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Abstract

Part I
Among the unsolvable terms of the lambda calculus, the mute ones are those having
the highest degree of undefinedness. For each natural number n ≥ 1, we introduce
two infinite and recursive sets Mn and Gn. Their elements are called restricted
regular mute and regular mute terms respectively. They are defined inductively and
we prove that they are mute.

Furthermore, we show that setsMn are graph-easy for any n: for any closed term
t there exists a graph model equating all the terms of Mn to t. We also provide a
brief survey of the notion of undefinedness in λ-calculus.

Part II
We introduce factor algebras of first-order type and show that they can be used to
provide an algebraic counterpart of ordinary first-order structures. We show that
this translation can be extended to open formulas and equations between terms. By
considering that propositional logic is a first-order logic on a particular type τCL,
a new algebraic calculus for propositional logic is developed. Rules for the calculus
are the axioms of the variety generated by the factor algebras of type τCL. We also
provide a confluent and terminating term rewriting system for such calculus.

Furthermore, we study the basic algebraic properties of factor algebras of first-
order type through the notion of splitting pair.





Resumé

Partie I
Parmi les termes non résolubles du lambda-calcul, les termes muets sont ceux dont
le “degré d’indéfini” est maximum. Pour chaque nombre naturel n ≥ 1, nous intro-
duisons deux ensembles infinis et récursifs de lambda-termes, Mn et Gn. Nous ap-
pelons leurs éléments “termes muets réguliers restreints” et “termes muets réguliers”,
respectivement, et nous prouvons qu’il s’agit bien de termes muets.

Nous prouvons ensuite que les ensembles Mn sont “graph easy”: pour chaque
terme clos t du lambda-calcul, il existe un modéle de graphe qui égalise t et tout les
éléments de Mn.

Partie II
Nous introduisons les “factor algebras of first-order type”, qui peuvent être utilisés
pour algébriser la notion de structure du premier ordre et de formule ouverte. Nous
analysons les propriétés algébriques de base des “factor algebras of first order type”
en utilisant la notion de “splitting pair”.

En nous appuyant sur le fait que la logique propositionnelle est une logique du
premier ordre sur un type particulier τCL, nous développons un nouveau calcul al-
gébrique pour la logique propositionnelle: ses régles sont les axiomes de la variété des
“factor algebras” du type τCL. Nous présentons un sistéme de réécriture confluent
et terminant pour ce calcul.





Sommario

Parte I
Nel lambda calcolo i termini unsolvable sono quelli che mostrano il più alto liv-
ello di indefinitezza. Per ogni naturale n ≥ 1, introduciamo due insiemi infiniti
e ricorsivi, Mn e Gn. I loro elementi sono definiti induttivamente e sono chiamati
rispettivamente restricted regular mute terms e regular mute terms: di questi termini
mostriamo che appartengono alla classe dei termini muti.

Proviamo inoltre che gli insiemi Mn sono graph easy: per ogni termine chiuso t
dimostriamo che esiste un graph model in cui l’interpretazione di ogni elemento di
Mn è uguale all’interpretazione di t. Forniamo inoltre una breve dissertazione sulla
nozione di indefinitezza nel lambda calcolo.

Parte II
Nella seconda parte introduciamo le factor algebras of first-order type e mostriamo
come esse possano essere usate per fornire una controparte algebrica per le strutture
del primo ordine. Mostriamo inoltre che questa traduzione può essere estesa alle
formule aperte e alle equazioni fra termini.

Considerando che la logica proposizionale è una logica del primo ordine su un
particolare tipo τCL, sviluppiamo un nuovo calcolo algebrico per la logica propo-
sizionale, le cui regole sono date dagli assiomi che generano la varietà delle factor
algebra di tipo τCL. Di questo calcolo forniamo inoltre un sistema di riscrittura che
si prova essere confluente e terminante.

Studiamo inoltre le proprietà algebriche di base delle factor algebras of first-order
type tramite la nozione di unsplitting pair.
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Preface

This thesis consists of two parts. The first one deals with the Lambda Calculus,
while the second one is about Universal Algebra and Algebraic Logic. The parts are
independent, so each has its own introduction and preliminaries.

The first part is based on a paper accepted for publication under minor revision in
the journal Theoretical Computer Science ([21]). Its results were proved in joint work
with my supervisors Antonino Salibra and Antonio Bucciarelli and with Alberto
Carraro. Here are presented some extensions of the original results.

In second part we present some unpublished results on universal algebra and
algebraic logic. Its contents are fruits of a joint work with Antonino Salibra. The
proof of confluence and termination of the rewriting system are mainly obtained by
Giulio Manzonetto.
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1
Introduction

The problem of characterizing λ-terms which represent an undefined computational
process is an important issue, that have been analyzed since the beginning of λ-
calculus.

In order to show that λ-calculus is Turing-complete, in fact, it is necessary to
introduce a sensible notion of undefined λ-term. Kleene ([46]) showed in 1936 that
the Herbrand-Gödel’s general recursive functions are λ-representable, but somehow
he eluded the general problem. He considered only total recursive functions, so,
for example, it is not clear what is the meaning of the application of Kleene’s λ-
term implementing the µ operator to a λ-term defining a unary function that never
returns 0.

In early ’40s, Church ([27]) extended Kleene’s result. He showed that every
recursive function f can be λ-represented by considering terms having no normal
form as the undefined values of f . This means that it is possible to find a λ-term
t in such a way that, if f(n) is not defined, then t⌈n⌉ does not have a normal form
(⌈n⌉ denotes the Church numeral for n).

It follows that the set of “undefined” λ-terms must be considered as a subset of
the non-normalizing ones. The identification “undefined=without normal form” can
be accepted for λI-calculus, but strong syntactical and semantical considerations
([6] pp- 38-43) prevent us from accepting it in the λK-calculus.

A better characterization is provided by unsolvable λ-terms. Unsolvable terms
are defined operationally, as the terms that never exhibit a specific stable form
along reductions, i.e., they are never in head normal form. Unsolvables show strong
properties of undefinedness ([6], pp. 42-43). Furthermore, some important non-
normalizing terms like Turing fixed-point operator are not considered as meaningless
anymore.

Given a partial function f : ωp → ω and a set of closed terms A ⊆ Λ0, we say
that f is λ-representable with A as set of undefined elements if there exists a λ-term
F such that, for any p-uple of natural numbers n1, . . . , np,

F ⌈n1⌉ . . . ⌈np⌉ =
⌈f(n1, . . . , np)⌉ if (n1, . . . , np) belongs to Dom(f);

a term belonging to A otherwise.
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The following theorem of Statman [62] (Theorem 3.3.6) provides a sufficient condi-
tion for a set of terms to characterize the undefined values of a partial function.

Every partial function is λ-representable with respect to any nonempty
β-closed set of closed λ-terms that is the complement of a recursively
enumerable set.

In particular, the sets of unsolvables ([5]), easy ([68]) and zero terms ([61]) suitably
represent undefinedness. A set M of λ-terms is an easy set if for any closed term t,
the λ-theory {t = s : s ∈ M} is consistent. A term t is easy if {t} is an easy set.
Zero terms are unsolvables that cannot be reduced to a term of the form λx.t.

Easiness is an important notion that provides powerful tools for studying the
models of the λ-calculus. Jacopini [39] syntactically proved that the paradigmatic
unsolvable term Ω ≡ (λx.xx)(λx.xx) is easy. Baeten and Boerboom [4] gave the
first semantical proof of this result by showing that for any closed term t one can
build a graph model satisfying the equation Ω = t. This semantical result extends
to other classes of models and to some other terms which have a behavior similar to
Ω (cf. [11, 12] for a survey of such results).

Terms Ω and ΩI are easy terms, but they cannot be consistently equated to K.
This implies that {Ω,ΩI} is not an easy set, and a fortiori, that the set of easy
terms is not an easy set.

Mute λ-terms have been introduced by Berarducci [8]. Mute terms are defined
operationally, as 0-terms which are not β-convertible to a 0-term applied to some-
thing else. Berarducci proved that the set of mute terms is an easy set: this implies
that somehow they are “more undefined” than easy terms. He also built a non-
sensible model of λ-calculus in which all mute terms are identified.

Given a class of models C, it is possible to analyze easiness of terms and sets
with respect to C. More formally: given a class C of models of λ-calculus, and an
easy set S, we say that S is C-easy if, for every closed term t, there exists a model
in C which equates all the terms in S to t.
C-easiness gives insights on the expressive power of the class C. For instance, it

had been conjectured ([3]) that any easy term t was filter-easy, i.e., that t is easy
w.r.t. the class of filter models. Carraro and Salibra [25] showed that this is not the
case.

Graph models are arguably the simplest models of the λ-calculus, since they are
described by a denumerable set and a injective function. The most flexible method
for building graph models is forcing. It was introduced by Baeten and Boerboom
([4]) and it consists in completing a partial model into a total one. The forcing
method depends not only on the initial partial model but also on the consistency
problem one is interested in. The method was afterwards generalized to other classes
of webbed models by Jiang [41] and Kerth [45]. It was also generalized to families
of terms similar to Ω by Zylberajch [69] and Berline–Salibra [13].

The first negative semantical result was obtained by Kerth [44]: he showed that
no graph model satisfies the identity Ω3I = I. This result shows a limitation of
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graph models, since the easiness of Ω3I was proven syntactically in [40] (see also [9])
and semantically in [1]; in this last article it is shown that for each closed t, there
exists a filter model satisfying Ω3I = t.

In this thesis we give a contribution to the the characterization of undefinedness
in λ-calculus and to graph-easiness.

We define two sequencesMn and Gn, n ∈ ω, of infinite and recursive sets of mute
terms, the restricted regular mute and regular mute terms respectively. Any term in
Mn (resp. Gn) has the form s0s1 . . . sn, for some n, where each si is an inductively
built term called restricted hereditarily n-ary term (hereditarily n-ary term). Any
n-ary restricted regular mute term s ≡ s0s1 . . . sn has the property that, after n steps
of head reduction, it reduces to a term of the shape sit1 . . . tn, where 1 ≤ i ≤ n and
tj are restricted hereditarily n-ary term. For regular mute terms a similar statement
holds: any n-ary regular mute term t ≡ s0s1 . . . sn has the property that, after n
steps of head reduction, it reduces to a term of the shape t0t1 . . . tn, where all tj are
hereditarily n-ary term. This easily implies that restricted and regular mute terms
are mute.

Furthermore, we show that sets Mn are graph-easy for any n. The starting
point of the proof is a semantical property of graph models that only restricted
regular mute have, thanks to their particular syntactical form. Then we apply a
generalization of the forcing technique used in [13] to get, for any closed t, a graph
model equating all elements of Mn to t.



6 1. Introduction



2
Preliminaries

In this chapter we mainly follow [6].

2.1 The Lambda Calculus
The Lambda-Calculus, also denoted by λ-calculus, is a formal system consisting of
a set of words called λ-terms over an alphabet and of a system of rewriting and
equating rules.

Definition 2.1.1. The set of λ-terms, denoted by Λ, is inductively built up from a
denumerable set of variables Var according to the following rules:

(i) x ∈ Var ⇒ x ∈ Λ
(ii) t, s ∈ Λ ⇒ (ts) ∈ Λ
(iii) t ∈ Λ, x ∈ Var ⇒ λx.t ∈ Λ

Any term (ts) obtained in rule (ii) is called application of the term t to s. Any
term of the form λx.t is called abstraction: in it is is said that the variable x is under
the scope of λx.

Any occurrence of the variable x is free if it is not in the scope of λx, otherwise it
is bound. The set of free variables of a term t is denoted by FV (t). A term t is closed
if FV (t) = ∅. The set of closed λ-terms is denoted by Λ0. Letters t, s, p . . . usually
range over elements of Λ while letters x, y, z . . . usually range over the variables in
Var. The symbol “≡” represents syntactical equality between λ-terms.

We follows Barendregt variable convention: in a set of terms T , then all bound
variables are chosen to be different from the free variables. Therefore terms which
differ only on the names of bound variables are called α-equivalent and are identified
in the λ-calculus.

Important terms that will be used in the following are the identity I ≡ λx.x, the
projector on the first coordinate K ≡ λxy.x, S ≡ λxyz.xz(yz), the Curry fixed point
combinator Y ≡ λf.(λx.f(xx))(λx.f(xx)), ω ≡ λx.xx and Ω ≡ ωω, ω3 ≡ λx.xxx
and Ω3 ≡ ω3ω3.

The basic equivalence relation on λ-terms is convertibility. In order to introduce
it we need a substitution operator.
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Definition 2.1.2. Convertibility is defined by the following axioms and rules:
(i) t = t
(ii) t = s ⇒ s = t
(iii) t = s, s = p ⇒ t = p
(iv) t = s ⇒ tp = sp
(v) t = s ⇒ pt = ps
(vi) t = s ⇒ λx.t = λx.s (rule ξ)
(vii) (λx.t)s = t[s/x] (β-conversion)

β-conversion is the axiom that characterizes the λ-calculus. It states that a term
of the form (λx.t)s, which is called redex, is equal to the term t[s/x]. The notation
t[s/x] represents the term obtained by replacing all free occurrences of x in t with
s. Thanks to the variable convention this operation is well-defined.

The (β)-reduction is the result of the applications of the rule β from left to right
only. It is denoted by →β. The reflexive, contextual and transitive closure of β-
reduction is denoted by ↠β. Two terms t, s that are equivalent according to ↠β

(notation: t =β s or simply t = s) are called β-equivalent or β-convertible.
Definition 2.1.3. The Lambda calculus is the formal system satisfying axioms (i)-
(vii).

Some syntactically different λ-terms may define the same function. Therefore
the following axiom can be introduced.

(viii) λx.tx = t if x /∈ FV (t) (η-conversion)
If a formal system satisfies also (viii) it is called extensional λ-calculus and

denoted by λβη-calculus. The reflexive, contextual and transitive closure of η-
conversion is denoted by ↠η. Two terms equal according to ↠β and ↠η are called
βη-convertible.

A context is a term where some variables are considered as holes denoted by [ ].
More formally:

(i) any variable x is a context.
(ii) [ ] is a context.
(iii) If C1[ ] and C2[ ] are contexts, then C1[ ]C2[ ] and λx.C1[ ] are contexts.
(iv) If C[ ] is a context and t a term, then C[t] denotes the term obtained

by simultaneously replacing the “holes” with t. Variables are not renamed in this
process.

It is possible to give a representation of natural numbers using λ-terms. There
are many of such representations: the following one is the most commonly used.
Definition 2.1.4. Church’s numerals. Let f, x be variables. Given n ∈ ω, the
Church numeral of n is denoted by ⌈n⌉ and it is defined as follows:

λfλx. f(f(. . . (f  
n times

x)

So we have, for example, ⌈0⌉ ≡ λfλx.x and ⌈2⌉ ≡ λfλx.f(fx).



2.2. Solvable and unsolvable terms 9

2.1.1 λI-calculus
Church originally defined a slightly different version of the Lambda Calculus, the
λI-calculus,

Definition 2.1.5. ΛI is the set of terms of the λI-calculus. It is built according to
the following rules:

(i) x ∈ Var ⇒ x ∈ ΛI

(ii) t, s ∈ Λ ⇒ (ts) ∈ ΛI

(iii) t ∈ Λ and x ∈ FV (t) ⇒ λx.t ∈ ΛI

2.1.2 Tree representation of λ-terms
Let Σ be an alphabet. Informally, a labelled tree is a tree that has at each node an
element of Σ. We introduce a notion of tree based on the alphabet Σ′ = {λxi, xj}
where i, j ∈ ω and xi, xj are arbitrary variables.

Let t be a term. The tree representation T (t) of t is defined inductively as follows:

• if x is any variable, then T (x) = x

• if t is an abstraction λx.s, then
λx

T (s)

=T (λx.s)

• if t is an application sq, then

T (s) T (q)

=T (sq)

2.2 Solvable and unsolvable terms
Definition 2.2.1. A closed term t is called solvable if there exists an integer n and
terms s1 . . . , sn such that ts1 . . . sn = I. An arbitrary term t is solvable if one of its
closures λx̄.t is solvable.

A term is called unsolvable if it is not solvable.

A λ-term has exactly one of the following forms:

(i) λx1 . . . xn.yt1 . . . tk (n, k ≥ 0);

(ii) λx1 . . . xn.(λy.s)ut1 . . . tk (n, k ≥ 0).



10 2. Preliminaries

It is said that the first term is in head normal form (hnf, for short). The redex
(λy.s)u in the second one is called head redex. If a term t is β-equivalent to a term
s in head normal form we say that it has a head normal form.

A step of β-reduction that reduces the head redex is denoted by→h. A reduction
strategy that reduces at each step the head redex of a term and stops if there is
no such redex is called head reduction. The term obtained from a term t after a
terminating head reduction is called principal head normal form of t. It can be
proved that a term t has a hnf iff the head reduction of t terminates.

An unsolvable term t has:
(i) order 0 if it is not β-equivalent to an abstraction;
(ii) order ∞ if, for every natural number n > 0, t =λβ λx1 . . . xn.u for some u;
(iii) order n ≥ 1 if there exists a greatest positive number n such that t =λβ

λx1 . . . xn.u for some u.
For example, Ω has order 0, λx.Ω has order 1 and YK has order ∞. Terms of

order 0 are also called zero terms.

Theorem 2.2.2. (Wadsworth) [6], p.41) A term t is solvable iff it has a head normal
form.

So, from now on we call solvable (resp. unsolvable) terms with (without) head
normal form. Another result by Wadsworth states that if t has a head normal form,
then the head reduction path of t stops after a finite number of steps ([6], p.177).
This implies that the set of unsolvables is co-recursively enumerable.

2.2.1 Böhm trees
Let Σ = {⊥} ∪ {λx1, . . . , xn.y : where xi, y are variables and i ∈ ω}. The labelled
tree of t, called the Böhm tree of t and denoted by BT (t), is informally defined as
follows.

• if the principal head normal form of t is λx1 . . . λxn.ys1 . . . sk, then

BT (t)=

. . .
BT (s1) BT (sk)

λx1, . . . λxn.y

• otherwise, BT (t) = ⊥

This is not a formal definition: given a term t whose principal head normal form is
λx1 . . . λxn.yt1 . . . tq, one of the ti may be more complex than t itself ([6] p. 216).
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2.3 λ-theories
Definition 2.3.1. A set of equations between λ-terms is a λ-theory if it is an equiv-
alence relation and it is closed under the rules of Definition 2.1.2.

T ⊢ t = s denotes that the equation t = s belongs to T .
A theory T is inconsistent if it equates any pair of terms. Otherwise, it is

consistentGiven an arbitrary set of equations Σ, there always exists the smallest
theory T containing Σ: we say that T is generated by Σ. The smallest λ-theory is
denoted by λβ-theory.

A theory is extensional if it is closed also by axiom (viii). The smallest exten-
sional λ-theory is denoted by λβη-theory.

There exists a continuum of consistent λ-theories . The theory generated by
equating all unsolvables is denoted by H. Theories that contains H are called
sensible. H admits a unique maximal extension H∗. A λ-theory is semi-sensible if
it never equates a solvable with an unsolvable. It can be shown that every sensible
theory is also semi-sensible. (see ([6]), chp. 16, for a survey on λ-theories).

2.4 Denotational semantics
Given sets X, Y , we write X ⊆f Y if X is a finite subset of Y .

2.4.1 Categorical models
Definition 2.4.1. A category C is cartesian closed (ccc for short) if the following
conditions hold:

• there is an object ⊤ ∈ C such that, for every A ∈ C, there is exactly one
f ∈ C(A,⊤). ⊤ is called terminal object.

• For every couple of objects A1, A2 there exists an object A1×A2, called cartesian
product, and arrows πi ∈ C(A1×A2, Ai), (i = 1, 2), called projections, satisfy-
ing the following property: for every couple of arrows fi ∈ C(C,Ai), (i = 1, 2)
there exists a unique ⟨f1, f2⟩ ∈ C(C → A1 × A2) such that fi = πi ◦ ⟨f1, f2⟩.

• Given A,B ∈ C, there is an an object A ⇒ B called exponent and an arrow
Ev ∈ C((A ⇒ B) × A,B) such that for every f ∈ C(C × A,B) there is a
unique Λ(f) ∈ C(C,A⇒ B) satisfying the equation

f = Ev ◦ (Λ(f)× IdA)

where IdA is the identity arrow on A.
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A reflexive object in a ccc C is a triple U = (U,App,Lam), where U ∈ C, and
arrows Lam ∈ C(U ⇒ U,U) and App ∈ C(U,U ⇒ U) satisfying

App ◦ Lam = IdU⇒U .

If also Lam ◦ App = IdU holds, U is called extensional.
For any object U ∈ C, we define ⊤ = U0 and Un+1 = Un × U . Given a finite

subset I = {x1, . . . , xn} of Var, we set U I = Un and πIxi
∈ C(U I , U), the projection

arrow on the coordinate i. If I ⊆f Var contains all free variables of a λ-term t, we
say that I is an adequate set for t.

Let U = (U,App,Lam) be a reflexive object, t a λ-term and I an adequate set
for t. We define by induction on the complexity of t an object |t|UI in C(U I , U) called
the interpretation of t:

• |x|UI = πxi
, for any variable xi.

• |st|UI = Ev ◦ ⟨App ◦ |s|UI , |t|UI ⟩, for any application term st.

• |λy.t|UI = Lam ◦ Λ(|t|UI∪{y}), for any abstraction term λy.t (w.l.o.g we suppose
y /∈ I).

If it is clear from the context, the superscript U is dropped in |t|UI : if t is closed also
the subscript I is dropped.

In a categorical model U terms with the same interpretation are identified. More
formally, given a reflexive object U , we can define the equational theory Th=(U) of
U :

Th=(U) = {t = s : |t|UI = |s|UI , where I = FV (t) ∪ FV (s)}
In Th=(U), β-equivalent terms are always identified, i.e. Th=(U) is always a λ-
theory.

2.4.2 Scott-continuous models
The first model of the λ-calculus was found in late 1960s by Dana Scott. He built
an algebraic lattice D∞ isomorphic to DD∞

∞ , the set of all continuous functions from
D∞ to itself, according to a particular topology called Scott topology.

This model is only one example of a general kind of categorical models that live
in the category of complete partial orders with Scott continuous functions.

Let D = (D,⊑) be a partially order set (poset for short). Two elements x, y of D
are compatible if there is z ∈ D such that x ≤ z and y ≤ z (z is an upper bound of
x and y). A non-empty subset X of D is directed if every pair of elements x, y ∈ X
has an upper bound in X.

Definition 2.4.2. A poset D is a complete partial order (or cpo for short) if:

• it has a least element ⊥, i.e. for every x ∈ D ⊥ ≤ x.
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• Every directed subset X of D has a least upper bound, denoted by ⊔X, belonging
to D.

A poset such that every X ⊆ D has a least upper bound is a complete lattice.
An element d of a poset D is compact if for any directed X ⊆ D, if d ≤ ⊔X,

then there is x ∈ X such that d ≤ x, A cpo is algebraic if for every element d of D,
the set C = {x ∈ D : x ≤ d and x is compact} is directed and d = ⊔C
Definition 2.4.3. The Scott topology on a poset D is the collection of all sets
O ⊆ D such that:

• x ∈ O and x ≤ y implies y ∈ O.

• X is directed and ⊔X ∈ O implies X ∩O ̸= ∅.
In Scott topology continuous functions have a strong characterization in terms of
directed sets.

Let D and D′ be cpos. Then a function f : D → D′ is continuous iff

f(⊔X) = ⊔f(X), for all directed sets X ⊆ D.

The category whose objects are cpos and arrows are continuous functions between
cpos is denoted by CPO. It can be proved that CPO is a ccc. A Scott-continuous
λ-model is a reflexive object of CPO.

2.4.3 Graph models
Among Scott-continuous models of the λ-calculus, graph models are arguably the
simplest.

The first graph model P∞ was introduced in the early 1970s independently by
Plotkin and Scott . Soon afterwards Plotkin and Engler introduced E , an even
simple graph model.

Graph models are very simple structures because they can be described by using
just a set and a function. In the following we denote by D∗ the set of all finite
subsets of D.
Definition 2.4.4. A graph model is a pair D = (D, p), where D is a denumerable
set, called the web of D, and p : D∗ ×D → D is an injective function.

Such a pair is called total pair. In the setting of graph models a partial pair is
a pair (A, q) where A is any set and q : A∗ × A ⇀ A is a partial (possibly total)
injection.

If (D, p) is a partial pair, we sometimes write a →p α (or a → α if p is evident
from the context) for p(a, α). Moreover, β → α means {β} → α. The notation a1 →
a2 → · · · → an−1 → an → α stands for (a1 → (a2 → . . . (an−1 → (an → α)) . . . )). If
ā = a1, a2, . . . , an, then ā→ α stands for a1 → a2 → . . . an−1 → an → α.

Given a graph model D = (D, p), an environment is a function ρ : Var→ P(D).
The set of all environments of D is denoted by EnvD.
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Definition 2.4.5. A total pair (D, p) generates a λ-model whose universe is P(D),
called graph λ-model. The interpretation |t|p : EnvD → P(D) of a λ-term t in the
graph model (D, p) can be described inductively as follows:

• |x|pρ = ρ(x).

• |tu|pρ = {α : (∃a ⊆f |u|pρ) a→ α ∈ |t|pρ}.

• |λx.t|pρ = { a→ α : α ∈ |t|pρ[x:=a]}.

Since |t|pρ only depends on the value of ρ on the free variables of t, we write |t|p
if t is closed.

A graph model (D, p) satisfies t = u, written (D, p) ⊨ t = u, if |t|pρ = |u|pρ for all
environments ρ. The λ-theory Th(D, p) induced by (D, p) is defined as

Th(D, p) = {t = u : t, u ∈ Λ and |t|pρ = |u|pρ for every ρ}.

A λ-theory induced by a graph model is called a graph theory.

2.4.4 Forcing in graph models
The forcing technique in graph models was introduced by Baeten and Boerboom in
[4], where they used this technique to build, for any term t, a graph model (D, p)
such that (D, p) |= t = Ω. By imposing some conditions on the function p in the
graph model (D, p), they force some elements of D to belong to the interpretation
of Ω: that is where the name forcing comes from.

The following proposition clarifies what we have just said. It gives a necessary
condition and a sufficient one for an element to be in the interpretation of Ω in a
graph model.

Proposition 2.4.6. ([4]) Let (D, p) be a graph model and α ∈ D.

1. If α ∈ |Ω|p, then there exists a finite subset a of D such that p(a, α) ∈ a;

2. If there exists β such that β = p({β}, α), then α ∈ |Ω|p.

Once the conditions on p, matching a given purpose, have been found, the fol-
lowing step is to build a graph model satisfying those conditions; this is achieved
by starting from a suitable partial pair, and then carefully completing it to a total
pair. In [4], this is achieved with an ad hoc construction.

A generalization of this construction, involving a notion of weakly continuous
function and presented below as Theorem 2.4.8, has been proposed in [13]. In the
following we report the main points of this technique.

Notation 1. Let D be an infinite countable set. By I(D) we indicate the cpo of
partial injections q : D∗ ×D ⇀ D, ordered by inclusion of their graphs.
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By a “total q" we will mean “an element of I(D) which is a total map” (equiv-
alently: which is a maximal element of I(D)). The domain and range of q ∈ I(D)
are denoted by dom(q) and rg(q). We will also confuse the partial injections and
their graphs.

Definition 2.4.7. [13, Definition 10] A function F : I(D) → P(D) is weakly
continuous if it is monotone with respect to inclusion and if furthermore, for all
total p ∈ I(D),

F (p) =


q⊆finp

F (q).

Since we are working with a countable infinite D, the difference with continuity
comes of course from the fact that there exist elements of I(D) which are not total
but of infinite cardinality.

The forcing completion process we were referring to is the core of the proof of
Theorem 2.4.8 below, which is the fundamental tool to prove the graph easiness of
Ω in [13].

The next lemma is an application of the notion of forcing.

Theorem 2.4.8. [13, Theorem 11] If F : I(D)→ P(D) is weakly continuous, then
there exists a total p such that |Ω|p = F (p).

In order to introduce the notion of forcing we need the following definition,

Definition 2.4.9. The set ΛD of generalized λ-terms w.r.t. a denumerable set D
is the smallest set satisfying the following conditions:

• Var ⊆ ΛD.

• P(D) ⊆ ΛD.

• t, s ∈ ΛD implies ts ∈ ΛD.

• t ∈ ΛD and x ∈ Var, then λx.t ∈ ΛD.

• if f : P(D)n → P(D) is a continuous function of arity n ≥ 1 w.r.t. the cpo
(P(D),⊆) and t1, . . . , tn ∈ ΛD, then f(t1, . . . , tn) ∈ ΛD.

Definition 2.4.10. [13, Definition 14](Forcing). Given t a closed term of ΛD,
q ∈ I(D) and α ∈ D, the abbreviation q ⊩ α ∈ t means that, for all total injections
p ⊇ q, we have that (D, p) |= α ∈ |t|p. Furthermore q ⊩ρ Y ⊆ t means that
q ⊩ α ∈ |t| for all α ∈ Y .

The next lemma is an application of the notion of forcing.

Lemma 2.4.11. [13, Lemma 15] For every closed λ-term t, the function Ft :
I(D) → P(D), defined by Ft(q) = {α ∈ D : ∀ total p ⊇ q, α ∈ |t|p}, is weakly
continuous, and we have Ft(p) = |t|p for each total p.

Graph easiness of Ω is a simple corollary of Lemma 2.4.11 and Theorem 2.4.8.
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3
Undefinedness in lambda calculus

The problem of characterizing λ-terms that represent an undefined computational
process has interested researchers since the origin of λ-calculus. This problem is
difficult to formalize and consequently it is not clear how to give a definite answer
to it. In this chapter we give a short survey of this topic. [6], pp. 39-43., is the main
reference of this chapter, especial for Sections 3.1 and 3.2.

3.1 λ-definability of partial functions
The issue of terms representing undefined processes naturally arises when consid-
ering the problem of representation of partial functions. I recall here the classic
characterization of a computable function g:

g(n) =


the result of the effective procedure computing g if n belongs to the

domain of g;
undefined otherwise.

So the natural definition of λ-representable function seems to be the following one.

Definition 3.1.1. Given a partial function f : ωp → ω, we say that f is λ-
representable if there exists a λ-term F such that, for any p-uple of natural numbers
n1, . . . , np,

F ⌈n1⌉ . . . ⌈np⌉ =
⌈f(n1, . . . , np)⌉ if (n1, . . . , np) belongs to Dom(f);

a non-normalizing term otherwise.

When dealing with a total function f this definition is completely satisfactory:
the term F suitably represents the function f in the λ-calculus.

Instead, if we want to represent a proper partial function g with a term G, it is
not clear how to characterize the term G⌈n⌉ when n does not belong to the domain
of g. It is reasonable that G⌈n⌉ must not have a normal form, but it is not obvious
that this condition is also sufficient.
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3.2 Undefined terms in λK-calculus
The solution given by Definition 3.1.1 was proposed by Church for the λI calculus.

Moreover, he suggested the following general identification: a term represents
an undefined process iff it does not have a normal form.

In λI calculus this statement has some desirable properties.

• The theory K = {(t, s) : t and s do not have a normal form} is consistent in
λI calculus ([6], p. 416).

• A term t is solvable iff it has a normal form ([6], p. 42).

In the λK-calculus the above identification cannot be accepted. In fact the
properties listed above do not hold anymore .

• The theory K = {(t, s) : t and s do not have a normal form} is inconsistent
in λ calculus ([6] p.39).

• There exist solvable terms that do not have a normal form.

The first property expresses the fact that the notion “without normal form” is too
syntactical.

These facts prevent us from accepting the identification proposed by Church in
the λK-calculus.

3.2.1 “Undefined = unsolvable”
Barendregt and Wadsworth proposed ([6], p. 42) the following identification: A
term represents an undefined process iff it is unsolvable.

The definition of representable function is changed accordingly:

Definition 3.2.1. Given a partial function f : ωp → ω, we say that f is strongly
representable if there exists a λ-term F such that, for any p-uple of natural numbers
n1, . . . , np,

F ⌈n1⌉ . . . ⌈np⌉ =
⌈f(n1, . . . , np)⌉ if (n1, . . . , np) belongs to Dom(f);

an unsolvable term otherwise.

Unsolvable terms have properties that “undefined” terms should have (in partic-
ular they satisfy the properties that terms without normal form have in λI calculus):

• the theory H = {(t, s) : t, s are unsolvable} is consistent.

• Unsolvable terms are interpreted as the bottom element ⊥ in Scott’s models.

• A term is unsolvable iff it does not have head normal form.
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Perhaps, the strongest argument in favour of this proposal is the following genericity
lemma, which shows the lack of computational meaning of the unsolvable.

Proposition 3.2.2. (Genericity Lemma) Let t be an unsolvable and s a normal
form. Then, for any context C[ ],

C[t] = s ⇒ ∀p ∈ Λ, C[p] = s.

Thanks to all these considerations, the proposed identification is commonly ac-
cepted. If the operational semantics of a λ-term is its Böhm tree it is natural that
the terms representing undefinedness are the unsolvable terms.

We will see in the following that it is possible to introduce new criteria of unde-
finedness which allow to isolate other sets of terms.

3.3 A fine classification of undefinedness
We may classify the order of undefinedness of a set of closed λ-terms according to
the “size” of the set of terms it can be consistently equated to.

3.3.1 Easiness
Definition 3.3.1. Let Y be a set of closed λ-terms. We say that the set Y is
consistent if the theory Σ = {t = u : t ∈ Y } is consistent. We define

Con(Y ) = {u ∈ Λ0 : Y ∪ {u} is consistent}.

If Y = {t} is a singleton set, we write Con(t) for Con({t}). It is obvious that
Y ⊆ Λ0 is consistent if and only if Con(Y ) ̸= ∅.

Definition 3.3.2. A set Y ⊆ Λ0 is an easy-set if Con(Y ) = Λ0.

A term t is called easy if {t} is an easy-set.
Easy terms were introduced in [39], where it is also shown using syntactical

techniques that Ω is easy. Semantical proofs of easiness originated in [4].
In the following definition we introduce the notion of C-easiness for a class C of

models of λ-calculus.

Definition 3.3.3. Let Y ⊆ Λ0 and C be a class of models of λ-calculus. We say that
Y is a C-easy set if, for every closed λ-term t, there exists a model N ∈ C in which
all elements of Y ∪ {t} have the same interpretation. A λ-term t is called C-easy if
{t} is a C-easy set.

A term t is nf-easy if Con(t) ⊇ {u ∈ Λ0 : u is a normal form}.
The set of easy terms is a proper co-recursively enumerable subset of the unsolv-

ables. For example, Ω3 is unsolvable but not easy, because it cannot be consistently
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equated to the identity I. Although Ω3 is not easy, it is possible to show that Ω3I
is easy ([40]).

In [9] Berarducci and Intrigila prove many interesting results on easy terms. Some
of them are collected in the following theorem that shows the unusual behavior of
easy terms.

Theorem 3.3.4. [9] The following conditions hold:

1. There exists t ∈ Λ0 such that Con(t) = Λ0 \ [I]λβ, where [I]λβ is the set of
terms that are β-equivalent to the identity I.

2. There exists a nf-easy term that is not easy.

3. A term t is easy iff Con(t) ⊇ {u ∈ Λ0 : BT(u) is finite}.

4. u ∈ Con(YΩ3) for every term u such that BT (u) is not a subtree of BT (ω3).

Any element of an easy-set is obviously an easy term. Berline-Salibra [13] have
shown that the infinite set ({Ω(λx0 . . . xk.xk) : k ∈ ω} is an easy-set. There exist sets
of easy terms that are not easy-sets: easiness of {Ω,ΩI} fails because {Ω,ΩI,K} is
not consistent. In particular, the set of all easy terms is not an easy-set ([38]).

In general, proofs of easiness are difficult. For example, it is not yet known
whether YΩ3 is easy or not ([14]).

3.3.2 Statman-sets
In this section we present the most suitable candidates for representing the undefined
value of a partial recursive function in the λ-calculus.

Definition 3.3.5. A β-closed set B ⊆ Λ0 is a Statman-set if, for every recursive
partial function f : ω → ω, there exists F ∈ Λ0 such thatF ⌈n⌉ =β ⌈f(n)⌉ if f ↓ n;

F ⌈n⌉ ∈ B otherwise.

Statman has shown the following result in an unpublished paper [62]. The proof
by Statman is based on early results by Visser [68] and can be found in [7].

Theorem 3.3.6. [7, Theorem 4.1] Every nonempty co-recursively enumerable β-
closed set of closed λ-terms is a Statman-set.

As a trivial consequence, and using that Con(A) is a co-recursively enumerable
set for every β-closed recursively enumerable set A, we get the following proposition.

Proposition 3.3.7. Let A ⊆ Λ0 be a β-closed recursively enumerable set such that
A ̸= Λ0. Then we have:



3.3. A fine classification of undefinedness 21

1. Λ0 \ A is a Statman-set.

2. Con(A) is a Statman-set for every Con(A) ̸= ∅. In particular, Con(t) is a
Statman-set for every closed λ-term t.

Example 3.3.8. The set of closed λ-terms without normal form is a Statman-set.
The same holds for the set of unsolvable (resp. easy, zero) closed terms.

3.3.3 Mute terms
Mute terms were introduced in [8] by Berarducci. All results and definitions of this
section can be found in [8].

Berarducci trees take in account the computational content of the unsolvables.
As for Böhm trees, Berarducci trees are obtained by an infinite unfolding of λ-terms.

A top normal form (top-nf, for short) is either a variable or an abstraction or a
zero term applied to another term. A term t has a top-nf if t is β-convertible to a
top-nf.

The Berarducci tree of a term t is the possibly infinite unfolding of t according
to the following coinductive definition:

BD(t) =


⊥ if t has no top-nf;
x if t =β x.
λx.BD(u) if t =β λx.u.
BD(s) · BD(u) if t =β su with s zero-term.

The function BD is well-defined by [8, Theorem 9.5].
As an example, we build the Berarducci tree of the unsolvable term Ω3. The

only possible reduction path of Ω3 is the following one:
Ω3 →β Ω3ω3 →β Ω3ω3ω3 →β Ω3ω3ω3ω3 →β . . .

where ω3 ≡ λx.xxx. So the zero term Ω3 can be seen as an infinite term, namely
(((. . .)ω3)ω3)ω3.

One of the main results of [8] is that the λ-theory BD = {t = u : BD(t) = BD(u)}
of Berarducci trees is consistent. The terms that have a bottom Berarducci tree are
called mute terms and can be formally defined as follows.
Definition 3.3.9. [8] A term t is mute if t has no top-nf.

Mute terms have a totally undefined operational behavior. By developing a con-
fluent extension of the λ-calculus, Berarducci proved that they satisfy the strongest
property of undefinedness we have introduced so far, namely.
Theorem 3.3.10. [8] The set of mute terms is an easy-set.

We have that being a zero term is a co-recursively enumerable property. By Def-
inition 3.3.9, the set of mute terms is not recursively enumerable nor co-recursively
enumerable.
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4
The Regular mute terms

4.1 Introduction
In this chapter we introduce regular mute terms. Regular mute terms are mute
terms built with an inductive definition. This is in strong opposition to classical
mute terms, that instead are defined as terms that satisfy negative conditions.

We had the intuition for introducing regular mutes in the “replication behavior”
that the typical mute term Ω has. In fact, we prove that a regular mute, after a
finite number of head reductions, has the form of a regular mute once again. This
result easily proves that regular mutes are mutes, so they share the same strong
properties of undefinedness mutes have: they are unsolvable, easy and the set of
regular mute is an easy set.

In the second part of the chapter we prove that the a subclass of regular mutes,
called restricted regular mute, is a countable union of graph-easy sets (3.3.3). Re-
stricted regular mutes are defined by imposing a restrictive syntactical condition to
the main definition. Thanks to their simpler form, they satisfy some various tech-
nical lemmas which allow us to prove graph-easiness. The main technical tool used
here is an application of the forcing technique to graph models.

4.2 Regular mute terms

4.2.1 Hereditarily n-ary terms
In order to introduce regular mute terms, we introduce hereditarily n-ary terms.

Definition 4.2.1. Let V be the infinite set of variables of λ-calculus and n ≥ 1.
The set Hn[V ] of restricted hereditarily n-ary terms (over V ) is the smallest set of
λ-terms containing V and such that: for all t1, . . . , tn ∈ Hn[V ], distinct variables
y1, . . . , yn ∈ V and i ≤ n we have: λy1 . . . yn.yit1 . . . tn ∈ Hn[V ].

The set Kn[V ] of hereditarily n-ary terms (over V ) is the smallest set of λ-
terms containing V and such that: for all t1, . . . , tn ∈ Kn[V ], distinct variables
y1, . . . , yn ∈ V and z ∈ V ∪ ȳ, we have: λy1 . . . yn.zt1 . . . tn ∈ Kn[V ].
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We denote by Hn[x̄], for x̄ any finite (and possibly empty) sequence of distinct
variables in V , the set of terms of Hn[V ] whose free variables are included in x̄.
Similarly, we denote by Kn[x̄] the set of terms of Kn[V ] whose free variables are
included in x̄.

To simplify the notation, we write Hn for Hn[ ] and Kn for Kn[ ].
Notice that:

• t ∈ Hn[x̄] iff either t is a variable in x̄ or there exists a sequence ȳ of distinct
variables such that t ≡ λy1 . . . yn.yit1 . . . tn, where tj ∈ Hn[x̄, ȳ].

• t ∈ Kn[x̄] iff either t is a variable in x̄ or there exists a sequence ȳ of distinct
variables such that t ≡ λy1 . . . yn.zt1 . . . tn, where tj ∈ Kn[x̄, ȳ] and z ∈ x̄ ∪ ȳ.

Example 4.2.2. Some unary and binary hereditarily λ-terms:

• λx.xx ∈ H1.

• λy.yx ∈ H1[x].

• λx.x(λy.yx) ∈ H1 (λy.yx ∈ H1[x]).

• λzy.yzx ∈ H2[x].

• λxy.x(λzt.tzx)y ∈ H2 (λzt.tzx, y ∈ H2[x, y]).

• λx.yx ∈ K1[y].

• λy.y(λx.yx) ∈ K1 (λx.yx ∈ K1[y]).

Given a natural number n and variables x̄ we define inductively a sequence of
sets of λ-terms:

Definition 4.2.3. Let x̄ = x1, . . . xk and ȳ = y1, . . . , yn be distinct variables. We
define:

• K0
n[x̄] = Kn[x̄]

• Km+1
n [x̄] = {s[u/y] : s ∈ Km

n [x̄, ȳ], ū = u1, . . . , un ∈ Km
n [x̄]}

By using sets Km
n [x̄], we define

Tn[x̄] =

m∈ω

Km
n [x̄].

The rank of a term t ∈ Tn[x̄] is the smallest natural m such that t ∈ Km
n [x̄]; it is

denoted by rk(t).
Example 4.2.4. By Example 4.2.2 we have λx.yx ∈ K1[y] and λz.zz ∈ K1. So
λx.(λz.zz)x ∈ K1

1 .
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4.2.2 Syntactical properties of hereditarily n-ary terms
In the following, if x̄ is a sequence, then l(x̄) denotes its length.

Lemma 4.2.5. (Closure of Hn[V ] under substitution) Let n ∈ ω and t ∈ Hn[V ].
Then:

(i) For all z̄ ∈ V and all ū ∈ Hn[V ] such that l(ū) = l(z̄), we have t[ū/z̄] ∈ Hn[V ].

(ii) Moreover if t ∈ Hn[x̄, z̄] and ū ∈ Hn[x̄], then t[ū/z̄] ∈ Hn[x̄].

Proof. (i) Induction on the complexity of t.

– If t ≡ x is a variable, then x[ū/z̄] is equal to x (if x /∈ z̄) or to ui (if
x = yi).

– If t ≡ λy1 . . . yn.yit1 . . . tn, we can suppose w.l.o.g that every yi is not a
free variable in any uj ∈ ū. Then t[ū/z̄] ≡ λy1 . . . yn.yit1[ū/z̄] . . . tn[ū/z̄].
By ind. hyp., ti[ū/z̄] ∈ Hn[V ], so also t[ū/z̄] ∈ Hn[V̄ ].

(ii) Trivial consequence of (i).

Lemma 4.2.6. 1. Given n ≥ 1, if x̄ ⊆ ȳ and m ≤ p, then Hn[x̄] ⊆ Hn[ȳ] and
Km
n [x̄] ⊆ Kp

n[ȳ]. Inclusions are strict iff x̄ ⊊ ȳ or m < p.

2. A term t ∈ Kn has form λȳ.yit1 . . . tn, but in general it is not a restricted
hereditarily n-ary term.

Proof. 1. First we prove that x̄ ⊆ ȳ implies Hn[x̄] ⊆ Hn[x̄], by induction on the
length of t.

• If t ≡ z is a variable, by definition z ∈ Hn[x̄] iff z ∈ x̄. This implies that
z ∈ Hn[ȳ].

• If t is not a variable, then there exists a sequence z̄ of distinct fresh
variables such that t ≡ λz1 . . . zn.zit1 . . . tn, with tj ∈ Hn[x̄, z̄]. By ind.
hyp., all tj are in Hn[ȳ, z̄], so also t ∈ Hn[ȳ].

Similarly we prove that Kn[x̄] ⊆ Kn[ȳ]. By Definition 4.2.3, this easily implies
that Km

n [x̄] ⊆ Km
n [ȳ]. By construction Km

n [x̄] ⊆ Kp
n[x̄] when m ≤ p.

If z ∈ ȳ \ x̄, then z ∈ Kn[ȳ] \Kn[x̄], so z ∈ Km
n [ȳ] \Km

n [x̄] for any m ≥ 1.
For any n ≥ 1, we have that s ≡ λx1 . . . xn.yx1 . . . xn ∈ Kn[y] and
t0 ≡ λx1 . . . xn.x1x1 . . . xn ∈ Kn, so s[t0/y] ∈ K1

n \Kn. In general, if there is
a term tm of rank m, then s[tm/y] is a term of rank m + 1. This proves that
Km
n ⊊ Km+1

n and, in general, that Km
n [x̄] ⊊ Km+1

n [x̄].
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2. By definition, the head variable yi of any term in Kn must be in ȳ. The
term λz1 . . . zn.y1z1 . . . zn is in Kn[ȳ] \ Hn[ȳ], where y1 ∈ ȳ: this implies that
t ≡ λȳ.y1 . . . yn(λz1 . . . zn.y1z1 . . . zn) ∈ Kn \Hn.

The following syntactical lemmas are necessary to understand the structure of
hereditarily n-ary terms.

Lemma 4.2.7. If ȳ is a sequence of n distinct variables, s ∈ Tn[x̄, ȳ] and t̄ =
t1, . . . , tn ∈ Tn[x̄], then s[t̄/ȳ] ∈ Tn[x̄].

Proof. Let m = max{rk(s), rk(t1) . . . , rk(tn)}. Then s ∈ Km
n [x̄, ȳ] and ti ∈ Km

n [x̄].
By Definition 4.2.3 we obtain s[t̄/ȳ] ∈ Km+1

n [x̄].

Lemma 4.2.8. Let t be a λ-term and n,m natural numbers with n > 0. Then
t ∈ Km

n [x̄] if, and only if, there exist

• sequences z̄i (i = 1, . . . ,m) of distinct variables,

• s ∈ K0
n[x̄, z̄1, . . . , z̄m],

• sequences t̄i (i = 1, . . . ,m) of terms t̄i = ti1, . . . , t
i
n ∈ Km−i

n [x̄, z̄1, . . . , z̄i−1]

such that t ≡ s[tm/zm] · · · [t1/z1].

Proof. The proof is by induction on the index m of Km
n [x̄].

If m = 0, there is nothing to prove.
Let t ∈ Km+1

n [x̄]. By definition of t there exist s ∈ Km
n [x̄, ȳ] and ū = u1, . . . , un ∈

Km
n [x̄] such that t = s[u/y], where ȳ is a sequence of n distinct variables.

By applying the induction hypothesis to s, there existm sequences z̄i of n distinct
variables, s′ ∈ K0

n[x̄, ȳ, z̄1, . . . , z̄m] and m sequences t̄i of terms t̄i = ti1, . . . , t
i
n ∈

Km−i
n [x̄, ȳ, z̄1, . . . , z̄i−1] such that s ≡ s′[tm/zm] · · · [t1/z1].

This implies that t ≡ s′[tm/zm] · · · [t1/z1][u/y]. So t is obtained by choosing

• s′ ∈ K0
n[x̄, ȳ, z̄1, . . . , z̄m];

• m+ 1 sequences of n distinct variables ȳ, z̄1, . . . , z̄m;

• m + 1 sequences of terms ū, t̄1, . . . , t̄m, which satisfy ū = u1, . . . , un ∈ Km
n [x̄]

and t̄i = ti1, . . . , t
i
n ∈ Km−i

n [x̄, ȳ, z̄1, . . . , z̄i−1].
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4.2.3 Regular mute terms
The following proposition is the main result of this section.

Proposition 4.2.9. Let n ≥ 1. If s0, s1, . . . , sn are restricted hereditarily n-ary
terms, then there exist r1, . . . , rn ∈ Hn and 1 ≤ i ≤ n such that:

s0s1 . . . sn →n
h sir1 . . . rn.

In general, given s0, s1, . . . , sn ∈ Tn, there exist r0, r1, . . . , rn ∈ Tn such that:

s0s1 . . . sn →n
h r0r1 . . . rn.

Proof. Let s0, . . . , sn ∈ Hn. Since s0 ∈ Hn, then s0 ≡ λy1 . . . yn.yit1 . . . tn with
t1, . . . , tn ∈ Hn[y1, . . . , y]. Hence s0s1 . . . sn →n

h sit1[s̄/ȳ] . . . tn[s̄/ȳ], where ȳ ≡
y1 . . . yn and s̄ ≡ s1 . . . sn. By Lemma 4.2.5 the term ti[s̄/ȳ] ∈ Hn, and we are
done by defining ri ≡ ti[s̄/ȳ].
The second part is proved by induction on the rank of s0.

rk(s0) = 0.
Since s0 ∈ Kn, then by Lemma 4.2.6.1 s0 ≡ λy1 . . . yn.yir1 . . . rn with r1, . . . , rn ∈
Kn[y1, . . . , yn]. Hence s0s1 . . . sn →n

h sir1[s̄/ȳ] . . . rn[s̄/ȳ]. By Lemma 4.2.7, we have
that ri[s̄/ȳ] ∈ Tn.

rk(s0) = m > 0.
By Lemma 4.2.8 there exists u ∈ Kn[z̄1, . . . , z̄m] such that s0 ≡ u[t̄m/z̄m] . . . [t̄1/z̄1],
for some terms t̄i ∈ Km−i

n [z̄1, . . . , z̄i−1], for all 1 ≤ i ≤ m. The term u cannot be
a variable because of the rank of s0. Then by definition u ≡ λȳ.au1 . . . un with
a ∈ z̄1 ∪ . . . z̄m ∪ ȳ and ui ∈ K0

n[z̄1, . . . , z̄m, ȳ].
We have now two subcases:

(a) if a ∈ ȳ, then u ≡ λȳ.yiu1 . . . un. So we have that:

s0 = λȳ.yi(u1[t̄m/z̄m] . . . [t̄1/z̄1]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1])

and

s0s1 . . . sn →n
h si(u1[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]).

If s1, . . . , sn are in Tn, then by Lemma 4.2.7 all terms (ui[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ])
are in Tn.

(b) In the other case, i.e., if a ∈ {z̄1, . . . , z̄m}, then we rename a ≡ aij, to denote
that aij belongs to the jth element of the sequence z̄i. So the explicit form of the
term s0 is:

s0 ≡ λȳ.(aij[t̄m/z̄m] . . . [t̄1/z̄1])(u1[t̄m/z̄m] . . . [t̄1/z̄1]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1])

Thanks to the fact that z̄i are all distinct variables, we have that

(aij[t̄m/z̄m] . . . [t̄1/z̄1]) = (tij[t̄i−1/z̄i−1] . . . [t̄1/z̄1])
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Now we can explicitly compute the first n steps of head reduction of the term
s0 . . . sn:

s0 . . . sn ≡
(λȳ.(tij[t̄m/z̄m] . . . [t̄1/z̄1])(u1[t̄m/z̄m] . . . [t̄1/z̄1]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1]))s1 . . . sn →n

h

(tij[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ])(u1[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]) ≡
(tij[t̄i−1/z̄i−1] . . . [t̄1/z̄1])(u1[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]) . . . (un[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ])

By Lemma 4.2.7, (tij[t̄i−1/z̄i−1] . . . [t̄1/z̄1]) and all (ui[t̄m/z̄m] . . . [t̄1/z̄1][s̄/ȳ]) belong
to Km

n .

Theorem 4.2.10. For all s0, . . . , sn ∈ Tn, the term s0s1 . . . sn is mute.

Proof. By Proposition 4.2.9 there exists an infinite path of head reductions

s0 . . . sn →n
h s

1
0s

1
1 . . . s

1
n →n

h s
2
0s

2
1 . . . s

2
n →n

h . . . s
k
0s
k
1 . . . s

k
n →n

h . . .

that has an infinite number of terms with a top redex. By [10, theorem 2.1] s0 . . . sn
is a mute term.

Thanks to this theorem, we can define two new classes of mute terms.

Definition 4.2.11. A term s0s1 . . . sn where all si are in Hn is called restricted
n-regular mute term; a term s0s1 . . . sn where all si ∈ Tn is called n-regular
mute term.

Mn denotes the set of all restricted n-regular mute terms; Gn denotes the set of
all n-regular mute terms.

4.2.4 Examples
Some unary and binary regular mute terms:

• Ω ≡ (λx.xx)(λx.xx) ∈M1

• (λx.x(λy.yx)(λx.xx) ∈M1

• AAA ∈M2, where A := λxy.x(λzt.tzx)y.

• BB ∈ G2, where B ≡ λy.y(λx.yx).

We give now an example of a a mute term that is not regular. Let U ≡
λxy.y(xxy) and consider the term UUI. We have that

UUI →2
h

I(UUI) →1
h

UUI
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so the term UUI is mute. On the other hand, U is not a hereditarily n-ary term
because in it two lambda abstractions bind a term which is an application of only
two terms, y and xxy: according to the definition there should be three.

The next two lemmas are not necessary for the forthcoming of the chapter.
We proved them when attempting to generalize the graph-easiness property proved
for restricted regular mutes. Nonetheless, we believe they can be useful in further
research.

Lemma 4.2.12. Let t ∈ Tn[x̄]. Then its form is λȳ1.(λȳ2.(. . . (λȳm.vt̄m) . . .)t̄2)t̄1
where m ≥ 0, each ȳi is a sequence of exactly n fresh and distinct variablesand v is
a variable among x̄ or ȳm. We denote by tij the jth term of the sequence t̄i: then we
have that FV(tij) ⊆ ȳi ∪ x̄, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. Let t ∈ Km
n [x̄]. Proof is by induction on m.

• If t ∈ K0
n[x̄], then conclusion trivially follows by definition of K0

n[x̄].

• Let t ∈ Km+1
n [x̄]. By definition, t ≡ s[ū/z̄], with s ∈ Km

n [x̄, z̄] and ū ⊆ Km
n [x̄].

So we can use the inductive hypothesis on s. If the first variable in its body
is is bounded by the lambda’s immediately preceding it or is among the x̄’s,
conclusion immediately follows. Otherwise, i.e. if it is among the z̄’s, say z′,
it is replaced by one of the ū. By applying the inductive hypothesis on the
specific ui that substitutes z′ we get the result.

Now we prove the second part of the lemma.

• If t ∈ K0
n[x̄], then it is of the form λȳ.vt1 . . . tn, with v ∈ x̄∪ȳ and tj ∈ K0

n[x̄, ȳ],
so conclusion trivially holds.

• Let t ∈ Km+1
n [x̄]. By definition, t ≡ s[ū/z̄], where s ∈ Km

n [x̄, z̄] and ū ⊆ Km
n [x̄].

By the first result of the lemma and inductive hypothesis we know that
s ≡ λȳ1.(λȳ2.(. . . (λȳm.vt̄m) . . .)t̄2)t̄1, with v ∈ ȳm∪x̄∪z̄ and FV(t̄i) ⊆ ȳi∪x̄∪z̄.
Thanks to the fact that ū ⊆ Km

n [x̄], the conclusion follows.

Corollary 4.2.13. Let s0 be an hereditarily n-ary term of the form

λȳ1.(λȳ2.(. . . (λȳn.yni t̄n) . . .)t̄2)t̄1.

Then in the head reduction path of a regular mute s0s1 . . . sn, we have that after
|ȳ1|+ · · ·+ |ȳn−1| = n(n− 1) steps we get a term of the form (λȳ.yit1 . . . tp)s1 . . . sn.
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4.2.5 Decidability of sets Mn and Gn

In the following proofs, l(t) denotes the length of the term t.

Proposition 4.2.14. For all n ≥ 1, sets Gn and Mn are recursive.

Proof. If t is a n-regular mute term, then t ≡ t0 . . . tn for some t0, . . . , tn ∈ Tn. Then
we have that Gn is recursive if and only if Tn is such. Similarly, Mn is recursive iff
Hn is such. Without loss of generality, we now prove that sets Tn[x̄] and Hn[x̄] are
recursive for every finite sequence x̄ of distinct variables.
Claim 4.2.15. For every m ≥ 0, n ≥ 1 and every sequence x̄ of distinct variables,
sets Hn[x̄] and Km

n [x̄] are recursive.

Proof. The proof is by induction on m.

• m = 0. Let t be an arbitrary λ-term. We check the relations t ∈ Kn[x̄] and
t ∈ Hn[x̄] by induction on the length of t.

– If t is a variable, then t ∈ Kn[x̄] iff t ∈ x̄. The same holds for Hn[x̄]
– If t ≡ λȳ.zt1 . . . tn, where z is a variable, ȳ is a sequence of distinct

variables and ti are arbitrary terms, then it is recursive to check if z ∈ ȳ∪x̄
and, thanks to inductive hypothesis, whether all ti are in Kn[x̄] or not.
Proof for Hn[x̄] is similar: the only difference is that z must be in ȳ.

– t /∈ Kn[x̄] or t /∈ Hn[x̄], otherwise.

This ends the proof for Mn.

• Assume by induction hypothesis that Km
n [x̄] is recursive for every sequence

x̄ of distinct variables. We prove that Km+1
n [x̄] is recursive. By Definition

4.2.3, t ∈ Km+1
n [x̄] if and only if t ≡ u0[ū/ȳ], for some u0 ∈ Km

n [x̄, ȳ] and ū ≡
u1, . . . , un ∈ Km

n [x̄]. We have that l(ui) ≤ l(t) for every 0 ≤ i ≤ n. Consider
l(t) distinct new variables z̄ ≡ z1, . . . , zl(t). Since Km

n [x̄, z̄] and Km
n [x̄] are

recursive and {u : l(u) ≤ l(t)} is finite, then after a finite time we get the sets
U0 = {u : l(u) ≤ l(t) ∧ u ∈ Km

n [x̄, z̄]} and U1 = {u : l(u) ≤ l(t) ∧ u ∈ Km
n [x̄]}.

We have that t ∈ Km+1
n [x̄] if and only if t ≡ u0[ū/ȳ], for some u0 ∈ U0 and

ū ≡ u1, . . . , un ∈ U1. This can be decided in a finite time.

Claim 4.2.16. t ∈ Tn[x̄]⇒ rk(t) ≤ l(t).

Proof. The proof is by induction on the length of t. Let m+ 1 = rk(t) in this proof.
Since t ∈ Km+1

n [x̄], then there exist u0 ∈ Km
n [x̄, ȳ] and ū ≡ u1, . . . , un ∈ Km

n [x̄] such
that t ≡ u0[ū/ȳ]. Without loss of generality, we assume that all variables in ȳ occur
free in u0. The following statements hold:
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• by definition of rk(t) there exists 0 ≤ j ≤ n such that rk(uj) = m.

• for all 0 ≤ i ≤ n, l(ui) < l(t). Suppose that l(ui) = l(t) for some i:

– if 1 ≤ i ≤ n, then l(ui) = l(t) implies ui ≡ t.
– if i = 0, then l(u0) = l(t) implies u0 ≡ t up to renaming of free variables

in x̄.

In both cases, we have that rk(t) = rk(ui) for some 0 ≤ i ≤ n, contradiction.

• for all 0 ≤ i ≤ n, rk(ui) ≤ l(ui), by induction hypothesis on l(ui).

Hence rk(t) = rk(uj) + 1 ≤ l(uj) + 1 ≤ l(t).
In conclusion, t ∈ Tn[x̄] iff t ∈ 

0≤i≤l(t) K
i
n[x̄], which is a recursive set since it is a

finite union of recursive sets.

4.3 Graph-easiness of restricted n-regular mute
terms

In this section we show that, given a closed λ-term t and a natural number n, there
exists a graph model which equates all the restricted n-regular mute terms. The
proof requires some technical lemmas and then an application of the forcing for
graph models as described in [13].

4.3.1 Some useful lemmas
Lemma 4.3.2 below generalizes Proposition 2.4.6 obtained by Baeten and Boerboom
in [4].

Lemma 4.3.1. Let (D, p) be a graph model, ρ be an environment, β ∈ D, and
β̄ = β, β, . . . , β (n-times). If β = β̄ → α, t ∈ Hn[x̄] and β ∈ ρ(xi) (i = 1, . . . , k)
then β ∈ |t|pρ.

Proof. The proof is by induction over the complexity of t as hereditarily n-ary λ-
term. If t ≡ xi then the conclusion is trivial because β ∈ ρ(xi). Otherwise, there
exists ū ≡ u1, . . . , un ∈ Hn[x̄, ȳ] such that t = λȳ.yiū.

β = β̄ → α ∈ |λȳ.yiū|pρ ⇔ α ∈ |yiū|pρ[ȳ:=β̄].

Since β ∈ ρ[ȳ := β̄](yi) for every i = 1, . . . , n, then by induction hypothesis β ∈
|ui|pρ[ȳ:=β̄] for every i = 1, . . . , n. It follows that α ∈ |yiū|pρ[ȳ:=β̄] and we get the
conclusion.
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Lemma 4.3.2. Let (D, p) be a graph model, t ∈Mn and γ ∈ |t|p. Then there exist
a sequence βi ≡ ai1 → · · · → ain → γ (i ∈ ω) of elements of D and a sequence di
(i ∈ ω) of natural numbers ≤ n such that βi+1 ∈ aidi

.

Proof. Let t ≡ s0 . . . sn. By Proposition 4.2.9 there exists an infinite sequence of
mute terms such that

s0
0s

0
1 . . . s

0
n →n

β s1
0s

1
1 . . . s

1
n →n

β . . . →n
β sk0s

k
1 . . . s

k
n →n

β . . .

and sk0 ≡ sk−1
dk−1

for some 1 ≤ dk−1 ≤ n. The number dk−1 is the order of the head
variable of the term sk−1

0 . By γ ∈ |s0
0s

0
1 . . . s

0
n|p there exists a0

1 → · · · → a0
n → γ ∈

|s0
0|p such that a0

i ⊆ |s0
i |p. We define

β0 = a0
1 → · · · → a0

n → γ.

Assume βk = ak1 → · · · → akn → γ ∈ |sk0|p and akj ⊆ |skj |p for every j ≤ n. Since
sk0 = λȳ.ydk

u1 . . . un for some terms ui and βk ∈ |sk0|p, then we have

γ ∈ akdk
|u1[ā/ȳ]|p . . . |un[ā/ȳ]|p,

where ā = ak1, . . . , a
k
n. It follows that there exists

βk+1 = ak+1
1 → · · · → ak+1

n → γ ∈ akdk
(4.1)

such that ak+1
j ⊆ |uj[ā/ȳ]|p. We have to prove that βk+1 ∈ |sk+1

0 |p and ak+1
j ⊆

|sk+1
j |p for every j ≤ n. By applying the induction hypothesis and (4.1) we get

βk+1 ∈ akdk
⊆ |skdk

|p = |sk+1
0 |p. The other relation can be obtained as follows, by

defining s̄k = sk1, . . . , s
k
n: ak+1

j ⊆ |uj[ā/ȳ]|p ⊆ |uj[|s̄k|p/ȳ]|p = |sk+1
j |p.

4.3.2 Forcing at work
In this section we apply the forcing technique to build, for any t ∈ Λ0, the desired
graph model equating it to all elements of Mn. The notion of forcing (Definition
4.3.10) will be introduced when necessary, after Theorem 4.3.4.

Let I(D) be the cpo of partial injection from D∗ ×D into D. If p ∈ I(D) then
the universe Un(p) of p is defined as follows:

Un(p) =


(a,α)∈dom(p)
(a ∪ {α, p(a, α)}).

If p is finite, then the universe of p is also finite.

Definition 4.3.3. Let p ∈ I(D) be finite, α ∈ D and ϵ̄ ≡ ϵ1, . . . , ϵk ∈ D \ Un(p).
Then pϵ̄,α is the extension of p such that ϵk+1 = α and ϵj = ϵ1 → ϵj+1 (j = 1, . . . , k).
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Notice that
ϵ1 = ϵ1 → ϵ1 → · · · → ϵ1  

k-times

→ α

and pϵ̄,α is also finite.
The next theorem is the main technical tool for proving the easiness of the set

of restricted e-regular mute terms. It generalizes [13, theorem. 11].

Theorem 4.3.4. Let F : I(D) → P(D) be a weakly continuous function and let
e ∈ N. Then there exists a total p′ : D∗ ×D → D such that (D, p′) |= |t|p′ = F (p′)
for all restricted e-regular mute terms t.

Proof. We are going to build an increasing sequence of finite injective maps pn :
D∗×D ⇀ D, starting from p0 = ∅, and a sequence of elements αn ∈ D∪{∗}, where
∗ is a new element, such that: p′ =def ∪pn is a total injection, and (D, p′) |= |t|p′ =
F (p′) = {αn : n ∈ ω} ∩D, for all t ∈Me.

We fix an enumeration of D and an enumeration of D∗ ×D.
We start from p0 = ∅.
Assume that pn : D∗ ×D ⇀ D and α0, . . . , αn−1 have been built. We let

• αn = First element of F (pn) \ {α0, . . . , αn−1} in the enumeration of D, if this
set is non-empty, and αn = ∗ otherwise;

• (bn, δn) = First element in (D∗ ×D) \ dom(pn);

• γn = First element in D \ (Un(pn) ∪ bn ∪ {δn} ∪ {α0, . . . , αn−1, αn}).

We define a new finite injection r as follows:

r(β) =
pn(β) if β ∈ dom(pn)
γn if β = (bn, δn)

Case 1: αn = ∗. We let pn+1 = r.
Case 2: αn ∈ D.

We define pn+1 = rϵ̄n,αn (see Definition 4.3.3), where

ϵ̄n = ϵn1 , . . . , ϵ
n
e ∈ D \ (Un(r) ∪ {αn})

are the first e distinct elements of D \ (Un(r) ∪ {αn}).
It is clear that pn is a strictly increasing sequence of well-defined finite injective

maps and that p′ = ∪pn is total.
It is also clear that each pn (and p′) is partitioned into two disjoint sets: pn =

p1
n ∪ p2

n, where p1
n = {bi → δi = γi : 1 ≤ i ≤ n − 1} is called the gamma part of pn

and p2
n = pn \ p1

n is called the epsilon part.
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For every γ ∈ D, we define

deg(γ) =
0 if γ /∈ rg(p′)
min{n : γ ∈ rg(pn)} if γ ∈ rg(p′)

Moreover, deg(c) = max{deg(x) : x ∈ c} for every c ⊆fin D.
The following claims easily derive from the construction of p′.

Claim 4.3.5. ∀n′ > n, (rg(pn′) \ rg(pn)) ∩ Un(pn) = ∅.

Proof. Let β ∈ rg(pn′) \ rg(pn) and k = deg(β). Then n < k ≤ n′. Since β ∈
rg(pk) \ rg(pk−1) and β can be either γk−1 or one of the ϵk−1

j , then β is not an
element of Un(pk−1) by construction of pk. Since Un(pn) ⊆ Un(pk−1), we get the
conclusion.

Claim 4.3.6. If deg(a→ α) = n and α /∈ rg(pn), then α /∈ rg(p′).

Proof. If α ∈ rg(p′) then α ∈ rg(pj) for some j. By α /∈ rg(pn), it must be n < j.
We also have that p′(a, α) = pn(a, α), for deg(p′(a, α)) = n. Thus (a, α) ∈ dom(pn)
and α ∈ Un(pn). By Claim 4.3.5 and α ∈ rg(pj)\rg(pn), we get a contradiction.

Claim 4.3.7. (i) deg(a→ α) ≥ deg(a ∪ {α}).
(ii) If a→ α is in the gamma part of p′, then deg(a→ α) > deg(a ∪ {α}).

Proof. Let deg(a→ α) = n. Thus, p′(a, α) = pn(a, α) and a ∪ {α} ⊆ Un(pn).
(i) If n < deg(α) = j, then α ∈ rg(pj) \ rg(pn), that contradicts Claim 4.3.6. It

follows that deg(α) ≤ n.
If n < deg(a) = j, then there exists θ ∈ a such that deg(θ) = j > n, so that

θ ∈ rg(pj) \ rg(pn). By Claim 4.3.5 θ /∈ Un(pn). This contradicts a ⊆ Un(pn).
(ii) By (i) it is sufficient to show that deg(a∪{α}) ̸= n. By hypothesis a = bn−1,

α = δn−1 and pn(a, α) = γn−1. Then by construction deg(γn−1) = n. By definition of
pn, α is different from γn−1 and from any ϵn−1

j . So it cannot be in rg(pn) \ rg(pn−1).
The same reasoning applies to a = bn−1.

Claim 4.3.8. If αn ∈ rg(p′), then deg(αn) ≤ n.

Proof. By construction of p′ we have that αn ∈ Un(pn+1) and αn /∈ rg(pn+1)\rg(pn).
Then deg(αn) ̸= n + 1. If deg(αn) = j > n + 1, then αn ∈ rg(pj) \ rg(pn+1). This
togehter with αn ∈ Un(pn+1) contradicts Claim 4.3.5.

Claim 4.3.9. The total map p′ contains no cycle β = c1 → c2 → . . . cm → β.

Proof. Consider a minimal cycle βi = ci → βi+1 (1 ≤ i ≤ m−1) and βm = cm → β1.
By Claim 4.3.7 we have deg(β1) ≥ deg(β2) ≥ · · · ≥ deg(βm) ≥ deg(β1). Let us set
this common degree equal to k + 1. If β1 = γk = bk →pk+1 δk then δk = β2 has
degree k + 1. This is not possible by Claim 4.3.7(ii). If β1 = ϵkj then ϵkj = c1 →
c2 → . . . cm → ϵkj . From this it follows that either αk has degree k+1 (contradicting
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Claim 4.3.8) or ϵkj = ϵkj−l (contradicting that the epsilon elements are distinct) or
ϵkj = αk (contradicting the definition of epsilon elements). This concludes the proof
of the claim.

Let X = {αn : n ∈ ω} ∩D. We now show that (D, p′) |= X = F (p′).

• X ⊆ F (p′): it follows from the definition of αn and from the fact that F (pn) ⊆
F (p′).

• F (p′) ⊆ X: suppose γ ∈ F (p′); since F is weakly continuous, γ ∈ F (pi) for
some i (and for all the larger ones). If γ /∈ X then, for all n ≥ i, αn ̸= ∗ has
smaller rank than γ in the enumeration of D, contradicting the fact that there
is only a finite number of such elements.

Let t ≡ s0s1 . . . se ∈Me. Now we show that (D, p′) |= X = |t|p′ .

• X ⊆ |t|p′ : Let αn ̸= ∗. The condition (D, p′) |= αn ∈ |t|p
′ follows immediately

from Lemma 4.3.1 and the fact that

ϵn1 = ϵn1 → ϵn1 → · · · → ϵn1 → αn (e-times).

• |t|p′ ⊆ X: Assume that γ ∈ |t|p′ . Then by Lemma 13 there exists a sequence
βj ≡ aj1 → · · · → aje → γ (j ∈ ω) of elements of D and a sequence dj (j ∈ ω)
of natural numbers ≤ e satisfying the property βj+1 ∈ ajdj

.

By Claim 17 and by βj+1 ∈ ajdj
the sequence deg(βj) is an infinite decreasing

sequence of natural numbers. Then there exist i and n such that deg(βk) =
n+ 1 for all k ≥ i.
There are (at most) e+ 1 elements having degree n+ 1, namely
γn = bn → δn

ϵn1 = ϵn1 → · · · → ϵn1 → αn (e-times)
ϵn2 = ϵn1 → · · · → ϵn1 → αn (e− 1-times)
. . .
ϵne = ϵn1 → αn.
Since deg(βi) = n+1, then βi is one of the element listed above, too. We have
many possibilities:
(1): βi ≡ γn = bn → δn is not possible. In fact, by the definition of βi we
derive that bn ≡ ai1 and δn ≡ ai2 → · · · → aie → γ. By Claim 4.3.7(ii) deg(bn)
and deg(δn) are strictly less than n + 1, so that deg(aij) < n + 1 for every
1 ≤ j ≤ e. From βi+1 ∈ aidi

we get the contradiction deg(βi+1) < n+ 1.
Then we must have that βi ≡ ϵnr for some r.
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(2) βi ≡ ϵnr = ϵn1 → · · · → ϵn1 → αn (e − r + 1-times). By the definition of βi
we derive that aij = {ϵn1} for every 1 ≤ j ≤ e− r+ 1 and αn ≡ aie−r+2 → · · · →
aie → γ. But by Claim 4.3.8 we have that deg(αn) < n+ 1. This implies that
βi+1 = ϵn1 and then that γ = αn.

Since the previous points implies that (D, p′) |= |t|p′ = F (p′), this concludes the
proof of Theorem 4.3.4.

Now we introduce forcing for graph models. This technique allow us to build
a weakly continuous function Ft,ρ suitable for Theorem 4.3.4 by applying Lemma
4.3.11.

Definition 4.3.10. Forcing for graph models. For a term t, a D-environment ρ, a
partial pair (D, q) and α ∈ D, the abbreviation q ⊩ρ α ∈ t means that for all total
injections p ⊇ q we have that (D, p) |= α ∈ |t|pρ. Furthermore q ⊩ρ Y ⊆ t means
that q ⊩ρ α ∈ t for all α ∈ Y .

If t is closed then we drop ρ. Then we write q ⊩ α ∈ t for q ⊩ρ α ∈ t.
Thus, for p is total, p ⊩ α ∈ t if and only if α ∈ |t|p.

Lemma 4.3.11. For every term t and environment ρ the function Ft,ρ : I(D) →
P(D) defined by Ft,ρ(q) = {α ∈ D : q ⊩ρ α ∈ t} is weakly continuous, and we have
Ft,ρ(p) = |t|pρ for each total p.

Proof. The proof of the weak continuity of Ft,ρ is a straightforward induction on the
complexity of t. Let p ∈ Q be total. We have to show that Ft,ρ(p) = 

q⊆finp Ft,ρ(q) =
|t|pρ.

If t is a variable x then Fx,ρ(q) = {α ∈ D : q ⊩ α ∈ ρ(x)} is the constant
function with value ρ(x).

If t = us and α ∈ |t|pρ, then there exists a ⊆ |s|pρ such that p(a, α) ∈ |u|pρ. Choose
such an a and let γ = p(a, α). By induction hypothesis there is a finite q ⊆ p such
that q ⊩ρ a ⊆ s and a finite r ⊆ p such that r ⊩ρ γ ∈ u; then it is clear that
q ∪ r ∪ {((a, α), γ)} ⊩ α ∈ t.

If t = λx.u and α ∈ |t|pρ then there is a unique pair (b, β) such that α = p(b, β)
and β ∈ |u|pρ[x:=b]. By induction hypothesis there is a finite q ⊆ p such that q ⊩ρ[x:=b]
β ∈ u; then it is clear that q ∪ {((b, β), α)} ⊩ρ α ∈ t.

Theorem 4.3.12. Let t be a closed term. Then, for every natural number n there
exists a graph model (D, p′) such that (D, p′) |= t = u for all n-regular mute terms
u ∈Mn.

Proof. We take Ft,ρ as defined in Lemma 4.3.11, where ρ is any environment. Then
we apply Theorem 4.3.4 to get a graph model (D, p′) satisfying the condition of the
theorem.
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Factor algebras for classical logic





5
Introduction

At the beginning of 19th century, Peacock [15] defined algebras whose operations
differ from the ordinary operations between numbers. In 1830, De Morgan, in
Trigonometry and Double Algebra, removed the usual interpretation of the vari-
ables as numbers. These were great improvements, but only in 1847 Boole did the
decisive step in The Mathematical Analysis of Logic: he explicitly states that math-
ematics can be seen as a purely formal system of symbols and operations on them,
whose only need is internal consistency.

This revolutionary idea was one of boosts of the huge development of the algebra
in the second half of the 19th century. It was used to grasp the underlying algebraic
notions in “concrete”, relevant structures, that could later be used to define abstract
algebras. For example, Galois introduced the notion of group after studying the
permutations of a set, while the notion of ring generalizes the algebraic structure of
the set of integers (Dedekind and Hilbert, [37]).

In 1898 Whitehead, in A Treatise on Universal Algebra, introduced for the first
time a notion of Universal Algebra, i.e., a general theory for structures with an
arbitrary number of finitary operations. Unfortunately, he did not have unifying,
relevant results so its book did not have a big influence on the development of al-
gebra. Thirty-seven years later, Garrett Birkhoff, in On the Structure of Abstract
Algebras provided the explicit foundation of Universal Algebra by introducing the
fundamental notions of subalgebra, congruence, variety and by relating it to the
theory of lattices. After this work was published, Universal Algebra greatly devel-
oped. In ’50s Mal’cev started the characterization of properties of varieties by the
existence of certain terms involved in certain identities, called Mal’cev conditions.

Another important area of research is the relationship between Universal Algebra
and Logic. The algebraic analysis of logic dates to the 17th century with Leibniz (see
also Jacob Bernoulli [24]). These were only blurry attempts that did not produce
any further development.

In 1847, in The Mathematical Analysis of Logic Boole introduced Boolean Alge-
bras, which provide a symbolic formulation of logical problems with equations, to
be solved by means of algebraic technique. Some years later De Morgan introduced
the logic of relations in the pursuit of generalizing Aristotelian syllogisms. This new
field of research was further developed by Peirce [15], that in On the Algebra of
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Logic also introduced the notion of quantification. In the last part of 19th century,
Schröder [24] attempted to develop a general algebraic theory of relations that could
be applied to many areas of mathematics.

At the beginning of the 20th century the interest on algebraic methods in logic
declined, since the logical methods and notations introduced in Principia Mathemat-
ica by Russell and Whitehead were accepted by the majority of the mathematical
community.

In ’40s research in algebraic logic had a new boosts. Tarski introduced, in On
the Calculus of Relations, a pure and axiomatic equational theory of the calculus
of relations. In a joint work with Givant [33] he provided an equational logic of
relations in which first-order set theory can be completely expressed .

The other main contribution of Tarski to algebraic logic (in collaboration with
Henkin and Monk) are cylindric algebras [63]. Cylindric algebras provide an al-
gebraic theory for studying first-order logic with equality, as Boolean algebras do
for propositional logic. Tarski also gave purely algebraic proofs of logical theo-
rems, such as the completeness theorem for first-order logic. Halmos [34] used a
similar approach to define Polyadic algebras, which provide an algebraic treatment
of first-order predicate logic on an arbitrary signature (so also without equality).
Since cylindric and polyadic algebras are complex structures, the research on this
field almost completely stopped after the conference on algebraic logic of Budapest
(1988).

Algebraic logic is not restricted to classical logic. In 1930 Heyting provided an
algebraic semantic to intuitionistic logic by introducing Heyting algebras. In ’50s
Chang algebraized the infinite-valued Łukasiewitz logic with Multi-Valued (MV-
)algebras. Algebraic logic is particularly helpful when dealing with substructural
logics. These logics were originally defined as Gentzen-style systems lacking some of
the structural rules. The substructural logic is algebraized by a residuated lattice.
From a mathematical point of view, it is easier to work with these algebraic struc-
tures. Now the theory of substructural logics is mainly developed through algebraic
methods rather than logical ones (see [32]).

In the last decades, researchers try to find simple algebraic formalizations of
first-order logic:

(i) Manca and Salibra in [50] show that every first-order theory is a particular
many-sorted algebra verifying some equational axioms.

(ii) Burris in [22] exhibited a procedure to cast any mathematical problem in the
form:

Is it possible to derive the absurd statement x = y from a particular set
of equations?

He used discriminator varieties and Skolemization as main tools.
(iii) Mycielski in [53] proposed a similar translation but without Skolemization.
There are many possible answers to the problem of reducing first-order logic

to Universal Algebra, but none of them is completely satisfactory. For example,
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Tarski’s cylindric algebras are too complicated, while in Burris’s procedure the
length of the equational proofs grows exponentially (this is a consequence of the
Skolemization). Nevertheless, research is very active in this area.

In this thesis we give our contribution to Algebraic Logic. We introduce the
factor algebras of a first-order type generalizing factor algebras, recently introduced
in [58]. We show that they are the natural algebraic counterpart of first order struc-
tures. Roughly speaking, a relation symbol R of arity n is transformed into an
operation symbol R of arity n+ 2 in such a way that R is a decomposition operator
in the last two coordinates. In this way, given a first-order type τ , we define a bi-
jective correspondence between non-singleton τ -structures and non-trivial τ -factor
algebras: a factor algebra Fa(M) corresponds to a τ -structureM; and a τ -structure
Str(A) corresponds to a factor algebra A. We extend the correspondence to uni-
versal sentences and equations between terms: given a universal τ -sentence ϕ, its
translation ϕ∗(yf , yt) is a term in two variables. We prove that these correspondences
are semantically meaningful, in the sense that M |= ϕ iff Fa(M) |= ϕ∗(yf , yt) = yt.
We start the study of first-order logic through varieties of factor algebras.

In the last part of this thesis, we study propositional logic through factor alge-
bras. Each propositional variable becomes a binary decomposition operator in its
algebraic translation. We show that the axioms defining the variety of factor alge-
bras can be used as rules for an algebraic calculus for propositional logic. We show
that a propositional formula ϕ is a tautology iff the equation ϕ∗ = yt can be proved
by the axioms of factor algebras. This methodology gives a new complete calculus
for propositional logic. We provide a term rewriting system for the calculus, and we
show that it is confluent and terminating.
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6
Preliminaries

6.1 First Order Logic
In this section we follow [30].

Definition 6.1.1. A first-order type τ is a set of symbols consisting of logical sym-
bols and parameters:

• Logical symbols: the left and right parentheses ( , ); the negation symbol ¬;
the conjunction and disjunction symbols ∧,∨; the conditional symbol ⇒; the
universal quantifier ∀; denumerably many variables x, y, z, . . . .

• Parameters: for any n ≥ 1, some (possibly none) symbols R, S, . . . of arity n
called predicate symbols; for any n ≥ 1, some (possibly none) symbols f, g, . . .
of arity n called functions symbols; some (possibly none) symbols c, d, . . . called
constants symbols.

• The denumerable set of variables is usually denoted by Var.

Definition 6.1.2. Let τ be a first-order type.

• A τ -word is a finite sequence of symbols of τ .

• A τ -term is a τ -word built inductively according to the following rules:

– all variables and constants are terms.
– If f is a function symbol of arity n and t1, . . . , tn are terms, then also
f(t1, . . . , tn) is a term.

– Nothing else is a term.

• An τ -atomic formula is any τ -word of the form R(t1, . . . , tn), where t1, . . . , tn
are terms and R is a predicate symbol of arity n.

• A τ -well-formed formula (wff for short) is a τ -word built inductively as follows:

– every atomic formula is a wff.
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– If ϕ, ψ are wff and x is a variable, then expressions of the form

¬ϕ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ∀x.ϕ

are wff.
– Nothing else is a wff.

In the following, if clear from the context, we omit the suffix “τ -” in “τ -terms”,
“τ -expressions” etc.

Let x ∈ Var and ϕ be a wff. We say that x is free in ϕ if:

• ϕ = R(t1, . . . , tn) is an atomic formula and x occurs in some term ti.

• ϕ has the form ¬ψ and x is free in ψ.

• ϕ has one the following forms: ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1 → ψ2, and x is free in ψ1
or in ψ2.

• ϕ has the form ∀z.ψ and x ̸= z and x is free in ψ.

We say that x is bound in ϕ iff it is not free in ϕ.
A sentence is a formula without free variables.

6.1.1 Structures
Definition 6.1.3. A structure M of type τ is a tuple (M,RM, fM, cM)R,f,c∈τ sat-
isfying the following conditions:

• M is a non-empty set, called the universe of M.

• RM is a subset of Mn, for any n-ary predicate symbol R ∈ τ .

• fM is a function from Mn to M , for any n-ary function symbol f ∈ τ .

• cM is an element of M , for any constant symbol c ∈ τ .

We denote by Strτ the class of all structures of type τ and by Str∗
τ the class of

all structures of type τ whose universe has cardinality at least 2.
A function ρ : Var → M from the set Var of variables to the universe M of a

structure M is called environment.
Let ϕ be a wff, M be a structure and ρ be an environment. Roughly speaking,

we say that M satisfies ϕ with ρ (notation M |=ρ ϕ) when the translation of ϕ
determined by M, where all variables xi are translated as ρ(xi) whenever they
occur free in ϕ, is true. The formal definition of satisfaction is not difficult but it is
rather cumbersome ([30] pp. 83-84).

Let ϕ be a sentence and M be a structure. It can be proved that if M |=ρ′ ϕ
for a particular environment ρ′, then M |=ρ ϕ for any environment ρ. So, if ϕ is a
sentence, we can drop the subscript ρ in M |=ρ ϕ.
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Definition 6.1.4. Let ϕ be a sentence and Σ be a set of sentences. We say that
Σ logically implies ϕ, and we write Σ |= ϕ, if and only if for every structure M, if
M |= ψ for all ψ ∈ Σ, then M |= ϕ.

A sentence ϕ is called valid if ∅ |= ϕ.

Definition 6.1.5. Let Σ be a set of sentences. We say that M is a model of Σ iff
for every ψ ∈ Σ, M |= ψ.

Let ϕ be a wff whose free variables are x1, . . . xn. We have that, for any structure
M,

for any environment ρ,M |=ρ ϕ if and only if M |= ∀x1 . . . ∀xn.ϕ.

The sentence ∀x1 . . . ∀xn.ϕ is called the universal closure of ϕ.
A set of sentences Σ is a theory if it is closed under logical implication, i.e. if

Σ |= ϕ implies ϕ ∈ Σ. A theory Σ is called complete if, for any formula ϕ, ϕ ∈ Σ or
¬ϕ ∈ Σ. The set of all true sentences of a structure is always a complete theory.

A theory is consistent if it is a proper subset of the set of sentences, inconsistent
otherwise.

6.1.2 Homomorphisms of structures
Definition 6.1.6. Let M,N be structures of type τ . A function h : M → N is an
homomorphism of structures if:

• for any n-ary predicate symbol R and a1, . . . , an ∈M ,

RM(a1, . . . , an) ⇒ RN (h(a1), . . . , h(an)).

• For any n-ary function symbol f and a1, . . . , an ∈M ,

h(fM(a1, . . . , an) = fN (h(a1), . . . , h(an)).

• For any constant symbol c,
h(cM) = cN .

A strong homomorphism of structures is an homomorphism such that, for any
n-ary relation R,

RM(a1, . . . , an) ⇔ RN (h(a1), . . . , h(an)).

A bijective strong homomorphism between structures M and N is called iso-
morphism. If such a function exists, we say thatM and N are isomorphic (notation
M∼= N ).
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6.1.3 Products of structures
Definition 6.1.7. Let X be a non-empty set. A set F ⊆ P(X) is a filter on X if
the following conditions hold:

• X ∈ F .

• x, y ∈ F implies x ∩ y ∈ F .

• x ∈ F and x ⊆ y imply y ∈ F .

A proper filter not containing 0 which is not properly contained in any other filter
is called ultrafilter .

Given elements a, b of an arbitrary product 
i∈I Ai, the set [a = b] = {i ∈ I :

ai = bi} is called the equalizer of a and b.
In the following, (Mi)i∈I is a non-empty set of structures of type τ . a(i) denotes

the ith coordinate of an element a ∈ 
iMi.

Definition 6.1.8. Let F be a filter on I. We define an equivalence relation θF on
iMi as follows:

(a, b) ∈ θF iff Ja = bK ∈ F .

The set of equivalence classes of 
iMi with respect to θF is denoted by 

iMi/F .

If (a1, b1), . . . , (an, bn) are all in θF , then (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θF for
any n-ary function symbol f of τ .

Definition 6.1.9. Let (Mi)i∈I be structures and F be a filter on I. The reduced
product of (Mi)i∈I w.r.t. F is the structure N = 

i∈IMi/F defined as follows:

N = (

i∈I
Mi/F , RN , fN , cN )

(a1, . . . , an) ∈ RN iff {i ∈ I : (a1(i), . . . , an(i)) ∈ RMi} ∈ F
fN (a1/F , . . . , an/F) = f


Mi(a1, . . . , an)/F

cN = c


Mi/F

If F is the trivial filter {I}, then 
iMi/F is denoted by 

iMi and is called
direct product of (Mi)i∈I . If U is an ultrafilter, then 

iMi/U is called ultraproduct.
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6.2 Universal Algebra
In this section we follow [23].

Definition 6.2.1. Let τ be an algebraic type (that is, a first-order type without
relation symbols). An algebra A of type τ is a structure of type τ , i.e., A =
(A, fA, cA)f,c∈τ where A is a non-empty set, fA is a function from An to A and
cA is a fixed element of A (for every n-ary function symbol f and constant c).

An algebra whose underlying set is a singleton is called trivial algebra.
According to Definition 6.2.1, all of the following well-known structures are al-

gebras: semigroups, monoids, groups, semirings, rings, modules, lattices, boolean
algebras.

Definition 6.2.2. An algebra B of type τ is a subalgebra of an algebra A (notation
A ≤ B) if B ⊆ A, fB(b1, . . . , bn) = fA(b1, . . . , bn), for any f ∈ τ and elements
b1, . . . , bn ∈ B, and cB = cA for any constant symbol c ∈ τ .
Definition 6.2.3. Let A,B be algebras on the same type τ . A function h : A→ B
is a homomorphism of algebras if

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an))

for all f ∈ τ and a1, . . . , an ∈ A.
An injective homomorphism is called embedding. An injective and surjective

homomorphism is an isomorphism.

Definition 6.2.4. Let A be an algebra of type τ . An equivalence relation θ on A is
a congruence if, for any n-ary symbol f and elements a1, . . . , an, b1 . . . , bn of A,

(a1, b1), . . . , (an, bn) ∈ θ ⇒ (fA(a1, . . . , an), fA(b1, . . . , bn)) ∈ θ

Notation: if clear from the context, we denote (a, b) ∈ θ by aθb.
Given a, b elements of A, we denote by θ(a, b) the least congruence on A such

that a and b are in the same equivalence class; a congruence of the form θ(a, b) is
called a principal congruence. Given an arbitrary set X ⊆ A, we denote by θ(X)
the least congruence such that all elements of X are in the same equivalence class.

We denote by ∆ and ∇ respectively the congruences {(x, y) ∈ A × A : x = y}
and {(x, y) ∈ A × A : x, y ∈ A}. An algebra whose congruences are only ∆ and ∇
is called simple.

Given congruences θ, θ′ on A, the least congruence containing θ and θ′ is denoted
by θ ∨ θ′. The greatest congruence contained in θ and in θ′ is exactly θ ∩ θ′.

Definition 6.2.5. Let θ be a congruence on A. The quotient algebra of A by θ is
the algebra A/θ whose universe is A/θ and whose operations are defined as follows:
for any n-ary symbol f and elements a1, . . . , an of A,

fA/θ(a1/θ, . . . , an/θ) = fA(a1 . . . , an)/θ.
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Given an homomorphism h : A→ B, the kernel of h, (ker(h) for short), is the
set

ker(h) = {(a, b) ∈ A× A : h(a) = h(b)}.
For every homomorphism h : A → B, ker(h) is a congruence on A. Conversely,
any congruence on A is the kernel of a homomorphism from A to an appropriate
algebra B.

Definition 6.2.6. Given algebras A,B of the same type τ , the direct product A×B
of A and B is the algebra whose universe is the set A×B and whose operations are
defined as follows: for all a1, . . . , an ∈ A, b1, . . . , bn ∈ B and n-ary symbol f ∈ τ ,

fA×B((a1, b1), . . . , (an, bn)) = (fA(a1, . . . , an), fB(b1, . . . , bn)),

and, for any constant symbol c ∈ τ ,

cA×B = (cA, cB).

The map πA : A × B → A, defined as πA(a, b) = a is an homomorphism from
A×B to A and is called projection on the first coordinate. The map πB : A×B → B,
defined as πB(a, b) = b is an homomorphism from A×B to B and is called projection
on the second coordinate.

All these definitions generalize to products of algebras on any set of indices
I ̸= ∅.

Definition 6.2.7. A congruence θ on an algebra A is a factor congruence if there
exists another congruence θ̄ such that θ ∩ θ̄ = ∆ and θ ◦ θ̄ = ∇, where ◦ is the
composition of relations. In this case we say that (θ, θ̄) is a pair of complementary
factor congruences.

If (θ, θ̄) is a pair of complementary factor congruences, then A is isomorphic
to A/θ ×A/θ̄. Any decomposition of an algebra A as a Cartesian product is, up
to isomorphism, isomorphic to A/θ × A/θ̄ for some pair of complementary factor
congruences.

An algebra which is not isomorphic to the product of two non-trivial algebras is
called directly indecomposable. Directly indecomposable algebras are exactly those
with one pair of factor congruences (∆,∇).

Definition 6.2.8. Given a non-empty set of algebras (Ai)i∈I , we say that C is a
subdirect product of 

i Ai if C is a subalgebra of 
i Ai and πAi

(C) = Ai for all
i ∈ I.

An embedding h : A→ 
i∈I Ai is subdirect if h(A) is a subdirect product of 

i∈I Ai.

Definition 6.2.9. An algebra A is subdirectly irreducible if for any subdirect em-
bedding h : A→ 

i∈I Ai there is j ∈ I such that πj ◦ h is an isomorphism.
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The totally ordered lattice 3 = {3,∧,∨} is an example of a subdirectly irreducible
algebra: given 2 = {2,∧,∨}, 3 can be seen as a subalgebra of 2 × 2 such that
π(3) = 2, but a cardinality reason shows that such π cannot be injective.

An algebra A is subdirectly irreducible iff it is trivial or it has a minimal con-
gruence strictly containing ∆. This implies that any subdirectly irreducible algebra
is directly indecomposable.

Theorem 6.2.10. (Birkhoff, [23]) Every algebra is isomorphic to a subdirect product
of subdirectly irreducible algebras.

6.2.1 Varieties
Given a class K of algebras of type τ , we define:

S(K), the class of the subalgebras of algebras in K.
H(K), the class of the homomorphic images of algebras in K.
P (K), the class of the direct products of algebras in K.

Definition 6.2.11. A nonempty class K of algebras of type τ is a variety if it closed
under subalgebras, homomorphic images and direct products.

Given a class of algebras K, we denote by V(K) the variety generated by K.

Theorem 6.2.12. (Tarski) Given a class of algebras K, V(K) = HSP (K).

Thanks to Theorem 6.2.10, the following fundamental result holds.

Theorem 6.2.13. (Birkhoff) Every algebra in a variety V is isomorphic to a sub-
direct product of subdirectly irreducible members of V.

A class of algebras K is called equational if there exists a set Σ of equations such
that

K = {A : A satisfies all equations of Σ}.

Theorem 6.2.14. (Birkhoff, [23]) A class of algebras is a variety if and only if it
is an equational class.

6.2.2 Decomposition operators
Factor congruences can be characterized in terms of certain algebra homomorphisms
called decomposition operators (see [51, Def. 4.32] for more details).

Definition 6.2.15. Let A be an algebra of type τ . A decomposition operator on A
is a function f : A× A→ A satisfying the following conditions:

(D1) f(x, x) = x.
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(D2) f(f(x11, x12), f(x21, x22)) = f(x11, x22).

(D3) f is an homomorphism from A×A into A.

There exists a bijective correspondence between a pair of complementary factor
congruences and decomposition operations.

Proposition 6.2.16. [51, Thm.4.33] Let A be an algebra of type τ . Given a de-
composition operator f : A2 → A, the binary relations θ and θ̄, defined by:

x θ y if, and only if, f(x, y) = y; x θ̄ y if, and only if, f(x, y) = x,

form a pair of complementary factor congruences. Conversely, given a pair (θ, θ̄) of
complementary factor congruences, the function f defined by:

f(x, y) = u if, and only if, xθuθ̄y, (6.1)

determines a decomposition operator on A.

6.2.3 Boolean algebras
Definition 6.2.17. A boolean algebra B is an algebra (B,∧,∨,′ , 0, 1) where ∧,∨
are binary functions, ′ is an unary function and 0, 1 are constants satisfying the
following identities, for all x, y, z ∈ B:

• x ∧ x = x, x ∨ x = x.

• x ∧ y = y ∧ x, x ∨ y = y ∨ x.

• x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z.

• x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x.

• x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

• x ∧ 0 = 0, x ∨ 1 = 1.

• x ∧ x′ = 0, x ∨ x′ = 1.

Given a set X, the structure (P(X),∩,∪,′ ,∅, X) is a boolean algebra called
Boolean algebra of all subsets of X. The boolean algebra of truth values is denoted
by 2 and it is the simplest non-trivial boolean algebra.

Theorem 6.2.18 (Stone, [23] pag. 134). 2 is the only subdirectly irreducible boolean
algebra.

Theorem 6.2.19 (Stone,[23] pag. 134). Any boolean algebra B is a subdirect product
of 2I for some set of indices I.
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6.3 Discriminator varieties
The notion of discriminator variety is one of the most important generalizations of
Boolean algebras, since it is possible to use Boolean product representations (see
[23], pp. 174-191).

Definition 6.3.1. Let A be an algebra of type τ and f : An → A a function. We
say that the term u(x1, . . . , xn) of type τ realizes f in A if, for all a1, . . . , an ∈ A,

uA(a1, . . . , an) = f(a1, . . . , an).

Given a set A, the switching function s : A4 → A is the function defined as
follows:

s(a, b, x, y) =
x if a = b.

y otherwise.

Definition 6.3.2. Let K be a class of algebras such that there is a term u that
realizes the switching function for all A ∈ K. Then the variety V(K) is called
discriminator variety.

The following theorem equationally characterizes discriminator varieties.

Theorem 6.3.3. (Vaggione [67]). A variety V of type τ is a discriminator variety
iff there is a quaternary term u of type τ satisfying the following identities:

(D1) u(x, x, y, z) = y.

(D2) u(x, y, z, z) = z.

(D3) u(x, y, u(x, y, v, w), z) = u(x, y, v, z) = u(x, y, v, u(x, y, w, z)).

(D4) u(x, y, f(v), f(w)) = f(u(x, y, v1, w1), . . . , u(x, y, vn, wn)), for any n-ary sym-
bol f ∈ τ .

(D5) u(x, y, x, y) = y.
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7
Factor algebras for first-order logic

The notion of discriminator variety is one of the keynote of Universal Algebra. It is
the most successful generalization of Boolean algebras: it provides a common context
for different kind of algebras (e.g., Boolean algebras, Post algebras, n-dimensional
cylindric algebras). Discriminator varieties satisfy strong algebraic properties, such
as the Boolean product representation. A lot of generalizations of the discriminator
varieties has been proposed. Factor varieties are among them. They are the starting
point of this chapter and were introduced in a restricted form in [58].

In Section 7.1 we recall the original definition of factor algebra and introduce a
first generalization of this notion.

In Section 7.2 we define the factor algebras associated with a first-order type and
show their relationship with the class of first-order structures. The class functions
Str and Fa are defined in the same section. We also study the properties of the lattice
of the congruences of a factor algebra by the notion of splitting pair. We characterize
simple, subdirectly irreducible and directly indecomposable factor algebras through
congruence properties and introduce rigid and pure factor algebras.

In Section 7.3 we define factor varieties and prove some results on the classes of
their factor algebras.

In the final section, Section 7.4, we study in more details the class functions Str
and Fa.

7.1 Preliminaries
We recall that in a discriminator variety V of type τ there is a τ -term u that realizes
the discriminator function for any subdirectly irreducible A ∈ V (see Section 6.3).
Roughly speaking, the term u algebraize the equality relation. Factor varieties gen-
eralize discriminator varieties in the sense that the equality relation is substituted
by an arbitrary binary relation R. More formally, a variety V is a factor variety
if there is a quaternary term u, called factor term, satisfying the following condi-
tion for any subdirectly irreducible algebra A ∈ V: uA(a, b, c, d) ∈ {c, d} for every
a, b, c, d ∈ A. It is possible to show that V is a factor variety with a common factor
term u iff, for any A ∈ V and all a, b ∈ A, the binary function u(a, b,−,−) is a
decomposition operator (see [58]). Factor algebras had not been introduced only
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for a purpose of generalization. Factor algebras provide a general environment for
studying concepts coming from fuzzy logic (Gödel algebras, product algebras) and
quantum logic (Jauch-Piron orthomodular lattices with states).

7.1.1 A generalization of factor algebras
A factor variety is defined as the variety generated by a class of factor algebras with
a common factor term u.

In the original definition (see [58]) an algebra A of type τ is called a factor
algebra if there is a quaternary τ -term u satisfying the following condition, for every
a, b ∈ A2:

∀xy.uA(a, b, x, y) = x ∨ ∀xy.uA(a, b, x, y) = y.

The factor term u defines the binary relation Ru = {(a, b) : uA(a, b, x, y) = x} on A.
This definition can be naturally generalized to represent any finitary relation.

Definition 7.1.1. A is a factor algebra if there is a n+2-ary τ -term u satisfying
the following condition, for every a1, . . . , an ∈ An:

∀yz.uA(a1, . . . , an, y, z) = y ∨ ∀yz.uA(a1, . . . , an, y, z) = z.

Any factor term u defines a n-ary relation

Ru = {(a1, . . . , an) : uA(a1, . . . , an, y, z) = y for all y, z ∈ A}.

This relation is called the factor relation of u.
Definition 7.1.1 is just the first step of a broader generalization. In the forth-

coming section we introduce another type of factor algebras, that can realize an
arbitrary number of finitary relations. This naturally leads us to link them with
first-order types.

7.2 Factor algebras of first-order types
Let τ be a generic type of first-order structures with some (possibly none) function
symbols and with some (possibly none) relation symbols.

We denote by ντ the algebraic type defined as follows:

1. If g is an n-ary function symbol of type τ , then g is also an n-ary function
symbol of type ντ ;

2. If R is an n-ary relation symbol of type τ , then R̂ is an n + 2-ary function
symbol of type ντ ;

3. Nothing else belongs to ντ .
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We denote by

Alg(ντ ) = {g : g is a function symbol of type τ}

and by
Rel(ντ ) = {R̂ : R is a relation symbol of type τ}.

To simplify the notation we say that the symbol R̂ is a relation symbol.

Definition 7.2.1. A factor algebra of first-order type τ , or simply a τ-factor
algebra, is a ντ -algebra A = (A, gA, R̂A)g,R∈τ satisfying the following condition, for
all ā ∈ An and all relation symbols R ∈ τ :

∀yz.R̂(ā, y, z) = y ∨ ∀yz.R̂(ā, y, z) = z.

FAτ denotes the class of all τ -factor algebras, while FA∗
τ denotes the class of all

τ -factor algebras of cardinality ≥ 2.
Given a τ -factor algebra A, the relational reduct of A is the algebra Rel(A) =

(A, R̂A)R∈τ and the algebraic reduct of A is the algebra Alg(A) = (A, gA)g∈τ .
I recall that Str∗

τ denotes the class of structures of type τ whose universe is a
non-singleton set.
Example 7.2.2. If equality is in τ , then any element of FAτ is a discriminator algebra.
The term R̂ that algebraizes the equality relation is called discriminator term.

Definition 7.2.3. We define a class function Str from Fa∗
τ to Str∗

τ as follows:

A = (A, gA, R̂A) →→ Str(A) = (A, gStr(A), RStr(A))

where functions and relations of Str(A) are defined as

gStrA = gA

(a1, . . . , an) ∈ RStr(A) if ∀xy.R̂A(a1, . . . , an, x, y) = x.

Vice versa, we define a class function Fa from Str∗
τ to Fa∗

τ :

M = (M, gM, RM) →→ Fa(M) = (M, gFa(M), R̂Fa(M))

where functions of Fa(A) are defined as

gFa(M) = gM

R̂Fa(M)(a1, . . . , an, x, y) =
x if (a1, . . . , an) ∈ RM.
y if (a1, . . . , an) /∈ RM.

The following straightforward proposition builds a bridge between logic and the
theory of factor algebras.
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Proposition 7.2.4. Class functions Str and Fa define bijective correspondences
between the classes Str∗

τ and Fa∗
τ .

In particular, for any structure M and factor algebra A, Str(Fa(M)) =M and
Fa(Str(A)) = A.

The correspondence fails for structures of cardinality 1: let C1 and C2 be struc-
tures whose universe is a singleton set {x} and whose type is the mono unary type
τ = {R}. If C1 |= R(x) but C2 ⊭ R(x), then we have two non-isomorphic struc-
tures, while there is only one trivial factor algebra. In general, in fact, there exists
different τ -structures whose universe is a singleton set, while we have just one trivial
factor algebra.

If not explicitly stated, in the following we will consider only non-singleton struc-
tures and non-trivial factor algebras.

7.2.1 Congruences of factor algebras
In this section we develop the basics of the theory of congruences of factor algebras.
The keynote is the notion of unsplitting pair: roughly speaking, an ordered pair
(b, c) of a factor algebra A is unsplitting if we cannot “distinguish” b and c in the
structure Str(A) by using relational symbols. With this notion we can compare
the congruences of a factor algebra A to those of its algebraic reduct Alg(A) and
give characterization of simple, subdirectly irreducible and directly indecomposable
factor algebras.

Notation 2. : if ā = a1, . . . , an is a sequence, then ā[b/i] denotes the sequence

a1, . . . , ai−1, b, ai+1, . . . , an.

In the following A is factor algebra of type τ .

Definition 7.2.5. We say that an ordered pair (b, c) ∈ A2 splits A if there exists a
relation symbol R ∈ τn and ā ∈ An such that

R̂(ā[b/i], x, y) = R̂(ā[c/i], y, x), for all x, y ∈ A.

An ordered pair is unsplitting if it does not split A. We denote by ΥA the set of all
unsplitting ordered pairs of A.

Equivalently to Definition 7.2.5, a pair (b, c) is unsplitting if for every n-ary
relation R, for every a1, . . . , an, x, y ∈ A and for every index 1 ≤ i ≤ n, we have that

R̂(a1, . . . , ai−1, b, ai+1, . . . , an, x, y) = R̂(a1, . . . , ai−1, c, ai+1, . . . , an, x, y). (7.1)

Given a structure M, a pair (b, c) is unsplitting if for every relation R ∈ τn, for
every a1, . . . , an ∈M and for every index 1 ≤ i ≤ n, we have that

(a1, . . . , ai−1, b, ai+1, . . . , an) ∈ R iff (a1, . . . , ai−1, c, ai+1, . . . , an) ∈ R. (7.2)
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Example 7.2.6. Let V = ({a, b, c, d}, <) be the strict partial order represented in the
following diagram. The type is τ = {<}: we stress that equality is not present.

v

zy

x

Given any pair of elements (a1, a2) ∈ V × V , we have a1 < y ⇔ a1 < z and
y < a2 ⇔ z < a2. So (y, z) is an unsplitting pair of V . The pair (x, y) is an example
of splitting pair (x < y holds but y < y does not).

Lemma 7.2.7. The set ΥA of all unsplitting pairs is a congruence on the algebra
Rel(A).

Proof. By Equation 7.1 it easily follows that ΥA is an equivalence relation.
Let b1ΥAc1, . . . , bnΥAcn, x1ΥAy1, x2ΥAy2 and R̂ be a n-ary relation. We have

that, thanks to Equation 7.2,

(b1, b2 . . . , bn) ∈ RStr(A) ⇔
(c1, b2 . . . , bn) ∈ RStr(A) ⇔
(c1, c2 . . . , bn) ∈ RStr(A) ⇔

. . .
(c1, c2 . . . , cn) ∈ RStr(A)

It follows that R̂(b1, . . . , bn, x1, x2)ΥAR̂(c1, . . . , cn, y1, y2).

Lemma 7.2.8. Let R ∈ τn, and ā, b̄ ∈ An. If R̂(ā, x, y) = R̂(b̄, y, x) with x ̸= y,
then there exists 1 ≤ k ≤ n such that (ak, bk) splits A.

Proof. Let i be the least index such that ai ̸= bi. If R̂(ā, x, y) = R̂(ā[bi/i], y, x)
then the pair (ai, bi) splits A. Otherwise, we have R̂(ā, x, y) = R̂(ā[bi/i], x, y); thus
R̂(ā[bi/i], x, y) = R̂(b̄, y, x). We repeat the reasoning with the sequences ā[bi/i] and
b̄. We now find the least j > i such that aj = a[bi/i]j ̸= bj. Iterating the reasoning, if
we do not find a pair splitting A, we get the contradiction R̂(b̄, x, y) = R̂(b̄, y, x).

Let S ⊆ A × A be a relation. We say that S splits A if there exists (c, d) ∈ S
splitting A (i.e., S ̸⊆ ΥA). If B ⊆ A we say that B splits A if B ×B splits A.

The following lemma describes the principal congruences θA(a, b) of A by con-
sidering its splitting property and the congruence θAlg(A) of the algebraic reduct
Alg(A).
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Lemma 7.2.9. Let A be a τ -factor algebra, a and b distinct elements of A and
θAlg(A)(a, b) the principal congruence on Alg(A) generated by a, b. Then the principal
congruence θA(a, b) on A generated by a, b satisfies the following condition:

θAlg(A)(a, b) ⊆ θA(a, b)

In particular, if θAlg(A)(a, b) splits A, then θA(a, b) = ∇. Otherwise, θAlg(A)(a, b) =
θA(a, b)

Proof. The condition θAlg(A)(a, b) ⊆ θA(a, b) is a straightforward consequence of the
fact that the type of Alg(A) is contained into ντ .

Now let ϕ = θAlg(A)(a, b). If ϕ splits A, then there exist R ∈ τn, ā ∈ An and
(c, d) ∈ ϕ such that, for example, x0 = R̂A(ā[c/i], x0, x1) ϕ R̂A(ā[d/i], x0, x1) = x1.
Since x0, x1 can be arbitrarily chosen, this gives the conclusion.

If ϕ does not split A, then by Lemma 7.2.8 āϕb̄, x0ϕy0 and x1ϕy1 imply that
R̂A(ā, x0, x1) = xiϕyi = R̂A(b̄, y0, y1).

Corollary 7.2.10. Let A be a factor algebra. Every proper congruence of A is
contained within ΥA (In symbols,  Con∗(A) ⊆ ΥA). If ΥA is proper and ΥA ∈
Con(A), then ΥA is the unique coatom of Con(A).

Factor algebras in which any pair of elements is unsplitting are called rigid and
have important properties: every directly decomposable factor A is such.

Definition 7.2.11. A factor algebra A is rigid if ΥA = A× A.

In other words, A is rigid iff for every relational symbol R ∈ τn, we have that
RStr(A) = An or RStr(A) = ∅. In such a case we say that Str(A) is rigid. Analogously,
a structure M is rigid if Fa(M) is a rigid factor algebra.

Proposition 7.2.12. If A is directly decomposable then A is rigid.

Proof. Let A be directly decomposable. Then there exists a pair (ϕ, ϕ̄) of non-
trivial complementary factor congruences. By Lemma 7.2.9 and ϕ, ϕ̄ ̸= ∇, we have
ϕ ∪ ϕ̄ ⊆ ΥA. Assume, by the way of contradiction, that A is not rigid. Then
there exist c, d ∈ A such that (c, d) splits A. This means that R̂A(ā[c/i], x, y) =
R̂A(ā[d/i], y, x) for some R ∈ τn and ā ∈ An. Since ϕ, ϕ̄ ⊆ ΥA and ϕ ◦ ϕ̄ = ∇,
then there exists a unique z such that cϕzϕ̄d. From (c, z), (z, d) ∈ ΥA we get the
contradiction (c, d) ∈ ΥA.

The following proposition gives characterizations of simple, subdirectly irre-
ducible and directly indecomposable factor algebras in terms of properties of their
congruences.

Proposition 7.2.13. Let A be a factor algebra of cardinality > 2 and B = Alg(A).
Then:
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(1) A is simple iff every proper principal congruence on B splits A.

(2) A is subdirectly irreducible and non-simple iff there exists a proper principal
congruence ϕ ∈ Con(B), that satisfies the following conditions:

(a) ϕ is an atom of Con(B);
(b) ϕ does not split A;
(c) Every ψ ∈ Con(B) \ [ϕ,∇] splits A.

(3) A is directly indecomposable iff at least one of the following conditions is sat-
isfied:

(d) A is not rigid;
(e) A is rigid and B is directly indecomposable.

Proof. (1) By Lemma 7.2.9.

(2) Let A be s.i., but not simple. Then Con(A) has a unique atom ϕ ̸= ∇. By
Lemma 7.2.9 ϕ does not split A. If ϕ were not an atom of Con(B), then every
congruence ∆ ⊂ ψ ⊂ ϕ would be also a congruence of Con(A), contradicting
that ϕ is an atom of Con(A). Then, for every ψ ∈ Con(B), either ϕ ⊆ ψ or
ϕ ∩ ψ = ∆. In this last case ψ must split A. The opposite direction is trivial.

(3) If A rigid, then, by Lemma 7.2.9, Con(A) = Con(B): so A is directly in-
decomposable iff B is so. If A is not rigid, then by Lemma 7.2.12 it is not
directly indecomposable.

7.2.2 Pure factor algebras
Definition 7.2.14. A factor algebra A or a structure M is pure if its type τ does
not have function symbols.

We obviously have that A = Rel(A) and that every non-empty subset of A is a
subalgebra.
The following two corollaries describe in details the congruences of pure factor al-
gebras.

Corollary 7.2.15. Let A be a pure τ -factor algebra and a, b be distinct elements
of A. Then we have that the principal congruence θA(a, b) on A generated by a, b
satisfies the following condition:

θA(a, b) =
∇A if (a, b) splits A;

∆A ∪ {(a, b), (b, a)} otherwise.
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Proof. If (a, b) splits A, then it follows from Lemma 7.2.9. Otherwise, we consider
the characterization of unsplitting pairs given by Fact 7.1.

Corollary 7.2.16. Let A be a pure factor algebra.

(1) If ϕ is an equivalence relation which does not split A, then ϕ ∈ Con∗(A).

(2) If A is rigid, any equivalence relation is a congruence.

(3) Con(A) is an atomic lattice, whose atoms are the principal congruences.

(4) ΥA ∈ Con(A). If A is not rigid, then ΥA is the unique coatom.

Proof. (1), (2) and (3) are simple consequences of Corollary 7.2.15.
By Lemma 7.2.7, ΥA is a congruence on A. If A is not rigid, then it is not equal

to ∇, so by Corollary 7.2.10 it is the unique coatom.

Here we give an analogous result of Proposition 7.2.13 for pure factor algebras.

Corollary 7.2.17. Let A be a pure τ -factor algebra of cardinality > 2. Then:

(1) A is simple iff ΥA = ∆.

(2) A is subdirectly irreducible iff either ΥA = ∆ or ΥA = ∆ ∪ {(a, b), (b, a)} for
some a, b iff |Con(A)| = 3.

(3) A is directly indecomposable and rigid iff A is finite of prime cardinality.

(4) If A is rigid then its congruence lattice is the lattice of its equivalence relations.

Proof. (1) Trivial by Proposition 7.2.13.

(2) Trivial by Proposition 7.2.13.

(3) If A rigid, then every equivalence relation is a congruence on A. The lattice of
equivalence relations on A does not admit non-trivial pairs of complementary
equivalences iff A is finite of prime cardinality.

(4) By Corollary 7.2.16.
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7.2.2.1 Decidability of pure and rigid structures

This short paragraph is devoted to pure and rigid structures: in particular we show
the decidability of their theories.

Lemma 7.2.18. Let M be a rigid structure. For any formula ϕ, M |= ∀x.ϕ ⇔
∃x.ϕ.

Proof. Let R be a relation symbol of arity n. M |= ∃x.R(a1, . . . , ai−1, x, ai+1, . . . , an)
iff there is b ∈M such thatM |=ρ R(a1, . . . , ai−1, b, ai+1, . . . , an). ButM is rigid, so
the truth value of R(x̄) is independent of the choice of the elements of M replacing
x̄. A simple induction on the complexity of ϕ proves the lemma.

Proposition 7.2.19. Let M be a pure and rigid τ -structure. Then the theory of
M is decidable.

Proof. To check the truth value of ϕ, we put ϕ in prenex normal form φ and then
check the truth value of ψ, the matrix of φ. For doing this, we only need to check
the truth value of the relations that appear in ψ and then to apply the propositional
calculus. Thanks to Lemma 7.2.18, the result we get is equal to the truth value of
ϕ.

7.3 Factor varieties
Definition 7.3.1. Let K be a class of factor algebras of type τ .Then the variety
V(K) generated by K is called a τ -factor variety.

Definition 7.3.2. Let τ be a first order type. FAτ denotes the factor variety gener-
ated by the τ -factor algebras.

By extending Prop 3.4 of [58], we have the following axiomatic characterization
of factor varieties.

Theorem 7.3.3. Let τ be a type. A variety V of type τ is a factor variety iff for
every relation symbol R ∈ τ the following equations hold:

F1 R̂(x̄, z, z) = z;

F2 R̂(x̄, R̂(x̄, x11, x12), R̂(x̄, x21, x22)) = R̂(x̄, x11, x22).

F3 R̂(x̄, h(ȳ), h(z̄)) = h(R̂(x̄, y1, z1), R̂(x̄, y2, z2), . . . , R̂(x̄, yk, zk)), for every h ∈ ντ
of arity k.

Proof. Let A be a subdirectly irreducible algebra of K and ā a n-tuple in A.
“⇒”
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(F1) By definition of factor variety, in A we have that R̂A(ā, y, z) is equal to the
value of the n+ 1 or the n+ 2 coordinate, so R̂A(ā, z, z) = z holds.

(F2) If A |= ∀xy.R̂A(ā, x, y) = x, then R̂A(ā, R̂A(ā, x11, x12), R̂A(ā, x21, x22)) =
R̂A(ā, x11, x21) = x11 = R̂A(ā, x11, x22).
If A |= ∀xy.R̂A(ā, x, y) = y, then R̂A(ā, R̂A(ā, x11, x12), R̂A(ā, x21, x22)) =
R̂A(ā, x21, x22) = x22 = R̂A(ā, x11, x22).

(F3) Let h be in ντ of arity k.
If A |= ∀xy.R̂A(ā, x, y) = x, then R̂A(x̄, hA(ȳ), hA(z̄)) = hA(ȳ) =
hA(R̂A(x̄, y1, z1), R̂A(x̄, y2, z2), . . . , R̂A(x̄, yk, zk)).
If A |= ∀xy.R̂A(ā, x, y) = y, then R̂A(x̄, hA(ȳ), hA(z̄)) = hA(z̄) =
hA(R̂A(x̄, y1, z1), R̂A(x̄, y2, z2), . . . , R̂A(x̄, yk, zk)).

“⇐” By conditions F1, F2 and F3 the function f(y, z) = R̂(ā, y, z) is a decomposition
operator. A is directly indecomposable, then we have that {(y, z) : R̂A(ā, y, z) =
y} = A2 or {(y, z) : R̂A(x̄, y, z) = z} = A2, i.e., A is a factor algebra.

Given a factor variety V, Vfa is the class of its factor varieties: in the following
we show some of its properties.
Corollary 7.3.4. Given a factor variety V, every directly indecomposable algebra
A ∈ V is a factor algebra.
Proof. In any directly indecomposable algebra A ∈ V, every function R̂(ā,−,−) is
a trivial decomposition operator. So exactly one among A |= ∀xy.R̂(ā, x, y) = x
and A |= ∀xy.R̂(ā, y, x) = y holds.
Proposition 7.3.5. In a factor variety V, the class Vfa is closed under subalgebras,
ultraproducts and homomorphic images.
Proof. Vfa is closed under subalgebras and ultraproducts images because it is a
universal class. Let g : A→ B be a onto homomorphism and A be a factor algebra.
We have that, for any relational symbol R ∈ τn and sequence ā of elements of A,

R̂B(g(ā), g(x), g(y)) = g(R̂A(ā, x, y)) =
g(x) if R̂A(ā, x, y) = x.

g(y) if R̂A(ā, x, y) = y.

Thanks to the fact that g is surjective, the conclusion follows.

The class Vfa in general is not a variety, because it usually fails to be closed
under direct product.

Let A, B be factor algebras whose type τ include the equality relation, alge-
braized by R̂: let (x, y), (x, y′) be pairs such that y ̸= y′. Given v ̸= z, we have

R̂A×B((x, y), (x, y′), (v, v), (z, z)) = (R̂A(x, x, v, z), R̂B(x, y′, v, z)) = (v, z).
This shows that A × B is not a factor algebra of type τ . This example is the
well-known fact that discriminator algebras are not closed under direct product.
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7.4 Properties of class functions Str and Fa
In this section we study in more details the class functions Str and Fa introduced in
Definition 7.2.3. In particular we show that Str can be extended to a functor from
the category of τ -structures with strong homomorphisms as arrows to the category
of τ -factor algebras with homomorphisms.

In the second part we enlarge the domain of Str to all algebras of type ντ and
then we prove some results of equivalence between structures defined using Str and
Fa.

Lemma 7.4.1. Let A,B be τ -factor algebras and M,N τ -structures.

(1) If a function g : A → B is a strong homomorphism from Str(A) to Str(B),
then it is a homomorphism from A to B. The converse holds if g is not
constant.

(2) If a function h : M → N is a strong homomorphism from M to N then it is
also a homomorphism from Fa(M) to Fa(N ). The converse holds if h is not
constant.

Proof. (1)
Let g be a strong homomorphism from Str(A) to Str(B) and b, c in A such that

g(b) ̸= g(c) (this is the only non-trivial case):

g(R̂A(ā, b, c)) =
g(b)⇔ ā ∈ RStr(A) ⇔ g(ā) ∈ RStr(B) ⇔ R̂B(g(ā), g(b), g(c)) = g(b)
g(c)⇔ ā /∈ RStr(A) ⇔ g(ā) /∈ RStr(B) ⇔ R̂B(g(ā), g(b), g(c)) = g(b)

Let g be a non-constant homomorphism from A to B.

ā ∈ RStr(A) ⇔ ∀xy.R̂A(ā, x, y) = x

⇔ ∀xy.R̂B(ḡ(a), g(x), g(y)) = g(x) since g is a homomorphism.
⇔ ∀zv.R̂B(ḡ(a), z, v) = z since B is a non-trivial factor

algebra and g is not constant.
⇔ g(ā) ∈ RStr(B)

(2) Similar to (1).

Corollary 7.4.2. Fa is a functor from the category ST∗
τ of τ -structures (with strong

homomorphisms as arrows) to the category FA∗
τ of τ -factor algebras (with homomor-

phisms).
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7.4.1 An extension of Str
Let A = (A, gA, R̂A)g,R∈τ be a ντ algebra. We define the structure

Str(A) = (A, gStr(A), RStr(A))g,R∈τ

where gStr(A) = gA and (a1, . . . , an) ∈ RStr(A) iff ∀xy.R̂A(a1, . . . , an, x, y) = x.
Remark 7.4.3. In general it is not true that for a non-trivial ντ -algebra A we have
Fa(Str(A)) = A. Consider the non-trivial algebra A where R̂(a, x, y) = x and
R̂(a,m, n) = n. In Str(A) we have a /∈ R, so in Fa(Str(A)) it must be R̂(a, x, y) = y.

Lemma 7.4.4. Let Mi, i ∈ I, be τ -structures and F a filter on I. Then
i∈I
Mi/F = Str(


i∈I

Fa(Mi)/F)

Proof. Let a be an element of Mi: a denotes a/F and a(i) denotes the ith com-
ponent of a.

The classical definition of reduced product says that
Mi/F |= R(a1, . . . , an) iff {i ∈ I : Mi |= (a1(i), . . . , an(i))} ∈ F .

Then we have:

{i ∈ I : Mi |= R(a1(i), . . . , an(i))} ∈ F ⇔
{i ∈ I : ∀uv ∈Mi.Fa(Mi) |= R̂(a1(i), . . . , an(i), u, v) = u} ∈ F ⇔ Fa(Mi) |= ∀xy.R̂(a1, . . . , an,x,y) = x ⇔
Str( Fa(Mi)) |= R(a1, . . . , an)

Lemma 7.4.5. Given Ai, i ∈ I, algebras of type ντ , and a filter F on I, we have
that

Str(

i∈I

Ai/F) =

i∈I

Str(Ai)/F

Proof. Let a be an element of  Ai: a denotes a/F and a(i) denotes the ith com-
ponent of a.

Str( Ai/F) |= R(a1, . . . , an) ⇔ Ai/F |= ∀xy.R̂(a1, . . . , an,x,y) = x ⇔
{i ∈ I : ∀uv ∈ Ai.Ai |= R̂(a1(i), . . . , an(i), u, v) = u} ∈ F ⇔
{i ∈ I : Str(Ai) |= R(a1(i), . . . , an(i))} ∈ F ⇔ Str(Ai)/F |= R(a1, . . . , an)
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In general, it is not true that  Fa(Mi) = Fa(Mi).
Let M1 and M2 = {2} be structures on the mono unary type τ = {R}, where
R is interpreted as always true in M1 and always false in M2. Fa(M1 × M2)
is the τ -factor algebra whose universe is 4 and its operation satisfies the identity
R̂Fa(M1×M2((a1, a2), x, y) = y. Fa(M1) × Fa(M2) instead is only a ντ -algebra, be-
cause in it we have R̂Fa(M1)×Fa(M2)((a1, a2), (x1, x2), (y1, y2)) = (x1, y2).

If we consider ultrafilters, instead, an analogous statement holds:

Lemma 7.4.6. LetMi, i ∈ I be τ -structures and U be an ultrafilter on I. We have
that: 

i∈I
Fa(Mi)/U = Fa(


i∈I
Mi/U)

Proof. Let a be an element of Mi: a denotes a/U and a(i) the ith component of
a.
Let a1, . . . , an, b, c be elements of 

i∈IMi such that b ̸= c. We show that the identity
is an isomorphism of algebras.

 Fa(Mi)/U |= R̂(a1, . . . , an,b, c) = b ⇔
{i ∈ I : ∀xy ∈Mi.Fa(Mi) |= R̂(a1(i), . . . , an(i), x, y = x} ∈ U ⇔
{i ∈ I : Mi |= R(a1(i), . . . , an(i))} ∈ U ⇔Mi/U |= R(a1, . . . , an) ⇔
Fa(Mi/U) |= R̂(a1, . . . , an,b, c) = b

 Fa(Mi)/U |= R̂(a1, . . . , an,b, c) = c ⇔
{i ∈ I : ∀xy ∈Mi.Fa(Mi) |= R̂(a1(i), . . . , an(i), x, y = y} ∈ U ⇔
{i ∈ I : Mi ⊭ R(a1(i), . . . , an(i))} ∈ U ⇔Mi/U ⊭ R(a1, . . . , an) ⇔
Fa(Mi/U) |= R̂(a1, . . . , an,b, c) = c

By Proposition 7.3.5  Fa(Mi)/U is a factor algebra, so there is nothing else to
prove.

Corollary 7.4.7. Let Ai be τ -factor algebras and U an ultrafilter on I. Then
i∈I

Ai/U = Fa(

i∈I

Str(Ai)/U)

Proof. We already know that for any factor algebra A = Fa(Str(A)). So we have
that  Ai =  Fa(Str(Ai)) and  Ai/U =  Fa(Str(Ai))/U . Then by Lemma 7.4.6 Fa(Str(Ai))/U = Fa( Str(Ai)/U).
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8
Algebraic calculus for propositional

logic

The starting point of this chapter is the bijective correspondence between structures
and factor algebras stated in Fact 7.2.4.

In Section 8.1, we extend this correspondence to formulas and equations between
terms, and we show that it has the following semantical meaning: given a non-
singleton structureM, its corresponding factor algebra A and a formula ϕ,M |= ϕ
iff A |= ϕ∗ = yt, where ϕ∗ = yt is the equation that corresponds to ϕ. This result
allows us to use algebraic methods for studying first-order logic.

In Section 8.2, we consider the type τCL of classical propositional logic with a
countable set of propositional variables. If A is a factor algebra of type τCL, then a
propositional variable C corresponds in its algebraic translation to a decomposition
operator Ĉ : A×A→ A (without parameters). We define the variety FaτCL

generated
by the τCL-factor algebras. We show that a formula ϕ is a tautology iff FaτCL

satisfies
the equation ϕ∗ = yt.

We provide axioms for FaτCL
, that turn out to be equational rules for an algebraic

calculus for propositional logic. We also introduce a term rewriting system for this
calculus, and we show that it is terminating and confluent.

In the last Section 8.3, we give a simplification of a result of Burris ([22]) and an
application of factor algebras to graph theory.

8.1 A bridge between open formulas and equa-
tions

8.1.1 Good terms

In this technical paragraph we show that every term of type ντ is equivalent to a term
of a particular form called good term. We do so in order to build a simple translation
between equations of ντ terms and τ -formulas. After that this translation is defined
in Section 8.1.2, the meaning of this paragraph will be clear (see Remark 8.1.5).
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Definition 8.1.1. Let τ be a first-order type and Var be a denumerable set of vari-
ables. A term of type ντ is called:

(1) a base term if it belongs to the set freely generated by Var using the function
symbols of τ .

(2) a good term if it is generated by induction as follows: every base term is good;
if t1, t2 are good terms, R ∈ τn is a relation symbol and ū is a sequence of base
terms of length n, then R̂(ū, t1, t2) is a good term.

The important consequence of this definition is that in a good term of the form
R̂(ū, t1, t2), any term of ū is built by using only variables and functions symbols of
τ .
Lemma 8.1.2. Let V be a τ -factor variety, R, g ∈ τn and t1, . . . , tn, u, v be good
terms. Then there exist good terms w1, w2 such that V |= R̂(t1, . . . , tn, u, v) = w1
and V |= g(t1, . . . , tn) = w2.
Proof. The proof is by induction on the number of occurrences of relation symbols
in the terms t ≡ t1, . . . , tn. If all these terms are base terms, then the conclusion
is obvious. Let now ti ≡ Ŝ(k̄, h1, h2) (S ∈ τ) for some 1 ≤ i ≤ n, where h1, h2 are
good terms and k̄ is a sequence of base terms. Then we can apply axioms F1-F3 of
factor variety as follows:

R̂(t̄, u, v) = R̂(t1, . . . , Ŝ(k̄, h1, h2), . . . , u, v)
= R̂(Ŝ(k̄, t1, t1), . . . , Ŝ(k̄, h1, h2), . . . , Ŝ(k̄, u, u), Ŝ(k̄, v, v)) by F1
= Ŝ(k̄, R̂(t1, . . . , h1, . . . , u, v), R̂(t1, . . . , h2, . . . , u, v)) by F3
= Ŝ(k̄, v1, v2)

By induction hypothesis, terms v1, v2 in Ŝ(k̄, v1, v2) are both good terms that sat-
isfy V |= R̂(t1, t2, . . . , wi, . . . , u, v) = vi. Such terms can be obtained because the
sequence t1, . . . , wi, . . . , tn has a number of occurrences of relation symbols strictly
less than t1, . . . , ti, . . . , tn.

The case of a function symbol g ∈ τ is proved similarly.
Proposition 8.1.3. Let V be a τ -factor variety. For every term t there exists a
good term t′ such that V |= t = t′.
Proof. The proof is by induction on the pair (number of occurrences of relation
symbols in the term t, complexity of the term t) with the lexicographic order.

If t ≡ R̂(w̄), then the number occurrences of relation symbols in each term wi is
strictly less than the number of occurrences in t. By induction hypothesis we have
V |= wi = vi for some good term vi. Then V |= R̂(w̄) = R̂(v̄) and we can apply
Lemma 8.1.2.

If t ≡ g(w̄), then the complexity of wi is less than the complexity of t. By
induction hypothesis we have V |= wi = vi for some good term vi. Then V |=
g(w̄) = g(v̄) and we can again apply Lemma 8.1.2
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8.1.2 From equations to open formulas
In the next two sections we translate equations t = u between ντ -terms and open
formulas ϕ of type τ . We show that this translation has also a semantical meaning,
i.e., a structureM and a factor algebra A corresponding in the sense of Fact 7.2.4,
model respectively formulas and equations that correspond in the translation.

Definition 8.1.4. Let t = u be an identity: wlog we can assume t, u to be good terms
thanks to Proposition 8.1.3. We define the propositional formula ϕt,u as follows:

(1) If t, u are base terms then ϕt,u ≡ (t = u).

(2) If t ≡ R̂(w̄, t1, t2) and u is a base term, then

ϕt,u = (R(w̄)→ ϕt1,u) ∧ (¬R(w̄)→ ϕt2,u).

(3) If t ≡ R̂(w̄, t1, t2) and u = Ŝ(v̄, u1, u2), then we define

ϕt,u = (S(v̄)→ ϕt,u1) ∧ (¬S(v̄)→ ϕt,u2).

Remark 8.1.5. In this definition Proposition 8.1.3 is necessary. Without it, in points
(2) and (3) it would not be clear the meaning of expressions R(w̄) and S(v̄). Instead,
if we assume that t and u are good terms then we have that all terms of w̄ and v̄
are ordinary terms of type τ , so R(w̄) and S(v̄) are well-defined atomic formulas of
type τ .

Now we can prove the first semantical result of equivalence between equations
and open formulas.

Proposition 8.1.6. Let A be a factor algebra, ρ : Var→ A be an environment and
t, u be good terms. Then we have:

A |=ρ t = u ⇔ Str(A) |=ρ ϕt,u.

Proof. (1) If t and u are base terms, then there is nothing to prove.

(2) t = R̂(w̄, t1, t2) and u is a base term.
“⇒” Let A |=ρ t = u. Since A is a factor algebra, then either A |=ρ t = t1
or A |=ρ t = t2. Wlog, assume A |=ρ t = t1. Then we have Str(A) |=ρ R(w̄),
Str(A) ⊭ρ ¬R(w̄) and A |=ρ t = u ⇔ A |=ρ t1 = u. By ind. hyp., the last
condition is equivalent to Str(A) |=ρ ϕt1,u. So ϕt,u holds in Str(A).
“⇐” Let Str(A) |=ρ ϕt,u. Then, wlog, R(w̄): so ϕt1,u holds, and by ind. hyp.
also A |=ρ t1 = u. Then we have A |=ρ R̂(w̄, t1, t2) = t1 = u.
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(3) Let t = R̂(w̄, t1, t2) and u = Ŝ(v̄, u1, u2).
“⇒” Let A |=ρ t = u holds, so, wlog, A |=ρ t = u1. Then we have Str(A) |=ρ

S(v̄), Str(A) ⊭ρ ¬S(v̄) and A |=ρ t = u ⇔ A |=ρ t = u1. By ind. hyp. the
last condition is equivalent to Str(A) |=ρ ϕt,u1 . So ϕt,u holds in Str(A).
“⇐” Let Str(A) |=ρ ϕt,u. Then, wlog, S(v̄): so ϕR̂(w̄,t1,t2),u1

holds, and by ind.
hyp. also A |=ρ R̂(w̄, t1, t2) = u1. Then we have A |=ρ R̂(w̄, t1, t2) = u1 =
Ŝ(v̄, u1, u2).

8.1.3 From open formulas to equations
Definition 8.1.7. Let yt, yf /∈ Var be two fresh variables and ϕ be a quantifier-free
formula. We define the ντ -good term ϕ∗ by induction as follows:

ϕ∗ =



yt if ϕ ≡ true;
yf if ϕ ≡ false;
R̂(t̄, yt, yf) if ϕ ≡ R(t̄) is an atomic formula;
ψ∗[yt/yf ; yf/yt] if ϕ ≡ ¬ψ;
ψ∗

2[ψ∗
1/yf ] if ϕ ≡ ψ1 ∨ ψ2;

ψ∗
2[ψ∗

1/yt] if ϕ ≡ ψ1 ∧ ψ2;
Then the formula ϕ is translated into the equation ϕ∗ = yt.

We recall here this simple logical fact that will be used in Lemma 8.1.9 and in
Proposition 8.1.10.
Remark 8.1.8. Given an open formula ϕ ≡ ψ∨φ, we have that for any structureM
and any environment ρ : Var→M , M |=ρ ψ ∨ φ iff M |=ρ ψ or M |=ρ φ.

The next lemma shows that, given an interpretation of its free variables in Var,
any term ϕ∗ behaves similarly to a factor term.

Lemma 8.1.9. Let A be a factor algebra, ϕ be an open formula and ρ : Var → A
be an environment. Then we have that

A |=ρ ∀ytyf .ϕ
∗ = yt or A |=ρ ∀ytyf .ϕ

∗ = yf . (8.1)

Proof. The proof is by induction on the complexity of ϕ. We sometimes use the
abus de notation A |= ∀y.ϕ = t = q, that means A |= ∀y.ϕ = t⇔ A |= ∀y.t = q.

If ϕ is yt or yf , then there is nothing to prove.
If ϕ ≡ R(t̄), then ϕ∗ = R̂(t̄, yt, yf). A is a factor algebra, so for any assignment

of elements of A to the tuple t we have that ∀xy.R̂(t̄, x, y) = x or ∀xy.R̂(t̄, x, y) = y
holds. The conclusion easily follows.

If ϕ ≡ ¬ψ, then by ind. hyp. A |=ρ ∀ytyf .ψ
∗ = yt or A |=ρ ∀ytyf .ψ

∗ = yf .
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If A |=ρ ∀ytyf .ψ
∗ = yt holds, then we have A |=ρ ∀ytyf .ϕ

∗ = ∀ytyf .ψ
∗[yt/yf ; yf/yt] =

yf .
If A |=ρ ∀ytyf .ψ

∗ = yf holds, then we have A |=ρ ∀ytyf .ϕ
∗ = ∀ytyf .ψ

∗[yt/yf ; yf/yt] =
yt.

If ϕ ≡ ψ1 ∨ ψ2, by ind. hyp. condition 8.1 holds for ψ1 and ψ2.
If A |=ρ ∀ytyf .ψ

∗
2 = yt, then A |=ρ ∀ytyf .ϕ

∗ = ψ∗
2[ψ∗

1/yf ] = ψ∗
2 = yf .

If A |=ρ ∀ytyf .ψ
∗
2 = yf and A |=ρ ∀ytyf .ψ

∗
1 = yt, then A |=ρ ∀ytyf .ϕ

∗ = ψ∗
2[ψ∗

1/yf ] =
ψ∗

1 = yt.
If A |=ρ ∀ytyf .ψ

∗
2 = yf and A |=ρ ∀ytyf .ψ

∗
1 = yf , then A |=ρ ∀ytyf .ϕ

∗ = ψ∗
2[ψ∗

1/yf ] =
ψ∗

1 = yf .
The case ϕ ≡ ψ1 ∧ ψ2 is similar to the previous one.

We prove now the second result of semantical equivalence.

Proposition 8.1.10. Let M be a structure, ρ : Var → M be an environment and
ϕ be an open propositional formula. Then,

M |=ρ ϕ ⇔ Fa(M) |=ρ ∀ytyf .ϕ
∗ = yt.

Proof. Proof is by induction on the complexity of ϕ.

M |=ρ R(t̄) ⇔ Fa(M) |=ρ R̂(t̄, yt, yf ) = yt since Fa(M) is a
non-trivial factor
algebra.

M |=ρ ¬ϕ ⇔ ¬(M |=ρ ϕ)
⇔ Fa(M) ̸|=ρ ϕ

∗ = yt by ind. hyp.
⇔ Fa(M) |=ρ ϕ

∗ = yf by Lemma 8.1.9.
⇔ Fa(M) |=ρ (¬ϕ)∗ = ϕ∗[yt/yf , yf/yt] = yt

M |=ρ ϕ1 ∨ ϕ2 ⇔ M |=ρ ϕ1 or M |=ρ ϕ2
⇔ Fa(M) |=ρ ϕ

∗
1 = yt or Fa(M) |=ρ ϕ

∗
2 = yt by ind. hyp.

⇔ Fa(M) |=ρ ϕ
∗
2[ϕ∗

1/yf ] = yt

We prove the last equivalence:
“⇒” If Fa(M) |=ρ ϕ

∗
2 = yt then Fa(M) |=ρ ϕ

∗
2[ϕ∗

1/yf ] = yt[ϕ∗
1/yf ] = yt.

If Fa(M) |=ρ ϕ∗
1 = yt and Fa(M) |=ρ ϕ∗

2 = yf , then Fa(M) |=ρ ϕ∗
2[ϕ∗

1/yf ] =
yf [ϕ∗

1/yf ] = ϕ∗
1 = yt.

“⇐” Assume that Fa(M) |=ρ ϕ
∗
1 = yf and Fa(M) |=ρ ϕ

∗
2 = yf . Then Fa(M) |=ρ

ϕ∗
2[ϕ∗

1/yf ] = yf [ϕ∗
1/yf ] = ϕ∗

1 = yf : absurd.

IfM is a singleton structure, we only haveM |=ρ ϕ ⇒ Fa(M) |=ρ ∀ytyf .ϕ
∗ = yt.

An example of a singleton structure in which “⇐” does not hold is given by a
structure M = {a} on a type consisting of an unary relation R, interpreted as
false in M. We have M ⊭ R(a), but Fa(M) |= R̂(a, a, a) = a and consequently
Fa(M) |=ρ ∀ytyf .R̂(x, yt, yf) = yt.
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8.1.4 Congruences associated with formulas
As a corollary of the translations developed in Section 8.1.3, we prove that an open
formula ϕ of type τ canonically defines a pair of factor congruences on the algebras
of a τ -factor variety V.

Definition 8.1.11. Let V be a τ -factor variety, A ∈ V, ρ : Var→ A be an environ-
ment and ϕ be an open formula of type τ . We define:

θϕ = {(c, d) : A |=ρ ϕ
∗[c/yt, d/yf ] = c}; θ¬ϕ = {(c, d) : A |=ρ (¬ϕ)∗[c/yt, d/yf ] = c}.

Notice that θ¬ϕ = {(c, d) : A |=ρ ϕ
∗[c/yt, d/yf ] = d}.

Lemma 8.1.12. If ϕ is logically equivalent to ψ under the environment ρ in A,
then θϕ = θψ.
Proof. If A is trivial, then there is nothing to prove. Otherwise, thanks to Proposi-
tion 8.1.6, we have that A |=ρ ϕ

∗ = yt iff A |=ρ ψ
∗ = yt. It follows that:

(c, d) ∈ θϕ ⇔ A |=ρ ϕ
∗[c, d] = c

⇔ Str(A) |=ρ ϕ
⇔ Str(A) |=ρ ψ
⇔ A |=ρ ψ

∗[c, d] = c
⇔ (c, d) ∈ θψ

Proposition 8.1.13. Let V be a factor variety, A ∈ V, ρ : Var→ A be an environ-
ment and ϕ be an open formula. Then (ϕ∗(−,−))A

ρ is a decomposition operator on
A.
Proof. Proof is by induction on the complexity of ϕ.

If ϕ ≡ R(ā), then R̂(ā,−,−) is a decomposition operator because A satisfies
equations F1, F2 and F3.

If ϕ = ¬ψ, let ψ∗(−,−) be the decomposition operator corresponding to the for-
mula ψ. By Definition 8.1.7, the operator ϕ∗(−,−) satisfies the equation ϕ∗(x, y) =
ψ∗(y, x). In order to simplify the notation, we denote ψ∗(−,−) by f(−,−), so
ϕ∗(x, y) = f(y, x).
(D1) ϕ∗(x, x) = f(x, x) = x.

(D2) ϕ∗(ϕ∗(x11, x12), ϕ∗(x21, x22)) = f(f(x22, x21), f(x12, x11)) = f(x22, x11) =
ϕ∗(x11, x22).

(D3) Given any symbol h ∈ ντ of arity n we have

ϕ∗(h(x1, . . . , xn), h(y1, . . . , yn)) = f(h(y1, . . . , yn), h(x1, . . . , xn))
= h(f(y1, x1), . . . , f(yn, xn)) by ind.

hyp.
= h(ϕ∗(x1, y1) . . . , ϕ∗(xn, yn)))



8.2. A new calculus for classical logic 73

If ϕ ≡ ψ1 ∨ ψ2, let ψ∗
i (−,−), i = 1, 2 be decomposition operators corresponding

to ψ1, ψ2 respectively. By Definition 8.1.7, ϕ∗(−,−) satisfies the equation ϕ∗(x, y) =
ϕ∗

2(x, ϕ∗
1(x, y)). We denote ϕ∗

2(−,−) by f(−,−) and ϕ∗
1(−,−) by g(−,−), so we can

write ϕ∗(x, y) = f(x, g(x, y)).

(D1) ϕ∗(x, x) = f(x, g(x, x)) = f(x, x) = x.

(D2) We have that ϕ∗(ϕ∗(x11, x12, ϕ
∗(x21, x22))) is equal to

f(f(x11, g(x11, x12)), g(f(x11, g(x11, x12)), g(f(x21, g(x21, x22))))) (8.2)

Now we consider the subterm g(f(x11, g(x11, x12)), f(x21, g(x21, x22))) 8.2. It
can be reduced as follows:

g(f(x11, g(x11, x12)), f(x21, g(x21, x22))) = by ind. hyp. on g
f(g(x11, x21), g(g(x11, x12), g(x21, x22))) = by ind. hyp. on g
f(g(x11, x21), g(x11, x22))

So 8.2 can be simplified as follows:

f(f(x11, g(x11, x12)), f(g(x11, x21), g(x11, x22))) = by ind. hyp. on f
f(x11, g(x11, x22)) =
ϕ∗(x11, x22).

(D3) Given any symbol h ∈ ντ of arity n. we have that

ϕ∗(h(x1, . . . , xn), h(y1, . . . , yn)) =
f(h(x1, . . . , xn), g(h(x1, . . . , xn), h(y1, . . . , yn)) = by ind. hyp. on g
f(h(x1, . . . , xn), h(g(x1, y1), . . . , g(xn, yn))) = by ind. hyp. on f
h(f(x1, g(x1, y1)), . . . , f(xn, g(xn, yn))) =
h(ϕ∗(x1, y1), . . . , ϕ∗(xn, yn))

The case ϕ1 ∧ ϕ2 is very similar to the previous one.

Corollary 8.1.14. Under the hypotheses of Proposition 8.1.13, (θϕ, θ¬ϕ) is a pair
of complementary factor congruences.

8.2 A new calculus for classical logic
In this section we use factor algebras of first-order types to develop an algebraic
calculus for classical propositional logic. It is based on the correspondence between
logical and algebraic notions that we have developed in the previous sections.

We fix a type τCL in which it is possible to express any propositional formula and
then we build the factor variety FaτCL

. Then we show that the axioms defining FaτCL
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are the rules for the calculus: indeed, in Theorem 8.2.4 we prove that a propositional
formula ϕ is a tautology iff FaτCL

satisfies the equation ϕ∗ = yt.
Let τCL = (∅;Ai)i∈ω be a relational type where Ai are all propositional variables

(i.e., Ai has arity 0 for every i).

Definition 8.2.1. The variety FaτCL
of type ντCL

is axiomatized by the following
axioms.

For all i, k ∈ ω:

(G1) Idempotence: Âi(x, x) = x.

(G2) Associativity: Âi(Âi(x, y), z) = Âi(x, Âi(y, z)).

(G3) Distributivity:

Âi(x, Âk(y, z)) = Âk(Âi(x, y), Âi(x, z)); Âi(Âk(x, y), z) = Âk(Âi(x, z)Âi(y, z)).

(G4) Collapsing: Âi(x, Âi(y, z)) = Âi(x, z).

Sometimes the above notation is not convenient. So in the following proposition
and in some examples we denote expressions of the form Âi(x, y) by x ·i y.

Proposition 8.2.2. FaτCL
is a τCL-factor variety.

Proof. We show that the axioms of Definition 8.2.1 prove the equations of Theorem
7.3.3.

(F1) x ·i x =G1 x.

(F2) (x ·i y) ·i (z ·i v) =G2 x ·i y ·i z ·i v =G4 x ·i v.

(F3) (x ·i y) ·k (z ·i v) =G3 ((x ·i y) ·k z) ·i ((x ·i y) ·k z) =G3 ((x ·k z) ·i (y ·k z)) ·i ((x ·k
v) ·i (y ·k v)) =G4 (x ·k z) ·i (y ·k v).

It is straightforward to check that for everyM∈ MτCL
, where MτCL

is the class of
all structures of type τCL, Fa(M) is a factor algebra in the variety FaτCL

. Conversely,
a simple calculation shows that every τCL-factor algebra satisfies axioms G1,G2, G3
and G4.

So we have the following identification.

Proposition 8.2.3. The variety generated by {Fa(M) : M ∈ MτCL
} is equal to

FaτCL
.

Thanks to Proposition 8.2.3, we prove one of the main results of the chapter.



8.2. A new calculus for classical logic 75

Theorem 8.2.4. Let ϕ be a propositional formula.
ϕ is a tautology iff for every algebra A ∈ FaτCL

, A |= ∀ytyf .ϕ
∗ = yt

Proof. By Proposition 8.1.10 we have that for any structure M of type τCL,

M |= ϕ iff Fa(M) |= ∀ytyf .ϕ
∗ = yt.

By Proposition 8.2.3 we can conclude that

ϕ is a tautology iff A |= ∀ytyf .ϕ
∗ = yt for every A ∈ FaτCL

.

Example 8.2.5. In this example we denote Ai(x, y) by x · y.
We prove that ϕ = A ∨ ¬A is a tautology. Since ϕ∗ = yt · (yf · yt) then we can

reduce as follows:
yt · (yf · yt) = yt · yf · yt by G2

= yt · yt by G4
= yt by G1

Example 8.2.6. In this example we consider the Peirce Law ψ = ((A⇒ B)⇒ A)⇒
A. In order to apply Definition 8.1.7 we put ψ in the form ((¬A ∨ B) ∧ ¬A) ∨ A.
We have

ψ∗ = B̂(Â(Â(yt, yf), yt), Â(Â(yt, yf), Â(Â(yt, yf), yt)))

that corresponds to the expression

((yt ·A yf) ·A yt) ·B ((yt ·A yf) ·A ((yt ·A yf) ·A yt)).

It can be reduced as follows:

((yt ·A yf) ·A yt) ·B ((yt · yf) ·A ((yt ·A yf) ·A yt)) = (yt ·A yt) ·B (yt ·A yt) by G4A
and G2A

= yt ·B yt by G1A
= yt by G1B

Example 8.2.7. If we consider the formula ϕ = A∨A, we have ϕ∗ = Â(yt, Â(yt, yf)):
it is algebraically interpreted as yt ·A yt ·A yf , and it can be reduced only to yt ·A yf ,
because A ∨ A is not a tautology.

8.2.1 A confluent and terminating strategy for the calculus
This section was mainly developed by Giulio Manzonetto.

The formulas of the examples in the previous section are very simple, so compu-
tations were easy to handle: when a formula has many propositional variables, in
general it is not clear how to use effectively axiom (G3).
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In this section we define a terminating and confluent term rewriting system (TRS
for short) for the calculus. This system can be used as a concrete algorithm to check
whether a formula is a tautology or not.

Given a type τ , T(τ,Var) denotes the set of τ -terms built on the set Var of
variables.

Definition 8.2.8. A TRS (τ, R) is a set of rewriting rules R on the set of terms of
type τ .

8.2.1.1 Reduction rules

Let τK = {yt, yf}∪{Ai : i ∈ ω} be a type where yt, yf are constants and the Ai’s are
binary operators. In the following functions Âi(−,−) are denoted as Ai(−,−).

Definition 8.2.9. The TRS (τK ,R) is defined on T(τK ,Var) according to the fol-
lowing rules R.

For all i, k ∈ ω:

(D1) Ai(x, x)→ x.

(D2a) Ai(Ai(x, y), Ai(u, z))→ Ai(x, z).

(D2b) Ai(x,Ai(y, z))→ Ai(x, z).

(D2c) Ai(Ai(x, y), z)→ Ai(x, z).

(D3a) If i > k, then Ai(Ak(x, y), Ak(z, u))→ Ak(Ai(x, z), Ai(y, u)).

(D3b) If i > k, then Ai(x,Ak(y, z))→ Ak(Ai(x, y), Ai(x, z)).

(D3c) If i > k, then Ai(Ak(x, y), z)→ Ak(Ai(x, z), Ai(y, z)).

In order to prove the termination of TRS (τK ,R) we need to recall some results
of the theory of rewriting systems.

Definition 8.2.10. 1. A rewrite order is a partial order (T(τ,Var), >) which is
closed under contexts (i.e., if s > t then C[s] > C[t] for all contexts C[ ]) and
closed under substitutions (i.e. if s > t then sσ > tσ for all substitutions σ).

2. A simplification order (T(τ,Var), >) is a rewrite order having the subterm
property, i.e., C[t] > t for all contexts C[ ] ̸= [ ].

3. A TRS (τ, R) is simplifying if it is compatible with a simplification order
(T(τ,Var), >), i.e., for any rule ℓ→ r ∈ R, we have ℓ > r.

Our goal is to define a simplification order compatible with the TRS (τK ,R).
First we endow τK with a strict order >, induced by the indices:



8.2. A new calculus for classical logic 77

• Ai > yt > yf for all i ∈ ω,

• Ai > Aj ⇐⇒ i > j.

By a result described in [42] , a strict order > on a type τ induces a (unique)
lexicographic path order (LPO) on T(τK ,Var).

Definition 8.2.11. The lexicographic path order >lpo on T(τK ,Var) is defined as
follows: s >lpo t iff

(LPO1) t ∈ V ar(s) and s ̸= t, or

(LPO2) s = Ai(s1, s2), t = Aj(t1, t2) and one of the following conditions holds:

(LPO2a) (∃k ∈ [1, 2])(sk ≥lpo t),
(LPO2b) i > j, and (∀k ∈ [1, 2])(s >lpo tk),
(LPO2c) i = j, ⟨s1, s2⟩ >lex

lpo ⟨t1, t2⟩, and (∀k ∈ [1, 2])(s >lpo tk).

The general definition of lexicographic path order can be found in [29, 0.23].

Lemma 8.2.12. [64, Proposition 6.4.25] Every lexicographic partial order is a sim-
plification order.

Proposition 8.2.13. The TRS (τK ,R) is simplifying because it is compatible with
>lpo.

Proof. In the following we suppose i > j.

(D1) Ai(x, x) >lpo x by LPO1.

(D2a) Ai(Ai(x, y), Ai(u, z)) >lpo Ai(x, z) by LPO2c, since we have:

– ⟨Ai(x, y), Ai(u, z)⟩ >lex
lpo ⟨x, z⟩ as Ai(x, y) >lpo x by LPO1,

– Ai(Ai(x, y), Ai(u, z)) >lpo x and Ai(Ai(x, y), Ai(u, z)) >lpo z by LPO1.

(D2b) Ai(x,Ai(y, z)) >lpo Ai(x, z) by LPO2c, since we have:

– ⟨x,Ai(y, z)⟩ >lex
lpo ⟨x, z⟩ as the first components coincide and Ai(y, z) >lpo

z by LPO1,
– Ai(x,Ai(y, z)) >lpo x and Ai(x,Ai(y, z)) >lpo z by LPO1.

(D2c) Ai(Ai(x, y), z) >lpo Ai(x, z) by LPO2c since:

– ⟨Ai(x, y), z⟩ >lex
lpo ⟨x, z⟩ as Ai(x, y) >lpo x by LPO1,

– Ai(Ai(x, y), z) >lpo x and Ai(Ai(x, y), z) >lpo z by LPO1.

(D3a) Ai(Aj(x, y), Aj(z, u)) >lpo Aj(Ai(x, z), Ai(y, u)) by LPO2b since i > j and
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– Ai(Aj(x, y), Aj(z, u)) >lpo Ai(x, z) by LPO2c. Indeed we have, by LPO1,
⟨Aj(x, y), Aj(z, u)⟩ >lex

lpo ⟨x, z⟩ since Aj(x, y) >lpo x, and, still by LPO1,
Ai(Aj(x, y), Aj(z, u)) >lpo x and Ai(Aj(x, y), Aj(z, u)) >lpo z.

– Ai(Aj(x, y), Aj(z, u)) >lpo Ai(y, u) by LPO2c. Indeed we have, by LPO1,
⟨Aj(x, y), Aj(z, u)⟩ >lex

lpo ⟨y, u⟩ since Aj(x, y) >lpo y, and, still by LPO1,
Ai(Aj(x, y), Aj(z, u)) >lpo y and Ai(Aj(x, y), Aj(z, u)) >lpo u.

(D3b) Ai(x,Aj(y, z))→ Aj(Ai(x, y), Ai(x, z)) by LPO2b since i > j and

– Ai(x,Aj(y, z)) >lpo Ai(x, y) by LPO2c. Indeed ⟨x,Aj(y, z)⟩ >lex
lpo ⟨x, y⟩

since Aj(y, z) >lpo y by LPO1, moreover Ai(x,Aj(y, z)) >lpo x and
Ai(x,Aj(y, z)) >lpo y again by LPO1.

– Ai(x,Aj(y, z)) >lpo Ai(x, z) by LPO2c. Indeed ⟨x,Aj(y, z)⟩ >lex
lpo ⟨x, z⟩

since the first components coincide and Aj(y, z) >lpo z by LPO1, more-
over Ai(x,Aj(y, z)) >lpo x and Ai(x,Aj(y, z)) >lpo z again by LPO1.

(D3c) Ai(Aj(x, y), z)→ Aj(Ai(x, z), Ai(y, z)) similar to the previous case.

8.2.1.2 Termination

Given a term t we write Fun(t) for the set of function symbols occurring in t.

Definition 8.2.14. Given a TRS (τ, R), we set

F =


ℓ→r∈R
(Fun(r) \ Fun(ℓ))

i.e. F consists of all those function symbols which occur at the right-hand side r
but not at the left-hand side ℓ of some rule ℓ→ r ∈ R. We say that the TRS (τ, R)
introduces only finitely many function symbols if the set F is finite.

To prove that the TRS (τK ,R) is terminating we need the following result.

Theorem 8.2.15. ([55, Theorem 4.13]) A simplifying TRS (τ, R) that introduces
only finitely many function symbols is terminating.

Theorem 8.2.16. The TRS (τK ,R) is terminating.

Proof. By Lemma 8.2.12, >lpo is a simplification order and by Proposition 8.2.13,
the TRS (τK ,R) is simplifying. Since the rules of the TRS do not introduce any
new function symbol we have F = ∅: by Theorem 8.2.15 we conclude that it is
terminating.
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8.2.1.3 Confluence

For confluence we have to check that all critical pairs can be reduced to the same
term.

Lemma 8.2.17. The TRS (τK ,R) is locally confluent.

Proof. Let i, k ∈ ω such that i > j.

• Since Ai(Ai(x, x), Ai(u, z))→D2a Ai(x, z) and Ai(Ai(x, x), Ai(u, z))→D1
Ai(x,Ai(u, z)), we have the critical pair ⟨Ai(x, z), Ai(x,Ai(u, z))⟩, that can be
joined as Ai(x,Ai(u, z))→D2b Ai(x, z).

• Since Ai(Ai(x, y), Ai(z, z))→D2a Ai(x, z) and Ai(Ai(x, y), Ai(z, z))→D1
Ai(Ai(x, y), z), we have the critical pair ⟨Ai(x, z), Ai(Ai(x, y), z)⟩, that can be
joined as Ai(Ai(x, y), z)→D2c Ai(x, z).

• Since we have Ai(Aj(x, x), Aj(z, u))→D3a Aj(Ai(x, z), Ai(x, u)) and
Ai(Aj(x, x), Aj(z, u)) →D1 Ai(x,Aj(z, u)), we must join the critical pair
⟨Aj(Ai(x, z), Ai(x, u)), Ai(x,Aj(z, u))⟩: this can be done as Ai(x,Aj(z, u))
→D3b Aj(Ai(x, z), Ai(x, u)).

• Since we have Ai(Aj(x, y), Aj(z, z))→D3a Aj(Ai(x, z), Ai(y, z)) and
Ai(Aj(x, y), Aj(z, z)) →D1 Ai(Aj(x, y), z), we must join the critical pair
⟨Aj(Ai(x, z), Ai(y, z)), Ai(Aj(x, y), z)⟩: this can be done as Ai(Aj(x, y), z)
→D3c Aj(Ai(x, z), Ai(y, z)).

• Since we have Ai(x,Aj(z, z))→D3b Aj(Ai(x, z), Ai(x, z)) and Ai(x,Aj(z, z))
→D1 Ai(x, z) we must join the critical pair ⟨Aj(Ai(x, z), Ai(x, z)), Ai(x, z)⟩:
this can be done as Aj(Ai(x, z), Ai(x, z))→D2a Ai(x, z).

• Since Ai(Aj(x, x), z)→D3c Aj(Ai(x, z), Ai(x, z)) and Ai(Aj(x, x), z)→D1
Ai(x, z) we have the critical pair ⟨Aj(Ai(x, z), Ai(x, z)), Ai(x, z)⟩, that can be
joined as Aj(Ai(x, z), Ai(x, z))→D2c Ai(x, z).

• Since Ai(Aj(x, y), Ai(u, z)) →D2b Ai(Aj(x, y), z) and Ai(Aj(x, y), Ai(u, z))
→D3c Aj(Ai(x,Ai(z, u)), Ai(y, Ai(z, u))) we have the critical pair

⟨Ai(Aj(x, y), z), Aj(Ai(x,Ai(z, u)), Ai(y, Ai(z, u)))⟩,

that can be joined as

Ai(Aj(x, y), z))
↓D3c

Aj(Ai(x, u), Ai(y, u))
↑2
D2b

Aj(Ai(x,Ai(z, u)), Ai(y, Ai(z, u))).
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• Since Ai(Ai(x, y), Aj(u, z)) →D2c Ai(x,Aj(u, z)) and Ai(Aj(x, y), Ai(u, z))
→D3b Aj(Ai(Ai(x, y), u), Ai(Ai(x, y), z)) we have the critical pair

⟨Ai(x,Aj(u, z)), Aj(Ai(Ai(x, y), u), Ai(Ai(x, y), z))⟩

that can be joined as

Ai(x,Aj(u, z))
↓D3b

Aj(Ai(x, u), Ai(x, z))
↑2
D2c

Aj(Ai(Ai(x, y), u), Ai(Ai(x, y), z)).

• Let i > j > q. Since we have the following rewriting stepsAi(Aj(x, y), Aq(z, u))
→D3c Aj(Ai(x,Aq(z, u)), Ai(y, Aq(z, u))) and Ai(Aj(x, y), Aq(z, u))→D3b
(Ai(Aj(x, y), z), Ai(Aj(x, y), u)), we must join the critical pair:

⟨Aj(Ai(x,Aq(z, u)), Ai(y, Aq(z, u))), Aq(Ai(Aj(x, y), z), Ai(Aj(x, y), u))⟩.

This can be done as

Aj(Ai(x,Aq(z, u)), Ai(y, Aq(z, u)))
↓D3b

2
Aj(Aq(Ai(x, z), Ai(x, u)), Aq(Ai(y, z), Ai(y, u))

↓D3a

Aq(Aj(Ai(x, z), Ai(y, z)), Aj(Ai(x, u), Ai(y, u))
↑2
D3c

Aq(Ai(Aj(x, y), z), Ai(Aj(x, y), u))

All other cases are of the form r ← t→ r so they do not need any proof.

Since (τK ,R) is terminating (Theorem 8.2.16) and locally confluent we can apply
Newman’s lemma ([54]): if a TRS is terminating and locally confluent, then it is
confluent.

Corollary 8.2.18. The TRS (τK ,R) is confluent.

8.2.2 Algebraic structures and logical systems
In this section we show that well-known algebraic varieties can be interpreted as
logics.

1. Rectangular bands = classical logic with one propositional variable.
The variety of rectangular bands is the class of all groupies satisfying the
following axioms:
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• idempotence: xx = x.
• associativity: (xy)z = x(yz).
• collapsing: xyz = xz.

Let τ1 = (∅;R) be a relational type with only one propositional variable R.
In the following we write xy for R̂(x, y).
We show that FAτ1 is the variety of rectangular bands.

(G1) is idempotence xx = x.
(G2) is associativity x(yz) = (xy)z.
(G4) is collapsing xyz = xz.
(G3) i.e., xyzu = xzyu, is a consequence of xyz = xz.

The factor algebras in the variety of rectangular bands are the left-zero bands
and the right zero bands.
In this context a first-order structure is either a pair M1 = (M,R=true) or a
pairM0 = (M,R=false). In the first case Fa(M) is a left-zero band, while in
the second one a right-zero band.

2. Distributive double rectangular bands = classical logic with two
propositional variables.
The variety of distributive rectangular bands is the class of algebras with two
binary operations · (denoted by xy) and + satisfying the following axioms:

• (A, ·) and (A,+) are both rectangular bands.
• Distributive laws:

x(y + z) = xy + xz; x+ yz = (x+ y)(x+ z);

and
(y + z)x = yx+ zx; yz + x = (y + x)(z + x).

Let τ2 = (∅;R, S) be a relational type with only two propositional variables
R and S. In the following we write xy for R̂(x, y) and x+ y for Ŝ(x, y).
The variety of distributive rectangular bands is the variety FAτ2 . The only non
trivial task is to prove Axiom (G3). We have that xy+ zt = (x+ zt)(y+ zt) =
(x+z)(x+ t)(y+z)(y+ t). Conversely, x(y+z) = (x+x)(y+z) = xy+xz and
similarly for the other laws. So (G3) is equivalent to the previous distributive
laws.
We have four kinds of factor algebras in FAτ2 :

(1) left-left-zero double bands satisfying xy = x = x+ y;
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(2) right-right-zero double bands satisfying xy = y = x+ y;
(3) left-right-zero double bands satisfying xy = x = y + x;
(4) right-left-zero double bands satisfying xy = y = y + x.

In this context we have four kinds of first-order structures, which corresponds
to the four kinds of factor algebras:

(1) M11 = (M,R=true, S=true).
(2) M10 = (M,R=true, S=false).
(3) M01 = (M,R=false, S=true).
(4) M00 = (M,R=false, S=false).

3. Distributive ω-rectangular bands = classical logic with denumer-
able many propositional variables. The variety of distributive rectangu-
lar bands is the class of algebras with denumerable many binary operations ·i
satisfying the following axioms:

• for any i, (A, ·i) is a rectangular band.
• Distributive laws: for any i, j,

(x ·j y) ·i z = (x ·i z) ·j (y ·i z); x ·i (y ·j z) = (x ·i y) ·j (x ·i z).

The variety of distributive rectangular bands is equal to FAτCL
.

4. Rectangular Skew Lattices = classical logic with two propositional
variables R, S such that R↔ ¬S. The variety of rectangular skew lattices
is axiomatized by the equations defining distributive rectangular bands plus
the axiom x+ y = yx.
It can be described as the subvariety of the variety of distributive double
rectangular bands generated by the right-left-zero double bands and left-right-
zero double bands is the variety of rectangular skew lattices.

5. Discriminator Varieties = classical logic with equality (no other re-
lation symbol). Let τ be a type whose unique relation symbol R is binary.
Following Vaggione [67], FAτ is a discriminator variety if, and only if, it satis-
fies, besides the axioms of factor variety, R̂(x, x, y, z) = y and R̂(x, y, x, y) = y.

6. Skew Boolean Algebras = classical logic with one unary relation
symbol R satisfying ¬R(0) ∧ ∀x(¬R(x)→ x = 0). Let τ = (0;R) be a
type of arity (0; 1). Following Cvetko-Vah and Salibra [28], the factor variety
axiomatized by R̂(0, y, z) = z and R̂(x, x, 0) = x (besides the axioms of factor
variety) is term equivalent to the variety of skew Boolean algebras. A factor
algebra A = (A, 0, R̂) in this variety satisfies R̂(0, y, z) = z and R̂(x, y, z) = y
for all x ∈ A \ {0}.
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7. Boolean Algebras = classical logic with one unary relation symbol
R satisfying ¬R(0) ∧R(1) ∧ ∀x(x = 0 ∨ x = 1). Let τ = (0, 1;R) be a type
of arity (0, 0; 1). Following Salibra et al. [57], the factor variety axiomatized
by R̂(0, y, z) = z, R̂(1, y, z) = y and R̂(x, 1, 0) = x is term equivalent to the
variety of Boolean algebras. Up to isomorphism, we have one factor algebra
A = ({0, 1}, 0, 1, R̂) satisfying R̂(0, y, z) = z and R̂(1, y, z) = y.

8. Ordered Algebras = classical logic with one binary relation symbol
defining a compatible partial ordering. Let τ = {R} be a type of arity
2. We write o(x, y, z, u) for R̂(x, y, z, u).
FAτ is a factor variety of ordered algebras if, and only if, it satisfies axioms
F1-F2-F3 and the following identities:

(O1) o(x, x, yt, yf) = yt (Reflexivity)
(O2) o(x, z, yt, o(y, z, o(x, y, yf , yt), yt)) = yt (Transitivity);
(O3) o(x, y, x, y) = o(y, x, y, o(x, y, x, y)) (Antisymmetry);
(O4) For every function symbol g of arity k,

o(g(z1, . . . , x, . . . , zk), g(z1, . . . , y, . . . , zk), yt, o(x, y, yf , yt)) = yt

where x and y are in the ith entry. (Monotonicity in coordinate i).

Any ordered factor algebra A is simple. Let a, b different elements of A. We
show that (a, b) splits A. We have that a ̸= b implies a ̸≤ b. Then we have

o(a, a, x, y) = o(a, b, y, x) = x.

8.3 Applications

8.3.1 Factor varieties and symbolic computation
In this section Σ is a set of sentences and ϕ is a sentence on the same type.

MacKenzie (see Burris [22]) has shown that it is possible to routinely cast the
semantical problem Σ |= ϕ as an equational problem in discriminator varieties. This
interesting result uses a enough involved technique which is briefly explained below.

Given Σ, ϕ and a discriminator variety V, he introduces a reduction procedure
that defines a set of equational axioms Ax. Then he proves that Σ |= ϕ if and only if
(a) the singleton models of Σ are models of ϕ; (b) The equational axioms Ax prove
∀xy.x = y.

By using factor algebras it is possible to simplify some technical steps. In par-
ticular, steps 4 and 5 of page 197 of [22] are replaced by step 4 of 8.3.1.1.
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8.3.1.1 Reduction to equations

We rephrase the reduction procedure by using factor varieties.

1. We put all sentences of Σ ∪ {¬ϕ} in prenex form.

2. We skolemize the sentences obtained in step 1.

3. We add to the type of Σ and ϕ the new function symbols. We denote the
resulting type by τ ′.

4. Consider the factor variety V generated by the following equations, valid for
any relation symbol R in τ .

(F1) R̂(x̄, z, z) = z;

(F2) R̂(x̄, R̂(x̄, x11, x12), R̂(x̄, x21, x22)) = R̂(x̄, x11, x22).

(F3) R̂(x̄, h(ȳ), h(z̄)) = h(R̂(x̄, y1, z1), R̂(x̄, y1, z1), . . . , R̂(x̄, yk, zk)), where h ∈
ντ ′ of arity k.

5. We replace the matrices of the universal formulas obtained in step 2 with
equations ψ∗ = yt by using rules of Definition 8.1.7.

Remark 8.3.1. Since equality is in τ , V is a discriminator variety with some factor
terms.

We denote by Γ the set of equations obtained in point 5 and 4.

Theorem 8.3.2. Σ |= ϕ iff

(i) every singleton model of Σ is a model of ϕ.

(ii) Γ |= ∀xy.x = y

Proof. By Theorem 8.1.10 , in V∗ we can decode any open formula by an equation
ϕ∗ = yt. If Σ |= ϕ, then Σ ∪ {¬ϕ} is not satisfiable. So the equations of Γ do not
have any non-trivial subdirectly irreducible model, and then no non-trivial model
at all. Then from Γ we can prove x = y by Birkhoff completeness theorem.

If Σ ⊭ σ, then Σ ∪ {¬ϕ} is satisfiable in a model M. If M is a singleton, by
M |= Σ ∪ {¬ϕ} and (i) we have that M |= ϕ must holds: absurd. If M is non-
singleton, then in Fa(M) the equations of Γ must hold. Since Γ has a non-trivial
model, it can not prove x = y.
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8.3.2 Applications to graph theory
We develop the very basics of the theory of graphs with factor algebras. Here
the method is more important than the results. We show that it is possible to
characterize notions of graph theory by using equations. We believe that building
bridges between different fields of mathematics is always fruitful.

In this section the type is fixed, namely τ = {E}, where E is a binary rela-
tion. First we observe that a τ -factor algebra A = {A, e}, where e is a quaternary
operation, univocally determines a digraph GA = (V,EA), where V = A and

EA = {(a, b) ∈ A2 : e(x, y, a, b) = a for all a, b ∈ A}

The digraph G is called the factor graph of A.
Conversely, given a digraph G = (V,E) we define the algebra AG, whose universe

is V and whose operation e is defined as:

e(x, y, a, b) =
a if (x, y) ∈ E;
b otherwise.

There is a bijection between the class of non-singleton graphs Gr∗ and Fa∗
τ . As in

the general case, this does not hold for singleton structures.
We use the notation e([x0, x1, . . . , xn], y, a, b) for the expression

e(x0, x1, e(x1, x2, e(. . . e(xn−1, xn, a, b), b) . . .), b).

Notice that e([x0, x1], a, b) ≡ e(x0, x1, a, b).

Proposition 8.3.3. Let G = {V,E} be a digraph and AG the corresponding factor
algebra with factor term e. Then we have that:

v0 →E v1 →E . . .→E vn iff ∀ab e([v0, v1, . . . , vn], a, b) = a.

Proof. Induction on the number of nodes n.

Proposition 8.3.4. Under the hypotheses of proposition 8.3.3, the digraph G is:

1. without self-loops ⇔ e(x, x, a, b) = b

2. symmetric ⇔ e(x, y, a, b) = e(y, x, a, b)

3. asymmetric ⇔ e(x, y, u(y, x, a, b), b) = b.

4. transitive ⇔ e(e(x, y, x, y), e(y, z, z, y), a, e(x, y, b, a)) = a.

5. acyclic ⇔ for every n ≥ 0, e([x0, x1, . . . , xn, x0], a, b) = b.

6. bipartite ⇔ for every n ≥ 0, e([x0, x1, . . . , x2n, x0], a, b) = b.
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7. an oriented graph ⇔ it is without ≤ 2-cycles ⇔ e(x, y, e(y, x, a, b), b) = b.

8. a tournament ⇔ it is an oriented graph such that for every u, v ∈ V , either
(u, v) ∈ E or (v, u) ∈ E ⇔ it is an oriented graph that satisfies the equation
e(x, y, e(y, x, a, b), e(y, x, b, a)) = b.

Proof. All points except (5) and (6) are trivial by definition of AG.

(5) By proposition 8.3.3, v0 →E v1 →E . . .→E v0 ⇔ e([v0, v1, . . . , v0], y, z) = z.

(6) A digraph is bipartite iff it does not contain any odd-length cycle. This holds
iff ∀n ≥ 0 e([x0, x1, . . . , x2n, x0], y, z) = z holds.







Conclusions

Part I
We define two denumerable families of infinite sets, Mn and Gn (n ∈ ω), whose
elements are called restricted regular mute and regular mutes respectively. Since
these terms are built inductively, we give a detailed analysis of their structure and
their behavior w.r.t. head reductions. This analysis is used in the proof that regular
and restricted regular are mute terms.

Furthermore, we prove that, for each n ∈ ω, the setMn is graph easy. The proof
is technical, and relies upon the syntactical structure of restricted hereditarily n-ary
terms. The main technique we use is a generalization of forcing for graph models
introduced for the first time in [13].

A natural generalization of the result presented in this thesis would be a proof
that ∞

n=1Mn is a graph easy set. Using an ultraproduct technique developed in
[20] we have reduced the general problem to the graph-easiness of 

n∈EMn for
each finite subset E of natural numbers. Nevertheless, given naturals n1 < n2,
our approach is problematic when dealing with Mn1 and Mn2 simultaneously: the
elements ϵ1, . . . , ϵn2 , as defined in the proof of Theorem 4.3.4, force new, unwanted
elements to belong to the interpretation of the elements ofMn1 . A simpler question
concerns the graph-easiness of M1 ∪M2, but it still embodies the difficulty of the
general problem.

The other natural question concerns the graph-easiness of the sets Gn of n-regular
mutes, namely:

are the sets Gn graph-easy?

Here the technique applied to prove graph-easiness ofMn cannot be directly applied,
since it uses the particular form of restricted hereditarily n-ary terms. We were able
to prove rather easily a generalization of Lemma 4.3.1 for elements of sets Tn[x̄],
but we couldn’t overcome Lemma 4.3.2. An attempt of generalization fails at the
inductive step, that shows an high technical complexity.

Part II
In this thesis we introduce the notion of factor algebra of an arbitrary first-order
type. We develop the basic theory of congruences for this class of algebras by the
notion of splitting pair. We also provide necessary and sufficient conditions in order
that a factor algebra of first-order type to be simple, subdirectly irreducible or
directly indecomposable.
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We apply factor algebras to algebraic logic. Given a first-order type τ , we define
the class functions Str and Fa, which are bijective functions between the class of
non-trivial τ -factor algebras and the class of non-singleton τ -structures. We extend
this translation to τ -formulas and equations between terms. This translation has
a semantical meaning: given a structure M and its corresponding factor algebra
A, a formula ϕ and its corresponding equation ϕ∗ = yt, we have that M |= ϕ iff
A |= ϕ∗ = yt.

We introduce the type τCL of propositional logic, consisting of denumerable many
propositional variables. We apply the developed algebraic techniques to study propo-
sitional logic. We prove that the variety FAτCL

generated by the τCL-factor algebras
has a simple axiomatization and show that ϕ is a tautology iff the equation ϕ∗ = yt
holds in FAτCL

. This implies that axioms defining FAτCL
are suitable rules of a calcu-

lus in algebraic logic. For such calculus we introduce a term rewriting term system
that it is shown confluent and terminating.

Our work is the beginning of a general algebraic logic based on τ -factor algebras.
There are various areas in which we think they can produce some good results.

Thanks to the algebraic calculus we have developed for propositional logic, the
very first task is to build a purely algebraic propositional logic and provide algebraic
proofs of classical propositional theorems such as compactness.

Another immediate application of the theory of τ -factor algebras is the analysis
of theories admitting elimination of quantifiers. Thanks to the fact that τ -factor
algebras can algebraize all open formulas, it is possible to replace all sentences of
such a theory with equations. Such theories are consequently reduced in a purely
algebraic setting.

This particular problem dodges the main problem the translation has, i.e., the
algebraization of the existential quantifier. The challenging part of this issue is to
find a simple way to do this. Many algebraizations of first-order logic had been
proposed, but all of them are somehow too complex for applications. If one succeed
in this main problem, then the next task is to provide algebraic proofs also of first-
order theorems, like Gödel’s Completeness Theorem.

We have developed rather naturally our calculus for propositional logic. The fact
that the n + 2-ary function R̂(ā, x, y) project on the n + 1 or in the n + 2 position
reflects the excluded middle law. So a last but not least open problem is to provide
an algebraic calculus to other logics by using generalizations of τ -factor algebras.
In order to do so, one must characterize which are the algebraic structures that
semantically interprets the axioms of the logic. The main issue is that the class of
these algebras may be too complex. For example, the class of Heyting Algebras,
that corresponds to intuitionistic logic, has infinitely many subdirectly irreducible
members [23, pag.66]. This may imply that the new τ -factor algebras must be
infinitely valued, so that they are not ordinary algebraic structures.
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