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This thesis summarises a theoretical investigation into the phase behaviour of model

‘Janus’ dumbbell systems composed of two tangent spherical sub-particles, one pos-

sessing a hard-sphere potential and the other a square-well potential. The relationship

between shape and interaction anisotropy is explored via varying the particle properties

over two orthogonal pathways from reference systems to the target system to elucidate

the effects of increasing particle interaction and shape anisotropy on the fluid prop-

erties at a range of state-points. Three different simulation techniques are employed

to variously study the gas-liquid properties, self-assembled structures, and compression

behaviour. The reference systems involved are the hard-sphere model, the square-well

model, and the square-well dumbbell, each forming an extremum of the parameter space.

A parameter, α is developed to control the size ratio between the interaction sites. The

parameterisation developed herein allows the particles to be tuned over the full range of

diameter ratios to explore from a pure hard-sphere system at α = 0, to a pure square-well

system at α = 2, with the region between 0 < α < 2 characterising the heterogeneous

Janus dumbbell. Variegated phase behaviour is observed over the range of α. Gas-liquid

critical phenomena is observed, in general, for the more isotropic particle descriptions

where the particle possesses an attractive portion. As the interaction profile becomes

more anisotropic the system properties change drastically. Phase diagrams are
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computed via collation of gas-liquid phase separation data, calculated via Successive

Umbrella Sampling with histogram re-weighting, along with Simulated Annealing sim-

ulations in the Canonical ensemble, both of which employ an implementation of the

Aggregation-Volume-Bias Monte Carlo intra-box swap move algorithm. The develop-

ment of self-assembled phases that perturb gas-liquid critical phenomena is observed

until the critical point becomes metastable with respect to the formation of bilayer

structures where the diameter of the purely repulsive interaction site is similar to the

attractive site. Bilayer structures in this region are observed to tolerate significant cur-

vature until the two interaction sites are equal in size (α = 1). In the intervening regime

(1 < α < 1.3) several topologically different structures are observed including: vesicles,

tubes, gyroids and other bi-continuous structures. Where the diameters are equal only

micelles are observed at low density which eventually form lamellar sheets at higher

densities. Where the attractive site is smaller than the repulsive site, the systems are

observed to display up to seven structurally differentiable behaviours controlled by α

and the state-point, including: a monomer gas, micelles, platelets, strips, strip networks,

sponges, and lamellar structures. The location of these structures is identified on phase

diagrams at each α studied.
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Chapter 1

Introduction

A central challenge involved in the modelling of complex matter is that of generating

simple models that capture the observed behaviours of a target system. This often

proceeds by one of two very different methodologies. One is to concieve a model of a

particular system as accurately as possible and iteratively remove degrees of freedom

in order to see which minimal combination yields a sufficient description of the system

properties. The other method is to build from basic notions of particle interactions and

add complexity, in the hope that eventually the model returns such complex behaviour.

This thesis catalogues an investigation in the latter style, and attempts to arrive at

general principles applicable to particle systems across the meso-scopic lengthscales for

the targeted class of particle.

1.1 Meso-scale Materials and “Bottom-up” Synthesis

Particles with sub-micron (< 10−6 m or 1 µm) primary length scale demonstrate ex-

otic material properties. These phenomena render the meso-scopic length scales a fe-

cund and yet largely unexplored realm. Reliably organising matter at these scales

presents a formidable challenge to science. Photo-lithography is heretofore the most em-

ployed method for micro-fabrication of patterning for application in small scale electro-

mechanical systems. Photo-lithographic eximer processes rely on ultraviolet (UV) radi-

ation on the order of 2× 10−7 m, restricting the minimum critical dimension to approx-

imately 50 nm. In the future developing materials that traverse these length scales will

not be performed by means of a ‘top-down’ approach. Considerable attention has been

paid to the study of ‘bottom-up’ approaches to material manufacture. These ‘bottom-up’

approaches rely upon the phenomenon of self-assembly1. Self-assembly can be described

1Known in antiquity as soft-lithography [2].

1
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as the autonomous organisation of particulate matter into patterns or structures [3].

Matter displays varied self-assembly phenomena across many length-scales. Our species

is only now learning how to exploit these phenomena to incorporate materials organised

via this route into functional materials.

1.2 Wrangling the Parameter Space and Cataloguing

The set of investigations studied here explores the relationship between interaction

anisotropy and particle geometry, and attempts to arrive at generally applicable design

principles for aggregated structures with targeted geometric properties. The develop-

ment of general design principles facilitates the material scientist, chemist, or engineer

with a catalogue of structures with which to compose some functional material. Control

over adduct aggregation — understanding the thermodynamic and kinetic factors in-

volved in driving a system to a particular state — is crucial. The study of materials has

historically relied upon serendipity as a driver of discovery, but much less of explanation.

An engineer who wishes to design a new material, for example a surface with special

properties, must develop her design with the materials available. A newly developing

field of innovative research is nano-particle (NP) design. The authors of [4] identify (at

least) eight different “anisotropy dimensions” for colloidal particulate matter. This com-

binatorial anisotropy space includes: interaction surface coverage or patchiness; aspect

ratio; faceting; pattern quantisation; branching; chemical ordering; shape gradient; and

surface roughness. Given this large space of anisotropy dimensions, the concept of a li-

brary that catalogues the space of NPs according not only to their individual properties

but also the properties of their assemblies appears desirable. Filling out the annexes of

a structural library2 that catalogues the phase space of NP aggregates is imperative to

the future of materials research, not least if humans are to incorporate design elements

into small-scale functional architecture development. In the future it may be possible

through the use of such libraries to employ an artificial intelligence to compose new

materials without the need for costly and wasteful experimentation. For a library of

this type to function it must not only categorise the structural diversity of particles

and their assemblies, but also contain maps for synthetic routes to obtain both the NP

and its assemblies. The current work is concerned with combining some aspects of the

anisotropy space: patchiness and shape gradient (and incidently aspect ratio). This is

achieved by considering amphiphiles composed of two separate interaction sites.

2These exist already for crystal structures composed of atomic building blocks: International Crys-
tal Structure Database (ICSD); Cambridge Crystallographic Data Centre (CCDC) and the Cambridge
Structural Database (CSD); American Mineralogist Crystal Structure Database (AMCSD); Crystallo-
graphic and Crystallochemical Database for Minerals and their Structural Analogues (CCDMSA); For
synthetic stategies and structure-property relationships one must be a little more assiduous in tracking
them down, however.
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1.3 Amphiphiles

We consider an amphiphile as a particle which possesses two regions of differing philos.

This is by no means a meaningless distinction, since the origin of such properties will

influence the behaviour of a system composed of them based on their interaction profiles.

Nature makes vast use of the behaviours of amphiphilic materials and achieves great con-

trol over aggregate structure and bulk phase behaviour. When performed by humans,

even in the simplest experiments, influencing self-organisation can be tricky — balancing

subtle differences in enthalpic and entropic factors driving aggregation between compet-

ing structures can often lead to undesired outcomes. Understanding the properties of

amphiphiles, particles3 with some inherent duality in their interaction profile, has at-

tracted much attention in the past few decades in an effort to understand their function

in biological systems, exploit their peculiar properties in bio-molecular theraputics [5, 6],

and — at least for colloids — realise their potential for application in magnetic [7–10],

opto-electronic [11–13], catalytic, and multi-functional [14] technologies. Due in part to

this interaction duality, amphiphiles tend to exhibit interesting assembly properties at

interfaces, giving rise to the moniker surfactant — surface-active-agent. This ability

to be at once soluble in immiscible fluids offers an interesting avenue for controlling

the orientation of particles and the topology of an interface [15]. Control of interfacial

topology is of utmost importance in biological systems, where the function of membrane

surface proteins depends sensitively on their orientation and interactions with the intra-

membrane hydrophobic layer, and its interaction with the folded protein’s properties.

Folding processes of linear peptide chains has been observed to depend strongly on con-

tributions to their structural properties from collecting hydrophobic residues together

to lower their interfacial energy with intra-cellular media [16]. The function of enzyme

active sites often proceeds via precise selective localisation of chemical species, controlled

sensitively by intercalation of specific spatial arrangements of hydrophobic residues to

bind reactant ligands. While nature makes such vast, varied, and precise use of am-

phiphiles in biological systems, our understanding of the interplay between kinetic and

thermodynamic control factors is lacking. In spite of this general lack of comprehensive

understanding, strong theoretical foundations for the thermodynamics of amphiphile

aggregation and self-assembly properties has been the focus of much scientific study4.

3Including molecular species, polymeric colloids, and micro- and nano- colloidal systems.
4Even in antiquity the behaviour of oils dispersed on water, recorded in cuneiform on stone tablets

recovered from 18th centrury BCE Babylonia digs, soothsaying rituals involving the strange figures
appearing in oil films dispersed on water would belie omens of varying fortune. One primordial, yet more
scientific, experiment performed by Benjamin Franklin on a pond in Clapham Commons, dispersing a
small measure of olive oil on the pond, allowed him to calculate the approximate thickness of the layer
formed, where also he noticed it had a ‘calming’ effect on the surface.
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1.4 Early Thermodynamics of Amphiphiles

Early studies of the thermodynamics of amphiphile self-assembly focus on packing as

strongly determinant of structure [17]. Delicate analysis of particle shape and interac-

tion properties lead to strongly predictive theoretical models for the internal structure

of aggregates and their surface morphologies. For the most part these early studies con-

sider the amphiphile as possessing flexible internal degrees of freedom: a somewhat rigid

hydrophilic head-group, and a flexible hydrophobic chain. The model developed in [17]

employs a dimensionless ‘packing-parameter’, v/a0l. Here v is the volume of the am-

phiphile, a0 is the equilibrium head group surface area given the surface topology (held

constant, which places a limitation on the modelling of certain interfacial topologies),

and l the hydrophobe chain length5, and an elaboration on the packing behaviour can

be found in Chapter 6.

Here it is poignant to delineate the water soluble “hydrophile” and sparingly water sol-

uble “hydrophobe” portions as simply solvophile and solvophobe so as not to vex the

reader with a litany of questions about what solvent is to be considered as the bulk and

what co-solvent, if indeed there is one, is to be considered as the minor fraction. This

is of course not a trivial distinction to make, not least of importance with the flexibility

of constituent solvphilic or solvophobic moieties, the choice of solvent(s). Of course, the

origin of any solvophilicity is important in studying any particular system, yet compli-

cates matters by adding additional parameters to be rationalised and optimised. In the

case of amphiphiles with internal degrees of freedom assembly proceeds by partitioning

of the solvophobic regions together to minimise the surface area interacting with the

solvent. In biological systems, delicate control over the composition of the solvophobe

chains and solvophile head groups influences the aggregation behaviour which can lead

to microsegregation of particular species of amphiphiles [18]. This property, of great

importance to the function of trans-membrane protein complexes [19], implies a strong

size-shape relationship controlling the dynamics of amphiphile aggregation.

1.5 Janus Particles

In a somewhat trite rhetorical mode of adding metaphor to the physics of interaction

anisotropic colloidal particles, yet in another way a very appropriate moniker — the Ro-

man god of transition, facing both toward the past and the future, his facets adorning

doorways and thresholds in ancient Rome — a class of particle called the Janus par-

ticle forms the primordial basis for the study of patchiness across many length scales.

5There is an obvious parallel to be draw between the packing parameter and the parameterisation of
the sphere sizes developed in this work, a “dictionary” can be found in ??.
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First appearing to term amphiphile glass beads [20], the term has since found liberal

application to particles with various modes of interaction anisotropy. A Janus particle

is one that possesses a patch. The boundary of this patch delineates two regions over

which the particle possesses different interaction profiles. If this class of particle are to

be used as building blocks for meso-scale technologies, or at larger scales as interface

stabilising agents as in a Pickering emulsion, controlling the particle properties of the

shape-interaction profile is important [21]. Synthetic approaches to study this type of

particle have been developed over the past three decades and can be applied to synthesise

particles anywhere from µm to nm range [22, 23]. Spherical Janus particles have been

the subject of intense scrutiny via experiment [21, 24–28] and via simulation and theory

[29–35]. When modelling this type of particle the type of interaction is often neglected,

so as to be general and concentrate on the geometry of aggregates and the overall phase

scenario. The patches treated as ‘sticky’ and ‘hard’ — or more specifically, with an

attractive patch and a non-attractive one. Single patch Janus particles possess several

interesting phase scenarios. The authors of [35] compute the gas-liquid phase diagram of

one-patch Janus spheres varying the patch size (where χ describes the surface coverage

fraction as defined by the Kern-Frenkel model [36]) on the interval χ ∈ [0.5, 1.0] — to

find that increasing the patch size to 50% coverage (referred to as the Janus limit) leads

to an anomalous ‘re-entrant’ gas in the gas-liquid binodal. Due to the presence of highly

stable micelle and vesicle formation comprised of specific numbers of particles in the low

temperature gas, the coexistence region under the gas-liquid critical point is squeezed,

leading to a dense gas of weakly interacting micelles and vesicles coexisting with liquid

[32]. This intriguing behaviour leads to a negative slope of the gas-liquid coexistence

curve in the pressure-temperature plane, a phenomenon more familiar with coexisting

solid and liquid water. This kind of directionally specific interaction is clearly strongly

determinant of interesting—potentially useful—material properties. Indeed, Pierre de

Gennes in his Nobel Prize acceptance speech entitled ‘Soft Matter’ mused upon what

size exclusion effects the hard-core of a Janus particle might have on the phase behaviour

[37]6.

We develop this literature by including an aspect of shape anisotropy to the existing

framework to explore the structural diversity brought by separating the interaction sites

onto two different loci. This class of particle has been studied fairly extensively in

experiment [15, 21, 23, 38–52] and by theoretical methods [53]. Simulation work on this

sub-class of dumbbell shaped Janus particle have taken different routes [54, 55]. Early

work in which the authors referred to the particles as ‘peanut-shaped’ nano-particles

[54], in which Virtual Move Monte Carlo (VMMC) — a method to approximate the

dynamical evolution of particle systems according to potential energy gradients [56] —

6identifying that ‘leaky’ membranes may find useful technological application.
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simulations are performed to investigate self-assembled structures formed in the ‘peanut-

space’, where both the inter-nuclear distance is varied and the relative size of the lobes.

Kinetic phase diagrams demonstrate the presence of both simple structures rationable

via simple packing arguments, and complex hierarchical self-assembly pathways to a

range of different structures, including spherical and non-spherical micellar aggregates,

bilayers, faceted polyhedra, and crystalline clusters.

More recent work on the self-assembly products performed long Vanilla Monte Carlo7

(VMC) simulations employing the Kern-Frenkel potential, with long simulations lengths

(approximately 70 million MC cycles) at interaction strengths of βǫ = −3.58, which
the authors argue is sufficient to observe self-assembly [55, 57]. The authors investigate

the effect of the sphere separation, parametrised as l = 2d(σs + σh), where σs and σh

are the diameters of square-well (SW) and hard-sphere (HS) lobes, on the structure of

aggregates with sphere size ratio q = σh/σs at system volume fractions below φ < 0.20

over 0.95 6 q 6 1.25.

Where q = 0.95, the SW lobe is larger than the HS, on varying l from near zero to 0.5,

isotropic liquid droplets, followed by bilayers form which at l & 0.3 and low density can

curl to form vesicle structures. For q = 1.035, upon increasing l from near zero to 0.50,

where the the particle is more recognisable as a dumbbell shape, the system undergoes

structuring from spherical micelles at l ≈ 0.05, which elongate between 0.05 < l < 0.2,

form vesicles where l ≈ 0.2 and finally form bilayers for l > 0.2. Where the hard sphere

portion is larger, where q = 1.25, where the HS lobe nearly eclipses the whole square-

well, such that the “dumbbell” resembles a one patch sphere (with a small attractive

lump), while spherical and elongated micelles are observed, the formation of vesicles

does not occur.

Thermodynamic calculations that focus on the equilibrium orientation of amphiphile

particles at an interface identify that aspect ratio and surface wetability play an im-

portant role, with small aspect ratios and large wetability gradients favouring perpen-

dicular orientations of the long axis to an oil-water interface [15], a result familiar to

conventional amphiphile research. In the study of a related system, prolate ellipsoidal

amphiphiles adsorbed on curved oil-water interfacial topologies studied via dissipative

particle dynamics [58], indicates that liquid-crystalline ordering of the adsorbed particles

with varying surface coverage depends upon the patch size and the aspect ratio.

These findings indicate that as the patch approaches a coverage factor χ ≈ 0.5 that the

formation of layered structures dominates, and that the site separation or aspect ratio,

has a strong influence on the topology of structures that form. This is an important

7The term vanilla is used here to distinguish Monte Carlo employing conventional roto-translation
moves from more exotic move algorithms.
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point: the geometry of aggregate structures composed of Janus type colloids depends

sensitively on the surface coverage of the different interaction profiles, the distance be-

tween the two philos, and the packing constraints imposed by the excluded volume of

the particle core.

An attempt to address three issues follows. Firstly, we begin with a dumbbell shaped

particle, defined by two tangent spheres of equal diameter, each surrounded by a SW

potential. We then tune the strength of the interaction on one site until only the bare

repulsive core remains. This final configuration we refer to as the Janus limit for tan-

gent dumbbells. In the case of spherical particles varying patch coverage drastically

alters the phase behaviour (see, for example [35]). The variation in the relative inter-

action strength is analogous to this. Along the site interaction coordinate we analyse

the variation in gas-liquid critical phenomena and compute phase diagrams cataloguing

the system behaviour, and where appropriate describe the microscopic structure of the

fluid and any assemblies encountered. This is addressed in Chapter 4. From this point

(the Janus limit) we employ a size ratio parameter to account for the difference in di-

ameter between the two (still tangent sphere) interaction sites, which we refer to as the

heterogeneous Janus dumbbell. We start at the maximum of the size ratio parameter

and explore the fluid phase behaviour. We compute gas-liquid phase separation binodals

where liquid critical phenomena occurs and estimate critical points, and identify regions

where gas-liquid critical behaviour is no longer observed. This analysis is discussed in

Chapter 5. Where the structure of condensates varies from that of typical isotropic liq-

uids we categorise and attempt to rationalise their structure. This analysis is performed

in Chapter 6. Finally, in Chapter 7 we present phase diagrams summarising the findings

of the previous two chapters.



Chapter 2

Modelling

This chapter shall discuss the specific rules that the investigation follows, outline the

rationale for particular choices made in parameterisation of the target systems, and de-

velop some methods for addressing the questions outlined at the end of Chapter 1. We

extend a model of particle interactions and rules of ‘motion’ to describe the thermody-

namic properties of particle systems. To this end we invoke a conception of statistical

mechanics such that a finite system can be explored at some constant set of macro-

parameters to obtain bulk properties and observables in the thermodynamic limit. In

order to apply this methodology we express the problem in the language of classical

statistical thermodynamics, but before we do this we need to describe a microscopic de-

piction of particle interactions, the particle geometry, and interaction parameters such

that we can traverse the parameter space(s) systematically.

2.1 Defining the System

2.1.1 Parameterisation

Since we are trying to understand the phase behaviour of Janus dumbbells, we define a

set of parameters that account for both the characteristic system properties, as well as

the size ratio of our particles and the interaction properties located on each sphere. To

do this we first introduce the dimensionless characteristic system parameters.

Reduced Units

Before describing the particles in detail we first describe two fundamental quantities,

using which we define all other properties of the system. Properties defined in terms

8
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of these parameters are described as reduced and avoid the potential embarrassment

of running essentially duplicate calculations on particle systems that can be described

similarly by folding in factors proportional to these quantities specific to each system.

The first is the characteristic length scale parameter σ. All lengths are expressed in

terms of this characteristic length parameter and it is set to unit value. The second

is the characteristic energy scale parameter, ε, also set to unit value. Using these re-

ducing parameters we can write down a set of reduced units, for example the density,

temperature, energy and pressure can all be re-expressed in term of these:

ρ∗ = ρσ3, T∗ = kBT/ε, E∗ = E/ε, p∗ = pσ3/ε (2.1)

A Janus dumbbell (JD) is here defined as composed of two tangent spherical sub-

particles: one h sub-particle possessing a hard-sphere (HS) interaction, and another

s sub-particle containing a square-well (SW) interaction. The full potential between

particles i and j, V is defined as

V (rij) ≡ VSW (rss) + VHS(rhh) + VHS(rsh) + VHS(rhs). (2.2)

where the potential is defined over each pair of sites on each particle such that

Vs(rss)



















∞ rss < σs

−ε σs 6 rss 6 σs + λσs

0 rss > σs + λσs

, Vh(rab) =







∞ rab < (σa + σb)/2

0 rab > (σa + σb)/2
. (2.3)

where interaction sites a, b ∈ {s, h}, along with the corresponding particle diameters.

The particles therefore most simply, where σs = σh, take the form denoted in panel d)

of Figure 2.1.

2.1.2 Pathways

There are in principle an infinite number of ways of transforming particles, however

circuitous the route may be. In practice one is limited by the mathematical tools for

performing the transformation and imagination. Bearing in mind that one also must

consider the practicality of the transformation. Defining quantities in terms of a set
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of fundamental reduced quantities also facilitates the comparison of metrics across the

range of parametrisation. The first such quantity is the size asymmetry parameter.

2.1.3 Size Asymmetry - α

a) b) c) d) e) f) g)

Figure 2.1: Sketch of the particle at different points in the α space: a) pure HS; b)
α = 0.25, such that σh = 1 and σs = 0.25; c) α = 2/3; d) the Janus dumbbell where
α = 1.0; e) α = 4/3, where σs = 1 and σh = 2/3; f) α = 7/4, where σs = 1 and
σh = 1/4; g) pure SW. The shaded regions denote the range of the interaction of each

s sub-particle.

Since we would like to model systems of particles composed of tangent-sphere dumbbells

we define two diameters, σs and σh that account for the size of each sphere. These are

defined in terms of the characteristic length and a size ratio parameter. In order to

account for the diameter ratio between each of the constituent spheres of a dumbbell we

define a parameter α ∈ [0, 2], that modifies the sphere diameters σs and σh such that

σs =







ασ α 6 1

σ α > 1
, σh =







σ α 6 1

(2− α)σ α > 1
. (2.4)

It should be fairly obvious that this particular formulation avoids the problem of a

divergent sphere diameter1, were one to take a simple diameter ratio as in some the

literature [54, 55] which study essentially similar systems are wont to do. Defining the

particle diameter ratio in this way also allows smooth deformation of the particle across

the parameter space such that at each extreme the model returns the behaviour of a

system of particles of diameter σ, but with the properties of the potential defined on

that sphere.

1A serious problem for simulation, where numerical quantities are maintained close to unit value to
mitigate the problem of machine representation: overflow and underflow, and floating point precision.
Not to mention the volume of the box of an extremely large sphere in a box of size length L ∝ σLarge,
yielding all sorts of problems for comparing similar states across ensembles.
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2.2 Reference Systems

Given that the target particle systems incorporate not just size asymmetry but also

interaction anisotropy we are left with a choice of what kind of interaction we wish to

place on each sphere. The approach outlined here is a distinctly different and simpler

approach to that of Janus spheres and other Janus type dumbbells which employ the

Kern-Frenkel model [29, 30, 32, 35, 36, 55, 59]. While there is a veritable zoo of interac-

tion potentials, ranging from the what can be best described as primitive to what can be

best described as approximate, we settle on a primitive choice. Due to the large swathes

of parameter space to traverse ideally one would choose as simple, or cheap to compute,

a potential as possible, yet the lack of solid justification for just any interaction model

still warrants a brief discussion of the particular choice settled upon.

2.2.1 Approximate (primitive) potentials

Hard-sphere

The hard-sphere (HS) potential forms the basis of the aptly named hard-core thermo-

dynamics. For pure systems it is a single parameter system, the particle diameter σ,

in reduced units parameter free. A surprising result from early statistical physics sim-

ulations of this most rudimentary particle model — the pure hard-sphere — was that

its phase behaviour included a phase transition between a continuously deformable fluid

to a crystal structure via a first-order process [60]. This was a sort of proof of concept

that demonstrated how only rather simple conceptions of particle interactions are re-

quired to mimic what was thought to be as complex a processes as a phase transition,

and in this case that only a hard-core was required to stabilise a crystal. Crystallisa-

tion of hard-spheres is a purely entropy driven process. The structure which forms at

low system density is one which maximises the free-volume around each particle. For

mono-disperse spheres a maximum packing fraction of π/3
√
2 ≈ 0.74048 is achieved by

both face-centred cubic (FCC), or hexagonal close-packed (HCP) structures. The global

thermodynamic minimum is achieved by the FCC structure, but only by a very slim

margin [61]. At lower densities, it is possible to form a jammed structure analogous to

a glass [62], though the process by which this occurs, and the nature of the transition is

still an open problem.

Since we are not specifically interested in crystal formation in the present study, the HS

potential offers us little in the way of reference, having no source of interaction it can not

display any gas-liquid phase separation behaviour or low density assembly properties and

can be treated as a special, but ultimately useless, extremum of the parameter space.
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VHS VSW

r r

σ σ

λ

ε
a) b)

Figure 2.2: Sketch of the a) HS and b) square well potentials demonstrating the
parameter make-up of each.

Square-well

At the other end of the α parameter space the model returns a sphero-symmetric sur-

rounded by a square-well SW potential. The SW potential is the simplest to incorporate

a form of attraction. In spite of its simplicity, like the hard sphere, is able to demon-

strate remarkably diverse phase-behaviour. It is the simplest model to display all of the

properties of classical matter, i.e. a crystallisation on cooling, and a gas-liquid phase

separation at sufficiently high temperature. The primitive square-well potential is there-

fore probably most readily conceived as a first-order approximation to a van der Waals

interaction and is a simple addition to the hard-core model: a well of finite length, λ,

with a depth, ε. In general it is a three parameter system: σ, λ, and ǫ; and for pure

systems in reduced units it has only a single parameter, the interaction range, denoted

here as λ, the others: ε and σ can be factored out simply.

2.2.2 Interaction Range - λ

The dependence of the gas-fluid phase-separation behaviour of a system comprised of

particles interacting via the SW potential is well-studied in the literature. An erudite

discussion of the gas-liquid phase diagrams can be found in [1, 63–65]. Here are collected

a brief recollection of the findings from [1], restricted to those within the purview of

the current study, see Figure 2.3. Where the interaction range is large (λ = 1.0) the

bonding interaction tolerates large interparticle separation leading to a comparatively

high temperature gas-liquid binodal which is narrow and eccentric, rationable via a

mean-field style theories. In contrast, for short interaction ranges (λ < 0.25) the gas-

liquid critical point becomes meta-stable with respect to the formation of a crystal. It
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0 0.2 0.4 0.6 0.8

1

1.5

2

2.5
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T ∗

ρ∗

λ = 1.0

λ = 0.75

λ = 0.50

λ = 0.375

λ = 0.25

Figure 2.3: Binodal gas-liquid coexistence curves as obtained by Gibbs Ensemble
simulations of the SW fluid with variable interaction range. Fitting was performed
using Equation 5.4 and Equation 5.4. On reducing λ the liquid density branch shoots

off to increasingly higher densities where T ∗ < T ∗
c (λ).

is clear that theoretical studies of particle systems incorporating SW potentials ought

to tread the intermediate λ to avoid these two undesirable extrema.

2.2.3 Choosing λ

In order to reduce the parameter space to traverse, we have chosen the interaction

range λ = 0.5. This is somewhat hard to justify. The van der Waals interaction, to

which the SW potential conceivably comprises a first-order approximation, at molecular

scales is on the order of the Bohr radius of atomic species. Where particle length-

scales are larger, say for colloidal systems (between nm and µm) interaction ranges

can vary between 100 % and 0.1 % as a proportion the particle size, depending upon

the origin of the interaction. Given that we wish to capture behaviour at meso-scopic

length-scales, an intermediate potential range is employed. In theoretical terms, as

identified in Section 2.2.2, we identify that for the SW potential the interaction range

where conventional gas-liquid phase separation is observed lies in the interaction range

λ ∈ [0.25, 1.0]. Where λ ≈ σ, the behaviour of the square-well fluid can be modelled by

a mean field approximation, on decreasing λ, a region of conventional gas-liquid phase

separation is returned by the model until the critical point becomes meta-stable for

λ < 0.25. Given these considerations, the interaction range of λ = 0.5, should give us a

reasonable “in between” behaviour.
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Figure 2.4: Binodal gas-liquid coexistence curves as obtained from [1] by Gibbs En-

semble simulation of the variable interaction range λ SW fluid.

2.2.4 Solvent Interaction

In what is likely to be received as a glaring omission from the parameterisation outlined

above is the question of solvent. It is clear that for amphiphiles, appropriate solvent-

amphiphile interactions are strongly determinant of both the aggregation properties of

the amphiphile, as well as the topology of any interface that forms [17]. Here since we

wish to reduce our parameter space, it is useful to neglect certain aspects which can

be considered indirectly. In this case solvent interactions are treated indirectly via the

potential definition such that aggregation is driven by the anisotropic ‘stickiness’ on one

end of the particle. It will be demonstrated later that in spite of a lack of even an implicit

solvent that the aggregation properties of these model colloid amphiphiles demonstrates

a diverse array of phase behaviours determined by the outlined parameterisation.
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Methods

This chapter discusses the Monte Carlo method and the thermodynamic basis upon

which the simulation of particle systems is built. We proceed by developing the math-

ematical machinery that underpins the simulation approach. After defining the form of

thermodynamic averages to be calculated we move onto algorithm design and then on

to the specific metrics involved in characterising the systems encountered. An imple-

mentation of the Aggregation Volume Bias Monte Carlo [66, 67] is implemented, to our

knowledge for the first time, on this particular class of particle. The code developed in

this work is released under GNU GPLv3 subject to the appropriate citations via GitHub

from user name 2mote.

Each configuration of a particle system containing N identical particles is assigned a 3N

dimensional state vector ~ri, defining a unique point in a configuration space M. We

refer to these ~ri as microstates. The set {~r} defines a volume inM. M describes all of

the possible ways of constructing the system. We assign a weight-factor, W(~ri), to each

microstate to quantify the probability of finding the system in a configuration ~ri in the

chosen ensemble.

The Canonical Ensemble

In the Canonical ensemble, at constant number of particles, N ; volume, V ; and temper-

ature, T : for the i th microstate, the corresponding weight factor is

WNV T (~ri) = e−βU(~r), (3.1)

where U(~r) is the value of the potential for a given configuration where the state vector,

~r, takes the values of the particle position vectors, ~r, and β is the inverse Boltzmann

15
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temperature, β = 1/kBT . The corresponding thermodynamic potential is the Helmholtz

free energy,

A ≡ U − TS, (3.2)

where S is the system entropy.

The Isothermal-Isobaric Ensemble

A related ensemble is the Isobaric-Isothermal ensemble with constant number of particles

and temperature, but imposing a pressure, P , and allowing the system volume, V , to

fluctuate, the weighting factor is defined as

WNPT (~ri) = e−β[U(~r)+pV ], (3.3)

which contains a term accounting for the system pressure, p. The corresponding ther-

modynamic potential, the Gibbs free energy, G, related to the Helmholtz free energy

by

G = A+ pV (3.4)

includes a term accounting for the pressure and volume. Given this formulation, the

probability of observing the system in a given microstate is the value of that microstate’s

weight in ratio to the sum total weight of all possible microstates in the ensemble of

choice, I.e.

P(~ri) =
W(~ri)

∑

iW(~ri)
. (3.5)

It is useful to reformulate the sum in the denominator of Equation 3.5 in terms of the

classical partition function,

Z = c
x

d~qd~pe−βH(~r,~p) (3.6)

Where H(~r, ~p) is the system Hamiltonian that expresses the total energy of an isolated

system as a sum of kinetic energy, K, as function of momenta, ~p, and potential energy,

V, as a function of coordinates, ~r, and c is a proportionality constant that ensures that
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the sum over quantum states converges to the classical partition function in the limit

~→ 0 [68]. Since K is a function of only the momenta, its evaluation can be carried out

analytically and we can re-express the configurational portion of the partition function,

substituting the potential function from Equation 3.1 for the Hamiltonian, yielding for

the canonical ensemble

ZNV T = cV

∫

d~re−βU(~r). (3.7)

where cV is a constant that ensures the partition function is a dimensionless quantity.

The Helmholtz free-energy can then be expressed as

A = −kBT lnZNV T (3.8)

Likewise we can do so for the Isobaric-Isothermal ensemble except re-expressing the

coordinates, ~r, as scaled coordinates ~s ∈ [0, 1], modified by the length of the container

(assuming a cubic volume), L = V 1/3 ,

~r = L~s, (3.9)

utilising Equation 3.3, and using lnV as the integration variable over the volume [69],

the partition function becomes

ZNPT = cP

∫

d(lnV )V N+1e−βpV
∫

d~s e−βU(~s;L). (3.10)

The Gibbs free-energy can then also be re-expressed in terms of the corresponding par-

tition function,

G = −kBT lnZNPT . (3.11)

The space M can be decomposed into its composite sub-spaces corresponding to dif-

ferent regions of the phase space. For example, a system of atoms interacting through

dispersion forces alone can be observed in phase ω. Restricting the evaluation of Z to

only those configurations that contribute to the phase ω, such that

Zω =

∫

ω
d~qω e

−βU(~q)ω . (3.12)
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Those configurations of non-zero weight factor are of interest since they correspond

to ways of constructing the system with non-vanishing weight factor. Minimising the

thermodynamic potentials in each of these subspaces allows us to observe quantities of

interest in that phase to aid in describing these systems in detail.

3.0.5 The Grand-Canonical Ensemble

The previous two ensembles hold both the number of particles and the temperature

constant. Each are employed to study averages of the form in Equation 3.15, but are

unsuitable for studying properties of the system directly related to the partition function,

which in turn are related to the effective volume in configuration space accessible to the

system at some collection of state parameters [68]. Quantities of this sort include G
or A, and entropy S and cannot be measured directly using Metropolis sampling [68].

One can use Metropolis sampling to calculate differences in these quantities and the

Grand-Canonical (GC) ensemble makes use of this fact. The GC ensemble connects the

simulation cell of system size N to a reservoir of ideal gas particles, in a similar way

to that employed in the NPT ensemble, of size M , and takes the limit of an infinitely

larger ideal gas reservoir, i.e. M/N →∞, yielding the GC partition function

QµV T ≡
∞
∑

N=0

eβµNV N

Λ3N !

∫

~s e−βU(~s), (3.13)

where, since the volume of the simulation cell volume is proportional to the ideal gas

reservoir volume, the integral is in terms of the scaled coordinates ~s, and the leading

sum quantifies a conversion factor from the chemical potential of the ideal gas, since the

chemical potential is related to the number density ρ,

µ
i
= β−1 ln Λ3ρ (3.14)

Chemical Potential

An interesting difference between the Grand-Canonical (GC) ensemble and that of the

Canonical (NVT) or Isobaric-Isothermal (NPT) ensembles, is that rather than minimis-

ing the free energy, as one is wont to do in the the former two ensembles, simulating in

the GC ensemble entails imposing the free energy, since µ
i
= G/N

i
, i.e. the chemical

potential of the ith component proportional to G by N . This is a mixed blessing, since

we have an inverse method of controlling the phase-space we explore, and yet we don’t
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know a priori what the value of G/N should be. It is apposite to have well characterised

and reliable reference system(s)1.

3.1 Monte Carlo

Integrals of large dimensionality, such as those outlined in the previous section cannot

be solved effectively by simple quadrature. Due to the portion of time such an approach

would expend on evaluating the integrand in regions of the configuration space possessing

vanishing weight factor it would render solution by hand of this type of problem only

tractable for the smallest systems or the fewest number of degrees of freedom. This

problem is greatly exacerbated by the potential energy function we have chosen, by

rendering any configuration that yields an overlap between particle core diameters with

a zero weight factor. Numerical methods for exploring the potential energy landscape

for complex particle systems are applied. The Monte Carlo (MC) approach takes its root

in the dawn of modern computing machines as one of the earliest methods of number

crunching for the numerical study of diffusion processes involved in nuclear reactions of

fissionable materials on the earliest computers. The name Monte Carlo, suggested by

Nicholas Metropolis, ostensibly2 deriving from its vast use of pseudo-random number

generation. The method itself is extremely flexible and can be applied to problems

in fields as diverse as the physical sciences, engineering, computer graphics, artificial

intelligence, and even finance. We make use of MC techniques here to solve integrals of

large dimensionality in a systematic manner.

We are interested in exploring M to obtain information relating to regions with high

probability and thus in need of a rational method of doing so. At the outset it should

be fairly intuitive that not all choices of values for the set of particle configurations

~r = {~r1, ~r2, . . . ~ri}, for i ∈ [1,N], will possess a non-vanishing weigh factor. We develop

a method of generating ~r such that we ensure those generated states are from regions of

the configuration space with non-zero weight.

Averages

We want to measure observable quantities that are averages over phase space. A formu-

lation of such an average, making use of the partition function in a given ensemble for

a space capturing phase ω, the partition function Zω from Equation 3.12, we have

1A modestly thorough analysis of the square-well reference system can be found in Section 2.2.1
2Though anyone who takes an interest in the development of computing machines might surmise

that the project file name Monte Carlo actually derived from a spendthrift uncle of Stanislav Ulam who
notoriously borrowed money from relatives since he “just had to” visit a particular Monegasque town.
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〈A〉ω =

∫

ω d~rω e
−βU(~r)ωA(~r)

∫

ω d~rω e
−βU(~r)ω

, (3.15)

where 〈...〉 denotes an average over the generated states in the configuration space of

the ensemble and the quantity A(~q), is some function of the particle coordinates ~r. We

want to know the ratio of two integrals [68]. To this end we employ the Metropolis

method [70] to sample from points in the configuration space, ensuring detailed balance

— that the probability moving between microstates does not change with the evolution

of the system — and that the system satisfies the ergodic hypothesis, the average over

the ensemble of states generated by the Metropolis method will converge to the correct

value.

3.1.1 Algorithm Design

Simulation of particle systems is a fairly routine procedure with many modern codes

developed with specific aspects of the simulation technique in mind. For more specialised

or exquisite types of simulation, code is often inherited with all of the foibles and short-

cuts and poor code practices (which everyone has, no matter their experience, fondness

for particular ways of performing certain tasks or the reliance on ‘classic’ languages that

should have been laid to rest decades ago). The process of writing code from scratch

is a rewarding, even if frustrating process. Though the link between that modelled and

that which it is modelled upon may be tenuous at best. With all this in mind, this

section will describe some “tricks of the trade” that make the simulation approach not

only manageable conceptually to a non-coder, but will also attempt to give the Reader

a deeper understanding of how these structures can be used to make a simulation very

efficient. The language of choice for the Author is ANSI C, using the C99 standard. All

non-standard libraries employed are listed in the subsection in which they are used.

The bones of a Monte Carlo algorithm is very simple and proceeds as follows:

Algorithm 1 A Monte Carlo code

1: Prepare the system in a beginning configuration., ~r,
2: Define END condition
3: while not END do
4: Generate a trial configuration, ~r ′,
5: Conditionally accept the new configuration
6: Sample
7: if END then:
8: break
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MC simulations are run for some number of iterations over moves of each particle. One

move of each particle is here termed a Monte Carlo Sweep (MCS). Which particle is

moved is chosen stochastically such that on average one trial move of each particle is

attempted in each sweep. There are many ways in which one may end a simulation.

Conventionally, an MC simulation comes to an end after a predetermined number of

MCSs. Here we employ an automated ending condition. Several metrics are monitored

over the course of a simulation. For example, if we are trying to optimise the system

energy we can monitor the fluctuations in the energy metric, define a tolerance value

(some small number of multiples of the standard error of the mean (SEM) within a

sampling block), and wait until the average value remains approximately constant. In the

MC simulations employed here we optimise four quantities before engaging in equilibrium

sampling. These quantities are firstly the system energy, since we expect clustering in

our systems we also monitor the the average number of monomers, the average size of

a cluster, the largest cluster, and the average number of clusters, only when all of these

values are constant to within three SEM, do we commence equilibrium sampling for a

prescribed number of samples. In this way simulations can be run and left until they

have completed.

(pseudo-)Random Numbers

All algorithms in this section are based upon — or measuring of something proportional

to — the stochastic evolution of the system. This requires a source of pseudo-random

numbers. The Mersenne Twister (MT) algorithm is employed here. MT has a period

of 219937 − 1 623-dimensional equidistribution up to 32-bit accuracy [71]. A wrapper

containing modifications to the original algorithm is used that generates signed and

unsigned floats and integers, as well as varying bit-depth

3.1.2 Representation of Particles

Firstly the fundamental actor in these simulations is the particle. Since we study the

behaviour of tangent-sphere Janus dumbbells we can decompose our particle position

vector ~ri into its sub-particles, ~ris and ~rih . We can then decompose those into their

vector components:

~ri =







~ris = {xis , yis , zis}

~rih = {xih , yih , zih}
(3.16)
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To each particle a unit vector ~u ≡ {ux, uy, uz} is assigned that describes orientation

of the particle. This unit vector is located on the square-well sphere and points in

the direction of the hard-sphere component. Defining the particles in this way implies

some properties in both the way it can be represented in memory and the way new

configurations of a single particle are generated.

Structures

Making use of ‘structures’ in C is very useful. Since being defined as the union of 3

different components, namely the sticky sphere, the hard sphere, and the orientation

unit vector, the rather minimalist structure that represents each particle is shown in

listing 3.1 below.

typedef struct particle { // structure for particles

double sw[3]; // square well component

double hs[3]; // hard sphere component

double u[3]; // unit vector for orientations

};

Listing 3.1: Particle representation

Declaring arrays ofN particles can then be achieved simply by writing particle array[N],

and individual sub-particle elements accessed by using the dot (.) operator, say for the

y component of the hard-sphere sub-particle of particle index 563, y563h , setting it to

5.6375874672,

array [563]. hs[1] = 5.6375874672;

Listing 3.2: Accessing particle structure sub-particle vector components

Representing the particles in this way also allows them to be passed as either whole

arrays or as single particles to functions that act on them. This is advantageous since

often a potential evaluation may be performed on a particle structure which is not yet in

the array that contains the others (for example, if we are simulating in the GC ensemble).

3.1.3 Moves

The types of particle moves we employ are conventional rotations and translations. In

both cases the move is carried out following the same logical flow which is outlined in

Algorithm 2
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Algorithm 2 Logic for moves of arbitrary type

Select seed: i,

Calculate energy of old state: for i, Uo

Save i coordinates: to xi,o

Generate new position: for xi,n

Calculate energy of new state: for i, Un

Calculate Difference in energy: ∆U = Un − Uo
if genrand() < e−β∆U then:

Accept.

Update position: set xi = xn

else:

Reject.

Set xi = xo

Displacements

Displacements are generated by updating the current position of the selected particle.

A displacement vector, ~∆, is generated. This vector is chosen from a cube with unit side

length and has x, y, and z components modified by the floating point step size parameter

dmax. New positions are generated by adding a vector of length defined by the interval

(0,
√
3dmax) and updating the position of the hard-core sub-sphere according to the new

position, where the hs component’s position is related by the unit vector modified by

the parameter sigmix3, so for the ith particle:

for (int ax = 0; ax 6 2; ax++) {

array[i].sw[ax] += (genrand_real () -0.5) * dmax;

array[i].hs[ax] = array[i].sw[ax] + array[i].u[ax] * sigmix;

}

Listing 3.3: Generating new displacements

This implies that the hard-sphere portion of the dumbbell just tags along for pure

translation moves as a passive entity. This approach is distinct from other approaches for

molecular rotations where the centroid, or centre of mass is rotated and the constituent

points constructed anew. The value of dmax is variable only during the equilibration

portion of a given simulation. Its value is begun at a small value (typically 0.1) and

allowed to grow or shrink depending upon the acceptance rate of moves. The method

of modifying the step size parameter(s) is described in more detail below.

3
sigmix= (σs + σh)/2.
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Rotations

Rotations are generated by modifying the unit vector, ~u, describing the orientation of the

particle by assigning a small rotation to a stochastically chosen axis. During this move

the square-well component remains fixed and only the hard-sphere component moves.

New orientation vectors are generated in the following way, making use of another step

size maximum rmax and applying a rotation matrix method, for rotation, R, about an

axis x, y, orz, by angle θ, where α = sin θ and β = cos θ:

Rx(θ)=









1 0 0

0 β α

0 −α β









, Ry(θ)=









β 0 −α
0 1 0

α 0 β









, Rz(θ)=









β α 0

−α β 0

0 0 1









. (3.17)

Here

Volume Moves

Volume moves are perfromed by random walk in lnV , either by keeping the cell geometry

unaltered, I.e. forcing the cell to remain cubic, or by relaxing the aspect ratio constraint

and allowing the simulation to decide the box geometry. In the case where the box

lengths are all individually variable, the random walk in the volume is performed in the

log of the box length space, La, where a ∈ x, y, z

Modifying Step-size Maxima

Step size maxima are allowed to vary during the equilibration section of each simulation.

The values of dmax and rmax are linked to the efficiency of the simulation by means of

the acceptance rates. These quantities are varied—on the fly—such that the acceptance

rates for each type of move are maintained around 0.4, or 40%. In contrast the value

vmax is pegged to the acceptance rate maintaining the acceptance rate of 20%, which

is sufficient to sample the volume space efficiently. Once the equilibration stage of the

simulation has ended these values are fixed to their most recent values.

3.1.4 Periodic Boundary Conditions

All simulations were carried out in boxes of side length L with periodic boundary con-

ditions. In the two all Canonical ensemble simulations were carried out in static cubic

boxes. Simulations in the Isothermal-Isobaric ensemble where the structure was expected



Chapter 3. Methods 25

to be lamellar were carried out in orthorhombic simulation cells with individually vari-

able box dimensions, Lx, Ly and Lz. Simulating particle systems in this way allows

us to calculate what is effectively an infinite system, providing two conditions are met:

Firstly, that the system size (N) is large enough that certain intensive quantities do

not change with increasing the simulation box size, extinguishing any finite size effects;

and secondly, that any simulation prepared to meet the first condition be small enough

that the problem to which the simulation is applied is tractable with current computing

resources. A few methods for making simulations large enough to meet the first criteria

extremely efficient and fast are outlined in the following few sub-sections.

3.1.5 System Energy

The fundamental quantity that we wish to optimise to achieve a set of equilibrium con-

figurations is the system energy. Due to the fact that our interaction potential is discrete

and discontinuous by definition this makes for some simple methods of calculating the

energy efficiently. For each particle there are two interaction sites. this implies that

for each pair (between particles a and b of particles we must calculate four interactions:

one square-well interaction between sub-particles as ↔ bs; and three hard sphere inter-

actions ah ↔ bh, as ↔ bh, and ah ↔ bs. This problem then becomes that of finding

the distance d~rab between sites and updating the pair energy accordingly. This could be

calculated by a generalisation of the Pythagorean right angle triangle theorem, which

implies that a square root would be required to get the distance. In practice we calculate

the squared distance between the particle and compare that to the square of the interac-

tion range. This circumvents the requirement of employing the sqrt() function, which

is notoriously slow and since we need to do this billions of times would be impractical.

Distance2 and Bonds

Calculating the distance square is simple. All one must do is sum up the squared

differences in position vectors that describe each particle’s location in space. For particle

a and b, for each site, since we have four sites and interactions, these distances squared

are, for sites w ∈ {s, h},

d~r 2
w:w = (~rbw − ~raw) 2 = (xbw − xaw)2 + (ybw − yaw)2 + (zbw − zaw)2, (3.18)

There are now four critical lengths that these quantities are compared to in order to

calculate the system energy they are σ2s , (σs+λσs)
2, σ2h, and ((σs+σh)/2)

2. If the squared

length between s sub-particles is less than σ2s an overlap has occurred and the interaction
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is of infinite energy. Any move that accomplishes this is immediately rejected, likewise

with distances between h sub-particles and σ2h, and between s and h sub-particles and

length ((σs + σh)/2)
2. The penultimate distance is that between s sub-particles again,

except where that length is greater than σ2s and less than (σs + λσs)
2 which has an

interaction energy of −ε. Two particles that meet this condition are considered to be

bonded, and contribute a unit of ε to the overall system energy. All other distances

greater than the largest of the four aforementioned interaction ranges are considered too

great to be interacting are defined to have no energy of interaction.

3.1.6 Speeding Up

Obviously calculating the interaction energy of a given particle that undergoes a move

with all N−1 particles in the simulation box is a time consuming process and for discrete

potentials is completely unnecessary. This problem is N -fold worse for situations where

a whole system energy is required, such as simulations that sample the volume where all

N ×N particle interactions should be accounted for. A few methods of speeding up the

calculation of particle interactions can be employed. The Author directs the Reader to

texts concerning other space discretisation methods such as tree structures, which can

suffer from slow lookup times depending on the way in which the space is partitioned.

A powerful method is used here, the cell list, with a few specialisations (for example

using pointers and linked lists, as well as considering each sub-particle as an individual

particle and thus the same whole particle can be in two cells simultaneously).

Cell Lists

Cell lists are a form of space discretisation meta-structure whereby static cell struc-

tures which point to dynamic linked-lists are superimposed on the simulation box. This

structure segments the space into small containers, optimally containing a single particle.

Dividing the simulation space allows us to restrict the evaluation of particle interactions

to the space immediately surrounding a given particle. In practice, however, the method

requires that the cells be of a minimum size in order to ensure particles that have the

potential to interact are not neglected, which in turn depends on the maximum particle

interaction range. The simulation box is divided into Nx × Ny × Nz individual cells

of equal volume which is determined by taking the smallest possible number of boxes

required to make cells that must be at least greater than the largest of the interaction

ranges, by taking

cells_x = floor(boxX / cell_size); // Smallest number of boxes

cell_size_x = boxX / cells_x; // Actual box size in x
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Listing 3.4: Determining the cell dimensions. The actual box size in x is always

greater than the desired cell_size, which in turn is always greater than the largest

interaction range

Once the box dimensions are decided the cell structure can be declared and superimposed

on the simulation box.

0 1 2 3 4 5 6 7 8 9
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4
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7
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9

Figure 3.1: The two dimensional simulation box on the left is divided up into Nx×Ny

cells, indexed from zero, on the right. Cells are at a minimum the size of the largest
interaction length.

Each particle is assigned a list structure, containing the index of the particle and the

particle sub-particle type which can be linked together to form the cell list:

typedef struct list { // structure for cell contents

int index; // index of the particle

int type; // type of particle - hs=0, sw=1

struct list *next; // link to the next particle in the cell

};

Listing 3.5: The linked list structure. Containing the particle’s index and the sub-

particle identifier type.

and finally pointed to by the cell list structure—a map of the cells, and a pointer to the

first particle found in the cell—indexed by their cell address:

list* cell[cells_x ][ cells_y ][ cells_z ]; // Cell list structure.
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Listing 3.6: Generating the cell address pointer structure. A three dimensional array

of pointers to linked lists.
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Figure 3.2: A two dimensional pictorial representation of the cell structure, the con-
tents of the cell, and the linked list containing the particle identifiers.

The cell that a given particle is in is determined by the vector component in each of the

three dimensions. For the x co-ordinate of particle i’s s sub-particle, the corresponding

x cell is (likewise for the other cell dimensions, with appropriate index and sub-particle):

i_sw_cell_x = floor(array[i].sw[0] / cell_size_x);

Listing 3.7: Cell occupancy. The cell’s x coordinate for particle i’s s sphere

Using this structure one needs to calculate d~r of only those particles in the cells sur-

rounding a particle’s host cell (including the host cell). In the two dimensional case in

Figure 3.2 only contents of the surrounding 8 cells must be considered in assessing the

potential, outside of this particle interactions can be neglected. In the limit of single

occupancy, i.e. one sub-particle in each cell, the algorithm should in principle scale as

O(n log n). In practice, due to the cells being at lease the size of the largest interaction

range, it is possible that more than one sub-particle occupy each cell (strictly speaking

this is also true of 2D and 3D cells with side length σ whose diagonals are
√
2σ and
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√
3σ) so the scaling will be slightly different, in either case the total system energy is

computed more quickly than O(N2).

3.2 Advanced methods

During the course of investigation of this class of particle it is variably observed that

aggregation phenomena at finite temperature may be restricted by a kind of kinetic

barrier to diffusive modes of the particles through the simulation cell. Given the move

algorithms outlined in the previous section, the diffusive behaviour of a particle through

the simulation cell is essentially a Wiener process. Where in the presence of strongly

directional or discrete potentials (or both, as is the case in the present work), the diffusion

of a particle across the cell can be suppressed A number of methods have been devised

to circumnavigate this pathology here we employ the Aggregation Volume Bias Monte

Carlo move algorithm.

3.2.1 Aggregation Volume Bias Monte Carlo

Aggregation Volume Bias Monte Carlo [66, 67] (AVBMC) is a non-local intra-box swap

move whereby particles leap across the simulation box in such a way as to enhance the

sampling of configurations which can be suppressed in schemes employing conventional

roto-translation move algorithms. The suppression of diffusive modes of particles across

the cell, a sort of kinetic bottleneck, can plague simulations of even simple particle sys-

tems that have any kind of shape or interaction anisotropy, or are strongly associating

[66, 72]. The AVBMC algorithm is very simple to implement, yet extremely powerful as

a method of avoiding this kinetic bottleneck in simulations where clustering of strongly

interacting particles can prevent structural relaxation to equilibrium geometries. Im-

plemented here is a single version of the move selection algorithm, taking heed of an

extension to the first AVBMC “in the spirit” of the multiphase Gibbs ensemble [67]

(referred to as AVBMC in the original paper), making use of two classes of acceptance

condition for different outcomes of the move selection procedure. For a more thorough

discussion of the method the reader is directed to [66, 67].
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Bonding Volume
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Figure 3.3: The in region of a particle for use with AVBMC. It is defined by the
furthest distance away an s sub-particle can contribute to U . The volume consists of
a layer of a sphere of radius σs + λσs with a conical section subtracted as defined by
angle from the nearest approach of a sticky sphere to the non-interacting sub-sphere.

In order to define the intra-box swap move at the core of the AVBMC algorithm, we

must first define a volume around each particle that contains a space in which another

particle can approach and be considered bound. This volume, v
AV B

, is defined as

v
AV B

=
π

6

[

8(σs + λσs)
3 − σ3s

]

(

1−
(

1

2
− σs + λσs

2(σs + σh)

))

, (3.19)

which corresponds to the volume of a spherical-shell, minus a spherical cone segment with

angle defined by the nearest approach of another sticky sub-particle to the hard-sphere

component at the greatest distance that can still be considered bonded and thus whose

centre lies at the boundary of the bonding volume in question. Figure 3.3 demonstrates

this volume and its constituent parameter make-up for the case of α = 1.0. Any sticky

particle is considered to be in the in region of a given particle if its centre lies within this

volume, and in the out region if without. Three different forms of acceptance condition

are employed for each of the scenarios: in→out, out→in, and most importantly in→in.

Move Type Selection

The selection of the type of moves the AVBMC algorithm employs is performed by

considering three particles, i , j, and k. The in and out regions of j are referred to as jin

and jout and their volumes V j
in and V j

out, respectively. The move type selection proceeds

according to the biasing probability, Pbias, which determines the direction of the move of

i with respect to j i.e. toward jin, i ∈ V j
in, or with complementary probability 1− Pbias

toward jout, i ∈ V j
out . The second step depends upon the first: If we are moving i
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to jin, the second step determines the origin of i. With equal probabilities i is chosen

from either the bonding region of k, kin, or from jout (which also contains kin); If on

the other hand we are moving i from a jin configuration, the second step determines

whether the destination of i is a kin or a jout configuration (which likewise contains

kin), with equal probabilities. If i is translated to or from a jout configuration some

accounting is required to determine whether the origin or destination (respectively) is in

fact a kin configuration, since as mentioned above, the volume V j
out also contains kin and

so will determine type of move we are performing and thus the form of the acceptance

condition.

Acceptance Conditions

The form of the acceptance condition depends upon the type of move we have generated.

If the move type selection process results in an in→ out, or out→ in, the appropriate

form of acceptance condition is one of the following two:

acc(jin → jout) = min

[

1,
PbiasV

j
outN

j
ine

−β∆U

(1− Pbias)V j
in(N

j
out + 1)

]

, (3.20)

acc(jout → jin) = min

[

1,
(1− Pbias)V j

inN
j
oute

−β∆U

PbiasV
j
out(N

j
in + 1)

]

, (3.21)

where V j
in = v

AV B
, Vout = V − V j

in − V k
in (where V j

in = V k
in such that the factor is really

2v
AV B

, yet the subscript maintained to denote the origin of this volume factor), N j
in

quantifies the number of bound neighbours of j i.e. the number of particles whose sticky

sub-particle lie within the bonding region of j, and N j
out all of those without (including

k). The third case, in → in, has a slightly different form of the acceptance condition.

For a move of particle i from jin to kin (jin → kin) the following acceptance condition

is used

acc(jin → kin) = min

[

1,
PbiasV

k
inN

j
ine

−β∆U

(1− Pbias)V j
in(N

k
in + 1)

]

. (3.22)

And for kin → jin, with complementary probability factor (1− Pbias) featuring instead

in the numerator,

acc(kin → jin) = min

[

1,
(1− Pbias)V j

inN
k
ine

−β∆U

PbiasV
k
in(N

j
in + 1)

]

. (3.23)
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The logic of the AVBMC is condensed below in Algorithm 3.

Algorithm 3 Logic for AVBMC moves

Select 2 particles: j and k such that j 6= k and V in
j ∩ V in

k = 0

if (genrand() < Pbias) then:

if (genrand() < 1
2) then: Select i from kin,

else: Select i from jout,

Translate i to jin.

else: Select i from jin,

if (genrand() < 1
2) then: Translate i to kin.

else: Translate i to jout.

Determine move type.

Apply appropriate acceptance condition.

This algorithm still suffers some major flaws. Where monomer populations are de-

pleted, say due to the region of configuration space a simulation is being run, moves

which attempt to move a particle from an out configuration may be rejected with high

probability. In the same scenario it is likely that all particles lie in fairly low lying en-

ergy configurations (for example in a liquid droplet) where the probability that one will

select a relatively high energy particle to move to an out configuration is vanishingly

small. In addition, with random selection of j and k, required for the balance condition,

translating a particle from either an jout or kin to a jin (or the opposite indices) where

there is significant clustering will lead to rejections based on hard-core overlaps. This

problem is exacerbated by the presence of the hard sphere portion, where its orientation

is determined stochastically. This idiopathy leads to generally low acceptance rates of

all AVB moves. In spite of this even a rapidly decreasing acceptance rate seems to

be enough to edge the system toward equilibrium configurations at a much faster rate

than only conventional roto-translations. This is due largely to the non-locality of the

displacement moves. Since, in order to form a bond between any two particles across

the box, with small dmax this process may take many steps, given also that discrete

potentials offer no long range tendency to draw disparate particles near one another,

a simulation may run its course without two particles ever meeting. The AVBMC al-

gorithm therefore circumvents this diffusive barrier and so allows us to accept its low

acceptance rate as an idiosyncrasy, rather than a pathology. Several innovative methods

have been developed to mitigate this problem [73], none are implemented in the current

study.
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3.2.2 Simulated Annealing

Simulated annealing (SA) is a meta-heuristic optimisation process for achieving an ap-

proximation to a global optimum in a combinatorial parameter space [74, 75]. In prin-

ciple the SA approach is more efficient than global optimisation techniques in certain

cases. The process proceeds by slowly varying a system parameter over the course of

a simulation in order to effect a thorough exploration of configurations around each

point on the parameter trajectory to ultimately arrive at a good approximation to a

global minimum. Though the technique can be applied to any particular thermody-

namic parameter in principle, here we have varied temperature (as is implied by the

term annealing), in order to approximate minima in the global free-energy landscape.

The SA approach carries some caveats. There is no guarantee that a structure obtained

via a single SA is a global minimum for the state point. In order to mitigate any mischief

caused by this fact we can reduce the likelihood of having fluked a high energy structure

(or a low energy one), where the system may have a series of low lying or degenerate

structures to choose from, a cohort of SA simulations are run with different RNG seeds

and an idea of the structural diversity, if indeed there is any, can be obtained.

3.2.3 Successive Umbrella Sampling

Successive Umbrella Sampling (SUS) extends a method for estimating free-energy es-

timation [76] whereby the range of states to be explored by the umbrella sampling

procedure is restricted to windows of width ω, beginning at zero density and investi-

gating windows one after the other such that the state space can be traversed without

the need for a weight function as is the case with multicanonical approaches [77, 78].

A histogram Hk[n] records the how often the simulation visits each state in the kth

window [kω, (k + 1)ω]. The left and right bins of each histogram, Hkr = Hk[kω] and

Hkl = Hk[(k + 1)ω], and their ratios rk ≡ Hkr/Hkl can then be compiled to yield an

unnormalised probability distribution

P [n]

P [0]
=
H0r

H0l
· H1r

H1l
. . .

Hk[n]

Hkl
=

k−1
∏

i=1

ri ·
Hk[n]

Hkl
(3.24)

In the limit of small ω, i.e. ω = 2, individual simulations can be run in parallel (providing

the computational resources are available), such that if the space is distributed overNproc

processors the resultant speed up for an MC algorithm with scaling O(n log n) will be

proportional to (
∑Nmax

k=1 N logN)/Nproc. Separating the simulation space into separate

individual simulations also has the effect of removing any bias associated with short
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simulations lengths usually used in SUS sampling that can offer configurations at higher

density that have preserved structures from formed at lower densities.

Histogram Reweighing

Histogram reweighting is performed by segmenting the N space and the corresponding

P (N) into regions corresponding to the different phases encountered over N and iden-

tifying minima in the P (N) which delineate regions of different phases, where P (N) is

comparatively large. After locating satisfactory minima in P (N), the areas astride are

compared to identify the direction which we must modify the distribution to yield equal

areas (and thus equal volume of phase space). The process is carried out by multiplying

the histogram by a factor of the chemical potential µ
f
. Here we will switch our distri-

bution to P (ρ) (which implies dividing each N by the simulation cell volume V ). 4 At

each ρi, P (ρi) is modified by multiplying by a power of µ
f
according to

P ′(ρi) = P (ρi)µ
ρi
f
, (3.25)

with total area normalisation, and the reweighting process applied recursively until the

compared regions are equal in area. The weight factor µ
f
is modified by a single protocol,

i.e. for coexisting phases ω and ψ, with areas in the P (ρ) distribution Aω and Aψ and

ρω > ρψ

µ
f
=







(1 + δ)µ
f

Aω < Aψ

(1− δ)µ
f

Aω > Aψ

. (3.26)

A non-zero µ
f
indicates that µ 6= µcoex . If, after the re-weighting process, the factor

by which we modify the imposed µ at the outset of the simulations lies outside the

tolerance range of µ
f
∈ (0.98, 1.02) the starting µ is scaled by a factor proportional to

µ
f
and the simulation set begun anew. In practice, the compilation of the histogram

can run into issues associated with memory underflow, where successive multiplications

of low histogram ratios over regions of the density space with diminishing probability,

for example intermediate densities between highly probable regions. To mitigate this

problem, the compilation and reweighting process can be performed in log space with

the operations altered appropriately

4The process is identical if unmodified from the N space, with the exception that the index in
Equation 3.25 is simply N .
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3.3 Metrics

3.3.1 Cluster Analysis

A robust method for determining the properties of clusters is required in order to di-

agnose certain critical properties of the system. These include, but are not limited to,

cluster size distributions, percolation loci, radii of gyration, and a host of metrics asso-

ciated with cluster geometry. In order to study the clustering properties of our model

systems we must first decide which particles belong to which clusters. This task begins

with finding the bound neighbours for each particle then figuring out which particles

are bonded to one another through this network of bonds. There are a few methods

of achieving this task, all involve borrowing some ideas from graph theory. A graph is

a mathematical structure to analyse pair-wise relationships between objects. A graph

consists of nodes and edges.

Bonding Networks

Firstly a structure for each particle is defined that contains information about its im-

mediate neighbours. We shall refer to these as nodes, their representation in code is in

Listing 3.8 below,

typedef struct network { // structure for networks

int bonds; // How many neighbours

int nets[MAXBONDS ]; // node connectivity up to MAXBONDS

int label; // current cluster label

int counted; // has it been counted?

}node[N];

Listing 3.8: Node structure for traversing networks of bonds

Each particle’s node nets[] array is populated with it’s neighbours, the nodes to which

the current node is bonded (by the criteria outlined in 3.1.5) making use of the cell list

structure. Each time a new bond is found the bonds counter is incremented and the

index entered into the corresponding entry in the nets[] array. Once all of a particle’s

neighbouring nodes have been identified, preformed over all N nodes such that the total

connectivity is known, we can then traverse the system of nodes to label them with the

appropriate cluster index.
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Recursive Functions

The process of cluster labelling can be thought of in graph theoretic terms by performing

a depth first search on a graph. This process can be achieved recursively or iteratively.

Though the iterative method is in general faster, for graphs of relatively arbitrary con-

nectivity, elegant iterative solutions require special attention. Though small problems

can be solved with what essentially amounts to magic5, the recursive versions are easier

to write, implement, and have the benefit of leaving the details of traversing the net-

work up to the order in which they appear in the node list, via the depth first search.

For more details of performing the basic depth first search method the Author directs

the Reader to a basic introduction text on graph theory of their choice. The particular

function used here is detailed in Listing 3.9. Note the simplicity of the recursive function

rlabel(), performing what is in fact a non-trivial task.

void rlabel(int N, int i, struct networks node[MAXPARTICLES], int bins[N]) {

int j, n;

for (n = 0; n < node[i]. bonds; n++) {

j = node[i].nets[n];

if (bins[j] == 1) continue;

bins[j] = 1;

rlabel(N, j, node , bins);

}

}

Listing 3.9: Recursive function for the labelling process: Function rlabel() compiles

a list of nodes which all are all connected through the edges of the graph via recursion,

once all connected nodes are traversed the array bins[] is returned and all of the nodes

with corresponding ‘true’ entries in bins[] are given the label clustnum.

Cost and Sampling Frequency

Recursive functions of this kind are computationally expensive, so analysis that makes

use of these data cannot be performed every sweep. In fact it is unnecessary to do

so for particle systems with slow rearrangement time scales since sampling too many

adjacent microstates will not give us a good picture of the overall structural variation in

phase. In order to mitigate the expense and ensure that long simulation times are not

compounded large amounts of wall-time spent computing node connectivities or the like

an austere approach to sampling cluster configurations is employed.

5http://stackoverflow.com/questions/2209860/how-does-this-work-weird-towers-of-hanoi-solution,
this particular implementation makes use of bit-shifting and binary and/or operators, often fondly
referred to by coders with the moniker in the text.
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3.4 Metrics

In order to characterise phase transitions, cluster phases, and other self assembled struc-

tures, a range of distribution functions are employed.

3.4.1 Distribution Functions

Radial Distribution Functions

The radial distribution function can be calculated over a given ensemble by computing

g(r) =
N(N − 1)

ρ2Z
NV T

∫

dr3dr4 . . . drNe
−βV(r1,r2,...rN ) (3.27)

In practice in computer simulation the following average is employed

g(r) = ρ−2〈
∑

i

∑

j 6=i

δ(ri)δ(rj − r)〉 = V

N2
〈
∑

i

∑

j 6=i

δ(r− rij)〉. (3.28)

The radial distribution gives us information about the microscopic structure of our

particle systems. In the case of dumbbell particles which contain two spherical sites per

dumbbell, a site-wise analysis is performed. For each sample four separate distributions

are compiled, g(r)ss over the s sub-particle pairs, g(r)hh over the h sub-particles, g(r)sh

over the s-h and h-s sub-particles, and g(r)c over the centroids.

Structure Factors S(k)

Local Rotational Invariants

Local rotational invariants are calculated from spherical harmonics performed over groups

of bonds of each particle. For each particle, i, the orientation of each of Nb bonds is

analysed by finding to which spherical harmonic they belong via the angles θij and φij ,

Ylm(θij , φij ) ≡ Ylm(r̂ij )

Average local orientation parameter q̄
lm

for each i is obtained by averaging over each of

Nb bonds that particle i makes,

q̄
lm
(i) ≡ 1

Nb(i)

Nb(i)
∑

j=1

Ylm(r̂ij ), (3.29)
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Local invariants are then computed by summing over l,

q
l
(i) ≡

[

4π

2l + 1

l
∑

m=−l

|q̄
lm
(i)|2

]1/2

(3.30)

Bondwise distributions can then be compiled to investigate persistent local environments

around each particle.

3.4.2 Sampling Cluster Properties

In any system where clustering occurs it is helpful to have some metrics to account

for the properties of the clusters. Three main properties of clusters are targeted for

optimisation before production sampling takes place. Averages of the three metrics

monitored over each block are the number of clusters, 〈Nc〉, the number of monomers,

〈Nmono〉, the average cluster size 〈Ns〉, and the largest cluster. When these converge to

stable

Size distributions

Cluster size distributions are computed by compiling histograms of the frequency of

observations clusters of a certain size, then normalised to obtain a probability P (Ns) of

observing a cluster of size Ns.

Centroid & Centre of Mass

A deceptively tricky quantity to obtain of a given cluster is it centroid (or centre of mass,

however we only treat the centroid since these particles do not have an explicit mass).

In principle in a given set of co-ordinates, the centroid of a cluster can be calculated as

the average position of all of the particles in a cluster. For a cluster of size Ns, the x

component of the centroid of a finite cluster, Cx, in R
3, is given by

Cx =
1

Ns

Ns
∑

i=1

xi. (3.31)

In a non-periodic system this metric will yield a value consistent with its centroid.

Simulations with periodic boundary conditions suffer a few pathologies, however, and it

is important to locate and treat these cases specially. For clusters whose bonds straddle

a boundary Equation 3.31 would yield a centroid around the centre of the box. This
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is obviously a failure that needs to be remedied. A method for circumnavigating this

pathology is to think of each dimension as lying on the perimeter of a circle [79]. For

each dimension, we take the co-ordinate of the ith particle and apply a map, converting

each of its Cartesian co-ordinates, say x, to an angle θi, by

θi =
2πxi
Lx

(3.32)

We then calculate two more quantities, ψi = sin θi and χi = cos θi, where these co-

ordinates in the ψ − χ plane lie on a circle of unit radius. The averages of these values

for all Ns are computed and an average angle, θ̄, calculated by

θ̄ = tan−1(−ψ,−χ) + π (3.33)

and the centre of mas then backed out by unfolding the map such that

xC = Lx
θ̄

2π
(3.34)

This form of centroid calculation still suffers from some issues, if a system happens to

form a cluster that is continuous in all three dimensions, or has some tube-like character

percolated in all three dimensions this method cannot appropriately choose a centre of

mass. All following metrics rely upon a reliable calculation of the centroid of observed

structures. Which means that clusters which span the length of the simulation box

must be ignored from the collection of most of the following metrics. The way we have

chosen to achieve this is to provisionally accept the assigned value of the centre of mass,

use it to obtain a radius of gyration and only calculate the following metrics which are

susceptible to errors concerning the centroid assignment where Rg is less than Lbox/2.

After obtaining this data over the system at a particular configuration one can then go

ahead and calculate other more interesting properties.

3.4.3 Geometry

3.4.3.1 Gyration Radii

The radius of gyration is an important quantity to analyse for cluster forming particles.

It relates cluster morphology to rheological properties and allows analysis of the fractal

dimension — a measure of shape complexity — as well as offering a reasonable metric
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for approximating the percolation threshold over a given co-ordinate path. The average

square radius of gyration is obtained as

R2
g =

1

Ns

Ns
∑

i=1

(ri − Cc)
2 (3.35)

where Ns is the number of particles in the cluster and Cc is the corresponding centroid.

For use in metrics involving the Rg a cluster-wise version can be obtained by omiting

the ensemble average denoted by the angular brackets. Monitoring Rg with respect to

Lbox also allows crude estimation of the percolation locus, where Rmaxg ≈ Lbox/2.

3.4.3.2 Dimensionality of Aggregate Systems

It is possible to carry out an analysis of the complexity of aggregates by use of a relation

between the number of particles in a cluster Ns with the cluster radius of gyration Rg.

The resulting relation can be expressed as a power law:

Ns = kf

(

Rg
α

0

)Df

. (3.36)

Equation 3.36 gives a method to find what is usually called the Fractal Dimension, Df .

Plotting the logarithm of Ns against the logarithm of Rg can be fit linearly, to give the

slope, Df , and the fractal pre-factor kf . The scaling factor α
0
is simply the average

diameter of each monomer in the cluster calculated as (σs + σh)/2, but is not used to

scale the data during processing, instead a unit of σ is factored out of Rg, the rest

left to influence, kf — a quantity related to the aggregate geometry, but as yet has no

discernible meaning — via the intercept term c ∝ kf/αDf

0 ,

d logNs

d logRg
= Df (3.37)

Immediately one ought to be able to recognise that linear clusters will have a Df of

≈ 1, bilayer, or lamellar structures will have Df of ≈ 2, approximately spherical clusters

and branched networks will have a Df of ≈ 3, presumably (but not necessarily) with

different fractal pre-factor kf . WhereDf takes integer values, perhaps with the exception

of a branching network, the system can be rationally interpreted as having relatively

simple geometry. Where Df takes non-integer values, the geometry is more difficult

to rationalise. Dimensionality close to integer values means the proximal dimension

dominates. This means that a system that is composed of 1D strips that have some
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curvature in their long axis will have fractional Df . If that curvature lies in 1 additional

dimension, Df lies in (1, 2), if it lies in 2 additional dimensions, the cluster system

will have 2 < Df < 3. A system that possesses some 2D structure that bends will

have 2 < Df < 3. Though these structures may have non-integer Df , this does not

necessarily imply they are fractals in the sense most familiar to us.

Orientation

A global orientation order distribution is calculated over the system by taking the cosine

of the angle between all ~ui over all pairs ij over the whole system. This particular metric

is employed to analyse the global alignment (parallel and anti-parallel) of the set {~ui}
characteristic of a lamellar phase. It is defined as

P (ui · uj) = 〈cos(θij)〉 (3.38)

Three interrelated metrics are employed to explore the variation in orientations with

respect to the centroid and other members of a given cluster [55]. These metrics are

employed to categorise finite clusters (i.e. non-percolated) observed over the α range.

The metric M (Equation 3.39) quantifies the sphericity of a micellar aggregate, such

that a cluster withM≈ 1 has an approximately spherical shape. M is defined as

M =
1

Ns

Ns
∑

i=1

cos θi, (3.39)

where the cosine of θi is defined as the relative orientation of the dumbbell i’s unit vector

~ui to the vector connecting it to the centroid:

cos θi = ~ui ·
Cc − ~ri
|Cc − ~ri|

. (3.40)

The metric B is defined as the average correlation of the orientations of ~ui within a clus-

ter. B is unity when all ~ui are either parallel or anti-parallel and low with uncorrelated

orientations, so gives us a measure of the planarity of a cluster:

B =
2

Ns(Ns − 1)

∑

ij

(~ui · ~uj)2, (3.41)
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And finally V defined also by the orientation of each ~ui with respect to the vector joining

it to the centroid, but is unit when each ~ui are normal to the vector joining the centroid

to the dumbbell:

V =
1

Ns

Ns
∑

i=1

(1− sin θi). (3.42)

Metrics M and V can be split to categorise aggregates based upon where in the MV
plane they lie [55]. The authors define borders delineating the geometry of aggregates:

regions containing purely spherical micelles, where M & 0.9; and elongated micelles

where 0.5 . M . 0.9; for all V. Where M . 0.5, the V space is split into three

regions: where V . 0.3, a region containing bilayers and elongated micelles exists; where

0.3 . V . 0.5 containing liquid droplets and faceted polyhedra; and V & 0.5 containing

vesicles. These metrics will find application in Chapter 6 where the properties of self

assembled structures are discussed.
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Dumbbells: Square-well to Janus

with α = 1.0

This chapter is paraphrased from a paper published in collaboration [57]. The contrib-

utors to the simulation work included myself (NPT simulations: Equations of state,

Energy per particle; and metric calculations: radial distribution functions, orientation

order parameter P (~ui · ~uj), bond-wise distributions of rotationally invariant bond pa-

rameter q
6
), and Gianmarco Munaò (SUS simulations: P (N) and P (ρ), calculations,

critical parameter estimation, vapour-liquid phase diagrams, number of bonds per par-

ticle distributions, and structure factor determination). Achille Giacometti contributed

results from a mean field approximation to the particle interaction to calculate variation

in the critical temperature, T ∗
c , with respect to the interaction energy, ε

h
. The simu-

lation method employed here does not make use of the AVBMC algorithm, only VMC

simulations were perfromed.

4.1 Parameterisation

This chapter contains a study of prototype dumbbell colloids, in order to investigate

how the interplay between steric effects, due to particle geometry, and the asymmetry in

attractive interactions influences the overall appearance of the fluid phase diagram. A

class of dumbbell models is studied, initially formed by two identical tangent hard spheres

(i.e. σs=σh=1), each surrounded by an attractive square-well with an interaction range

fixed at half the hard-core diameter (λs = λh = 0.5). The interaction strength on one

sphere is then reduced until only the bare hard-core repulsion remains. We document

how the features of the gas-liquid phase separation depend sensitively on the interaction

anisotropy, map the onset of self-assembled phases, characterise the assemblies, and

43
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identify the regions of the parameter space where ‘competition’ between self-assembled

structures and conventional gas-liquid phase separation occurs.

Potential Definition

For the purposes of this investigation the potential is defined slightly differently to that

defined in Equation 2.2. We again distinguish between the two interaction sites on sub-

particles h and s except that now the h, sub-particle bears an attractive SW interaction.

We are then able to tune the interaction strength on h to yield intermediate potential

anisotropies along the ε
h
parameter. The interaction distance parameter λ is fixed at

0.5 for both spheres and defined by Equation 2.1.1. The set of ε
h
studied here are

{1, 0.7, 0.5, 0.3, 0.2, 0.15, 0.10, 0.05, 0.025, 0}. Particular attention has been paid to

the cases ε
h
= 0.5, 0.1, and 0, as qualitatively representative of the diversity in observed

phase behaviours.

ε
h
= 1 1 < ε

h
< 0 ε

h
= 0

Figure 4.1: Variation in the appearance of dumbbell particle with ε
h
on the interval

[1,0]. The darker region around the equator where ε > 0 denotes a region where both
potentials are active. As ε

h
→ 0, the particle becomes more like the Janus dumbbell,

possessing in increasingly asymmetric interaction potential.

4.2 SUS: Square-well Toward Janus

Selected density distribution probabilities P (ρ), as obtained by SUS simulations, are

reported in Figure 4.2 for several values of ε
h
.Specifically, the probabilities correspond

to the temperatures whereby P (ρ) first displays a double-peak behaviour, providing

indication on the position of critical points. In all simulations a box length of Lbox =

13.57σ is used except for ε
h
= 0.1, for which Lbox = 20σ. The gas-liquid coexistence

curves are reported in Figure 4.3.
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Figure 4.2: Probability of a given density P (ρ∗) as a function of ρ∗ obtained by SUS
with histogram reweighting, just below the critical temperature for each value of εh.

The corresponding ε
h
, T ∗, and µ inset.
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Figure 4.3: The binodal curves for each ε
h
. The progression of the gas branch to

increasingly lower densities at a greater rate than the liquid branch causes the binodal
to appear skewed for ε

h
< 0.3.
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Figure 4.4: (a) The critical density ρ∗c and (b) the critical temperature T ∗
c as a

function of ε
h
. Extrapolating a linear fit to T ∗

c indicates a approximate value for the
Janus dumbbell of 0.35. The trend in ρ∗c is less conclusive.

Critical parameters

Critical temperatures, T ∗
c , and densities, ρ∗c , as functions of εh , are shown in Figure 4.4.

The critical temperature decreases approximately linearly with ε
h
, . The critical density

stays almost constant (ρ∗c ≈ 0.15) for high values of the interaction strength, with a rapid

decrease for lower values, as signalled by the “knee” at ε
h
= 0.5 Figure 4.3 documents

how the observed decrease of ρ∗c for εh < 0.5 is due to a progressive shift of the gas branch

of the coexistence curve towards lower densities. This progression is not accompanied by

a corresponding shift in the liquid branch. As a consequence, the binodal curve appears

skewed, losing the symmetry observed for ε
h
& 0.3.

On a relatively large interval of εh values εh > 0.1 the system behaves as a standard

“simple fluid” with a supercritical state at high temperatures giving way, on decreasing

the temperature past the critical point, to typical gas-liquid phase separation. Figure 4.5

demonstrates this particular (conventional) scenario. Around ε
h
= 0.1 the phase dia-

gram changes. A focus on the properties of the system regarding the case ε
h
= 0.1 is

given in Figure 4.2. The probability distribution of the number of particles P (N) at

T ∗ = 0.45 and two different simulation box sizes. The two main peaks visible in the

figure testify the existence of stable gas and liquid phases, with corresponding critical

point at T ∗
c = 0.47. Notice that the position of the gas peak in P (N) is shifted toward

extremely low values of N, indicating a rather low gas density. Beside the gas and liquid

peaks, P (N) in Figure 4.6 is now characterised by the appearance of a third peak (see

also the magnification in the inset) which does not scale with the box size. This feature
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Figure 4.5: Conventional simple liquid phase diagram for ε
h
with critical parameters

T ∗
c ≈ 0.9797 and ρ∗c ≈ 0.14327 indicated by the orange triangle. The green triangles

correspond to data-points obtained by SUS and the fitting (black line) quantifies the
density of the co-existing gas and liquid.
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Figure 4.6: Accounting for finite-size effects. Two separate SUS simulations of particle
systems with ε

h
= 0.1 at T ∗ = 0.45 with different Lbox lengths.

signals the presence of aggregates (micelles) in the low density regime of the fluid. Anal-

ysis of these configurations shows that micelles grow in the form of roughly spherical

clusters of around ten particles.

The presence of spontaneously formed aggregates is observed over a temperature range

extending down to the lowest temperature investigated for this case (T ∗ = 0.36), albeit
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Figure 4.7: Unusual liquid phase diagram for ε
h

= 0.1 with critical parameters
T ∗
c ≈ 0.4664 and ρ∗c ≈ 0.0676 indicated by the large orange triangle atop the coexistence

curve. The green triangles astride the co-existence region correspond to data-points
obtained by SUS and the fitting (curved black line) obtained using the law of rectilinear
diameters. The purple points correspond to points obtained from NPT simulations
extrapolating the liquid and gas branches from equations of state to their corresponding

approximate coexistence pressures via Maxwell construction.

confined to a narrow (low) density interval. When aggregation takes place, finite size

effects become relevant and the SUS data is scrutinised assiduously. The micelle peak

behaves rather strangely compared to liquid and gas peaks conventionally observed in

SUS simulation. The micelle peak falls at the same number of particles independent of

the simulation box size. When a larger simulation box is employed the positions of peaks

corresponding to the gas and liquid phases in the P (N) vs. N diagram shift, rendering

their respective densities constant. By contrast, the micelle peak remains around the

N = 10. Within a P (ρ) vs. ρ representation, the gas and liquid peaks maintain the

same positions, whereas the micelles peak shift toward lower densities (on increasing

Lbox). The formation of these micelles occurs at comparatively low temperature and

low densities. At low temperatures (T ∗ = 0.40) and larger densities, visual inspection of

system configurations reveals that molecules arrange into planar structures (lamellae)

extending until the highest density value investigated (i.e. ρ∗ = 0.3).

4.3 Isobaric - Isothermal Ensemble Study

The peculiar features emerging from the SUS simulations where interaction strength

ε
h
6 0.1 call for a more detailed analysis of structural and thermodynamic properties of

the system. Monte Carlo simulations in the NPT ensemble are reported in Figure 4.8 for
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Figure 4.8: Equations of state in the P ∗–ρ∗ plane. A discontinuity in the density can
be resolved from considering the slope of the EOS curve

several temperatures, the equation of state in the P ∗–ρ∗ plane. For 0.41 < T ∗ < 0.48,

sub-critical phenomena can be resolved, showing a discontinuity in the density, while for

T ∗ = 0.48 a continuous transition is observed. The corresponding density discontinuity

appears to reduce in magnitude upon increasing the temperature, until just below the

estimated critical temperature T ∗ ≈ 0.4664.

The energy per particle in Figure 4.9, observed for pressures where the density deviates

markedly from ideality (for T ∗ = 0.42), but below the density transition, indicates

the onset of a particle association process. The onset of a lamellar phase for P ∗ >

0.06 at T ∗ < 0.41 is seen here by a marginally lower energy per particle. In spite of

having a comparatively low energy and the clustering process taking shape here, we

have observed no anomalous behaviour akin to that of spherical Janus colloids, where,

for instance, the gas-liquid coexistence curve turns out to be negatively sloped in the

temperature-pressure plane [29, 35]. The condensation process occurs without hindrance

from comparatively stable clusters, due to the fact that these latter do not take on well

defined hard surface morphologies, i.e. with the strongly interacting spheres facing

inward. This contrasts with the Janus sphere case, where the angular dependence of a

favourable interaction (defined by the Kern-Frenkel potential) promotes the orientation

of the hard interaction outward, effectively rendering each cluster-cluster interaction

rigid enough to prevent cluster merging processes, until the system is dense enough to

percolate and either form lamellae, or a liquid.

Coexistence densities (purple squares on Figure 4.7) are obtained by Maxwell construc-

tion on the equation of state data. Specifically, the slope of the ultimate three points

from either side of the transition at the corresponding temperatures are calculated and
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Figure 4.10: Site-site and centroid (C–C) radial distribution functions for a liquid
approximately at the coexistence density at T ∗ = 0.42. Legend refers to interaction

sites over which the distributions are calculated.

straight lines projected to a point where the pressure is equal. Error bars correspond

to the average distance between density at the projected coexistence pressure and last

MC data point on the respective gas and liquid branches with the projected point cor-

responding to the pressure of the final data point of the other side of the transition. As

demonstrated, NPT estimates satisfactorily agree with SUS calculations.
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4.3.1 Liquid Structure

Typical liquid site-site radial distribution functions g(r), showing the preferential inter-

action of sites s–s and h–h are reported in Figure 4.10. The s–s peak shows a slight

preference for bond lengths to occupy the inner-most and outer-most extents of the in-

teraction range λ. The comparatively lower curve representing the h–h interaction can

be attributed to the relative larger binding energy of the s–s interaction. The second,

almost discontinuous peak of the h–h curve around r = 2s would seemingly imply a

preference for a significant proportion of the particles to be with sites h at 180 degrees

to each other, as is expected for lamellar, sphero-symmetric vesicular aggregates.
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0.20
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P (ui ·uj)

cos(θij)

Figure 4.11: Probability of finding a pair of particles with ui ·uj = cos(θij), the
progression to higher P ∗ (legend inset), and causes the distribution to indicate the
alignment of particle unit vectors into either parallel or anti-parallel configurations as

the system displays more lamellar character.

The orientational order parameter P (ui · uj) is shown in Figure 4.11. Data contained

therein concern P (ui · uj) as calculated at T ∗ = 0.42 and increasing pressure; a nor-

malisation factor has been employed to make the total integral under the curves unity,

with 1024 bins for the distribution. As visible, where 0.04 < P ∗ < 0.06 the system

has already started to display lamellar character. Increasing the pressure causes the

lamellar structure to become more defined and the distribution to appear increasingly

quartic. No observation of a global alignment in the unit vectors was found for regions

of the density space containing micelles. The reason for this is twofold: firstly, there is

no correlation between the orientation of particles in different clusters as they do not

communicate through a planarity imposed by adjacent lamellar structures; secondly, as

the interaction potential does not have an angular component, the favourable energetic
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configuration between any two particles can be maintained without the requirement of

a certain alignment; rather the two bonded particles have only a very small restricted

space of mutual orientations (their comparatively hard components cannot themselves

overlap).It is expected that a study of the radial dependence of P (ui ·uj) (not carried out

here) should allow the observation of some structure, as particles with distance r ≈ 〈Dm〉
(where 〈Dm〉 is the average diameter of a micelle), will tend to have an opposing orien-

tation leading to a strong peak around 〈Dm〉, and likely a weaker peak at 〈rc〉, with 〈r〉
the average distance between clusters.
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Figure 4.12: Distributions of local bond-orientation order parameter q6. Left-most
distributions obtained from T ∗ = 0.42 at ρ∗ = 0.001 (top) and ρ∗ = 0.22 (bottom).
Right-most distributions obtained from T ∗ = 0.46 at ρ∗ = 0.009 (top) and ρ∗ = 0.12
(bottom). The scale refers to a normalised frequency of observation. Structures at low

Nb reflect persistent structures formed in both the gas and liquid phases.

Figure 4.12 shows the local rotationally invariant bonding environment order parameter

q
6
defined by Equation 3.30 employed here to probe the dependence of bond orientations

on the interaction potential, as well as accounting for the influence of the presence of

the hard sphere on bonding environments, in both micelles and the liquid phase. We

have considered only bonds of the s–s interactions in the calculation of this metric.

Distributions in the figure show well defined structures for particles which make relatively

few bonds. The three peaks in the Nb = 2 distribution at 0.8135, 0.583 and 0.538 (most

clear in the gas phase distributions) correspond to different bonding environments. In

the first case the angle between bonds (made by particle i to each of its two neighbours
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i
j′

j

a) b) c) d)

Figure 4.13: Structures of local bond orientations as measured by rotationally invari-
ant order parameter distributions on the bonding networks of the s spheres. Equilateral
triangle environments a) and b) correspond to the peak at 0.8135, the isosceles triangle
in c) corresponds to the peak at 0.583, and d) to the peak at 0.538. As the system
becomes more dense the steric effect of the presence lamellar structures in the liquid
suppresses such as these. The index scheme referred to in the text is indicated in panel

a) and carried through the image.
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Figure 4.14: The phase diagram for εh = 0.025 demonstrating an empty liquid sce-
nario. Here the formation of lamellar aggregates occurs at a higher temperature than

the projected metastable gas-liquid critical point.

j and j′ ) corresponds to π/3 radians, i.e. an equilateral triangle with rij = rij′ = rjj′

is formed, panel a) in Figure 4.13; the second case, 0.6797 radians, corresponds to an

isosceles triangle with rij = rij′ = σ + λσ and rjj′ = σ; the third case, 1.6961 radians,

corresponds to rij = rij′ = σ and rjj′ = λσ. The end of the distribution indicates

particles whose neighbours number three corresponds to an equilateral triangle based

pyramid whose tip, mutually at the furthest extent of the interaction range, is the

particle i. Where the number of bonds is greater than four, the ability to easily detect a

potential dependence ceases, and no more fine detail can be obtained directly from the

distributions of q
6
, except for the distribution of numbers of bonds per particle.

Upon approaching the Janus dumbbell case, i.e. as ε → 0, a third different phase

scenario arises, as exemplified in Figure 4.14 for the case ε = 0.025. At relatively
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high temperatures (T∗ = 0.42), the system remains in a homogeneous fluid phase.

On lowering the temperature a micellisation process occurs at low density. As the

temperature is further decreased, below T ∗ = 0.38, the formation of bilayer sheets

(lamellae) is observed.

4.3.2 Extrapolation of Critical Parameters to ε
h
= 0

The extrapolation of the critical temperature, reported in Figure 4.4, leads to the pre-

diction of a hypothetical critical temperature T ∗
c ≈ 0.37 for εh = 0.025, and marginally

lower for Janus dumbbells (where εh = 0). The phase diagram of Figure 4.14 also

indicates that the formation of lamellar aggregates pre-empts the gas-liquid phase sepa-

ration, implying the metastability (and possibly the absence) of a corresponding critical

point. The presence of the micelle phase in phase diagrams computed for ε < 0.10 may

be result of suppressed diffusive modes of the constituent micellar aggregates. While

this possibility was not explored here, some data at nearby points parameter space will

be discussed in the next chapter.



Chapter 5

Janus Dumbbell Liquids Over the

Range 1 < α < 2

In a similar spirit to the study summarised in Chapter 4, SUS simulations over the range

of the size asymmetry parameter α are employed to document the variation in critical

phenomena. The location of self-assembled structures are identified and characterised.

The development of self-assembled phases, where the system size required to organise

the self assembled phases render the SUS technique as implemented inadequate to char-

acterise the systems encountered. Those particular state-points are treated in Chapter 6.

Nevertheless, self-assembled structures encountered using the SUS technique are treated

carefully so as to ensure, to a best approximation, that they are characterised properly

with respect to their competition or coexistence with more typical critical phenomena.

This chapter proceeds by summarising a paper [80] published in 2015, for which the

Author of this thesis was a main contributor.

5.1 Evidence of Clustering and Liquid Formation of Het-

erogeneous Janus Dumbbells

Provisional exploration of what hereafter shall be referred to as the Heterogeneous Janus

Dumbbells (HJD) in the space surrounding the case of equal sized sub-particles, i.e.

σs = σh. The heterogeneity referred to henceforth is that of the parameter α which

determines the size ratio between composite spheres. There is some evidence that in the

region around α > 1 that the formation of a liquid and the self-assembly of clusters and

layered structures may compete [80]. Here we consider structure factors (obtained by

collaborator Gianmarco Munaò), S(k)ss, (structure factor over solely the s sub-particles)

55
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Figure 5.1: S(k)ss for α = 3/4: the divergent with increasing ρ∗ of the low k peak in-
dicates a region where a phase-separation is likely to take place. the density is indicated

in the legend inset.

employed to differentially diagnose the presence of clusters and condensed phases in NVT

simulations of 1000 HJDs for α ∈ 0.75, 1.10, 1.25. It has been demonstrated elsewhere

that the presence of a low k peak can indicate the location of a clustering process in

experiment [81, 82] and theoretically [83–85]. It is suggested that the presence of a low

k peak that diverges under compression indicates a region where clustering co-exists or

competes with condensation. If the low k peak resolves, the formation of a liquid is

suppressed.

Figure 5.1 depicts S(k)ss for α = 1.25. As the low k peak here diverges early, the

presence of a phase separation is inferred. As α is decreased further to 1.1, (Figure 5.2)

the presence of a low k peak that diverges suggests an isotherm where clustering and

phase-separation may compete. Figure 5.3 depicts S(k)ss for α = 3/4. As the system ρ∗

is increased the low k peak resolves, indicating that the formation of a liquid is suppressed

by a clustering process. This region will be examined in more detail in Chapter 6. Since

we have computed the phase diagram for points approaching the Janus dumbbell limit

(α = 1) (see Chapter 4) where only low ρ∗ self-assembled micelles and high ρ∗ lamellar

phases are observed, we expect that somewhere in the region 1 < α < 1.4 a gas-liquid

phase-separation critical point becomes metastable with respect to the formation of

self-assembled bilayer structures. This behaviour suggest that in a similar fashion to

the study in Chapter 4 the phase-separation region terminates before α = 1, the Janus

limit. The process by which this occurs in unclear. These data indicate the general

regions of the α space where only gas-liquid phase-separation is likely to be observed
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Figure 5.2: S(k)ss for α = 1.1: a low k peak that diverges indicates a region where

cluster formation and phase-separation may take place.
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Figure 5.3: S(k)ss for α = 3/4: relatively constant low k peak indicates a cluster

forming region.
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α & 1.25, where solely a clustering process occurs α < 1.1, and where a clustering

process and phase-separation may compete 1.1 6 α 6 1.25. This chapter contains a

closer examination of the phase-separation dominated region where α > 1.

5.2 Calculation of the Second Virial Coefficient B2

To guide the exploration of the α space as regards the variation in critical temperature,

computation of the second virial coefficient, B2, can be performed to identify the Boyle

temperature, TB, below which the pair-wise attractive interactions begins to play an

important role in the phase behaviour, as well as quantifying the excluded volume effects.

TB is defined as

TB ≡ T (B2 = 0). (5.1)

The second virial coefficient can be estimated a number of ways. Here we compute the

Mayer f -function over a large number of randomly generated configurations of pairs of

HJD particles [86]. The Mayer f -function is defined by

f
12
≡ e−βU (~r) − 1. (5.2)

Computing the Mayer function for the dumbbell particle is a little unintuitive. The

assessment of the right hand side of Equation 5.2 for a given particle pair must be

performed site-wise such that for σs 6= 0 and σh 6= 0 the function f
12
, where the subscript

indicates particles 1 and 2 is calculated by

f
12

= (e−βU (~rss) × e−βU (~rsh) × e−βU (~rhs) × e−βU (~rhh))− 1. (5.3)

Where the site on each particle is indicated by the subscript on ~r. For the endpoints of

α where either diameter σh or σs are naught, where there exists only a single site, f
12

is

computed by either

f
12

= e−βU (~rss) − 1 or f
12

= e−βU (~rhh) − 1. (5.4)

Performing 108 placements of two particles in a cubic box of length Lbox and summing

the computed values of f
12
, the values of the Mayer function over these configurations
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and subsequently averaging Equation 5.3 over these Nc configurations yields an estimate

of B2 by

B2(βε) = −
L3

∑

Nc
f
12

2Nc
. (5.5)

Calculation of TB performed at the edges of the α parameter space to ensure agreement

with (or convergence toward) the relevant reference points (identified in Section 2.2).

A plot of the variation in TB with α can be found in Figure 5.4. It should be noted

here that where α → 0, the contribution to the computation of B2 from the s site

becomes increasingly less likely to occur, implying that excessively long computations

are required to accurately ascertain a reasonable estimate here, given the likelihood

of generating a configuration with rss < σs + λσs becomes vanishingly small. The

computation only extends as far down as α = 0.05 and the assumption made that

the point at which the model returns a bare hard-sphere, that TB = 0. This is not

an unreasonable assumption since it becomes absurd to talk about temperature of the

conventional sort when discussing pure hard-spheres. Figure 5.4 shows the outcome of

this calculation over the set of α.
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Figure 5.4: Variation in TB with respect to α. The green line indicates the Boyle
Temperature, TB, the temperature at which B

2
is zero, the maximum error indicated

by the corona. The grey line indicates the variation in TB when scaled to meet the
calculated SW critical point; blue dots are T ∗

c calculated by SUS in this work.
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5.3 Liquids

When TB is scaled to T ∗
c of the pure SW system one can recover a crude estimate of the

variation in T ∗
c (α). This projection guides the exploration of the liquid behaviour for α <

2. Beginning at the point where the model returns the SW (α = 2.0), SUS simulations

are performed to track variations in critical phenomena. Figure 5.4 demonstrates the

quality of predictive power of TB to the critical temperature of the dumbbells at various

α observed.

5.3.1 Successive Umbrella Sampling

Successive umbrella sampling simulations of particle systems up to and including 1000

particles are equilibrated at constant volume to optimise 〈U〉 and system cluster statis-

tics, 〈Nmono〉, 〈Nc〉 until fluctuations in each of these metrics was consistent with equi-

librium at which point GC insertion and deletion moves are employed to populate the

histogram edges. Histogram edge ratios are monitored during each simulation to ensure

convergence to a stable ratio, such that H(n+1)/H(n) ≈ k± 0.001 (where k is the con-

verged histogram ratio), before the histogram can be compiled utilising Equation 3.24.

Once the histograms are compiled a re-weighting technique is applied and the resultant

densities of the co-existing gas and liquid, and their relative errors obtained. Figure 5.5

shows a typical (for α = 1.8) progression of the output from re-weighted SUS data. At

T ∗ = 1.15 the system has begun to display a binodal distribution in the ρ∗ space. On

lowering the temperature these peaks separate, and the corresponding density can be

obtained by averaging over the area under each distribution.
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Figure 5.5: Binodal character developing for α = 1.8 on lowering the temperature
(indicated in the top-right corner) past the critical point (T ∗

c ≈ 1.156).

.
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5.4 Gas-liquid Coexistence Curve Construction

Phase diagrams (presented in Chapter 7) are constructed via the determination of co-

existing gas and liquid densities from SUS post processing collated with the simulation

data from SA AVBMC simulations to categorise the phase behaviour around each state

point. Critical values ρc and Tc, the system number density and temperature at the

critical point, are obtained by fit using a formulation of the law of rectilinear diameters

[68],

ρ
l
+ ρg

2
= ρc +A(T − Tc) (5.6)

where ρ
l
and ρg are the average number density of the liquid and gas phases at coexis-

tence, T is the system temperature, and A is a fitting parameter. The density difference

at coexistence ρ
l
− ρg = ∆l−g is fit using a scaling law,

∆l−g = B(T − Tc)βc , (5.7)

where B is a fitting parameter and βc, the critical exponent, treated here also as a fitting

parameter. Table 5.1 summarises the parameters obtained from the fit. Figure 5.7 shows

the variation in the density co-existence curves for 1.2 6 α 6 2.0.

Phase Separation Data

Critical Parameters Fitting Parameters

α T ∗
c ρ∗c φ∗c A B βc

2.00 1.2106 0.3132 0.1639 -0.1328 0.9671 0.297 (0.003)

1.90 1.1808 0.3180 0.1667 -0.1103 0.9343 0.259 (0.003)

1.80 1.1566 0.3120 0.1647 -0.1109 0.9450 0.282 (0.001)

1.65 1.0558 0.2967 0.1620 -0.1189 0.9771 0.303 (0.002)

1.50 0.8667 0.2654 0.1563 -0.2055 0.8788 0.243 (0.002)

1.40 0.7295 0.2283 0.1454 -0.3008 0.8932 0.274 (0.002)

1.30 0.6079 0.1847 0.1299 -0.3416 0.8579 0.320 (0.002)

1.20 0.5191 0.1316 0.1076 -0.1518 0.7466 0.42 (0.03)

Table 5.1: Summary of critical point fitting parameters obtained from non-linear
fitting of the SUS coexistence data.
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Figure 5.6: Comparison between the gas-liquid coexistence curve as calculated by
GEMC (red and indigo symbols with magenta critical point) and the SUS method
(green and blue symbols with orange critical point). Reasonable agreement between the
two estimates is demonstrated, however a small differences in ρ∗c and T ∗

c are observable.
More weight can be applied to the SUS technique since it is less prone to systematic

error in the density near the critical point.

5.4.1 Gas-Liquid Co-existence

Coexistence Comparison

Figure 5.6 compares coexistence curves for pure s spheres, with λ = 0.5 obtained both

under the current method and that obtained by GEMC in [1] (with data refit according

to Equation 5.4 and Equation 5.4). Reasonable agreement between the two methods is

observed, with less than 1% difference between estimates of the T ∗
c . The deviation in ρ∗c

is closer to 5%, however. The origin of this deviation is unknown. One may speculate

that as density fluctuations become larger using the GEMC technique on approach to

the critical point, estimation of the coexistence densities may lead to comparatively less

reliable data than the SUS technique, which can simulate almost up the critical point,

providing the system is sufficiently large to capture enough of the diverging correlation

length.

5.4.2 Varying α

Moving from the pure SW scenario, exploring the effect of a swelling h sub-particle, which

for values of α > 1.5 can fit inside the bonding volume of the s sub-particle, one can

observe little difference in the shape of the coexistence curve. The critical temperature



Chapter 5. Phase Diagrams 63

beginning at T ∗
c = 1.211(±0.002) for α = 2, in reasonable agreement with [1], decreases

monotonically for α < 2. The diminishing volume of the interaction range will limit

the coordination number and thus decrease the temperature at which a critical point

may be observed. On the other hand, ρ∗c shows a small increase with respect to the pure

phase where 1.8 6 α < 2.0. This behaviour is discussed further below in Section 5.5. On

decreasing α below 1.65 the coexistence curves lose their symmetry, suggesting that they

do not belong to the same Ising universality class (consider both the critical exponents

recorded in Table 5.1 and the shapes of the curves in Figure 5.7). Where theoretical

approaches place critical exponents for 3D systems While both branches between 1.2 <

α < 1.5 shift to significantly lower density, the gas branch does so at a faster rate as

can be seen by the increasing slope of (ρ∗l + ρ∗g)/2. By α = 1.5, the gas branch has shot

off to a far lower density, in a trend that continues until α = 1.3, dragging with it the

critical point. For α → 1.2, the decline in ρ∗c is approximately linear, whereas over the

full range of α studied for critical phenomena, the variation in T ∗
c appears sigmoidal.

The green points on the right-most panel of Figure 5.8 represents the critical volume

fraction φ∗c . This is obtained by multiplying ρ∗c by the volume of the dumbbell via

equation

φ∗c =
π

6

[

σ3s + σ3h
]

ρ∗c . (5.8)

As is evident from the plot, the volume fraction possesses a very slight positive slope

over the region 2 < α < 1.5, excepting the small nodule between 2 < α < 1.8. Where

α < 1.5, φ∗c decreases more rapidly, until the progression comes to the end of the critical

parameters curve as calculated.

5.5 Liquids of Janus Dumbbells

The small increase in ρ∗c with 1.65 < α < 2.0 is an unexpected result and warrants some

analysis. One may consider, via a simple mean field style argument, that the presence of

the h component ought to be interpreted as a reduction in the volume of the potential

available for bonding. Adopting this view would lead one to infer a slight decrease in

the temperature required to condense a liquid, and that this may be accompanied by an

increase in ρ∗c , like the pure SW liquid on decreasing λ [1]. However, the correction to

the density anomaly by α ≈ 1.65 seems to indicate more than a single contributor to this

density variation. To investigate the influence of the growing h sub-particle, simulations

of 1000 particles are performed in the canonical ensemble on systems at T ∗ < T ∗
c and

liquid <ρ∗coex> across the range 1.4 < α < 2 to characterise any microscopic variation
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Figure 5.7: Variation in the gas-liquid coexistence curves at different values of α
(indicated at the top of each fit). The critical points are indicated by the orange
triangles, the green rightward and leftward pointing triangles indicate the densities of
a coexisting gas and liquid, respectively. The blue squares indicate temperatures and
densities at which the g(r) is computed, chosen such that φ∗ is approximately equal to

mitigate density effects, and displayed in Figure 5.10.

.

(the particular state-points examined are highlighted by the blue squares in Figure 5.7,

chosen such that their φ∗ are approximately equal to mitigate the effects of density on

the radial distribution function). Simulations of < 106 Monte Carlo sweeps (MCS) were

sufficient to equilibrate these systems. Production sampling of the site-wise gr is then

performed over 2× 106 MCS.

5.5.1 Structural Changes 1.4 . α < 2.0

The pair correlation functions in Figure 5.10 characterise the average microscopic struc-

ture around each particle. The top panel, the centroid correlation gc, shows a slight

elongation of the mode of all peaks for α : 2→ 1.4, indicating that as σh increases, the

average c− c inter-particle distance increases. The second panel, the s sphere gss, shows

a gradual progression of the average position of s sub-particles from the inner extent

of the interaction range to the outer extent. One can observe for distances between σs

and σs + λσs the presence of at first a sharp peak at σs for α = 2, which decays until

σs+λσs, where it drops significantly. The converse is true for α = 1.5 and 1.4, where the

opposite progression occurs. At intermediate α, the presence of h sub-particles perturbs

the average bonding environment around the s sub-particles, leading to an additional

peak or shoulder observable at σs + σh for α ∈ {1.8, 1.65}. At the same time one can

also observe the increasing correlation of the h components in the third panel and the s
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Figure 5.8: T ∗

c , ρ
∗
c , and φ∗c against α. The differently shaded symbol at α = 1

indicates the location of the projected critical point from the study documented in
Chapter 4. The dotted line indicates a linear interpolation between the last point at
which a liquid is observed by SUS (α = 1.2), and the projected critical point. The
green symbols indicate φ∗c , with the corresponding magenta square the value calculated

from Section 2.3.

and h components in the fourth panel of Figure 5.10 where the correlation of the s and h

spheres increases. These data indicate that the h sub-particles begin to play a significant

role in the local environment around each bonding site at any α away from 2, and that

they begin to push against neighbouring s sub-particles, eventually reducing the number

of bonds each particle makes. While the mean field interpretation gives us some insight

as to why ρ∗c increases slightly on a small increase of σh, eventually the increasing corre-

lation of the h sub-particles begins to significantly perturb the local structure, leading

to shifts in the distributions of particle positions in the bonding region. This in turn

causes ρ∗c to shift back toward the large σh behaviour. The growth of σh on decreasing

α eventually restricts the number of bonds per particle and increases the average bond

length, such that in order to condense a liquid the system must be cooler.a

5.5.2 Bonding Networks and Interfaces

Where the critcal parameters begin to drop rapidly for 1.5 < α < 1.65 (Figure 5.8),

bonds formed across the h sub-particle diameter are restricted to the outermost extent

of the potential range, significantly altering the co-ordination of bonds around each s

site. This leads, at sufficiently low temperature, to the formation of h rich pockets in the

liquid since maximising the number of bonding interactions creates a drive to segregate

the h components. As σh grows beyond λ, the presence of h rich pockets grows, until the

formation of layered structures occurs. Layered structures form where the presence of
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a) b) c) d)

e) f) g) h)

Figure 5.9: Snapshots of selected configurations obtained via AVBMC and SUS where
α = 1.5, T ∗ = 0.65. Here the SW-s sub-particles are coloured orange, and the HS-h
sub-particles are coloured grey. They include: a) monomer gas ρ∗ ≈ 0.01; b) droplet
coexisting with gas at ρ∗ ≈ 0.07; c) percolated cylinder coexisting with gas at ρ∗ ≈ 0.13;
d) slab coexisting with gas ρ∗ ≈ 0.23; e) slab at ρ∗ ≈ 0.31; f) cylindrical bubble at

ρ∗ ≈ 0.41; bubble cavity at ρ∗ ≈ 0.5; homogeneous liquid at ρ∗ ≈ 0.61.

the h sub-particle occupies enough of the bonding region to force a significant proportion

of the h sub-particles into the interface.

This behaviour causes two problems for simulation. Firstly, at high liquid densities

the propensity of the particles to align such that their s sub-particles face inward from

an interface and their h sub-particles face outward toward the interface by any layered

structure implies that the number of insertion sites with −∆U at low temperature, where

the interface has adopted a concave structure — such as with the aforementioned h rich

regions (consider panel e) of Figure 5.12) — is depleted, rendering the acceptance of

insertion moves low. Secondly, any nucleated structure will be affected by the finite size

of the simulation box as particles tend to form interfaces with their hard h sub-particle

facing the void. Formation of elongated structures cause percolation to occur at low

density, quite close to the gas peak. Figure 5.11 demonstrates the effect of finite size on

the gas branch of the P (ρ∗) curves for α ∈ 1.3, 1.2. One may consider that these struc-

tures are thermodynamic minima in the density space, although careful inspection of the

state-points must be performed to ascertain their properties. It has been demonstrated

that for simulations performed to compute the coexistence densities via MC techniques

in the GC ensemble that the finite size of the simulation cell stabilises structures that
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Figure 5.10: Distributions of site-wise g(r)ab, where a, b ∈ s, h, of liquids at coex-
istence densities formed at sub-critical temperatures over the range 1.4 < α < 2.0.
Colours indicate the value of α: black, blue, green, red, and orange correspond to 2 (a
pure SW system, only depicted in gss), 1.8, 1.65, 1.5, and 1.4 respectively. These distri-
butions demonstrate the effect of the presence of the h sub-particle on the microscopic

structure of the liquid. Further discussion of features can be found in the text.
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Figure 5.11: Finite size effects on the coexisting gas branches of the P (ρ∗) against
ρ∗ for α = 1.3 (left) and α = 1.2 (right). Additional peaks and shoulders manifest over
certain density ranges due to the finite size of the simulation box and the peculiarities of
the potential description. Coloured boxes indicate the locations in the ρ∗ space of finite
size. The orange box captures a region where a single bilayer has percolated across the
cell diameter; the red box indicates a region where a cylinder percolates across the cell;
the blue box indicates the monomer gas peak which is metastable with respect the the

small nucleate peak where ρ∗ ≈ 0.025 at T ∗ = 0.44, but dominates at T ∗ = 0.42.

minimise their interfacial free energy [87]. I.e. on the scale of a finite simulation, in-

termediate phases which possess minimal surface area are perfectly thermodynamically

stable, but may not be representative of the bulk behaviour in the thermodynamic limit

(as N → ∞ and φ∗interface << φ∗bulk). The remedy is to increase the size of the simu-

lation sufficient to remove the influence on the binodal of the locally stable structures

with respect to the coexisting gas or liquid.

In the case of α = 1.3, a simple system size increase suffices to remove the influence of

the low density structures. For these systems, using a maximum window of ω = 2000

and the corresponding box length such that ρ∗max = 0.6 is met by the final window

(an effective N -scale doubling). For α = 1.2, the case is not so simple. Doubling the

system size yields additional finite size effects and causes problems for the sampling of

the histogram bin edges.

The presence of highly structured percolated structures obtained by SUS at very low

density (Figure 5.12) implies that the characteristic length-scale is larger than the

box dimensions, i.e. σǫ > V 1/3. To explore whether σǫ is divergent or simply larger
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a) b) c) d) e)

Figure 5.12: Structures observed in SUS runs where α = 1.2 with ωmax = 2000 across
ρ∗ at T ∗ = 0.42. From left: micelles at ρ∗ ≈ 0.01 (a); percolated string at ρ∗ ≈ 0.05 (b);
percolated bilayer at ρ∗ ≈ 0.13 (c); curved bilayer slab with bridging arm at ρ∗ ≈ 0.25
(d); and a continuous cavity (percolated void) in the bilayer network liquid at ρ∗ ≈ 0.3

(e).
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Figure 5.13: Persistence of finite size effects in simulations with larger system sizes
in the binodal region for α = 1.2. Colour convention maintained from the rightmost
panel of Figure 5.11, with the exception of the additional distribution where T ∗ = 0.40.

than the current Lbox, systems of N = 3000 particles were simulated at constant vol-

ume employing the AVBMC algorithm at T ∗ ∈ 0.42, 0.44, 0.46 over the density range

0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08. Snapshots of the self assembled structures can

be seen in Figure 5.14.

Most puzzling for 1.15 < α < 1.3, at 0.01 6 ρ∗ <= 0.03, is the presence of a single

aggregate structure, a vesicle coexisting with a monomer gas. Upon increasing the

density this vesicle structure percolates in 1D across the periodic boundary forming a

tube (where 0.03 6 ρ∗ < 0.06)), whose diameter increases with further increasing density

to eventually percolate in a second dimension to form a wave-bilayer structure (where
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a) b) c) d)

Figure 5.14: Structures obtained utilising the AVBMC algorithm at constant volume.
The top and bottom each correspond to the same snapshot: a) hollow vesicle coexisting
with a monomer gas at ρ∗ = 0.01; b) a percolated tube coexisting with a monomer gas
at ρ∗ = 0.03; c) tube with a larger diameter at ρ∗ = 0.06; a continuous wavy lamellar

sheet at ρ∗ = 0.07.

ρ∗ > 0.07). The structure at ρ∗ = 0.08 (see panel (d) of Figure 5.14). If one were to

perform a constant pressure simulation across this isotherm, it may be the case that the

vesicle and tube structures would disappear (since there is no barrier to surface merging

imposed by the presence of the smaller h particle, this is in contrast to vesicle structures

observed elsewhere where the hard-core sub-particle forms what is essentially a non-

interacting shell around the vesicle [29, 55]) and one would obtain solely bi-continuous

layered structures. This possibility was not explored here, but is left for future work

(see Chapter 8). The observation of bilayer vesicles and a continuous tube with hollow

internal cavities and curved sheet structures (since the smaller h sub-particle allows the

layer to tolerate some curvature, see Chapter 6) at such low densities is an important

finding that may be of technological interest. While properly implemented PBC should

return the behaviour of the bulk, the cubic cell geometry still exerts an influence on the

characteristic length of any assembled structure, it is therefore the case that systems

obtained in this region of the α space — i.e. where continuous structured systems

occur at low ρ∗ (such as percolated bilayers and tubes) where the simulation cell is

cubic and static — actually return the behaviour of the system under a percolation

enforced confinement. Constant pressure simulations with variable box dimensions may

be employed to explore this possibility.



Chapter 6

Self-assembly

During the exploration of the variation of gas-liquid phenomena in Chapter 5, at suf-

ficiently low temperature, complex ordering of particles leads to the development of

particle assemblies that perturb the gas-liquid coexistence curves as calculated by SUS

where α < 1.3. Given that these structures influence the modelling of the liquid and

gas phases in our finite systems, their properties ought to be studied in order to test

whether their existence in a simulation is merely an artefact of finite size, or if their

free-energy is lower than the competing liquid or gas in the thermodynamic limit. Since

no definitive answer can be reached by means of the simulation set, this chapter proceeds

by developing arguments both for and against the thermodynamic stability of certain

structures obtained by the simulated annealing approach outlined below.

6.1 Self-Assembled Structures

The inherent anisotropy in both the shape of the particle and the potential virtually

guarantees some orientational order to arise in structures obtained via a simulation.

Moreover, due to the presence of the h sub-particle, which has no attractive interaction,

the formation of interfaces is commonplace. The presence of the hard portion forces the

system to adopt an interface dominated structure. This point is crucial. Any structure

that forms will try to minimise its interfacial energy. Since the presence of the h sub-

particle at sufficiently large σh restricts the number of bonding interactions a particle

can engage in, any structure which seeks to minimise its surface energy will arrange its

constituent particles such that they orient with respect to its neighbours to form s rich

regions and h rich regions. Where α < 1.3, i.e. where the total volume of the particle

has a significant contribution from the h sub-particle. One way to interpret this par-

titioning is to think of the particles as a model surfactant, where the s sub-particle is

71
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the solvophobe. The analysis in Chapter 5 demonstrated that as the h sphere grows for

α < 2.0, the gas-liquid critical parameters (eventually) reduce in magnitude to bring the

gas-liquid coexistence curve into close contact with self assembled layered structures. In

spite of being plagued by finite size effects for the smaller system sizes studied, the for-

mation of highly ordered structures at sufficiently low temperature indicates that there

is a strong tendency to organise an interface and that the interface usually considered

to contribute strong finite size effects on simulations of isotropic potentials is likely to

be standard for Janus type nano-particles. Where structures begin to have a divergent

characteristic length σc → Lbox, the finite size, and constant aspect ratio of the simula-

tions cell allows only structures that have a wavelength with maximum dimension L (or

L1/2 or L1/3 if appropriately oriented). This can be most intuitively seen in panel (d) of

Figure 5.14. This implies that the aspect ratio of the cell will exert a strong influence

on the structure which forms. We assume this will have the effect of stabilising phases

with approximately cubic symmetry across α.

6.2 Notes on Packing

The simple parameterisation developed here allows the broad prediction of structural

properties of linear aggregates as a function of purely geometric considerations. Fig-

ure 6.1 demonstrates the construction of the dumbbells to obtain the restrictions on

packing on surfaces of arbitrary curvature. This is, of course, only in 1D and a more

thorough analysis must take into account 2D and 3D packing arguments, however as

a starting point some interesting properties of the dumbbells can be obtained via this

method. Projecting rays from the homothetic centre through the internuclear axis and

the common tangent produces an angle, θ, which is employed to study packing restric-

tions. The angle θ is defined by

θ = sin−1

(

σΛ − σ∆
σΛ + σ∆

)

, (6.1)

where σΛ is the diameter of the larger sphere: normalised to unity and which can include

the interaction range (if α > 2/3, see Figure 6.2) when considering a geometry away

from the close-packing limit; and σ∆ is the smaller sphere which is the parameter we

varied. Although this angle can be generalised to spherical geometries by converting to

a solid angle, we consider only 1D packing here, however. Figure 6.1 and Figure 6.2

demonstrate that the space is split into two regions above and below the close packing

limit corresponding to regions above and below α = 1, indicated in the legends, where

constraints differ. Below α = 1 the interaction range (λσs) extends beyond the limit of
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the h sub particle, where σs = σ
∆
= 2/3 and above. Below this point σs + λσs < σh.

Outside the region delineated on one side by the close packing line and the outer extent

of the orange region is inaccessible to the system. Above α = 1, σs + λσs = σ
Λ
and

σh = σ
∆
. The boundary of the blue-green region and the white-space defines a maximum.

The number of particles, Nr, one can pack, under the given constraints, straddling the

perimeter of rc, where the radius is defined from the centre of the largest sphere to the

homothetic centre, H.

Nr =
⌊π

θ

⌋

, (6.2)

where ⌊⌋ indicates the nearest lower integer. Where α > 1 a curved surface that orients

all h sub-particles toward the centre of a spherical cavity is subject to a minimum Nr

defined by the blue-green line and the white-space. structures in the fluid can have an

Nr > Nmin
r defined by this boundary. rc as indicated on Figure 6.1, the distance from

the homothetic centre, H, to the centre of the larger sphere, is given by

rc =
1

κ
=

σΛ
2 sin θ

, (6.3)

where κ is the curvature.

Referring to Figure 6.2, observing lower limit of the orange shaded curve where θ = 0

and σS = 2/3 (α = 2/3), rc diverges indicating the point at which a straight linear

connection of particles is first possible. At or marginally above this limit, if bilayer

structures were to form, each h sub-particle must contact its neighbours while the inner

bonding region is at the furthest extent of the potential range. Close packed structures

(black line on Figure 6.2) still have a finite Nr and so curved structures are expected

to dominate this region. Above this limit but below α = 1, providing there is sufficient

free volume within the potential range, particle configurations can have any curvature

(see the bottom panel of Figure 6.3). Where α > 1 one can infer that for an α = 1.25, a

structure that contains h-rich pockets must have a minimum pocket diameter of 3σ and

at least 6 particles in the loop.
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Figure 6.1: Computing the packing properties for the asymmetric dumbbell. Geomet-
ric analysis of the dumbbell yields limits on the geometry of aggregates and continuous
structures. Lengths σΛ and σ∆ correspond to the diameters of large and small spheres.
Cases a) and c) correspond to scenarios where α > 1.0, b) and d) correspond to close-
packed scenarios for α = 1.0 (d), and any α 6= 1.0 (b). The unique case e) corresponds
to the limit α = 2/3, where values of α > 2/3 have the ability to form structures with

zero curvature in at least 1D.
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This analysis is unsuitable for flat structures where α < 1. Dumbbells constrained to

pack in a flat geometries such as bilayers have restrictions on the number of contiguous

dumbbells that can pack in a row. The limits for which can be found via a different

diagram (see Figure 6.4). For packing in flat structures, the number of particles that

can pack in a straight line is limited by the presence of the h sub-particle. There are two

limiting cases: the case where all the small spheres on one side of a layer are touching

- the close packing limit (cp) ; and where the small spheres are at the furthest extent

of the potential range, such that ~rss = σ + λσ, we shall refer to this as the bonding

limit (bl). In general, the close-packing limit allows for smallest number of particles to

fit for a given α, and the bonding limit allows for the largest number. We define the

centres of each of n s sub-particles to be co-linear, each joined to an h sub-particle, with

internuclear distance (σs+σh)/2. The distance between any two touching h sub-particles

is σh, and we calculate the number (to ncp for the close packing limit, and to nbl for the

bonding limit) of particles able to be packed before one of two limits occur. Figure 6.4

demonstrates the parameters for computation of ncp and nbl. We define a distance, ci,

describing the internuclear distance between hi and si+1 defined by angles θi, ψi, φi,

which are in turn defined recursively by a system of equations:

ci = L2 +H2 − 2LH cos(θi), (6.4)
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ψi+1 = cos−1

(

H2 + L2 − c2i
2HL

)

(6.5)

φi+1 = cos−1

(

H2 + c2i − σ2h
2Hci

)

, (6.6)

θi = π − ψi − φi, (6.7)

Where H is the internuclear distance between si and hi, defined here to be (σs+ σh)/2,

and L the inter-nuclear distance between si and si+1. This system of equations is

propagated until one of two limits is reached. Either the hi comes into contact with si+1

where ci = (σs + σh)/2; or, θi+1 < 0 in which case the next particle forced to align to

the surface can not be bound to the previous particle. If there are an even number of

particles in the layer, θ
0
takes the value

θ
0
=
π

2
− sin−1

(

σh − L
2H

)

(6.8)

Figure 6.4 demonstrates both the parameterisation for the packing calculation, and the

result for the close-packing limit and the bond limit cases for even and odd numbers

of particles. In a similar fashion to the analysis for α < 1, (see the orange region in

the bottom panel of Figure 6.3), for both the even and odd cases, nbl case diverges as

α = σs → 2/3. The close-packing limit at this point for the odd case noddcp = 5, meaning

that from this point where λ = 0.5, a structure that splits characteristic bonding lengths

to the ends of the interaction range can contain layers of close packed dumbbells and

also pack infinitely with the benefit of the outer bonding length contributing a unit of

β. It is possible that having a smaller interaction range this behaviour may not be seen

until the particles are more similar in size.
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6.2.1 Simulated Annealing

The SA heuristic was applied to particle systems of N = 1000 over the α range between

0.25 6 α 6 1.3. Simulations begin at a temperature near TB, slightly less for α > 1 but

well above T ∗
c for the corresponding α, and are allowed to equilibrate before the annealing

process begins. Where α < 1 the initial temperature was taken as approximately TB.

The precise starting temperature factor βi is determined by the decrement interval βs

the length of the annealing process LSA in MCS, and the target temperature factor βf ,

βi = − [βs × LSA + βf ] . (6.9)

Figure 6.5 collects the state-points studied and the location of lines delineating pertinent

trends. The curve describing TB has also been scaled (see curve labelled TB - scaled

(green)) to meet the critical temperature of the pure SW system. The variation of the

scaled TB approximately tracks the variation in critical parameters across the range of

α. Where it extends into the region where α < 1 possibly indicates a region of T ∗(α)

beneath which either condensation or some form of assembly process occurs. This is

addressed later in this chapter.
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Figure 6.5: Summary of all T ∗ examined at each α by SA employing the AVBMC
algorithm (black squares) and the regions also probed by AVBMC without the SA
heuristic. Also located here for reference, various temperatures considered when deter-
mining the temperature descent protocol: TB, TB - scaled to meet T ∗

c (α = 2), T ∗
c (α) as

obtained by SUS technique.

6.3 Structural Diversity α < 1

6.3.1 Fractal Dimension of Clusters α < 1

In order to discuss the geometry of aggregates in a systematic fashion the α space be-

low α = 1 is divided into two regions above and below α = 2/3. Below α ≈ 2/3, no

continuous structures are observed. Below α ≈ 0.25 simple geometric arguments can be

employed to understand the structure of aggregates where the temperature is sufficiently

low to encourage aggregation. From slightly below α ≈ 0.25, the aggregates have some

choice as to what structure they adopt with many low lying in energy structures com-

peting, a zoo of face-capped polytopes can be formed, all with approximately spherical

geometry. The region where α & 2/3 the system is observed to first form continuous

aggregates. The presence of the h sub-particle here influences the aggregate geometry

by inhibiting linear growth of clusters in a counter-intuitive manner (see Figure 6.4).

The log− log plot of Ns against Rg/σ yields the fractal dimension of the cluster systems,

Df , as the approximate slope of the distribution. Figure 6.6 shows the radius of gyration,
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Rg, against cluster size, Ns, over a sampling1 of all clusters observed where α < 1. Rg

is in terms of σ. Three main regions of differing geometry can be abstracted from

Figure 6.6. Where Ns is smaller than 20, across all α, aggregates Df ≈ 3 form. Where

Ns & 20, aggregated structures begin to take on density driven growth determined by the

packing constraints, and can be classified roughly into 1, 2, and 3 dimensional regions.

Regions which appear to have non-integer or fractured dimensionality, tend to be as a

result some curvature imposed by orienting around neighbouring structures, or by some

percolation enforced confinement where σc, the characteristic length approaches V 1/3.

At very high Ns and state points where the percolation locus is at relatively low density,

Lbox ∝ ρ∗ begins to effect a limit on Rg as measured, outside the range on the diagram.

Clusters with an Rg > Lbox/2 are not included on the diagram.

The adoption of different geometries which depend upon both the state point, as well

as the geometric restrictions placed upon the bonding network of s sub-particles by the

presence of h sub-particles (see Section 6.2), is inspected by first considering Df for each

state-point (T ∗, ρ∗) at each α. Since T ∗ must be sufficient to encourage an aggregation

process, and in order to traverse the large length-scale variation in a sensible manner,

parameter α, which determines σs and thus σsλ, the interaction range, implies that the

corresponding T ∗ that encourages an aggregation process will also vary with α.

As is evident from the plot, phases at different α undergo distinct regions where the

collection of system aggregates take on differing fractal dimension (Df , read as the ap-

proximate slope of the curves with the same colour, where the colour indicates α) over

the range of densities studied. For low Ns across the range of α, the cluster system ge-

ometry can be described as approximately spherical (arguably zero dimensional, though

these regions have a Df ≈ 3). For the lowest α studied, the dimension of aggregate

growth remains ≈ 3 across most ρ∗ and T ∗ up to the highest Ns where a cluster merging

process takes place. As α is increased, the maximum Ns of approximately spherical

aggregates grows. For α > 2/3, where, due to steric hindrance imposed by the presence

of the h sub-particle on growing aggregates, clusters cannot grow in all 3 dimensions and

so begin to take on structures with different geometries. Where α ≈ 2/3 and above, at

sufficiently low temperature, the bonding network of s sub-particles can maximise the

number of bonds by arranging into flat platelet structures. These platelets are approxi-

mately circular across the large diameter. The platelets attain a slightly lower <U/N>

along the interior regions by packing into close packed layers with a finite maximum

along the close-packed region(ncp), stacked together with an offset of ≈ σs/2. such

that they approximately form an intra-layer triangular lattice. Referring to Figure 6.4,

1Due to the large quantities of data generated, only a subset of points chosen randomly, appear on
Figure 6.6.
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Figure 6.6: The size of a cluster, Ns, against the radius of gyration in terms of the
characteristic length σ: Rg/σ, over the range of densities and temperatures studied, for
each α, indicated by the colourbar. The slope gives system fractal dimension Df . The
red, green, and blue lines guide the eye for slope for Df = 3, 2, and 1, respectively.

platelets which form before α = 2/3 are subject to hard constraints in their average di-

ameter. Where α→ 1, the system is observed to adopt 2D bilayer structures consistent

with the endpoint studied in Chapter 4. In the intervening region 2/3 . α . 0.925,

where these flat proto-lamellar platelet structures form, two interesting phenomena are

observed. Firstly, from α = 0.725, strip-like structures are observed. These strips have a

similar internal structure to the observed platelets, yet sacrifice some breadth in order to

maximise their length (and thus U). Secondly, above α ≈ 0.775 strip structures branch

which can form bridges between strips. Where branching occurs, the system geometry

is not restricted to linear or planar structures and can form networks of branched strips

that percolate through the system in 3D. This is observable as the aqua-marine—sky

blue portions of Figure 6.6 possess regions where, for Ns . 102 the systems have Df ≈ 1

(parallel with the blue line) and for Ns & 102, Df ∈ (1, 3).

6.3.2 Aggregates and Variations

In the region of α < 1 we observe three finite structure types, one with 2 sub-types,

and 4 distinguishable continuous phases. Of the finite structures, these differ by internal

bond structure and interface geometry. Where the density is sufficiently high, and where

α allows, certain types of structures are observed to yield continuous phases.
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α << 2/3

Micelles

Micelle structures form at all α < 1 but take different forms at different α. Polytopes

and roughly spherical aggregates form at low α. Figure 6.7 displays the energy per

particle at each T ∗, ρ∗ for α = 1/4 and 1/3. At T ∗ = 0.3 for α = 1/4, < U/N >

indicates behaviour of a compressible gas, where T ∗ = 0.2, some form of assembly has

occurred with a gradient in ρ∗ and by T = 0.1, the system energy is essentially flat.

The case is similar for α = 1/3, however by T ∗ = 0.2 the distributions are essentially

flat. Where the the gradient of < U/N > with respect to ρ∗ is zero indicates a region

over which compressing the particles makes no difference to the bonding behaviour. It is

possible that further compression of the system will lead to a different < U/N > where

the clusters must pack together. Figure 6.8 displays the distribution of cluster sizes for

α = 1/4 (panel a) and α = 1/3. Figure 6.9 and Figure 6.10 display typical snapshots of

clusters up to Nmax
s . Over this region the structure of aggregates take simple polytope

geometries. The largest allowed clusters are rare. They usually form where a cluster can

face-cap an already relatively close-packed structure and are entropically disfavoured

with respect to those with smaller Ns that allow some free-volume around each particle

in the cluster. The modes in Figure 6.8, at temperatures to see significant clustering

(i.e. T ∗ . 0.2), which are Nmode
s = 6 for α = 0.25 and Nmode

s = 10 for α = 0.25. Notice

< U/N > for α = 1/4 roughly coincides with Ns−1 for Nmode
s (since a U/N ≈ Nbonds/2),

indicating that these structures maximise the number of bonds per particle for this state

point (i.e. each particle makes a bond to each of the others in the host cluster). This

relationship is not observed above α = 1/4, where factors in addition to the maximally

bonded structure (see Section 6.3.1) where packing the h sub-particle around the bonding

core begins to play a stronger role in determining the structure of the aggregate.
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s = 10.

Figure 6.7: Average energy per particle, < U/N >, as a function of density along
isotherms indicated in the legend of each panel.
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Figure 6.8: The probability of observing a particle in a cluster of size Ns.

4 5 6 7 8 9

Figure 6.9: Micellar aggregates where α = 1/4. The number indicates Ns. The
cluster with Ns = 8 (second to last), has a square anti-prism bonding arrangement of
s sub-particles reflected in the packing of the h sub-particles. The rightmost cluster
(Ns = 9) is a face-capped (compare the vacant site viewed where Ns = 8) square prism.

6 7 8 9 10 11 12

Figure 6.10: Micellar aggregates where α = 1/3. The number indicates Ns. The
leftmost cluster is a trigonal prism. As Ns → 12 defect icosahedral order increases.

The final cluster where Ns = 12 is an axially compressed icosahedron.

Where α = 1/2 micelles are observed to be larger and more spherical. Figure 6.11 de-

picts the P (Ns) ∗ Ns and < U/N > along isotherms. There is a smooth progression

from T ∗ = 0.35 down to T ∗ = 0.15 where the < U/N > then jumps down to where the

number of bonds per particle is approximately eight. The jaggedness of the P (Ns) ∗Ns

indicates that there is not a lot of cluster rearrangement, that the clusters observed here

are likely frozen. Crystallinity of clusters was not explored further here, though addi-

tional peaks resolve in the radial distribution function (similar to those in Figure 6.16),

further analysis needs to be performed to ascertain their structure(s) and investigate

their high ρ∗ properties, however. Snapshots of large clusters at α = 1/2 are depicted
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in Figure 6.12.
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Figure 6.11: The probability of observing a particle in a cluster of size Ns and
<U/N> for α = 1/2.

17 18 19 20 21

Figure 6.12: Micellar aggregates where α = 0.5. The number underneath indicates
Ns. By this α, micelles have ceased to be rationable as simple polytopes where they

now take on approximately spherical or slightly elongated geometries.

Elongated Micelles

On the interval 0.5 . α < 0.65, micelles gain the ability elongate. Still restricted in

longest dimension by the presence of the h sub-particle, these elongated clusters vary in

shape and bond networks and tend to be observed at the lowest temperatures and highest

densities studied. Figure 6.13 shows the <U/N> (panel a) and the <Ns> (panel b) for

α = 0.65. Where T ∗ > 0.25, again a compressible gas is observed. For 0.3 < T ∗ < 0.15

a smooth progression in energy and roughly invariant average cluster sizes occur across

ρ∗ over each isotherm. Eventually, where T ∗ < 0.20, a negative slope of <U/N > with

ρ∗ > 0.15 is observed. For the last two densities on panel b) the average cluster size

almost doubles. This behaviour correlates with a density driven cluster merging process.

Here smaller micelles merge to form elongated micelles. Snapshots of elongated micelles

from across 0.15 < ρ∗ 6 0.3 where α = 0.65 and T ∗ = 0.15 can be seen in Figure 6.14.
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Figure 6.13: Energy profiles <U/N > and average cluster size across each isotherm
indicated in the legend.

ρ∗ = 0.20 ρ∗ = 0.25 ρ∗ = 0.30

Figure 6.14: Elongated micellar aggregates at α = 0.65.

Platelets

By α = 2/3, clusters are observed to flatten out into a platelet structure. Platelet

structures occur at low temperatures and are finite in extent, constrained by packing h

sub-particles around the exterior bonding core along a flat geometry (see Section 6.4).

These platelets have an average diameter determined by α and the stacking geometry

they adopt. Figure 6.15 depicts snapshots of clusters over each α.

Ordering into Platelets

The differentiation of state-points consisting of mostly micelles or platelets (since they

are often observed to coexist) can be performed by inspecting the radial distribution

function. While the formation of additional peaks in g(r) can also signify the location

of onset of other structures, such as crystalline non-platelet clusters, these distributions

differ qualitatively. Figure 6.16 demonstrates the formation of additional peaks in the

radial distribution functions at α = 2/3 between a micelle dominated state-point (red);

a region with approximately half micelles, half platelets (green); and platelet dominated
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α = 0.7 α = 0.725 α = 0.75 α = 0.775

α = 0.8 α = 0.825 α = 0.85 α = 0.875

α = 0.9 α = 0.925 α = 0.95 α = 0.975

Figure 6.15: Platelet structures formed at low ρ∗ at each α at T ∗ = 0.2, demonstrating
the increase in platelet diameter with increasing α. Also notice that for α > 0.9 the
internal structure of these aggregates ceases to have the partitioning of close-packed —

bond-limited structure.

state-point (blue). Peaks resolve in gss at state-points where significant platelet for-

mation has occurred. Correlations in the s − s distributions imply resolution of bond

distances. This bifurcation of the bonded peak implies that particles involved in platelet

structures pack with two characteristic bonding lengths, roughly at the inner and outer

extent of the interaction range. Packing into structures where planarity is enforced

forces a platelet system to adopt a structure with two properties. Where limits occur in

gsh that is where ~rsh ≈ (σs + σh)/2, where h sub-particles rest upon a neighbouring s,

orientation of the h sub-particle are influenced by the orientation of its immediate neigh-

bours. Platelets are observed to be composed of close-packed layers of approximately

triangular layer stacking. The layer on the opposing side does not sit in the trigonal

interstices of other layer, but pack such that each close packed stripe on the opposing

side line up, with an in-plane offset of σs/2. Ordering into platelets, specifically where

the close packing behaviours are concerned, is consistent with the packing arguments

outlined in Section 6.2.
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Figure 6.16: Where α = 2/3 at ρ∗ = 0.25, radial distribution functions gc, gss,
ghh, and gsh, over selected T ∗ indicated in the top panel. The peaks resolving on
lowering T ∗ indicate an ordering process between elongated micelles at high T ∗(& 0.2)

and crystalline platelet clusters at low T ∗(. 0.2).

Figure 6.17: An elongated micelle and a platelet at α = 0.725 with approximately
equal Ns from ρ∗ = 0.2, between T=

Strips

Strips form at the high end of densities studied where α < 0.8. Where α > 0.8, the

formation of strips occurs at increasingly low ρ∗. The internal structure of the strips

is similar to the platelet structures at the corresponding α, suggesting that formation

of strips may occur by platelet merging processes. If strips are to form from structural

relaxation of large micelles, they may take on a different bond structure. Strips have a

lower <U/N> and can pack more efficiently than platelets. Due to their similar internal

structure, we define a delineation between a platelet and a strip as the aspect ratio. We
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define the platelet-strip aspect ratio to be determined by the ‘length’ (defined as the

longest linear dimension), c, of a planar cluster divided by the ‘width’ (the shortest

linear dimension), a. If a platelet-like cluster has an aspect ratio c/a & 2 then it is

referred to as a strip. At state-points where platelets and strips coexist, platelets have

a slightly larger smallest diameter. It is likely that if the assembly process into strip

structures from a platelet occurs by merging and orientation-relaxation, the growing strip

will sacrifice some of its diameter, and thus <U/N > in order pack into a continuous

structure. A temperature moderated assembly process may also take place, where a

disordered elongated micelle structure relaxes into a more defined strip structure. An

example of this for α = 0.725 can be viewed in Figure 6.18. Hierarchical assembly

relaxation has been observed in similar model colloids between multi-loop structures to

planar layers [31]. This process itself may have a significant activation barrier for shorter

range potentials. It is likely that a large relative interaction range encourages relaxation

events such that they can be observed in simulations in reasonably tractable simulation

lengths.

Figure 6.18: Structural resolution of an longated micelle on cooling at α = 0.725.

2/3 < α 6 3/4

Where α = 3/4 an interesting scenario arises. The s sub-particle is sufficiently large to

form 1D continuous layered aggregates (i.e. α > 2/3 - see Figure 6.2) — strips — and

yet the strips are not quite yet able to form branched structures. Between T ∗ = 0.25

and T ∗ = 0.20 a transition from a fluid of elongated micelles which percolate at high ρ∗

to ordered plate and strip structures is observed. Figure 6.19 displays < U/N >, and

<Ns> for T ∗ > 0.2. Above T ∗ = 0.2, the system is composed of micelles coexisting with

a monomer gas yielding a relatively small per particle energy. As ρ∗ is increased, the

monomer population is decreased until only elongated micelles are observed, which at

the highest densities percolate through the system, indicated by a larger <Ns>. Across

the isotherm T ∗ = 0.2, the system undergoes three distinct regions each with two regions

where different structures are observed to coexist. For ρ∗ < 0.15, platelets and micelles

are observed together. Where the density is higher, at 0.15 6 ρ∗ < 0.25, platelets and

strips coexist. Above ρ∗ ≈ 0.2 a pure strip phase is observed. The formation of platelets
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Figure 6.19: Energy profiles <U/N > and average cluster size across each isotherm
indicated in the legend.

at low T ∗ is accompanied by a lower <U/N>. Upon increasing the density, the system

forms additional platelets until ρ∗ = 0.15 where strips are first observed, accompanied

by a further reduction in <U/N>, where <U/N> eventually remains constant.

Figure 6.21 shows radial distribution functions obtained on simulations of a percolating

fluid and the strip structures at ρ∗ = 0.25. The development of peaks in all gss indicates

a long range ordering of bonding particles in the strip that is not present in the nearby

higher T ∗ fluid (see Figure 6.21). The distributions of P (ni · nj) at T ∗ = 0.2 and

0.01 6 ρ∗ 6 0.30 (displayed in Figure 6.20) demonstrate a small degree of orientational

ordering developing at high density. Where cos θij ≈ 0.9, a small lip is visible. This

effect is caused by the close-packed intra-layer regions where the position of the next

particle in the layer has a restricted orientation. Due to the fact that P (ni · nj) is a

global order metric, the magnitude of this effect is suppressed since strips at these low

densities are not restricted to align to one another. Though on increasing ρ∗ a small

amount of global orientation order develops.

The strips that form are mostly linear (a small amount of strip curvature in the long

axis is observed to be tolerated – see also the rightmost panel of Figure 6.23) and where

the density is sufficient the strips are observed to percolate across the simulation cell.

Snapshots of configurations at different ρ∗ across an isotherm (T ∗ = 0.2) are depicted

in Figure 6.22.
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Figure 6.20: Global orientation distribution P (ni · nj) collected over each ρ∗ where
α = 3/4. A small degree of orientational order arises at high density.
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Figure 6.23: Examples of aggregates formed where α = 3/4. Bond profiles for each

type of structure are pictured underneath.

Strip structures are composed of close packed planes of particles stacked with a σs/2

offset between successive stacking with the long axis at an angle ≈ sin−1(1 + λ)/2 to

the close packing direction. Figure 6.24 shows the values of order parameters M, V,
and B (top panel), and M against B for each density where α = 0.75 at T ∗ = 0.2.
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Figure 6.21: Where α = 0.75 at ρ∗ = 0.25, radial distribution functions gc, gss, ghh,
and gsh, for a percolating fluid at T ∗ = 0.25 and below the strip transition at T ∗ = 0.2
indicated in the top panel. The peaks resolving on lowering T ∗ indicate a long range
ordering process. Strip structures at this ρ∗ percolate across the simulation box (see

the final panel of Figure 6.22)

ρ∗ = 0.01 ρ∗ = 0.05 ρ∗ = 0.10

ρ∗ = 0.15 ρ∗ = 0.20 ρ∗ = 0.25 ρ∗ = 0.30

Figure 6.22: Snapshots of final configurations from simulations where α = 3/4, T ∗ =
0.2. Platelets and micelles structures are observed from 0.01 > ρ∗ > 0.10, mixtures of
platelets and strips are observed between 0.10 < ρ∗ 6 0.2 and pure strips for ρ∗ > 0.2.
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Strip structures that are located in the bilayer region have a maximum B ≈ 0.5. This

relatively low B value indicates that while there is significant bilayer structure in each

strip, that the steric interaction of adjacent h spheres, consistent with the packing

arguments outlined in Section 6.2, forces each successive dumbbell to have an angle

offset from normal to the stacking plane, forcing the structure to have a reduced bilayer

character as measured by B.
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Figure 6.24: Plots of metricsM against V coloured by B (top panel) andM against
B where the colour indicates ρ∗ and the size indicates the size of the cluster, Ns.
Superimposed on the top panel are the delineations between regions of differing cluster
behaviour as labelled. All aggregates observed during production sampling across the

T ∗ = 0.2 isotherm are considered here.
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6.3.3 Branched structures and sponge-like order

Above α = 0.775, the strips appear to tolerate significant curvature along the long axis

and, if percolated, and therefore under self-imposed confinement, tend to twist. Panel

(a) of Figure 6.25 shows some twisted strip structures that form at low densities where

α = 0.8. At low T ∗, and sufficiently high ρ∗ the system adopts networks of branching

strips. Panel (b) of Figure 6.25 demonstrates an example of a branched structure.

Further along the α parameter, branched network structures at moderate ρ∗ give way

to sponge-like structures at high ρ∗. These sponge-like structures appear to have a

larger degree of branching, have broader layered regions (i.e. possess more lamellar

character) than the corresponding network structures. We define a sponge structure

to be small regions of curved bilayer sheets bridged by arm structures with percolated

voids. Figure 6.28 depicts a sponge structure obtained at α = 0.9. As α is increase

further toward unity, lamellar structures begin to dominate the phase behaviour. This

can be observed by inspecting the increasingly quartic appearance of distributions of

P (ni · nj) as a function of ρ∗ across an isotherm as depicted in Figure 6.30. Snapshots

of a lamellar phase at ρ∗ = 0.30 and sponge phase at ρ∗ = 0.25, where α = 0.95 can be

viewed in Figure 6.29.
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a) b) c)

Figure 6.25: Twisted (a) and branched (b) structures obtained from α = 0.8, T ∗ =
0.2, and ρ∗ = 0.2. The branched structure in (b) is a single continuous cluster percolated

across the simulation cell with Ns ≈ 1000.

a) b)

Figure 6.26: Structures with a small degree of branching where α = 0.8.

a) b)

Figure 6.27: A network structure where α = 0.85, T ∗ = 0.25, and ρ∗ = 0.20; with
(a) and without (b) h sub-particles to demonstrate the bonding network.
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a) b)
Figure 6.28: A sponge structure where α = 0.9, T ∗ = 0.25, and ρ∗ = 0.20; with (a)
and without (b) h sub-particles to demonstrate the bonding network. In both of these
images ambient occlusion has been employed in the render to highlight the depth.

a) b)
Figure 6.29: A sponge structure where α = 0.95, T ∗ = 0.20, and ρ∗ = 0.25 (a), and
a lamellar structure at ρ∗ = 0.30 (b) h. In both of these images ambient occlusion has

been employed in the render to highlight the depth.
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Figure 6.30: Distributions of P (ni ·nj) at different ρ
∗ across T ∗ = 0.2 where α = 0.95.

Here the increasingly quartic distribution demonstrates the density driven formation of
lamellar structures.
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6.4 Structural Diversity α > 1

On the other side of the Janus limit, for α > 1, where the s sub-particle is larger than

the h sub-particle (σs > σh), the SA protocol was applied to investigate the assembly

of phases below the gas-liquid phase separation region indicated in Figure 6.5. Over

the region 1 < α < 1.3, we document the variation in the phase behaviour as one of

either vesicles, tubes, gyroid, lamellar, or cavity liquid, all of which except for the cavity

liquid are bilayer structures. It is important here to note that these structures are all

locally similar, i.e. the environment around each particle is approximately the same.

Therefore each of these structures: vesicle; tube; wave, gyroid; lamellae; are all bilayer

structures differentiated by their topology. At least 3 different simulations are performed

at each state point (indicated in Figure 6.5). All of these simulations were performed in

cubic boxes with N = 1000 HJDs and periodic boundary conditions. Systems that form

continuous structures will be constrained to have a characteristic length similar to the

box dimensions (as mentioned in Chapter 5). Due to this fact we tentatively assign the

phase based upon the general environment around each particle.

Structures which are found, whether they are vesicles, percolated tubes, or some other

continuous structure, that are composed of some complicated network of bilayers, are

referred to simply as ‘bilayer structures’. Where the system adopts some other structure

say a liquid with cavities, this is referred to as a cavity liquid (a cavity liquid may also

be called reverse micelles, though the term usually refers to the micellisation of water in

oil emulsions, and since the “solvent” is indirectly modelled via the interaction potential

and the location of each philos, thus in a high concentration suspension of this kind

of particle it is imprecise to use the term reverse micelle). Though arguably a bilayer

and a cavity dominated structure share some similar characteristics, the differences

pertain mainly to the variation in their local structure. For example, a cavity liquid

will contain at least two distinct particle environments: dissolved in the bulk; and at a

cavity interface. Whereas a system composed of bilayers, whatever the global topology,

the local structure around each particle will be approximately the same. Another caveat

one must also bear in mind here is that the effect of the geometry of the periodic box

on the outcome of a simulation is essentially one of confinement. Since all simulations

are carried out in periodic boundary conditions if a bilayer structure is to bond with

its next periodic image, the maintenance of the bond network will exert an influence on

the topology of the structure that forms. Again this type of kinetic trapping, addressed

briefly at the end of the previous chapter (Chapter 5), favours structures which form

first, or which percolate first.

Some state-points reliably return a particular topology. This is especially true of state-

points where low ρ∗ vesicles, single percolated bilayers, and is often the case where
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gyroid-like, and high ρ∗ lamellar structures are observed. At intermediate ρ∗, there is

the possibility the formation of a vesicle, tube, or a single bilayer structure can form

by whatever happens to form first. These regions are identified and marked as such in

Chapter 7. Unfortunately, in this region the metrics we have employed are inadequate to

characterise the differences in structures obtained. We proceed by displaying snapshots

of some structures observed here. We highlight state-points where simulations give

results which have conflicting outcomes.

6.4.1 Lamellae and Cavities

We begin by discussing the two extremes of the α space where self-assembled structures

are observed. Where 1 < α = 1.1, as highlighted in Chapter 4 and Chapter 5, the phase

behaviour is dominated by bilayer structures which are finite at low ρ∗, but percolate and

form ordered lamellae at high ρ∗. Where α = 1.3 a cavity liquid is observed. A snapshot

of a lamellar structure and cavity liquid is presented in Figure 6.31 for comparison. Panel

(b) particular snapshot possesses an obvious finite size effect — a cylindrical void that

has percolated across the boundary of the cell — chosen purposefully to demonstrate the

two distinct particle environments2. As mentioned above two particle environments can

be observed in the cavity liquid, whereas the lamellar phase possesses local similarity

everywhere. On cooling of the cavity liquid in the density interval underneath the

coexistence region the cavities become more pronounced.

6.4.2 Vesicles and Tubes

In the space of 1.1 < α < 1.3 at ρ∗ < 0.1, the system can adopt two topologically different

curved structures. Vesicles, which at high T ∗ coexist with a gas, but at low T ∗ contain all

of the particles in the system, are observed. At vesicle forming α, all structures obtained

at ρ∗ = 0.01 are vesicles. Where ρ∗ is increased toward 0.05, the system can percolate

and there is some ambiguity as to what structure the system prefers. Taking the cross

section of these structures demonstrates that they are essentially similar, except for the

fact that the tube has percolated and thus has a different topology. Snapshots of a tube

and a vesicle structure showing the internal structure and an ‘end on’ perspective are

displayed in Figure 6.32.

2Contrast the image in panel b) of Figure 6.31 with that of the finite size effects in panel f) of
Figure 5.9
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a) b)

←

←

→

Figure 6.31: A lamellar structure where α = 1.05, T ∗ = 0.3, and ρ∗ = 0.3 (a), and a
cavity liquid where α = 1.3, T ∗ = 0.4 and ρ∗ = 0.3 (b). Arrows on the figure indicate
the location of cavities collecting h sub-particles en-masse in the liquid. The finite
size effect — the percolated void (referred to as a cylindrical bubble in Chapter 5) —

enables viewing of the orientation of HJDs at the interface of the bubble.

a) b)

Figure 6.32: A vesicle structure from outside (top) and a cross-section (bottom)
where α = 1.25 depicted in panel a); Tube structure observed at the same state-point
in a duplicate simulation, ‘end-on’ (top) and a cross section (bottom) depicted in panel

b).
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6.4.3 Bilayers and Gyroids

It has been demonstrated that amphiphillic molecules can form gyroid like structures

in lipids, block co-polymers and in simulation [88–91], but also in simulation of soft,

asymmetric dumbbell shaped colloids [92]. Here we observe two other types of structure

topologically distinct from the vesicle, tube, planar bilayer (termed here ‘lamellar’).

Bilayers that form where 1.1 < α < 1.3 can tolerate significant curvature. This can

already be observed in the case of the vesicle and tube structures observed above. In

Figure 6.33, snapshots of structures consisting of a single wave-bilayer (with wavelength

proportional to the box length), a bilayer with an bridge join, and a gyroid-like structure

can be viewed. The gyroid structure is not exactly a minimal curvature surface. Two

orthographic3 snapshots from α = 1.2 and α = 1.15 can be seen in Figure 6.34. These

structures are all strongly affected by the cubic box geometry. Additional work needs

to be done to ascertain the stability of these structures with respect to compression

and variable box dimensions (see Chapter 8). It is likely that an NPT simulation with

variable box lengths may yield results that differ slightly from the present study. It is

unclear at this stage what structure they may take. It can be stated without ambiguity

that the structure of state-points, whatever the final box geometry, that form at these low

temperatures will be composed of percolated bilayers, and, since the dumbbell geometry

here allows the surface to have some curvature while still maximising the number of

bonds per particle, it is likely that structures such as the gyroid and other bi-continuous

structures will be observed.

a) b) c)

Figure 6.33: Structures obtained across the T ∗ = 0.3 isotherm where α = 1.2: A wavy
bilayer structure, panel a); a wavy bilayer with a bridge, panel b); and a bi-continuous
gyroid-like structure, panel c).. Periodic images are included for clarity. The size of

each simulation cell is indicated in each panel by the black cube.

3an orthographic projection allows us to view the continuous cavities formed by 3D void percolation
on a 2D surface
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a) b)

Figure 6.34: Gyroid-like structures formed by void percolation. Panel a) is from
α = 1.2, where focal point for the orthographic snapshot cell edge. Panel b) is from

α = 1.15, where cell is face-on.

6.4.4 Crystalline Order at Low Temperature

Where T ∗ = 0.3, gss indicates fluid local structure around the s sub-particles at both

ρ∗ = 0.1 and ρ∗ = 0.3. Upon lowering the temperature from T ∗ = 0.3 to T ∗ = 0.2

across all α > 1.05 bilayer systems develop crystalline order around each s sub-particle.

Figure 6.35 demonstrates the formation of additional peaks in the low temperature fluid

on cooling. The local structure observed on cooling is related to the local structure

observed in the strip, platelet, and lamellar structures observed where α < 1 (compare

panels 2 and 4 of Figure 6.35, with panel 2 of Figure 6.21). Bond-wise distributions of

q
6
can be viewed in Appendix C.
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Figure 6.35: Demonstration of crystalline order developing in the low temperature
fluid across 1.1 6 α 6 1.3 (indicated in the top panel). The top two panels collect
gss collected at ρ∗ = 0.3 for T ∗ = 0.3 and T ∗ = 0.2, respectively; and the bottom
two panels collect gss collected at ρ∗ = 0.1 for T ∗ = 0.3 and T ∗ = 0.2, respectively.
Where T ∗ = 0.3, at all α considered on the plot the self-assembled structures clearly
demonstrate fluid order. The formation of structure in gss on cooling from T ∗ = 0.3 to
T ∗ = 0.2 indicates that the local bonding structure around each s sub-particle is highly

ordered.



Chapter 7

Phase Diagrams

This relatively short chapter concentrates on phase diagrams developed based on the

results of Chapter 4, Chapter 5, and Chapter 6. Based upon Chapter 4, we apprehend

that the point at which the system reaches the Janus limit (i.e. α = 1, or equivalently

σs = σh) the system adopts primarily planar bilayer structures. This α is used as a

reference point that connects the two regions of α above and below α = 1 where the

phase behaviours are observed to be distinctly different. Broadly, above α = 1 systems

can be classified with respect to their proximity to liquid forming region where α & 1.15,

and layered structures where α . 1.3. The region 1.15 < α < 1.3 is a region where

competition between layered assemblies and gas-liquid coexistence occurs at low T ∗, and

on further cooling a number of different self-assembled phases which become increasingly

planar as α → 1. The region where α < 1, we observe several different phase scenarios

consisting of 3D, 2D, and 1D aggregate systems. These are categorised as sponge,

network, lamellar, platelet, strip, and micelle, in order of decreasing dimensionality.

7.1 Phase Categorisation

Due to the complex nature of aggregates observed, the multi-pronged approach to phase

identification outlined in the previous chapter is employed. Where an ambiguity is en-

countered, say, for an α < 1 where there is little orientational order but where Nlargest

the state-point shows that the system is one large structure, visual inspection of con-

figurations is employed to decide what phase the state-point has adopted. This process

can be facilitated by inspecting the bonding network. Where an ambiguity does occur,

the interpretation based on a visual inspection is preferred.

101
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7.2 Phase Diagrams α < 1

7.2.1 Reading Phase Diagrams

Phase diagrams for α < 1 are given a form consistent with the array of T ∗ and ρ∗ studied

at each α (see Figure 6.5). All phase diagrams have the proportions T ∗ ∈ (0.05, 0.35]

and ρ∗ ∈ [0, 0.3]. Each state-point is assigned a rectangle in this space and coloured

according to the phase observed. Regions which possess no colour were not investigated

in the present study. The colour assigned to each phase is displayed on the right hand side

in each case for quick reference. Rectangles which contain two colours indicate a state

point where two different structures are observed, sometimes in coexistence. Indicated

on each phase diagram is a line marked in red below which an ordering transition takes

place. This ordering transition line identifies a temperature below which additional

peaks resolve in the radial distribution function over the σs sub-particles g(r)ss (see

Figure 7.1 in red). Regions marked percolating are regions above where structure can

be observed in the g(r)ss, but where the system still displays clustering that connects

to its next periodic image through the bond network. Descriptions and snapshots of

each type of structure can be obtained from Chapter 6. Similar phase diagrams from

adjacent values of α are contained in Appendix A.
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Figure 7.1: Phase diagram for α = 0.65. At high temperatures a gas coexists with ap-
proximately spherical micelles, on lowering the temperature. Regions with two colours
indicate a state-point where structures are found to co-exist. The red line indicates the
T ∗ below which additional peaks can be observed in the radial distribution function.

Figure 7.1 depicts the phase diagram for α = 0.65. Here a gas at high T ∗ coexists with

micelles, which eventually, on cooling past the red line (below T ∗ = 0.20) form what

appear to be crystalline clusters. No continuous structures are observed.

Figure 7.2 depicts the phase diagram upon increasing the s sub-particle to 2/3 of the h

sub-particle diameter. Here, below the red T ∗ line, micelles are found to coexist with

platelet structures at all densities studied. At high T ∗ the system is similar to the case

where α 6 0.65. The structural differences between micelles and platelets can be viewed

in Chapter 6.

Where α = 0.75 (depicted in Figure 7.3), the high T ∗ scenario is characterised by

a monomer gas coexisting with micelles which at higher ρ∗ elongate and eventually

percolate where ρ∗ & 0.25. Below the red line, where T ∗ 6 0.2, The system undergoes

three regions where different structures are observed. Firstly, a gas of micelles co-exist

with platelet structures where ρ∗ < 0.15. Strip structures are observed to coexist with

platelets between 0.10 < ρ∗ < 0.25. At ρ∗ = 0.25, the platelet population is depleted

and solely strips are observed some of which have percolated. This percolated strip

phase occurs around the same density as percolation in the less ordered fluid above the
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Figure 7.2: Phase diagram for α = 2/3. Here below the red line the formation
of platelets occurs in co-existence with micelles. This is the first instance of platelet

formation observed in the simulation set.

red-line indicating that it is density-confinement driven process. A case study of this α

can be found in Chapter 6.

Where α = 0.8, the phase diagram is qualitatively similar to α = 3/4. A micelle gas

coexisting with monomers at high T ∗ and low ρ∗, changing to a pure elongated micelle

phase before the system percolates at ρ∗ = 0.2 for all T ∗ > 0.2. Below the red line,

coexisting micelles and platelets give way to platelets and strips at ρ∗ ≈= 0.15 for

all T ∗ < 0.25, with the exception of T ∗ = 0.1, where this occurs earlier and yields a

pure strip phase at T ∗ = 0.2. By ρ∗ = 0.15, all T ∗ < 0.25 have adopted a platelet

and strip coexistence, which ends at ρ∗ = 0.25 where all T ∗ < 0.25 have adopted the

network structure. The first appearance of networks of branching curved structures is

observed at a slightly lower α (see Appendix A). Snapshots of some structures here

are depicted in Chapter 6. This particular α has been studied elsewhere [55], which

addresses the effect of sphere separation on the self-assembly products. In this case the

sphere separation is such that the s sub-particle is extruded from the h sub-particle up

to a sphere separation of l ≈ 0.5 (see the discussion in Section 1.5). It is observed that

as the sphere separation is increased, the formation of spherical and elongated micelles

eventually gives way to bilayer structures at higher ρ∗, although the authors employ

a single temperature (parameterised as an attraction strength βε = −3.58) to observe
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Figure 7.3: Phase diagram for α = 0.75. Above the structuring line (in red) a
monomer gas coexists with micelles which at high density percolates. Below the red
line (T ∗ < 0.225) a density drive transition from elongated micelles co-existing with

platelets, then platelets co-existing with strip structures are observed.

assembly which is equivalent to T ∗ = 0.27. No strips or strip-network structures are

observed in [55]. The reason for this is likely two-fold. Firstly the temperature employed

is too high to observe the formation of ordered strips, since the T ∗ at which strip order

is observed in the current study (T ∗ < 0.25) is just below temperature backed out from

their attraction strength parameter (T ∗ = −1/βε ≈ 0.279). Secondly, it may also be

the case that only the extrusion of the s sub-particle toward a tangent dumbbell allows

branching to occur since the variety of bond angles is increased by having a larger portion

of the sphere available for bonding in the present parameterisation, given that in [55]

the l parameter was only varied over 0 . l . 0.5. While the results agree qualitatively

that the formation of micellar aggregates occur here, in the present study the interesting

structured aggregates fall on the diagram at a lower temperature.

By α = 0.85, the percolation of strips has shifted to far lower ρ∗(= 0.05), the red line

has shifted to higher T ∗(0.2 < T ∗ < 0.25), and the network region has expanded to fill

almost half of the studied region below the red line. Strips here are characterised as

having wider small diameter owing to a larger close-packed stacking arrangement, and

the network structures possess more curvature. The percolation threshold at T ∗ above
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Figure 7.4: Phase diagram for α = 0.8. Here the percolation region has advanced to
lower ρ∗, the low T ∗ behaviour now includes the presence of branching network strips.

the red line has shifted to between 0.01 and 0.05. The phase diagram for α = 0.85 is

depicted in Figure 7.5.

Where α = 0.9, the appearance of sponge structures (which emerge where α = 0.875,

see Appendix A) begin to occupy a large portion of the phase diagram (Figure 7.6). The

percolation threshold hasn’t moved from the case where α = 0.85. Regions of previous

diagrams where strip structures are found have been squeezed out be the formation

of networks. By α = 0.925 the strip structures do not occur on the phase diagram,

replaced by platelet regions and networks. Eventually, by α = 0.95 (Figure 7.7), lamellar

structures begin to dominate the phase diagram. This trend continues until α = 1, where

only lamellar structures are observed.
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Figure 7.5: Phase diagram for α = 0.85. Here the percolation region has advanced
to between 0.01 < ρ∗ < 0.05. Below the structuring line nearly half of the state-points

are branching networks. The presence of strips has also moved to lower ρ∗.
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Figure 7.7: Phase diagram for α = 0.95. Here the presence of elongated micelles below
the structuring line has vanished, replaces by solely platelets. At higher ρ∗ lamellar

order has developed.
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Figure 7.6: Phase diagram for α = 0.9. By this α sponge-like order (in orange) has
developed in the low T ∗ region. This is one of the most complex α studied. Consisting of
gas, spherical micelles, and percolation at T ∗ above the structuring line; and elongated
micelles, platelets, strips, branched networks, and sponge-like order below in increasing

ρ∗.

7.3 Phase Diagrams where α > 1

As mentioned in the preceding analysis set out in Chapter 5 and Chapter 6, beneath

the gas-liquid phase coexistence region on the interval 1.1 < α . 1.31 the formation

bilayer structures begins to perturb the liquid structure. As the system is cooled past

the coexistence region cavities formed by the collection of h sub-particles eventually

yield large percolated voids between bilayer structures. Since the region under the co-

existence curve is dominated by finite size effects (see Section 5.5.2 and the analysis in

Chapter 6) tentative phase diagrams are presented here demonstrating the location of

bilayer structures and their topology in conjunction with the gas-liquid binodal. On

each of the three (for α = 1.3, 1.2, and 1.1) phase diagrams are the approximate tem-

perature below which the system begins to display significant cavitation, denoted by

a green dotted line; where the system is dominated by bilayer structures — whatever

the topology — denoted by the blue dotted line; and finally the temperature of onset

of crystalline order in the bilayer structures (see Section 6.4.4) a red dotted line, below

which additional peaks in gss emerge, and bond-wise distributions of q
6
indicating a

1Additional diagrams of the structures observed at each state-point can be found in Chapter ??
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significant proportion of the system has adopted relatively high coordination numbers

and that these particle environments have only a few specific spacial arrangements of

neighbouring particles. The temperature of onset of the the cavity liquid line, and the

bilayer line are extracted from the analysis in Chapter 5. For α = 1.2 and α = 1.1,

where bilayer structures are observed, the outcome of the simulated annealing simula-

tions is superimposed on the phase diagram to demonstrate where these structures may

lie on the phase diagram, pending the demonstration that they not meta-stable to the

formation of some other structure. Figure 7.8 contains the proposed phase diagram for

α = 1.3. Here the critical point is estimated at T ∗
c ≈ 0.608, ρ∗c ≈ 0.185, beneath which a

region of gas-liquid coexistence, which on cooling begins to display significant cavitation

at T ∗ ≈ 0.44. Upon lowering the temperature below T ∗ ≈ 0.25, the system is observed

to demonstrate crystalline order. Decreasing α to 1.20 (Figure 7.9), the critical point has

shifted to T ∗
c ≈ 0.520 and ρ∗c ≈ 0.132. Again at T ∗ ≈ 0.44 significant cavitation occurs

in the fluid, only this time the formation of bilayer structures occurs below T ∗ = 0.42.

Across the isotherms T ∗ = 0.4 and T ∗ = 0.3 different topologies of bilayer structures

are observed. These are categorised according to the method described in Chapter 6.

They include vesicle, tubes, lamellar bilayers, and gyroid -like structures. Further along

where α = 1.1 (Figure 7.10), no liquid is observed only self-assembled bilayer structures

are observed, including vesicles and bilayers. Here the projected critical point is approx-

imately coincident with respect to the formation of bilayer structure. A progression of

the critical point to be metastable with respect to the formation of bilayer structures at

this α is consistent with the lack of observation of a gas-liquid critical point for α = 1

(and εh = 0) in Chapter 5.
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Figure 7.8: Phase diagram for α = 1.3. Regions include the super-critical fluid (SCF)
at high temperature, gas (G), liquid (L), gas-liquid coexistence region (G+L), a cavity
liquid region (CL), and crystalline (C) region. The vertical grey line marked ρSA

MAX

denotes the ρ∗ past which no SA simulations were performed.
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Figure 7.9: Phase diagram for α = 1.2. Regions include the super-critical fluid
(SCF) at high temperature, gas (G), liquid (L), gas-liquid coexistence region (G+L),
a cavity liquid region (CL), bilayer region (B), and crystalline (C) region. The dotted
vertical grey line marked ρSA

MAX again denotes the ρ∗ past which no SA simulations
were performed. The self assembled phases denoted by the symbols are vesicles (orange
circles), tubes (green diamonds), lamellar bilayers (blue squares) and gyroid-like (red
crosses). state-points with two symbols are where the structure obtained via SA was

either one.
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Figure 7.10: Phase diagram for α = 1.1. No gas-liquid phase behaviour is observed
here, the projected critical point, denoted by the red star symbol is above the region
where simulations are performed, yet no binodal was observed here. The bilayer struc-
ture observed in the simulated annealing points are vesicles (orange circles) and bilayers

(blue squares).



Chapter 8

Conclusions

We advance a model of colloidal dumbbell shaped particles with strongly anisotropic

interaction that is sufficiently simple as to become tractable for numerical study and

yet sufficiently complex to demonstrate a wide array of phase behaviours controlled by

fairly simple relationships between particles. It has been suggested [35] that this kind

of investigation can be performed at “different levels of realism”, with this one likewise

corresponding to an “extreme coarse graining procedure”. It is evident that only rather

elementary descriptions of particle geometry, interaction potentials, and methodological

approaches can be employed to yield very rich and diverse phase behaviours. In this light

we combine the hard-sphere model, which undergoes a first order phase transition from

a fluid to a crystal upon compression; and the square well model, which demonstrates

all the phase behaviours of classical matter: gas-liquid critical phenomena. A Numerical

study of the phase behaviour of “tangent dumbbells”, consisting of two spherically sym-

metric interaction sites, was performed via exploration of two orthogonal pathways from

three reference systems to the Janus limit, where both constituent sub-particles have

equal diameter (σh = σs) and the attractive interaction strength on one site is naught

(i.e. εh = 0). Firstly via a gradual reduction or ‘tuning’ of the interaction strength on

the site of a SW dumbbell, via an interaction strength parameter εh. Secondly via inflat-

ing the size of a hard-sphere sub-particle, tangent (i.e. where the internuclear distance

is half the sum of the diameters) to a square-well sub-particle, to the Janus limit (with

equal diameter sub-spheres), and subsequently shrinking the square-well sub-particle to

leave solely a hard-sphere. This interaction site size ratio is controlled by the sphere

size ratio parameter α. Gas-liquid coexistence curves are computed from two reference

points which contain a liquid phase i.e. from the square-well tangent dumbbell, and

from the square-well sphere up to a point near the Janus limit. Several interesting phase

scenarios are observed in this regime.

112
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8.1 Square-well dumbbells to the Janus limit

Two main observations are presented in which it is demonstrated that the increase

in anisotropy of the interaction potential drives the self-assembly of certain structures

which compete with the formation of a liquid. Firstly, due to the reduction in volume

of the interaction potential as the interaction site on one sub-particle is ‘tuned’ to 10

% of the other, the critical temperature reduces linearly consistent with a mean field

theoretic approach [57], and the critical density becomes very small such that at the

Janus limit (σs = σh) ρ
∗
c → 0 and the gas-liquid critical point becomes metastable

with respect to the formation of self-assembled structures. The dominant self-assembled

phase observed in the low temperature fluid is lamellar. We advance the argument that

as the interaction potential becomes more anisotropic, that the formation of lamellar

self-assembled structures dominates the phase behaviour.

8.1.1 Heterogeneous Janus dumbbells

Finite low density self-assembled structures where interaction anisotropy parameter

εh → 0, referred to in Chapter 4 as micelles, may be the result of kinetic trapping due

to an inability to diffuse across the simulation cell. Given that self-assembled phases are

expected to abound in the HJD, where εh = 0, a non-local intra-box swap move algo-

rithm — a version of Aggregation Volume Bias Monte Carlo — is implemented to avoid,

or at least reduce the effects of the kinetic bottlenecking on the study of particle systems

across α. It is observed via the parameterisation developed here for the tangent HJD

that solely via tuning of the composite sphere sizes that variegated phase behaviours

can be obtained. For α < 2 these include typical and atypical gas-liquid phase sep-

aration (considering the critical exponents and their relation to the Ising universality

classes); low density percolation thresholds caused by the formation of self-assembled bi-

layer structures, which we variously categorise as vesicles in the ultra-low density regime,

tubes and waves in the low to moderate density regime — where the box size has al-

lowed percolation to occur, and the system is essentially under a percolation enforced

confinement — gyroids where the system is essentially bi-continuous at moderate den-

sities, and lamellar where multiple layer stacking coexist at moderate to high densities.

Future work on these systems may take the form of structure nucleation studies in the

Grand Canonical ensemble to investigate the growth of particular structures; One may

also treat a surface comprised of these bilayer nano-particle structures to investigate the

relative stability of each topology at point where particular topologically different struc-

tures are observed at the same state point and compare this to existing thermodynamic
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reasoning [17]. One may also investigate the effect of switching on the second interaction

site to investigate the role of slight interaction anisotropy.

Where α < 1, σs < σh, self-assembled structures dominate the phase diagrams. Where

α . 1 the formation of lamellar structures dominates. Further shrinking of σs causes

faults in the stacking of bilayer sheets and promotes the formation of curved structures

with percolated voids in the moderately high density regime, which we refer to as sponge-

like order. This can be considered as a contraction in the maximum contiguous bonding

of successive particles. Eventually, where α ≈ 0.85, sponge-like order is suppressed in

this density regime and particle assemblies adopt defined internal structures composed

of strips, which we here refer to as branching networks. Lower α futher enhances the

contiguous bonding restriction and promotes the formation of non-branched linear strips

(around α ≈ 0.775). By α = 0.675 the formation of continuous structures has ceased and

only platelets, micellar aggregates and monomers ar observed. This trend continues until

just below α = 2/3 where solely elongate micelles are observed. By α = 0.5 and below the

presence of only roughly spherical micelles are found, which upon further reduction in α,

take on small face-capped polytopes until simple prisms and other polytopes are observed

nearer α = 0.25. Again, nucleation studies may be performed here to investigate the

free energy of formation of particular self-assembled structures, especially where two

structures are found to coexist. Interconversion between two structures at low but finite

temperatures may be slow for real systems, especially where length scales are at the high

end of the meso-scale. The potential description may also be developed to incorporate

continuous attractive potential energy functions.

It is suggested [4] that the enormous combinatorial space of particle anisotropy needs to

be wrangled in a manner to allow a common language and taxonomy to be developed.

It is quite obvious from the findings here that even very simple combinations of these

anisotropy dimensions can yield very complex aggregation behaviour that varies strongly

along the anisotropy parameters. To observe and develop approaches to the reliable

manufacture of particle assemblies these simple relationships may be utilised as a first

stop when considering where to start with a new synthesis.



Appendix A

Additional Phase Diagrams

This appendix contains additional phase diagrams referred to in the text for reference.
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Figure A.1: Phase diagram for α = 0.5
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Figure A.2: Phase diagram for α = 0.675
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Figure A.3: Phase diagram for α = 0.7
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0.01 0.05 0.10 0.15 0.20 0.25 0.30

ρ∗
0.05

0.10

0.15

0.20

0.25

0.30

0.35

T ∗

Gas

Micelle

Platelet

Strips

Percolating

Network

Sponge

Lamellar

Figure A.5: Phase diagram for α = 0.775
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Figure A.6: Phase diagram for α = 0.825
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Figure A.7: Phase diagram for α = 0.875



Appendix A. Additional Phase Diagrams 119

0.01 0.05 0.10 0.15 0.20 0.25 0.30

ρ∗
0.05

0.10

0.15

0.20

0.25

0.30

0.35

T ∗

Gas

Micelle

Platelet

Strips

Percolating

Network

Sponge

Lamellar

Figure A.8: Phase diagram for α = 0.925
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Figure A.9: Phase diagram for α = 0.975
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Self-assembly summary for α < 1

Structure
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0.875 X X X X X X

9/10 X X X X X X

0.925 X X X X X

0.95 X X X X X X

0.975 X X X X X
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Appendix C

Distributions of q6

It is observed for finite aggregates and continuous configurations below a certain T ∗ at

certain α that the formation of highly structured particle environments are observed.

Bond-wise rotational invariant order parameter q
6
is employed to examine the local bond

orientation structure. Unfortunately, due to their complex nature, only a cursory exam-

ination was performed here. Only certain α are considered (0.75 and 1.20). α = 0.75

was chose since it is the region with the most clear transition between micelles, platelets

and strips. α = 1.2 was chose since it is the region where both the liquid structure was

analysed and simulated annealing performed on continuous bilayer structures.
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Figure C.1: Distributions of q
6
coloured by number of bonds - indicated in the colour

bar. All x-axes are on the interval [0.2,0.5]). This region traverses the T ∗ = 0.2
isotherm, demonstrating the consistent internal bond structure of the density driven
strip growing process. Clusters with disordered bond networks, such as approximately
spherical and curved elongated micelles, have diffuse q

6
structure as can be observed

on the leftmost distributions for Nb . 10. As structuring occurs these populations are
depleted. The formation of the strips where a collection of 10− 16 coordinate particle
environments grows, the number of bonds depending upon distance from the middle of

the strip. Densities are indicated at the top of each distribution.
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