the confidence interval, and 9

out of 11 models exceed the 10% significance level, see Table 4.1 and Figure 4.3.

Concluding, two models (NorESM1-M and MRI-CGCM3) out of eleven do not
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model length n of intervals tot points points out %
MPI-ESM-P 1156 957 57420 6981 12.16
CCSM4 1051 852 51120 5877 11.50
MPI-ESM-LR 1000 801 48060 6268 13.04
CanESM2 996 797 47820 5439 11.37
NorESM1-M 501 302 18120 1693 9.34
GFDL-ESM2M 500 301 18060 2750 15.23
CESM1-BGC 500 301 18060 2497 13.83
MRI-CGCM3 500 301 18060 1612 8.93
ACCESS1-0 500 301 18060 3085 17.08
ACCESS1-3 500 301 18060 1916 10.89
GFDL-CM2.1 3500 3301 198060 21896 11.06

Table 4.1: Number of autocovariance values that exceed the 90% confidence interval
(points out) and their percentage with respect to the total number of points
(%), for NA SST time series.
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Figure 4.3: Percentages of autocovariance values that exceed the 90% confidence inter-
val, for all the NA SST time series. Red line defines the 10% significance
level.
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pass the test, even if they are very close to the 10% threshold. For the remaining

nine models (MPI-ESM-P, CCSM4, MPI-ESM-LR, CanESM2, GFDL-ESM2M,

CESM1-BGC, ACCESS1-0, ACCESS1-3 and GFDL-CM2.1) we can reject H0: the

time series are not stationary.

Next, the objective is to understand whether the non-stationarity of the NA SST

time series is present also isolating the multidecadal time scales of NA SST variabil-

ity, through a 10-year running mean. Before the division in 200-year intervals, both

the analytical time series and the original NA SST time series are 10-year low-pass

filtered, obtaining AMV time series. Since the high-frequency noise contribution to

the non-stationarity is removed, fewer models pass the test: seven instead of nine.

For 7 models out of 11 the AMV time series results to be non-stationary at 90%

level of confidence; they are MPI-ESM-P, CCSM4, MPI-ESM-LR, GFDL-ESM2M,

CESM1-BGC, ACCESS1-0 and GFDL-CM2.1 (Table 4.2 and Figure 4.4).

model length n of intervals tot points points out %
MPI-ESM-P 1147 948 56880 8218 14.45
CCSM4 1042 843 50580 5810 11.49
MPI-ESM-LR 991 792 47520 5818 12.24
CanESM2 989 788 47280 4142 8.76
NorESM1-M 492 293 17580 1614 9.18
GFDL-ESM2M 491 292 17520 3757 21.44
CESM1-BGC 491 292 17520 3017 17.22
MRI-CGCM3 491 292 17520 1443 8.24
ACCESS1-0 491 292 17520 3843 21.93
ACCESS1-3 491 292 17520 412 2.35
GFDL-CM2.1 3491 3292 197520 20319 10.29

Table 4.2: As in Table 4.1, but for AMV time series.
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Figure 4.4: As in Figure 4.3, but for AMV time series.

The other four models are the NorESM1-M and MRI-CGCM3, that do not pass the

test already in the unfiltered case, plus CanESM2 and ACCESS1-3. In particular,

NorESM1-M model shows less pronounced evidence of non-stationarity already in

Figure 3.8, revealing an almost stationary autocorrelation through time. However,

they are only marginally stationary because they are again very close to the 10%

threshold, except for ACCESS1-3 which do not show preferred time scales for long

segments of its evolution (see Figure 3.8).

The statistical test is affected by the length of model records, since short records

provide fewer intervals, and by the number of lags for the autocovariance functions.

Each model may require different numbers of lags (not necessarily 60 years) accord-

ing to each preferred AMV time scales, however a common parameter is needed in

multi-model comparison and the test should be robust for whatever number of lags

for autocovariances are used.



Chapter 5
The role of AMOC and ocean-atmosphere

mechanisms

Having underlined the non-stationarity that characterises the natural, internal,

low-frequency variability in the North Atlantic sea surface temperatures, this

chapter deals with the related long-term modulations in the oceanic and atmospheric

components of climate system.

5.1 Simulated AMOC

A widely accepted mechanism for AMV invokes coordinated changes in the Merid-

ional Overturning Circulation (MOC) strength, which in turn lead to multidecadal

changes in the meridional heat transport [Delworth et al., 1993; Timmermann

et al., 1998; Latif et al., 2004, 2006; Jungclaus et al., 2005; Knight et al., 2005;

Dong and Sutton, 2005; Delworth and Mann, 2000; Collins et al., 2006; Msadek

and Frankignoul, 2009]. MOC is quantified by the meridional overturning stream-

44
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function, ψ(y, z, t), calculated integrating the meridional velocity v(x, y, z, t) across

longitude x and depth z, at time t and at any given latitude y:

ψ(y, z, t) =
∫ 0

−z

∫ xwest(y,t)

xeast(y,t)

v(x, y, z, t)dx · dz

Units for MOC are Sverdrups (Sv), where 1 Sv is equal to a volume flow rate of

106m3s−1. The mean state of MOC in the Atlantic Ocean is the long-term mean of

the Atlantic meridional overturning streamfunction and is represented in Figure 5.1,

as simulated by different models. Positive values (negative values) denote clockwise

(anticlockwise) circulation.
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Figure 5.1: Vertical mean profile of AMOC streamfunction (Sv) in the models.

All models generally capture the basic structure of the AMOC climatology, with

a northward current in the upper ocean, a downwelling around 60◦N, and the
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southward returning flow in the lower layer (around 3000 m). Beneath this depth,

the northern extension of the Antarctic Bottom Water (AABW) cell can be seen

in almost all the models. However, the largest differences are seen in how models

reproduce this lower overturning cell: CCSM4, NorESM1-M and CESM1-BGC

models show a very weak or absent cell. These are also the models that present an

AMOC southward returning flow that penetrates to the bottom of the basin below

4000 m.

In models, an AMOC index is usually defined as the maximum Atlantic meridional

overturning streamfunction either at a specific latitude [Mahajan et al., 2011; Zhang

and Delworth, 2006] (in particular 30◦N [Ba et al., 2014; Jungclaus et al., 2005]),

or within a depth-latitude box, e.g. Msadek et al. [2010]; Escudier et al. [2012];

Wang and Zhang [2013]. Otherwise it is also defined by projecting in space the

yearly MOC onto the low-pass filtered pattern given by EOF1 of MOC anomalies

[Msadek and Frankignoul, 2009]. According to Otterå et al. [2010], these alternative

formulations yield very similar results.

Different models can have the maximum of the meridional overturning circulation

at different locations in the latitude-depth plane: Table 5.1 reports the locations of

the maxima detected in the analysed models. These values of simulated AMOC

maxima can be compared to the observed data from RAPID MOC time series

[Smeed et al., 2015], keeping in mind that they refer to different latitudes, while

RAPID array is displaced across the Atlantic at 26◦N. RAPID MOC monitoring

project provides 10-year time series of observed MOC transports at 26◦N for the

period 1-April-2004 to 22-March-2014, defined as the streamfunction at the depth

of its maximum (zmax), at each time: AMOC(t) = ψ(t, zmax) . RAPID time

series has a mean strength of 17.2 Sv with a 10-day filtered root mean square
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model name depth (m) latitude (◦N) value (Sv)
MPI-ESM-P 1020 38.5 27.0
CCSM4 1041 34.6 29.7
MPI-ESM-LR 1020 34.5 28.4
CanESM2 661 36.7 20
NorESM1-M 1100 42.0 35.1
GFDL-ESM2M 1007 45.0 31.3
MRI-CGCM3 1050 45.0 19.5
ACCESS1-0 813 42.6 22.2
ACCESS1-3 813 42.6 26.0
CESM1-BGC 1041 34.6 30.8
GFDL-CM2.1 1176 43.5 29.0

Table 5.1: Location of the maximum of Atlantic meridional circulation, for each model.

variability of 4.6 Sv [McCarthy et al., 2015]; therefore, models overestimate the

AMOC maximum.

In order to compare different models, the AMOC index is here defined as the

maximum of Atlantic meridional overturning streamfunction in the range of latitudes

between 30◦N to 50◦N, so as to include the detected maxima (Table 5.1). Therefore,

the index represents the fluctuations in the intensity of the AMOC. Long-term

mean is subtracted to obtain anomalies, then the resulting AMOC index is filtered

by a 10-year running mean and detrended as for AMV index, since the time scale

of interest is the multidecadal one.

5.2 AMV/AMOC relationship

In order to understand the mechanisms underlying the non-stationarity of the

AMV, the relationship between the AMV behaviour and the large-scale ocean

circulation (AMOC) is inspected.
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Figure 5.2 shows the AMV index plotted against the AMOC index in the eleven

preindustrial simulations.

Figure 5.2: AMV index versus AMOC index scatter plot and linear fit.

Both indices are standardized by subtracting the mean and dividing by the standard

deviation. Therefore the indices become dimensionless, with zero-mean and unit

standard deviation. In the scatter plots, AMV index is presented as the independent

x variable, so the regression analysis infers the change in the AMOC starting from

North Atlantic SST variations. The slope a of the fitted line, describing linear

regression y = ax, varies across models, ranging from 0.3 to 0.7, and is equal to

the AMV/AMOC correlation. All models show a positive correlation between

their corresponding AMOC and AMV indices. The highest correlation is shown

by the MPI-ESM-LR model, while the two ACCESS models exhibit the lowest

correlations. For all the models, the range of correlation values indicate that the

AMV explains less than a half of the AMOC variance.
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However, this analysis considers only the zero-lag relationship between AMOC and

AMV. To explore their lagged covariability, the lagged correlation between AMV

and AMOC index has been computed (Figure 5.3).
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Figure 5.3: Lagged correlation between AMV and AMOC indices: negative (positive)
years in x-axis mean the AMOC leads (lags) the AMV. Maximum lagged
correlation is highlighted in red.

Lead-lag correlation patterns vary across the models, but some commonalities can

be found. All models present the maximum of lagged correlation when AMOC leads

AMV by a few years (from 6 to 1 year before the AMV maximum), indicating that

North Atlantic SSTs increase a few years after a strengthening of the Atlantic MOC.

The phase relationship is consistent with an increase in the overturning leading to

a warming of the North Atlantic. The different lags of maximum correlation may

arise from different adjustment time scales of the AMOC to the northern Atlantic

deep convection [Wang and Zhang, 2013]. Most of the models show an asymmetric

AMV/AMOC correlation function that increases slowly for negative lags, implying

strong AMOC influence on AMV, but the subsequent decrease is steeper for positive
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lags, suggesting a weaker impact of AMV on AMOC. AMOC drives AMV more

than the opposite. In fact, on long time scales, AMV is regarded as a passive

response to the AMOC in some studies [Delworth and Mann, 2000; Knight et al.,

2005; Medhaug and Furevik, 2011]. Two models (MPI-ESM-LR and NorESM1-M)

display a self-sustained oscillatory behaviour. The oscillation is consistent with the

following mechanism, described by Zhang and Wang [2013]. When the AMOC leads

the AMV, a strengthened AMOC produces a heat transport convergence in the

North Atlantic Ocean and thus generates a warm phase of the AMV. After some

time delay, the warm phase of the AMV tends to reduce the meridional density

gradient over the North Atlantic Ocean, which weakens the AMOC strength. After

some adjustment, the negative AMOC anomaly generates an anomalous, cold phase

of AMV which will in turn feed back onto the AMOC a few years later, and so on.

This relationship is consistent with the delayed advective oscillation mechanism

reviewed by Vallis [2010]: the oscillation arises because of a delay in the response

of the AMOC and the associated transport of heat to the meridional temperature

gradient; the detailed manifestation of the oscillation seems to differ somewhat

from model to model, with varying roles for salinity playing an important role in

some simulations and less so in others. Other models primarily exhibit a positive

correlation for all time lags (ACCESS1-0, ACCESS1-3, CESM1-BGC). This means

that there is a positive feedback between the AMOC and AMV, so if there are

no other feedbacks, the AMOC and AMV will not oscillate. Finally, some models

displays less clear AMV/AMOC correlations. Since the surface warming in the

North Atlantic subpolar gyre following an increase of the AMOC is a robust feature

in a variety of coupled climate models, the predictability of the AMOC could lead

to predictability of North Atlantic surface temperatures on decadal time scales.
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However, the time scales and spatial patterns of SST predictability will be model

dependent [Roberts et al., 2013]. Also Medhaug and Furevik [2011] underline that,

although individual models show potential for decadal prediction based on the

relationship between the AMV and AMOC, the models strongly disagree both

in phasing and strength of the covariability. This makes it difficult to identify

common mechanisms and to assess the applicability for predictions.

Next we investigate low-frequency changes in the relationship between Atlantic

surface temperatures and overturning circulation, looking at how their correlation

changes as a function of time. While the previous analysis was based on the

entire time series, now the AMV/AMOC correlation is computed for a moving

200-year-long time window. At each step, this time window slides one year forward

and the correlation is computed again, until reaching the end of the time series:

as an example, the value of correlation coefficient at T=1 corresponds to the

correlation in the interval from year 1 to year 201; the value at T=2 refers to the

interval from year 2 to year 202, and so on (Figure 5.4).

Moving window AMV/AMOC cross-correlation shows highly varying patterns

among the models, with alternating periods with higher and lower correlation.

From a visual inspection, transitions into periods of strong AMV/AMOC link seem

to be more moderate than the transitions into periods of weak AMV/AMOC link,

which can be also abrupt. The detected decrease in AMV/AMOC correlation,

evident for example during the last part of the model record for GFDL-ESM2M and

MRI-CGCM3 models, also implies that even if the AMOC does generally play an

important role in the AMV variability, there are other factors that may contribute

to the AMV.
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Figure 5.4: AMV/AMOC correlation in moving 200-year time windows, for all the
models. Not significant values (95% confidence level) are indicated in red.

5.3 Ocean and atmosphere interactions

In the previous section it was shown that, at multidecadal time scales, the link

between North Atlantic SSTs and Atlantic MOC undergoes significant fluctuations

with time. In order to understand what causes this non-stationarity, next we

consider the role of the atmosphere/ocean interactions on the AMV signal.

The dominant patterns of co-variability between the ocean and the atmosphere

are studied with a Maximum Covariance Analysis (MCA) approach [von Storch

and Zwiers, 1999]. MCA performs a Singular Value Decomposition (SVD) of the

cross-covariance matrix between atmospheric and oceanic fields. SVD identifies

structures in a given variable that are best correlated with structures in another

variable. They are structures that ‘explain’ the maximum amount of covariance

between two data sets in a similar way that EOFs and PCs are the structures
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that explain the most variance in a data set. The matrices of the two fields of

interest are the starting point of the analysis: the first field is X = (~x1|...|~xt) and

the second field is Y = (~y1|...|~yt). The matrices X and Y are the [space × time]

matrices of the anomalies obtained removing the time mean and normalised by the

standard deviation in time, to allow a comparison. The cross-covariance matrix

between the two fields is computed as CXY = 1
t
XY >, since normalised anomalies

are used, the elements of CXY are correlation coefficients. SVD is applied on CXY

to produce CXY = UΣV >. Matrices A = U>X and B = V >Y of the expansion

coefficients, represent the data in the new bases formed by singular vectors. Follow-

ing the procedure summarized by von Storch and Navarra [1999], heterogeneous

(homogeneous) correlation maps are generated correlating at each grid point the

expansion coefficients time series of one field, with the time series of the other (the

same) field in that grid point. Therefore, the homogeneous correlation map is a

useful indicator of the geographic localization of the co-varying part of the field

itself, and the heterogeneous correlation map indicates how well the pattern of

anomalies in one field can be derived from the other field [Bretherton et al., 1992].

In this study, 10-year running mean filtered North Atlantic SST and global Sea Level

Pressure (SLP) are used. Global SLP is chosen as representative of atmospheric

circulation at the ocean surface and it allows us to study the teleconnection patterns

not only over the North Atlantic ocean, but also over all the other basins. Only the

first MCA mode is considered, as the fraction of cross-covariance explained by the

higher-order modes vanishes quickly (not shown). For illustrative purposes, we will

consider here the four longest CMIP5 models: MPI-ESM-P, CCSM4, MPI-ESM-LR

and CanESM2. First of all the correlation maps for the entire time series are shown,

and then we focus on periods of decrease and increase of AMV/AMOC correlation.
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Figure 5.5 shows the two heterogeneous maps (on the left) and the two homogeneous

maps (on the right), for each model. All panels refer to the entire time series.
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Figure 5.5: MCA heterogeneous and homogeneous maps between North Atlantic SST
and global SLP fields, computed for the whole time series, for MPI-ESM-P,
CCSM4, MPI-ESM-LR and CanESM2 models.

We compare the first column with the third column (global domain), and the second

column with the fourth column (North Atlantic domain), because difference in the

shapes of the patterns on the heterogeneous and homogeneous correlation maps

for the same field provides insights into the nature of the cause/effect linkages

between the fields [Wallace et al., 1992]. As expected, the shape of patterns on the
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corresponding maps are similar, but the heterogeneous correlations are weaker than

the homogeneous correlations. Similar patterns are seen in SLP heterogeneous maps

for MPI-ESM-P, CCSM4 and MPI-ESM-LR models, even though MPI-ESM-P

presents a wide area of large covariance covering the entire North Atlantic, CCSM4

positive centres of action are displaced more over land (American and European

continents), and MPI-ESM-LR shows two separated large covariance areas in the

North and South Atlantic, with very low covariances in the other oceans and in

the tropical band. Very different is the CanESM2 case, where the large covariance

between SLP and North Atlantic SST is shifted west and the teleconnection is

stronger in the tropical band instead of the high latitude band. Regarding the

NA SST heterogeneous maps, the pattern differs even more across models, being

also very fragmented.

Next, we apply the MCA analysis, focusing on specific time windows, charac-

terised by a concomitant “strong” or “weak” AMV/AMOC correlation, whereby

strong/weak are defined as follows. When AMV/AMOC correlation is lower (higher)

than the correlation averaged over the whole model record, that period is defined

weak (strong). The averaged correlation is 0.42 for MPI-ESM-P model, 0.43 for

CCSM4, 0.40 for MPI-ESM-LR and 0.34 for CanESM2, as indicated by the dashed

line on each top panel in Figure 5.6.
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For all the models, but MPI-ESM-P, periods of strong AMV/AMOC correlation

seem to have more persistent teleconnection patterns, since they resemble the

heterogeneous map related to the entire time series. On the other hand, during

periods of weak AMV/AMOC correlation, North Atlantic sea surface temperatures

have largely different atmospheric impacts, with no apparent consistency across

the models. This may be due to the fact that periods selected in this manner have

different lengths, affecting MCA analysis and making MCA patterns not consistently

comparable. In order to overcome this problem, in Figure 5.7, 5.8, 5.9 and 5.10

equal-length intervals are selected to show changes in teleconnection patterns

associated to the AMV index. For each model, the corresponding AMV time

series is displayed on the top, as a reference, and at the bottom the heterogeneous

correlation map is computed for each 400-year interval shifted by 50 years starting

from the top left corner. Looking at MPI-ESM-P case (Figure 5.7), the high positive

correlation over the North Atlantic Ocean during the period 1-400, gradually

shrinks until it almost disappears during the period 350-750; then it appears

again and reaches the shape we have seen for the entire time series during the

period 500-900. This feature means that different regimes in the AMV index time

series correspond to different atmosphere-ocean interactions. It is not clear which

kind of AMV regime (mostly warm or mostly cold, moderate or intense, nearly

sinusoidal or irregular, shorter-period or longer-period, etc.) may be associated to a

different MCA pattern. Values reported in the yellow box on the top-right of each

heterogeneous map are the correlations between AMV and AMOC for each period:

low AMV/AMOC correlations seem to be associated with heterogeneous maps

where large positive SLP/NA SST covariance is centred in the North Atlantic; while

highest AMV/AMOC correlations seem to correspond to weaker SLP/NA SST
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Figure 5.7: MCA heterogeneous maps between North Atlantic SST and SLP fields,
computed for 400-year-long intervals shifted by 50 years, for MPI-ESM-P
model. Titles of each map include the limit years of that interval in brackets,
then the percentage of explain covariance of the first MCA mode and lastly
the AMV/AMOC correlation for that interval, inside a yellow box.

covariances that are localised particularly outside the North Atlantic area. This

result fits with the expectation of a stronger involvement of ocean-atmosphere

interaction associated to a weak AMV/AMOC relationship: in those periods the
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atmospheric forcing could prevail as a driver of AMV, compared to the ocean

internal dynamics, and teleconnections with other basins could break the coupling.

In Figure 5.8, CCSM4 shows almost the same pattern from the first interval

until period 150-550, after that this pattern starts to change becoming similar to

the entire time series pattern, then it changes again spreading the SLP/NA SST

covariance signal also outside the Atlantic, reaching the last interval 650-1050,

which is characterised by the lowest AMV/AMOC correlation value.
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Figure 5.8: The same as Figure 5.7, but for CCSM4 model.
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The dipole shown by the MCA heterogeneous map for the entire MPI-ESM-LR

time series (seen in Figure 5.5) is built and then destroyed again, looking at the

time series by subsequent intervals (Figure 5.9).
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Figure 5.9: The same as Figure 5.7, but for MPI-ESM-LR model.

Also CanESM2 model in Figure 5.10 presents an evolution in teleconnection patterns

according to different AMV regimes of variability, included the tendency to have

large positive SLP/NA SST covariances over the North Atlantic region when the
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AMV/AMOC correlation is low. It is noticeable that the teleconnection between

tropical Pacific and extra-tropical North Atlantic undergoes a modulation looking

at period 350-750 versus period 1-400.

HETEROGENEOUS MAPS (NA SST on SLP)

0 100 200 300 400 500 600 700 800 900 1000 1100

−2
0
2

AM
V

normalised AMV index of CanESM2 (std=0.0619)

0.35 0.32 0.27 0.20

0.26 0.35 0.37 0.35

0.32 0.42 0.41 0.43

0.38

Figure 5.10: The same as Figure 5.7, but for CanESM2 model.
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5.4 Modes of variability

The analysis presented in the previous section revealed that ocean-atmosphere

covariability patterns are subject to a high non-stationarity, suggesting that the

overall variability results from many different processes.

Further characterization of AMV regimes is done here, including at the same time

information about: periodicity (AMV autocorrelation function), North Atlantic

SST co-varying pattern (MCA homogeneous correlation map) and North Atlantic

SST impact on global SLP (MCA heterogeneous correlation map). The approach is

again to look at individual time intervals within the AMV time series: the analysis

is done by epochs selecting 200-year time intervals (shifted by 50 years) from each

of the multi-century AMV index time series.

Different time scales are detected for different periods: in Figure 5.11, 5.12 and

5.13 intervals characterised by a shorter time scale (∼ 20 years) alternate to longer

time scale periods (∼ 60 years); analogously to Figure 3.8, but making explicit

each single interval. Note that for GFDL-CM2.1 model, intervals are shifted by

100 years instead of 50 years because of the length of the model record.

Corresponding to these preferential periodicities, different MCA homogeneous and

heterogeneous maps of the first MCA mode between North Atlantic SST and global

SLP for the same 200-year intervals are shown in Figure 5.14, 5.15, 5.16, 5.18 and

5.19, for the longest models, ordered by length.



63

−0.5
0

0.5
[1−200] [50−250] [100−300] [150−350] [200−400]

−0.5
0

0.5

lags (years)

a
u
to

c
o
rr

e
la

ti
o
n
 o

f 
A

M
V

in
d
e
x

[250−450] [300−500] [350−550] [400−600] [450−650]

−0.5
0

0.5
[500−700] [550−750] [600−800] [650−850]

0 20406080

[700−900]

0 20406080

−0.5
0

0.5
[750−950]

0 20406080

[800−1000]

0 20406080

[850−1050]

0 20406080

[900−1100]

AMV autocorrelation for MPI−ESM−P (1147years)

−0.5
0

0.5
[1−200] [50−250] [100−300] [150−350] [200−400]

−0.5
0

0.5

lags (years)

a
u
to

c
o
rr

e
la

ti
o
n
 o

f 
A

M
V

in
d
e
x

[250−450] [300−500] [350−550] [400−600] [450−650]

−0.5
0

0.5
[500−700] [550−750]

0 20406080

[600−800]

0 20406080

[650−850]

0 20406080

[700−900]

0 20406080

−0.5
0

0.5
[750−950]

0 20406080

[800−1000]

AMV autocorrelation for CCSM4 (1042years)

−0.5
0

0.5
[1−200] [50−250] [100−300] [150−350] [200−400]

−0.5
0

0.5

lags (years)

a
u
to

c
o
rr

e
la

ti
o
n
 o

f 
A

M
V

in
d
e
x

[250−450] [300−500] [350−550] [400−600] [450−650]

−0.5
0

0.5
[500−700]

0 20406080

[550−750]

0 20406080

[600−800]

0 20406080

[650−850]

0 20406080

[700−900]

0 20406080

−0.5
0

0.5
[750−950]

AMV autocorrelation for MPI−ESM−LR (991years)

Figure 5.11: AMV autocorrelation for MPI-ESM-P, CCSM4 and MPI-ESM-LR, for
200-year intervals shifted by 50 years (indicated inside the square brackets),
red values are non-significant values.
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Figure 5.12: As in Figure 5.11, but for CanESM2, NorESM1-M, GFDL-ESM2M and
MRI-CGCM3.
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Figure 5.13: As in Figure 5.11, but for ACCESS1-0, ACCESS1-3, CESM1-BGC and
GFDL-CM2.1.
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Figure 5.14: MCA homogeneous (top) and heterogeneous (bottom) correlation maps
between NA SST and global SLP, for 200-year intervals (indicated on top
in square brackets), for GFDL-CM2.1. The Squared Covariance Fraction
(SCF) is the percentage of explain covariance of the first MCA mode.
Grey shading refers to non-significant values; the bottom right white box
shows the AMV/AMOC correlation for that period.
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Figure 5.15: Continue from Figure 5.14.
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Figure 5.16: The same as Figure 5.14, but for MPI-ESM-P model.



69

[1−200] (SCF=60%)

0.26

[50−250] (SCF=49%)

0.55

[100−300] (SCF=52%)

0.58

[150−350] (SCF=54%)

0.61

[200−400] (SCF=44%)

0.57

[250−450] (SCF=52%)

0.51

[300−500] (SCF=45%)

0.55

[350−550] (SCF=59%)

0.53

[400−600] (SCF=53%)

0.62

[450−650] (SCF=56%)

0.64

[500−700] (SCF=54%)

0.64

[550−750] (SCF=40%)

0.68

[600−800] (SCF=49%)

0.62

[650−850] (SCF=44%)

0.68

[700−900] (SCF=41%)

0.57

[750−950] (SCF=49%)

0.35

[800−1000] (SCF=54%)

0.29

[1−200] (SCF=60%)

0.26

[50−250] (SCF=49%)

0.55

[100−300] (SCF=52%)

0.58

[150−350] (SCF=54%)

0.61

[200−400] (SCF=44%)

0.57

[250−450] (SCF=52%)

0.51

[300−500] (SCF=45%)

0.55

[350−550] (SCF=59%)

0.53

[400−600] (SCF=53%)

0.62

[450−650] (SCF=56%)

0.64

[500−700] (SCF=54%)

0.64

[550−750] (SCF=40%)

0.68

[600−800] (SCF=49%)

0.62

[650−850] (SCF=44%)

0.68

[700−900] (SCF=41%)

0.57

[750−950] (SCF=49%)

0.35

[800−1000] (SCF=54%)

0.29

MCA for CCSM4 (1042years)

Figure 5.17: The same as Figure 5.14, but for CCSM4 model.
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Figure 5.18: The same as Figure 5.14, but for MPI-ESM-LR model.
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Figure 5.19: The same as Figure 5.14, but for CanESM2 model.
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Almost in all the models, two modes of variability can be identified taking into

account the homogeneous map and its corresponding heterogeneous map. They

are more evident in the MPI-ESM-P model:

MODE 1: When the AMV autocorrelation undergoes a ∼ 20-year oscillatitory

behaviour, the NA SST homogeneous map displays a tripole pattern with a

region of positive correlations in the western subtropical Atlantic, surrounded

by two negative lobes in the subpolar region and in the tropics. The tripole

corresponds to a NAO-like dipole in the heterogeneous map. These pat-

terns closely resemble the first EOF of winter North Atlantic SST and SLP,

respectively.

MODE 2: A lower-frequency mode, with a typical ∼ 60-year time scale emerges

at certain stages of the model evolution. This mode features a monopole

for the SST, which resembles the spatial pattern associated with the AMV

index. The latter is characterised by the typical comma-shaped unipolar

pattern with largest values in the east and mid-latitude region. The monopole

corresponds to a weaker coupling with the atmosphere, with respect to mode

1, indicating that in this case the dynamics is especially inside the ocean.

As time progresses, the central node of the tripole shrinks until it vanishes and

the tripole pattern gradually transforms into the monopole, and viceversa. The

competition between these two modes produces hybrid states (Figure 5.16).

The characteristics of the two identified modes are summarized schematically in

Figure 5.20, taking the two most representative periods from MPI-ESM-P model

as an example to describe the modes.
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Figure 5.20: Shorter and longer AMV periodicities and their associated homogeneous
and heterogeneous correlation maps, (left) mode 1 and (right) mode 2.

Recent studies show the existence not only of the 50-70-year variability, but

also of variability in the 20-30-year band. Frankcombe et al. [2010] find these two

dominant time scales of multidecadal variability in the North Atlantic, analysing

results from observational datasets (see the two peaks in Figure 5.21) and from

a 500-year coupled GCM simulation. They argue that the 20-30-year variability

is caused by the western propagation of subsurface temperature spatial pattern,

due to internal variability of the AMOC; while the longer 50-70-year variability

is related to low-frequency atmospheric forcing and Arctic-Atlantic exchange pro-

cesses. The same westward propagation of large-scale temperature anomalies in the

northern Atlantic is found to be responsible for a mode with a 24-year period also

by Sévellec and Fedorov [2012] in an ocean GCM. Moreover, comparing CMIP3 and

CMIP5 performances, Ruiz-Barradas et al. [2013] show that Atlantic multidecadal

variability in the 10-20-year ranges is overestimated, whereas variability in the

70-80-year ranges is underestimated in the models.
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Figure 5.21: Spectrum of the Central England Temperature (CET) record [Frankcombe
et al., 2010].

In our multi-model set, MPI-ESM-P presents two distinct peaks in its AMV spec-

trum, corresponding to the 20-40-year and 40-80-year bands. Therefore, in the next

chapter, MPI-ESM-P model is chosen as case of study to deepen the dynamical

explanation of AMV behaviour.



Chapter 6
Case study: MPI-ESM-P

Two preferential time scales (∼20 and ∼60 years) of AMV behaviour emerge across

most of the models, as shown in the previous chapter. We have seen how these

preferential time scales are linked to different MCA patterns. This is particularly

evident in the MPI-ESM-P model, which presents two peaks in its NA SST spectrum

at these preferential time scales, that are more clear and distinct than the other

models. MPI-ESM-P is chosen here as case study. The aim is to understand what is

the contribution of these two time scales to the non-stationarity of the AMV, if they

really represent two distinct modes of variability and which physical mechanisms

drive them.

MPI-ESM-P model [Jungclaus et al., 2012] is the longest among the ten CMIP5

models considered for this study, with 1156 years of length. It refers to the paleo

(P) configuration of the Max-Planck-Institute Earth System Model (MPI-ESM),

dedicated to paleo experiments and a subset of long-term core experiments in

CMIP5. ECHAM6 is the atmospheric general circulation model, which is directly

coupled to the JSBACH land model that describes physical and biogeochemical

75
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aspects of soil and vegetation. MPIOM is the ocean general circulation model,

which includes the HAMOCC model for the marine biogeochemistry. OASIS is the

coupler program, which aggregates, interpolates, and exchanges fluxes and state

variables once a day between ECHAM6+JSBACH and MPIOM+HAMOCC. The

coupler exchanges fluxes for water, energy, momentum, and CO2, see Figure 6.1.

Figure 6.1: Schematic view of MPI-ESM [Giorgetta et al., 2013].

The P configuration is identical to the LR configuration with the exception of the

orbital parameters which are prescribed, rather than calculated from the internal

calendar, and of the use of a prescribed sequence of global maps for vegetation and

land-use instead of using the dynamic vegetation and land use transitions. The

LR and P configurations use for the atmosphere a T63/1.9◦ horizontal resolution

and 47 hybrid sigma-pressure levels, and for the ocean a bipolar grid with 1.5◦

resolution (near the equator) and 40 z-levels. The poles of the ocean model are

moved to Greenland and to the coast of the Weddell Sea by a conformal mapping

of the geographical grid [Giorgetta et al., 2013].
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6.1 What are the sources of AMV non-stationarity?

The NA SST index spectrum of MPI-ESM-P simulation shows two significant peaks

at multidecadal time scale, above the red noise background, around 27- and 55-year

time scales (Figure 6.2).
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Figure 6.2: Spectrum of AMV index for MPI-ESM-P model, computed via multi-taper
method. Dark grey and light grey shading indicated the SHORT and the
LONG time band, respectively.

In order to isolate these two time scales, a 4th order Butterworth passband filter is

used, selecting the following bands that include the above-mentioned peaks: we

call SHORT the time band that refers to the 20-40-year range (dark grey shading

in Figure 6.2), LONG the time band that refers to the 40-80-year range (light grey

shading in Figure 6.2) and BOTH the time band that includes both the short and

the long time bands (20-80-year range).

We use the general term NA SST index to indicate the raw unfiltered time series

(only detrended), which is studied in this chapter for the ‘short’, ‘long’ and ‘both’
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time scales using the appropriate passband filters. Instead, AMV index only refers

to the NA SST low-pass filtered by a 10-year running mean.

The aim is to understand which time scale contributes most to the non-stationarity

of the entire AMV time series. Following the same procedure described in subsection

4.1.2, but now for each passband filtered time series of NA SST, final results of the

count for 20 intervals are shown in Table 6.1: the long time scale contributes most

to the non-stationarity of the entire time series.

time scale band (years) points out (%)
SHORT [20-40] 8.83
LONG [40-80] 15.42
BOTH [20-80] 12.89

Table 6.1: Number of autocovariance values that exceed the 90% confidence interval in
percentage with respect to the total number of points.

In order to see that there are intervals where the autocovariance function exceeds

the confidence interval, making the entire AMV time series not-stationary, plots in

Figure 6.3 are produced for the short and long time scales. Similarly to the 10-year

low-pass filtered case shown in Figure 4.2, during some periods the autocovariance

function (thick black line) largely departs from the average (red line).

Figure 6.4 shows what happens for the [20-80]years time scale that includes both

the short and in the long time scale case. It is noticeable that the largest positive

departures from the average occur when the autocovariance is above the average

both in the short and in the long time scale case (e.g. during the first 200 years at

lag 40 years). Viceversa, the largest negative departures from the average occurs

when the autocovariance is below the average both in the short and in the long

time scale case (e.g. during the interval [400-600] years at lag 40 years).
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Figure 6.3: Autocovariances for the [20-40]years (top) and [40-80]years (bottom) pass-
band filtered time series split in 200-year-long intervals (black thick lines).
The gray shading indicates the confidence interval at 90% and the red curve
represents the average of the autocovariances of the the original intervals.
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Figure 6.4: As in Figure 6.3, but for the [20-80]years passband filtered time series.

In other words, it seems that there are constructive and destructive interferences

between the two time scales, from a statistical point of view.

Next, we explore the physical mechanisms that drives these two different time

scales and that allows such interference.
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6.2 Physical characterization of the two

preferential multidecadal modes

This section is aimed at the description of the two preferential multidecadal time

scales found in AMV spectrum (Figure 6.2): [20-40] and [40-80]-year temporal bands.

Do these two time scales represent two different climate modes of variability? Here

we inspect whether they represent different mechanisms, what are the processes

driving the non-stationarity exhibited by the long-term AMV evolution and which of

these processes is relevant to the short time scale and which to the long scale. North

Atlantic sea surface temperature variability is linked to the overlying atmospheric

variability and to the internal oceanic variability, therefore in Figure 6.5 the spectra

of NAO and AMOC indices are shown. The temporal bands associated with the

two main peaks in AMV spectrum are also shown. Both spectra present wide

bands with enhanced variability that are grossly consistent with those identified in

the AMV spectrum.

In order to characterise the two time scales, we analyse for both how the development

of NA SST maximum is related to changes in the atmospheric surface circulation

on one hand and in the internal ocean circulation on the other hand, taking winter

SLP and AMOC as representatives of the two circulations, respectively. Lagged

correlation analysis of winter SLP and AMOC fields onto the NA SST index is the

approach followed for searching physical mechanisms responsible for the NA SST

variability in the short and the long time bands. Figure 6.6 shows point-wise

correlations between NA SST index and the following fields: SST (left column),

winter SLP (middle column) and AMOC (right column), for negative lags in order

to focus on the phase preceding the NA SST maximum, and for both the short and
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Figure 6.5: (top) Multi-taper spectrum of NAO index, with its corresponding white
noise background spectrum in green. (bottom) Multi-taper spectrum of
AMOC index, with its corresponding red noise background spectrum in
red. The two investigated time scales are highlighted in grey colours.



83

long time scales. Significant values (at the 95% level) are enclosed within a black

contour. Since all variables here are passband filtered according to the two time

bands, the 95% confidence level ci (based on t-test) for correlations between two

times series X and Y with length N and with different autocorrelation sequences

ρXτ and ρYτ , is found following:

ci = 1.96√
df − 2 where df = N

N−1∑
τ=−(N−1)

(1− |τ |
N

)ρXτ ρYτ

where df is the effective number of degrees of freedom, according to Bretherton

et al.’s (1999) formula that takes into account the whole autocorrelation sequences

(not only lag-one) in order to estimate the effective sample size for temporally

correlated time series.

For both the two time scales, from the top to the bottom we can see the pattern

evolution in time. 16 years (for the short time scale) and 24 years (for the long time

scale) before the maximum of North Atlantic SST index, the correlation patterns

for all the variables present a correlation of the opposite sign, this indicates an

oscillatory behaviour. Atmosphere displays a NAO-like pattern when the oscillatory

SST pattern turns from negative to positive basin-wide correlation area and when

the area of positive AMOC/NA SST correlation originates at high North Atlantic

latitudes (lag -8 for short and lag -12 for long time scale). For the long time scale,

the polar negative correlation area of the NAO-like pattern intensifies strongly

getting close to the zero-lag; while for the short time scale, the pattern becomes

more vague. For both time scales SST variability is evidently linked to the AMOC

variability. The area of positive AMOC/NA SST correlation at high latitudes refers

to a clockwise overturning cell that enhances the background meridional circulation.
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Figure 6.6: Lagged correlation maps for both time scales: Sea Surface Temperature
(SST), extended winter Sea Level Pressure (DJFM SLP) and Atlantic
Meridional Overturning Circulation (AMOC) fields correlated with the
North Atlantic SST index. Significant values (at the 95% level) are enclosed
within a black contour and AMOC mean profile is overlapped as green
contours on the right column correlation patterns.
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Then, the enhanced overturning area propagates southward up to extend beyond

the equator at zero lag, when the North Atlantic SST reaches the maximum value.

Short and long time scales exhibit a very similar relationship SST/AMOC, different

timing considered. It seems that AMOC tends to respond similarly to any forcing

pattern.

However, the strongest AMV/AMOC relationship is found for the long time scales,

reaching a 0.8 correlation as shown by Figure 6.7. Moreover, AMOC leads by 2

years and by 1 year the NA SST maximum for the short and the long time scales,

respectively.
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Figure 6.7: NA SST/AMOC lagged correlations for the short time scale [20-40] years,
for the long time scale [40-80] years and for both time scales [20-80] years.
AMOC lags (leads) for negative (positive) lags. The year in red is the year
of maximum correlation.

In order to highlight the dynamical mechanism involved in the development of

NA SST maximum, lead-lag correlations of three indices, namely AMOC, Mixed

Layer Depth in the Labrador Sea (LabMLD) and NAO, with NA SST index is

shown in Figure 6.8.
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The same phase relationship holds for both the short and the long time scales: the

NAO is in phase with the LabMLD due to the effect of the westerlies on the heat

exchange at the air-sea interface, that in turn affects deep water formation in the

Labrador Sea and the AMOC strength.
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Figure 6.8: Lead-lag correlations: Atlantic Meridional Overturning Circulation
(AMOC), Labrador Sea Mixed Layer Depth (LabMLD), North Atlantic
Oscillation (NAO) indices are correlated with and North Atlantic SST
index. Significance at the 95% confidence level is given by filled circles.

During a positive phase of the cycle, the NAO maximum (green curve at lag -5)
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involves stronger westerlies and so bigger heat loss from the ocean surface; therefore

LabMLD peaks at the same lag leading to the AMOC maximum by 3 (4) years

for the short (long) time scale. Warm water is then transported into the North

Atlantic basin, determining the warming of the entire basin and the maximum of

NA SST index (zero-lag).

A focus on the convection sites is needed in order to understand the differences

between the two time scales. Deep water formation processes, that convert surface

water masses to deep water by rising their density through cooling and/or increasing

salinity, set the interhemispheric shape and the strength of the overturning cell

[Kuhlbrodt et al., 2007]. For both the short and the long time scale, regions of deep

water formation are identified in Labrador Sea and Greenland Sea. This is indicated

by regressing Mixed Layer Depth (MLD) onto the AMOC index (Figure 6.9). The

main deep convection site appears to be Labrador Sea, for this model. In particular,

Figure 6.9 shows a stronger convection in the Labrador Sea convection site for the

longer mode with respect to the shorter mode.
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Figure 6.9: Regression maps between Mixed Layer Depth (MLD) and AMOC index at
zero-lag for both time scales.
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The Labrador Sea is an important contributor to the Meridional Overturning

Circulation and a key location for the global heat and freshwater balance [Rykova

et al., 2009]. This is why the averages over Labrador Sea (45◦-65◦N and 60◦-40◦W)

are used in Figure 6.10, where the differences between the two modes emerge.

In Figure 6.10 we see anomalies averaged over the Labrador Sea region of deep

convection correlated with NA SST index, for the two time scales. The aim of

using cross-correlation plots between indices is to find what sets the time scale of

NA SST oscillation for the fast and for the slow mode.

Two basic important oceanic feedbacks control sea water density variability: salinity

and temperature feedbacks. Salinity is involved in a positive feedback: higher salin-

ity in the deep water formation area enhances the circulation, and the circulation

in turn transports higher salinity waters into the deep water formation regions. On

the other hand, temperature is involved in a negative feedback as it stabilizes the

system by bringing it back to its original state. Higher than normal temperatures

over the Labrador Sea inhibit the deep water formation, weakening the circulation:

a weakening of the AMOC leads to a reduction in northward ocean heat transport,

causing a cooling of the high latitude North Atlantic and associated increase in

density, which favours a recovery of the circulation through increased deep water

formation [Boulton et al., 2014].

In Figure 6.10 (top panel) it is shown that the cooling of SST, the minimum of

blue curve at lag -13, leads to the increase in density and Mixed Layer Depth.

Therefore, AMOC becomes stronger and warm water is transported to the Labrador

Sea region, which in turn leads to a decrease in density. Temperature feedback is

negative, so this allows the oscillatory behaviour for the short time scale. However,

for the long time scale (bottom panel) temperature is in phase with both density
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and Mixed Layer Depth. Since warm waters prevent the deep water formation, for

the long time scale the salinity (green curve), is more effective than temperature.

Salinity feedback is a positive feedback so it tends to maintain the original condition.

This could explain why the time scale here is longer, jointly with the fact that a

temperature anomaly is rapidly damped by heat fluxes, while there is no such a

feedback acting on SSS anomalies.

−25 −20 −15 −10 −5 0 5 10 15 20 25

−0.6

−0.3

0

0.3

0.6

lags (years)

c
ro

s
s
 c

o
rr

e
la

ti
o
n
 w

it
h
 N

A
 S

S
T

 i
n
d
e
x

Labrador Sea anomalies and NA SST index, [20−40]years

 

 

MLD
SST
SSS
subD

−40 −35 −30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30 35 40

−0.6

−0.3

0

0.3

0.6

lags (years)

c
ro

s
s
 c

o
rr

e
la

ti
o
n
 w

it
h
 N

A
 S

S
T

 i
n
d
e
x

Labrador Sea anomalies and NA SST index, [40−80]years

 

 

MLD
SST
SSS
subD

Figure 6.10: Lead-lag correlations: Mixed Layer Depth (MLD), Sea Surface Temper-
ature and Salinity (SST/SSS), subsurface Density (subD) indices, all
averaged over Labrador Sea, are correlated with and North Atlantic SST
index. Significance at the 95% confidence level is given by filled circles.
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Concluding, in MPI-ESM-P model the two preferred time scales correspond to dif-

ferent mechanisms: although salinity plays a role for both time scales, temperature

feedback prevails at short time scale and salinity feedback prevails at long time

scale.

In order to further highlight this point, in Figure 6.11 it is shown a lead-lag corre-

lation pattern as a function of depth.
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Figure 6.11: Lead-lag correlations of temperature (filled contours), salinity (black
contours) and density (magenta contours) in the Labrador Sea with NA
SST index, as a function of depth. Positive (negative) correlations are
red (blue) coloured areas for temperature and are solid (dashed) lines for
salinity and density.
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The fast mode (top plot) shows a temperature correlation pattern that prop-

agates with depth: the propagation below 150 m occurs once the sign of the

density/NA SST correlation changes. On the other hand, it is interesting to notice

the temperature correlation dipole pattern between surface and subsurface in the

lagged correlation map for the slow mode (bottom plot). Since density and salinity

do not show the same reversal with depth, this seems to confirm that for the slow

mode temperature anomalies are not the main drivers for dense water formation.



Chapter 7
Conclusions

Aim of this study is to investigate the non-stationarity associated to internal and

low-frequency variability over the North Atlantic region, in order to understand

how it modulates long-term trends. The Atlantic Multidecadal Variability (AMV)

is examined in a set of multi-century preindustrial climate simulations performed

with different coupled general circulation models. An assessment of its spectral

characteristics and its non-stationary behaviour is conducted.

Different regimes of variability (mostly warm or mostly cold, moderate or intense,

nearly sinusoidal or irregular, shorter-period or longer-period, etc.) can be identified

in the AMV time series. A time-evolving approach shows that the dominant

variability time scales of AMV change with the selected time interval, revealing a

non-stationary behaviour. In order to rigorously check this behaviour, a statistical

test for AMV stationarity is developed starting from the null hypothesis of a

statistically-stationary AMV, whose modulation is entirely random. Most of

the models display epochs characterised by autocovariance which significantly

deviates from the autocovariance of the whole time series, therefore confirming the

92
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non-stationarity exhibited by the corresponding AMV time series. More precisely,

9 out 11 models present non-stationary unfiltered NA SST time series, while 7

out 11 models present non-stationary AMV (10-year low-pass filtered NA SST)

time series. However, the models that do not pass the test are only marginally

stationary because present percentages of values that exceed the confidence interval

that are very close to the 10% significance level. The non-stationary behaviour

identified in most models suggests that the character of the observed AMV may

undergo significant changes in the future.

The relative roles played by ocean internal dynamics, through the AMOC, and

changes in the ocean-atmosphere coupled interactions are inspected. For all the

models, an increase in the overturning drives a warming of the North Atlantic,

which reaches its maximum after 1 to 6 years. Despite the strong disagreement

among the models, both in phasing and strength of the co-variability, the impact of

AMV on AMOC appears to be weaker than the reverse. However, moving window

AMV/AMOC cross-correlation shows periods with higher correlation that alternate

with periods of lower correlation, implying that even if the AMOC does generally

play an important role in the AMV variability, there are other factors that may

contribute to the AMV. When the AMV/AMOC correlation is low, models show

the tendency to have large positive SLP/North Atlantic SST covariances over the

North Atlantic region, suggesting that in those periods the atmospheric forcing

could prevail as a driver of AMV, compared to the ocean internal dynamics.

A Maximum Covariance Analysis (MCA) is applied to North Atlantic SST and

global SLP, as representative of atmospheric circulation at the ocean surface, in

order to understand the impact of AMV changing regimes on the ocean-atmosphere

interactions. Teleconnection patterns show a largely-varying evolution in time, but
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large uncertainties in the models do not allow to associate specific MCA patterns

to a specific AMV regime. Nevertheless, among the models, a lower-frequency

and a higher-frequency mode of variability can be identified taking into account

the MCA homogeneous map and its corresponding heterogeneous map. When the

AMV autocorrelation undergoes a ∼20-year oscillatory behaviour, the NA SST

homogeneous map displays a tripole pattern which corresponds to a NAO-like dipole

in the SLP/NA SST heterogeneous map. These patterns closely resemble the first

EOF of winter North Atlantic SST and SLP, respectively. A lower-frequency mode,

with a typical ∼60-year time scale emerges at certain stages of the model evolution.

This mode features a monopole for the SST, which resembles the spatial pattern

associated with the AMV index. The monopole corresponds to a weaker coupling

with the atmosphere, with respect to the higher-frequency mode, suggesting that

in this case drivers resides in the ocean. As time progresses, the tripole pattern

can decay, evolving into a monopolar structure, and viceversa.

The link between the two preferential AMV time scales (∼20 and ∼60 years)

and the different MCA patterns is particularly evident in the MPI-ESM-P model,

which is therefore chosen as a case study to deepen the dynamical explanation of

AMV behaviour: its AMV spectrum presents two distinct peaks, corresponding

to a short time scale (20-40-year band) and a long time scale (40-80-year band).

Results show that the non-stationarity of the entire time series is mostly due to

the long time scale, according to the statistical test for AMV stationarity. For

both time scales, positive NAO phase corresponds to the deepening of the ocean

mixed layer in the Labrador Sea convection site, due to stronger westerlies and

therefore larger heat losses in the ocean; this increases deep water formation and,

consequently, the AMOC strength. More warm water is transported into the North
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Atlantic basin and a few years after the AMOC maximum, the warming of the

entire North Atlantic basin is reached. The difference between the two time scales

in MPI-ESM-P model is due to different underlying mechanisms: although salinity

plays a role for both time scales, temperature feedback prevails at short time scale

and salinity feedback prevails at long time scale. Salinity feedback is a positive

feedback so it tends to maintain the original condition. This could explain why

the time scale here is longer, jointly with the fact that temperature anomaly is

rapidly damped by heat fluxes with time than salinity. The driving role of salinity

on circulation is found to depend on the time scale also by Deshayes et al. [2014]:

even opposite mechanisms exist but dominate at different time scale, in fact they

show that when the circulation is more intense, the subpolar gyre is fresher at

interannual frequencies and saltier at longer periods.

Our study points out the large inconsistencies across models, that emerge also

among the five CMIP5 models analysed by Deshayes et al. [2014], in particular

in the representation of freshwater budget and circulation in the North Atlantic.

Similar disagreements are found also by Ba et al. [2014] and Menary et al. [2015]

who show that biases in simulated mean climate state (which differ from the

observed and each other) influence the characteristics of decadal variability.

Therefore, explaining decadal variability is challenging, not only because of the lack

of data and the multitude of possible processes that may be involved and that may

not be limited to North Atlantic itself [Frankcombe et al., 2010], but also because

of model uncertainty.

The importance of reducing model inconsistency becomes even more stressed in

light of the non-stationary nature of climate variability that has emerged with this

work, since in future we may expect behaviours different from the observed.
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