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Abstract

This thesis has three main areas of concern namely fixed point
theory, selection theory and an application of game theory to
cognitive science.

The first step of our work is dedicated to the hairy ball theorem. We
mainly introduced an equivalent version to the latest theorem in the
form of a fixed point theorem. In this way, ensuring the proof of this
equivalent version gives a new insight on the hairy ball theorem. In
order to achieve our result, we used different tools as for instance
approximation methods, homotopy, topological degree as well as
connected components.

In a second phase, we manipulated lower semicontinuous
correspondences and we established a selection theorem related to
one of Michael’s selection theorems. Beyond the existence result, we
introduced a new geometric concept of convex analysis, namely
“the peeling concept” whose independence from the main result
could be explored in other different issues.

In the final chapter, the starting point is an innovative idea of
Warglien and Gärdenfors who rely on the theory of fixed points to
argue for the plausibility of two individuals achieving a “meeting of
minds”. But their approach is merely existential. To describe the
structure of a possible outcome, we model the process as a simple
non cooperative game using conceptual spaces as a new tool of
modelization in cognitive science.
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Chapter 1

Introduction

Fixed point theory is at the heart of nonlinear analysis. Actually, it
provides many tools in order to get existence results in many non-
linear problems. A fixed point theorem is a result asserting that un-
der some conditions a function f has at least one fixed point, that is,
there exists x such that f(x) = x. One of the first examples easy to be
understood by a student with basic knowledge in calculus and anal-
ysis is the following (you may consider Figure 1.1): Any continuous
function f from the closed unit interval to itself has at least one fixed
point. Indeed, suppose by contradiction that f has no fixed point in
[0, 1], then f(0) > 0. Then, it must be f(x) ≥ x for all x, otherwise
a fixed point occurs. This implies that f(1) > 1, which establishes a
contradiction.

From this basic example, one might wonder what kind of func-

FIGURE 1.1: Fixed point on [0, 1]

tions on what type of sets can generate fixed points. Since then, sev-
eral results have been emerged and fixed point theorems are con-
sidered amongst the most useful in mathematics with several types
of applications. Here, we can distinguish two main approaches: a
non constructive and a constructive approach. Namely, Brouwer’s
fixed point theorem and Banach fixed point theorem. The result pro-
vided by Brouwer (1910) stated that any continuous function from
the closed unit ball of Rn, denoted by Bn, into itself admits a fixed
point. It is worth noting that the result of Brouwer holds true not
only for Bn but also for any compact convex set of Rn. However, the
fixed point is not necessarily unique. We can ask the following: How
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can we strengthen the hypothesis to get the uniqueness?
To get an idea, we consider the following example nearly identical
to our simple first example. Let f : [−1, 1] → [−1, 1] be a continu-
ous function. Brouwer’s theorem for the case n = 1 stated that f has
at least a fixed point x∗. Suppose that there exists a second solution
x̃ 6= x∗, then we have f(x̃)−f(x∗)

x̃−x∗ = 1. So, if for instance, f is differen-
tiable satisfying f ′(x) < 1, for any x ∈ [−1, 1], then by the mean value
theorem, we can guarantee the uniqueness of the fixed point.
In n dimension, a natural generalization is to look to the quantity
‖f(x̃)−f(x∗)‖
‖x̃−x∗‖ , for x̃ 6= x∗, potentially in more complicated spaces than

Rn. A related finding is given by the Banach fixed point theorem
stated below (1922). Unlike Brouwer’s theorem, its approach is con-
structive. Indeed, under specific conditions, the procedure of iterat-
ing a function yields a unique fixed point.
Before working in depth on Brouwer’s fixed point theorem, we will
recall the Banach fixed point theorem and some applications.

1.0.1 The Banach fixed point theorem

First, we recall the Banach fixed point theorem.

Theorem 1.0.1 (Banach, (1922)) [4] Let (E, d) be a complete non
empty metric space and let T : E → E be a contraction (i.e there ex-
ists k ∈ (0, 1) and (x, y) ∈ E × E such that d(T (x), T (y)) ≤ kd(x, y)),
then T has a unique fixed point x0 in E. Besides, the fixed point x0

can be calculated as the limit of T n(z), for any z ∈ E.

Note that in addition to the capital contribution ensured by the
uniqueness, the error of the distance between xn and the fixed point
is explicitly given by the contraction constant k and the initial dis-
placement d(x0, x1).
In order to gain some intuition about the importance of the Ba-
nach fixed point theorem, we will start by exploring the example
of Rousseau [2]. We take the famous box of the laughing cow (see
Figure 1.2). The right earring of the cow is also a laughing cow. We
consider the function from the cover to itself such that to each point
of the cover, we associate the corresponding point on the right ear-
ring. An interesting question is the following: is there a fixed point of
this function? Remark that this function has a special property. Since
the images are much smaller than the domain, then it is a contraction
in R2, which is a complete metric space. Therefore, the above Banach
fixed point theorem states that our process has a unique fixed point.
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FIGURE 1.2: The laughing cow cover

The joy of this theorem is that the uniqueness of the fixed point is not
visible to the naked eye.

Applications

Despite the numerous applications in analysis of the Banach fixed
point theorem, the existence and uniqueness of solutions of some
class of differential equations remain among the most known. For
instance, we consider the existence of solutions for the Volterra inte-
gral equation of the second kind [8] given by the following.

Theorem 1.0.2 Let K : [0, T ] × [0, T ] × R → R be continuous and
suppose it satisfies a Lipschitz condition

|K(t, s, x)−K(t, s, y)| ≤ L|x− y|

for all (s, t) ∈ [0, T ] × [0, T ], x, y ∈ R and L ≥ 0. Then for any v ∈
C([0, T ]) the equation

u(t) = v(t) +

∫ t

0

K(t, s, u(s))ds, (0 ≤ t ≤ T )

has a unique solution u ∈ C([0, T ]).

The above result is also connected to the next differential equation
problem formulated by the next theorem.

Theorem 1.0.3 Let f : [0, T ] × R → R be continuous and suppose it
satisfies the Lipschitz condition

|f(s, x)− f(s, y)| ≤ L|x− y|

for s ∈ [0, T ] , x, y ∈ R, then the Cauchy problem

du

ds
= f(s, u), u(0) = 0
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has exactly one solution u defined on the entire interval [0, T ].

It is worth noting that some further facts are also important. For
instance, a second application of the Banach fixed point theorem is
also to prove the implicit function theorem [13]. For more recent
applications, one can consult for example the application studied by
Rousseau [2] about the image compression.
Now, let us return to the matter at hand, the Brouwer’s fixed point
theorem.

1.0.2 Brouwer’s fixed point theorem

Theorem 1.0.4 (Brouwer, (1912)) Let Bn be the closed n-ball, and
suppose that f is continuous from Bn to itself. Then, there exists
some x∗ ∈ Bn, such that f(x∗) = x∗.

Before approaching the historical aspect of Brouwer’s fixed point
theorem, note that we can easily prove that the regular version
of Brouwer’s fixed point theorem (C1 version) is equivalent to the
continuous version. In 1909, Brouwer met a very important cir-
cle of french mathematicians: Borel, Hadamard and Poincaré. The
fruit of this encounter brought Brouwer to exchange his ideas with
Hadamard. At this time, Brouwer was able to prove his theorem
only for the two dimensional case and it was Hadamard who in 1910

gave the first proof for any arbitrary finite dimension. Yet, in 1912,
Brouwer found an alternative proof independent of Hadamard’s
proof. It is worth noting that in 1886, Poincaré [7] published his
results about the homotopy invariance of the index. Poincaré’s re-
sult was implicitly rediscovered by Brouwer in 1911. However, we
waited until 1940, the year in which Miranda proved that Poincaré’s
result is equivalent to Brouwer’s theorem and since then has been
known as the Poincaré-Miranda theorem. For more details, see for
example Kulpa [30].
All this made Brouwer’s fixed point theorem the cradle of algebraic
topology. Thus, Brouwer’s proof are essentially topological. For a
deeper survey, the reader can consult Stuckless [27]. Among the
full range of proofs, we can cite the proof of Knaster-Kuratowski-
Mazurkiewiez (1929) using the lemma of Sperner. This gave birth to
the KKM theory but we will not follow this direction of study. How-
ever, our interest is focused on equivalent results to Brouwer’s fixed
point theorem. Here, we decided to present the proof of a relatively
early equivalence between Brouwer’s fixed point theorem and the
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non retraction theorem. Then, our attention is devoted to underline
the tight association between the works of Poincaré and Brouwer.

From the non retraction theorem to Brouwer’s theorem

We recall that a retraction from a topological space to a subset of this
space is a continuous application from this space with values in the
subset whose restriction to this subset is the identity. Formally, we
have

Definition 1 If Y is a subset of Rn, and X ⊂ Y , then a retraction
r : Y → X is a continuous mapping such that r(x) = x for all x ∈ X .

Here, we announce the C1 version of the non retraction theorem.
Indeed, one of the motivations behind it is that usually we adopt
a proof using differential computations where the C1 character is
needed.

Theorem 1.0.5 (The non retraction Theorem) There exists no C1 re-
traction from the unit ball of Rn, Bnto the unit sphere, Sn−1.

Proof of the equivalence

Brouwer′s fixed point theorem (A)⇔ the non retraction theorem (B)

We will prove equivalently that non (B) is equivalent to non (A). We
start by proving that non (B) implies non (A). Suppose that the non
retraction theorem is not verified, then there exists r : Bn → Sn−1, C1

such that r(x) = x, for any x ∈ Sn−1. Let f : Bn → Bn, x → −r(x).
The function f is clearly continuous and for any x ∈ Sn−1, f(x) =

−x 6= x. Therefore, f has no fixed point, which establishes the result.
Conversely, suppose that Brouwer’s fixed point theorem doesn’t
hold true. This implies, that there exists f : Bn → Bn, such that
f(x) 6= x, ∀x ∈ Bn. Let u(x) : Bn → Sn−1 defined by u(x) = f(x)−x

‖f(x)−x‖ .
Then, we consider the line passing through x and directed by u(x).
We will denote by g(x) the intersection point of this line and the
sphere on x side (see the following figure).
By construction, g belongs to Sn−1 and if x ∈ Sn−1, then g(x) = x.

It remains to check that g is C1. Without loss of generality, we
can suppose that f is C1. Therefore, the function u is also C1.
Now, by definition, there exists t(x) ≥ 0, such that g(x) = x +

t(x)u(x). Solving ‖g(x)‖2 = 1, leads to the value of t(x) given by
t(x) = −x.u(x) +

√
1− ‖x‖2 + (x.u(x))2. It suffices to remark that the

quantity under the root square is positive and conclude that t is C1.
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That is g is C1 and then the non retraction theorem doesn’t hold true,
which proves the result.
The next section is devoted to the connection between some works
of Poincaré and Brouwer.

Poincaré-Miranda theorem

Mentioning again the Brouwer’s fixed point theorem for n = 1. It
is easy to see that the proof is trivial since it is an immediate conse-
quence of the intermediate value theorem which says that a continu-
ous function f : [a, b] → R such that f(a).f(b) ≤ 0 must have a zero
at some point in [a, b]. As noticed in Browder [6], Poincaré, in 1884,
announced the following without proof:
“ Let ξ1, ξ2, · · · ξn be n continuous functions of n variables
x1, x2, · · ·xn: the variable xi is subject to vary between the limits ai
and −ai. Let us suppose that for xi = ai, ξi is constantly positive,
and that for xi = −ai, ξi is constantly negative; I say there will exist
a system of values of x for which all the ξ′s vanish”.
Poincaré proved this result two years after. However, in 1940, the
result became interlinked with Miranda who proves that it’s equiva-
lent to Brouwer’s fixed point theorem.

Theorem 1.0.6 (The Poincaré-Miranda theorem, (1940)) Let Ω =

{x ∈ Rn : |xi| ≤ ai, i = 1, · · · , n} and f : Ω → Rn be continuous
satisfying

fi(x1, x2, · · · , xi−1,−ai, xi+1, · · · , xn) ≥ 0, for 1 ≤ i ≤ n

fi(x1, x2, · · · , xi−1, ai, xi+1, · · · , xn) ≤ 0, for 1 ≤ i ≤ n

Then, f(x) = 0 has a solution in Ω.

It is important to notice that we can reformulate the Poincaré-
Miranda theorem as a fixed point theorem (see for example [28]),
where the assumptions are unchanged. This is given by the follow-
ing theorem.
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Theorem 1.0.7 Let Ω = {x ∈ Rn : |xi| ≤ ai, i = 1, · · · , n} and f : Ω→
Rn be continuous satisfying

fi(x1, x2, · · · , xi−1,−ai, xi+1, · · · , xn) ≥ 0, for 1 ≤ i ≤ n

fi(x1, x2, · · · , xi−1, ai, xi+1, · · · , xn) ≤ 0, for 1 ≤ i ≤ n

Then, f(x) = x has a solution in Ω.

A key point of this theorem is that the function f is not self mapping
as it is quite frequent in fixed point theorems.
Now, once more, a common feature between Brouwer and Poincaré
is given by the following result.

Theorem 1.0.8 (The hairy ball theorem, (1912)) Let f : S2n → R2n+1

be continuous such that for any x ∈ S2n, the scalar product f(x).x =

0, then there exists x such that f(x) = 0.

The above theorem can be seen as a corollary of the Poincaré-Hopf
index theorem. Note that the case n = 1 was independently proved
by Poincaré in 1885. In 1926, Hopf proved the full result (for more de-
tails see for example [11, 18]). However, in 1912, Brouwer provided
an independent proof of the hairy ball theorem. We dedicate the next
section to the hairy ball theorem which is our second chapter of this
thesis.

1.1 Chapter 2: The hairy ball theorem

First, consider Figure 1.3, remark that it is not difficult to see that S1

has a non vanishing continuous tangent vector field. Now, for S2

FIGURE 1.3: A non vanishing continuous tangent vec-
tor field on S1.

imagine brushing a ball perfectly covered with fine hair all over. Af-
ter brushing, there is no way that all the hair lies flat on the sphere.
One hair will stand up perpendicular to the surface. An another in-
tuition is also to say that winds moves in continuous stokes over
the surface of the earth. Since the earth is assimilated to a sphere,
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then there is one point at which there is no wind (See Figure 1.4).
However, despite the inspiration for curious people wishing to chase

FIGURE 1.4: A continuous tangent vector field on S2.

a point where the wind is not blowing off, the hairy ball theorem
presents a lot of applications not only limited to mathematics but
also to physics, (see for example [29, 21]).
There are several ways in order to prove the hairy ball theorem.
Brouwer’s proof is based on homotopy and the degree of a mapping.
Brouwer’s and the hairy ball theorem were proved using essentially
algebraic topology. In 1978, Milnor gave an analytic proof for both
theorems from a differential point of view and did not make effective
use of algebraic topology. Doubtless, there exists plenty of proofs
of the hairy ball theorem that are analytic. We think that Milnor’s
proof is worth quoting. Indeed, in his paper [10], Milnor wrote “This
note will present strange but quite elementary proofs of two classical
theorems of topology based on a volume computation in Euclidean
space and the observation that the function (1 + t2)

n
2 is not a poly-

nomial when n is odd”. We dedicate the next section to a sketch of
Milnor’s proof.

1.1.1 Milnor’s proof

Theorem 1.1.1 An even dimensional sphere does not admit any con-
tinuous field of non-zero tangent vectors.

As explained by Milnor, the proof of the above theorem is based on
the following Lemmas (whose proofs are omitted).

Theorem 1.1.2 An even-dimensional sphere does not possess any
continuously differentiable field of unit tangent vectors.
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Let A ⊂ Rn+1 be a compact set and x → v(x) be a continuously dif-
ferentiable vector field which is defined throughout a neighborhood
of A. Consider for any t ∈ R, ft : A→ Rn+1, x→ x+ tv(x).

Lemma 1.1.1 If the parameter t is sufficiently small, then the func-
tion ft is one to one and transforms the regionA onto a nearby region
ft(A) whose volume can be expressed as a polynomial function of t.

Lemma 1.1.2 If t is sufficiently small, then ft : S2k →
√

1 + t2S2k is
onto.

Before stating Milnor’s proof, note that a curious fact related to
the Banach fixed point theorem is that Milnor gave two proofs for
Lemma 1.1.2, the first one is based on the Banach fixed point theo-
rem and the second one on the inverse function theorem.
Proof of Theorem 1.1.1
By contradiction, suppose that the sphere possesses a continuous
field of non zero tangent vectors v(x). Let us consider m =

min
{
‖v(x)‖ , x ∈ S2k

}
. First, note that m > 0. Second, by the

Weierstrass approximation theorem, there exists a polynomial p :

S2k → Rn+1 satisfying ‖p(u)− v(u)‖ < m
2

, for any u ∈ S2k. Define
w(u) = p(u) − (p(u).u)u, for any u ∈ S2k. In order to conclude, it
suffices to remark that w(u) is tangent to S2k at u. Besides, the above
inequality and the triangle inequality show thatw 6= 0, then applying
Theorem 1.1.2 to w(u)

‖w(u)‖ yields to a contradiction.

1.1.2 Main results

The purpose of the first chapter is essentially to introduce an equiv-
alent version of the hairy ball theorem in the form of a ‘fixed point
theorem’. In this way, ensuring the proof of this equivalent theorem
gives a new insight on the hairy ball theorem. The result is given by
the following.

Theorem 1.1.3 Let f : S2n → S2n be a continuous function such that
for any x ∈ S2n, f(x).x ≥ 1

2
, then it possesses a fixed point.

In the sequel, to abbreviate notations, we will denote by S := S2n.
In order to prove our main theorem, we built an explicit function α

such that α possesses the north pole x0 and the south pole −x0 as
unique fixed points. Then, we construct an homotopy F between f

and α. As it is classical, we can think of F as a time indexed family
of continuous maps such that when time t varies from 0 to 1, F con-
tinuously deforms α into f . The main result stated that there exists
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a connected component connecting one fixed point of α and at least
one fixed point of f . Formally, our result is summarized by the fol-
lowing.
Let F : [0, 1] × S → S be a continuous function, we denote by
CF := {(t, x) ∈ [0, 1]× S : F (t, x) = x} and H the set of continuous
functions F : [0, 1]× S → S such that CF ∩ ({0} × S) = {x0,−x0}.

Proposition 1.1.1 If f : S → S is continuous such that for any x ∈ S,
f(x).x ≥ 1

2
, then there exists F ∈H such that F (1, .) = f .

Theorem 1.1.4 Let F be the function given by Proposition 2.4.1, then
there exists a connected component Γ subset ofCF such that Γ∩({0}×
S) 6= ∅ and Γ∩ ({1}× S) 6= ∅. Consequently, F (1, .) has a fixed point.

Now, it is clear that once we proved Proposition 1.1.1 and Theo-
rem 1.1.4, then Theorem 1.1.3 is deduced immediately.
On the other hand, it is important to notice that implementable
methods are desirable for computing fixed points but only available
for following smooth paths. Unfortunately, we have no guarantee
that the connected component Γ, obtained in Theorem 1.1.4, is
smooth (see Figure 1.5).

S × {0} S × {1}

−x0

x0

A

FIGURE 1.5: Example of a non smooth path Γ

At the point A, a bifurcation occurs creating a loss of the direction
to follow and the shaded area makes the tracking even harder. In
the sequel, the purpose is to present the method to find the desirable
smooth case. But, before giving our formal results, we present here
the main idea of the process.
Indeed, the key intuition is to approximate F by a sequence of
smooth mappings Gp. This allows us to obtain a sequence of smooth
connected components Γp. Then, applying a result of Mas-Colell, we
claim that every Γp such that Γp intersect Ω× {0} is diffeomorphic to
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a segment, where Ω is the open set given by Ω = B(S, 1/2).
Moreover, recycling the same argument used for F , we prove that
for p large enough, there exists a pull through connected component
intersecting Ω× {1} (see Figure 1.6).

Ω × {0} Ω × {1}

FIGURE 1.6: Example of a smooth path Γp

Let Ω be an open subset of Rn. Let A ⊂ Ω be open and such
that A ⊂ Ω and let F be the set of twice continuously differentiable
functions: F : [0, 1]× Ω→ A.

Formally, our result is given by the following proposition.

Proposition 1.1.2 There exists an open dense set F′ ⊂ F and a func-
tion G̃p : [0, 1]×Ω→ A , where A is the neighbourhood of S given by
A = B(S, 3

8
) such that

1. For any p ∈ N, G̃p ∈ F′ and for any (t, x) ∈ [0, 1] × Ω, we have∥∥∥G̃p(t, x)− F (t, x
‖x‖)

∥∥∥ ≤ 1
p
.

2. For p large enough, there exists a connected component Γp ⊂
CG̃p such that Γp ∩ ({0}×Ω) 6= ∅ is diffeomorphic to a segment.

3. For p large enough, there exists a connected component Γp ⊂
CG̃p such that Γp ∩ ({0} × Ω) 6= ∅ and Γp ∩ ({1} × Ω) 6= ∅.

Finally, to recover the continuous case, we partially followed a use-
ful hint given by Milnor [11]. Indeed, while proving that the regular
version C1 of Brouwer’s fixed point theorem is equivalent to the con-
tinuous version, Milnor highlighted a very important point. Since
the proof is based on Weierstrass approximation theorem, he wrote
the following: “ to prove a proposition about continuous mappings,
we first establish the result for smooth mappings and then try to use
an approximation theorem to pass to the continuous case".
In our case, based on the result on G̃p and in the spirit of Kura-
towski’s limit, we construct Z ⊂ CF such that Z is connected and
pull through.
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This concludes our second chapter of the thesis. In the next section,
we examine an another branch related to Brouwer’s fixed point the-
orem.

1.2 Brouwer’s theorem extensions

After reviewing some equivalent results to Brouwer’s fixed point
theorem in Rn, we consider now Brouwer’s fixed point theorem
extensions. Many paths could be taken since we can extend the
convexity, compactness, continuity, singlevaluedness and the finite
dimension. A first direction to take is the following: What about
normed linear spaces? Can we extend the result to more general sets?

1.2.1 Topological extension

Before announcing the next result, we recall that a map f : X → Y

is called compact if f(X) ⊂ K, for some compact set K subset of Y .
One of the most famous results taking this path are the following.

Theorem 1.2.1 (Schauder’s fixed point theorem, 1927) Let C be a
convex subset of a normed linear space E . Then each compact map
f : C → C has at least a fixed point.

In 1930, Mazur showed that the convex closure of a compact set in a
Banach space is compact. This yields a more general version of the
Schauder theorem (See for example [8]).

Theorem 1.2.2 Let C be a convex closed subset of a Banach space E
and f : C → C continuous with compact values. Then, f has a fixed
point.

We can weaken the hypothesis on f and strength those on C. Clearly,
a continuous mapping on a compact set is compact. The result is
given by the following.

Theorem 1.2.3 Let C be a convex compact subset of a Banach space
E and f : C → C continuous. Then, f has a fixed point.

Another perspective is to weaken the hypothesis on the regularity of
the space. Then, another result is derived for locally convex topolog-
ical vector spaces and known as the Tychonoff’s fixed point theorem.
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Theorem 1.2.4 (Tychonoff’s fixed point theorem, 1934) Let C be a
convex compact subset ofE a locally convex topological vector space
and f : C → C continuous. Then, f has a fixed point.

The next result is due to Hukuhara [17] who unified the two last re-
sults and the theorem is known as the Schauder-Tychonoff theorem.

Theorem 1.2.5 (Schauder-Tychonoff, (1950)) Let C be a non empty
convex subset of a locally convex linear topological space E, and let
f : C → C be a compact map. Then, f has a fixed point.

Now, we will present an another approach in order to generalize the
Brouwer’s fixed point theorem. Namely, staying on Rn, we extend
the theorem to multifunctions.

1.2.2 Multimaps extension

By a multifunction, we mean a map ϕ : X → 2Y which assigns to
each point x ∈ X a subset ϕ(x) of Y . Remark that a single-valued
map f : X → Y can be identified with a multivalued mapping
ϕ : X → 2Y by setting ϕ(x) = {f(x)}. In the sequel, the word
multifunction is substituted by the word correspondence. Given that
Brouwer’s theorem is based on the continuity of the function being
considered, it is possible to ask what types of continuity can be gen-
eralized to multifunctions. For single valued functions, we say that
f : X → Y is continuous if given any open set of Y , the preimage by
f is open inX . However, the notion of preimage for correspondences
differs from the classical one. Here, we have the generalization of the
concept of continuity to set valued mappings.

Definition 2 Let ϕ : X → 2Y be a correspondence, B ⊂ Y . We define
by

ϕ+(B) = {x ∈ X | ϕ(x) ⊂ B}, ϕ−(B) = {x ∈ X | ϕ(x) ∩B 6= ∅}.

Definition 3 Let X and Y be topological spaces and ϕ : X → 2Y be
a correspondence.

1. ϕ is called upper semicontinuous on X if

• For all open set V ⊂ Y , ϕ+(V ) is open.

• For all closed set V ⊂ Y , ϕ−(V ) is closed.

2. ϕ is called lower semicontinuous on X if
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• For all open set V ⊂ Y , ϕ−(V ) is open.

• For all closed set V ⊂ Y , ϕ+(V ) is closed.

3. ϕ is called continuous if it is both lower semicontinuous and
upper semicontinuous.

Note that if ϕ is identified with a single valued map f , then the two
notions of semicontinuity coincide with the classical continuity of f .
Kakutani’s fixed point theorem was the first result about correspon-
dences. This section is devoted to this theorem and some related
results.

Kakutani’s fixed point theorem

The result is stated as follows.

Theorem 1.2.6 (Kakutani’s theorem (1941)) Let K be a non empty
compact convex subset of Rn. Let ϕ : K → 2K an upper semicon-
tinuous correspondence with nonempty closed convex values. Then
ϕ has a fixed point.

In order to understand the notion of fixed points for correspon-
dences, Franklin [9] used a simple and homely metaphor: “Let X
be the set of all men. If x is a man, let F (x) equal the subset of men
whose manners are known to the man x. Kakutani’s theorem talks
about the relationship x ∈ F (x), which says that x is a member of the
subset F (x). In our example a man x lies in F (x) if he knows his own
name. In other words, x ∈ F (x) unless x has amnesia".
In order to draw an analogy with the first part, like Brouwer’s the-
orem, Kakutani’s theorem has been generalized also to topological
vector spaces. The result is known as Kakutani-Fan-Glicksberg theo-
rem.

Theorem 1.2.7 Let X be a locally convex topological vector space
and let K ⊂ X be non empty compact and convex. Let ϕ : K → 2K

an upper semicontinuous correspondence with nonempty closed
and convex values. Then, ϕ has a fixed point.

This is only the beginning of hundreds of results concerned with the
class of upper semicontinuous correspondences with closed convex
values, (commonly called Kakutani maps). A mix of many methods
were being used to prove Kakutani’s theorem, while the initial proof
(see for example [9, 25]) is based on the Brouwer’s fixed point theo-
rem and geometric techniques on simplexes.
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In the same perspective of Brouwer’s fixed point theorem, we are
stating one of the valuable results which is equivalent to Kaku-
tani’s fixed point theorem, namely Von Neumann intersection lemma
given by the following.

Proposition 1.2.1 (Von Neumann’s intersection lemma (1937)) Let
X ⊂ Rm, Y ⊂ Rn be compact convex sets and M,N closed subsets of
X × Y satisfying

∀x ∈ X,Mx = {y ∈ Y : (x, y) ∈M} ,

∀y ∈ Y,Ny = {x ∈ X : (x, y) ∈ N} ,

are non empty and convex. Then M ∩N is a non empty compact set.

M
Y

X X

N

FIGURE 1.7: Von Neumann’s intersection lemma

This lemma is deduced directly from Kakutani’s fixed point the-
orem. However, the equivalence is due to Nikaido [22].
Like Poincaré and Brouwer, Kakutani and Von Neumann works
were frequently described together. For instance, Kakutani’s theo-
rem was developed in many ways. As part of this development,
Kakutani’s theorem can be seen as a direct consequence of Cellina
theorem [15] which can be proved using Von Neumann’s approxi-
mation lemma (1937). Both results that have just been announced
are given by the following.

Proposition 1.2.2 (Von Neumann’s approximation lemma, (1937))
Let Γ : E → F be an upper semicontinuous correspondence with
compact convex values, E ⊂ Rm compact and F ⊂ Rk convex. Then,
for any ε > 0, there exists f continuous such thatGr(f) ⊂ Nε(Gr(Γ)),
where Nε(Gr(Γ)) = ∪x∈Gr(Γ)B(x, ε).

Theorem 1.2.8 (Cellina, 1969) Let K ∈ Rm be nonempty, compact
and convex, and let µ : K → K. Suppose that there is a closed
correspondence γ : K → F with nonempty compact convex values,
where F ⊂ Rk is compact and convex, and a continuous f : K×F →
K such that for each x ∈ K, µ(x) = {f(x, y), y ∈ γ(x)}. Then, µ has a
fixed point.
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Remark that, in Von Neumann’s approximation lemma, the prob-
lem is translated to functions. Here, a function approximate the cor-
respondence. It can be also a selection of the correspondence. This
branch is known as the selection theory. We decided to propose an-
other intuitive and basic way to look at the Kakutani’s theorem. If the
essential details of the proof are not known, in our opinion, a natu-
ral question will arise: what about the class of lower semicontinuous
correspondences? What class of fixed points theorems is available?
Actually, there is relatively not many fixed points related to the above
class. Yet, in 1956, Michael’s interest to this class gave rise to a new
theory, called Selection theory. Chapter 3 of this thesis is devoted
mainly to this branch of study.

1.3 Chapter 3: Selection theory

1.3.1 Michael’s selection theorems

During many years, the class of lower semicontinous multifunctions
(commonly called Michael maps) has been the subject of several gen-
eralizations. First, recall that a single valued mapping f : X → Y is
called a selection of ϕ : X → 2Y if for any x ∈ X , f(x) ∈ ϕ(x).
The most interesting part is to prove the existence of continuous se-
lections. The first result of Michael is given by the following.

Theorem 1.3.1 Let X be a paracompact space, Y a Banach space and
ϕ : X → 2Y a lower semicontinuous correspondence with nonempty
closed convex values. Then ϕ admits a continuous single-valued se-
lection.

Not surprisingly, note that the above theorem was generalized in
multiple ways by modifying the assumptions on both sets X and Y

and also by introducing many generalizations of the convexity. How-
ever, all theorems were obtained for closed-valued correspondences.
One of the selection theorems obtained by Michael in order to relax
the closeness restriction is the following.

Theorem 1.3.2 Let X be a perfectly normal space1, Y a separable Ba-
nach space and ϕ : X → Y a lower semicontinuous correspondence

1A topological space is called perfectly normal if it is normal and every closed
subset is a Gδ subset, where a subset is Gδ if it is expressible as a countable inter-
section of open subsets.
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with nonempty convex values. If for any x ∈ X , ϕ(x) is either fi-
nite dimensional, or closed, or has an interior point, then ϕ admits a
continuous single-valued selection.

An interesting question may arise: Is it possible to relax the separa-
bility of Y ? To answer this question, Michael provided in his paper a
counter example showing that the separability of Y can not be omit-
ted. Even though, the correspondence has open values, Michael es-
tablished an overall conclusion. Therefore, another interesting ques-
tion might be asked: Under which conditions, can we omit the sepa-
rability of Y when the correspondence has either finite dimensional
or closed values. Chapter 3 aims to prove that for the metric case the
answer to this question is affirmative.

1.3.2 Main Results

We start by recalling that if X is a metric space, then it is both para-
compact and perfectly normal. In many applications, both paracom-
pactness and perfect normality aspects are ensured by the metric
character. Besides, perfectly normality does not imply paracompact-
ness nor the converse. Namely, the metric case unify the two proper-
ties (for more details see the following diagram (Michael [5])).

FIGURE 1.8: Connection between some topological
spaces

Therefore, we assume that (X, d) is a metric space and (Y, ‖.‖) is a
Banach space. We denote by dima(C) = dim aff(C) the dimension of
C. Moreover, we recall that the relative interior of a convex set C is a
convex set of same dimension and that ri(C) = ri(C) and ri(C) = C.
One important tool of our proof is the introduction of the concept of
peeling of a finite dimensional convex set.
As a first step, this geometric tool enables us to extend by induction
the result when the dimension of the image is finite and constant and
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then to establish the result on X . Therefore, the main result is given
by the following.

Theorem 1.3.3 Let Di := {x ∈ X, dima ϕ(x) = i} and ϕ : X → 2Y

be a lower semicontinuous correspondence with nonempty convex
values. Then, for any i ∈ N, the restriction of ri(ϕ) to Di admits a
continuous single-valued selection hi : Di → Y . In addition, if i > 0,
then there exists a continuous function βi : Di → ]0,+∞[ such that
for any x ∈ Di, we have Bϕ(x)(hi(x), βi(x)) ⊂ ri(ϕ(x)).

Once we have the above theorem, we were able to prove our main
result given by

Theorem 1.3.4 LetX be a metric space and Y a Banach space. Let ϕ :

X → 2Y be a lower semicontinuous correspondence with nonempty
convex values. If for any x ∈ X , ϕ(x) is either finite dimensional or
closed, then ϕ admits a continuous single-valued selection.

Note that Theorem 1.3.4 does not imply Theorem 1.3.2 neither the
converse. This concludes this section and mainly Chapter 3 of this
thesis. The last section is dedicated to adopt some applications of
both Brouwer’s and Kakutani’s fixed point theorems.

1.4 Chapter 4: Applications of Brouwer’s and
Kakutani’s fixed point theorems

1.4.1 Brouwer’s fixed point theorem applications

Brouwer’s theorem and many of its extensions were used in order
to prove the existence of solutions for many problems in nonlinear
analysis.
For more uncommon applications, Park [26], wrote: “ One interest-
ing application of the Brouwer theorem is due to Zeeman, who de-
scribed a model of brain”. Here, we will present another unusual ap-
plication of the Brouwer’s fixed point theorem to cognitive science.
Cognitive science is the scientific study of the mind and its processes.
One branch of cognitive science is semantics. Traditionally, it is as-
sociated to a mapping between a language and the world. However,
it ruled out the language role in meaning negotiation. Another pos-
sible way is to focus on how linguistic expressions are linked to its
mental representation. But, cognitive science fails to explain how so-
cial interactions can affect semantics.
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Warglien and Gärdenfors [20] introduced an innovative view of se-
mantics described by “a meeting of minds”. They modelise the com-
munication as a mapping between individual mental spaces. They
embedded mental spaces with topological and geometrical struc-
tures. Namely, they argued that a mental space is a collection of
convex compact regions called concepts. Besides, if communication
is enough smooth, then it can be viewed as an implicit unknown
continuous function. Therefore, by Brouwer’s fixed point theorem a
meeting of minds can be reached.
This point is discussed in details in the latest Chapter of the thesis.

1.4.2 Kakutani’s fixed point theorem applications

Joint applications with selection theory: the equilibrium theory

In 1975, Gale and Mas-Colell [3] stated the following result using
both Kakutani’s theorem and Theorem 1.3.2 of Michael.

Theorem 1.4.1 Given X =
∏n

i=1Xi, where Xi is a non-empty com-
pact convex subset of Rn, let ϕi : X → 2Xi be n convex ( possibly
empty) valued mappings whose graphs are open in X × Xi. Then
there exist x ∈ X such that for each i either xi ∈ ϕi(x) or ϕi(x) = ∅.

From this result, Gale and Mas-Colell obtained their equilibrium the-
orem [3] for a game without ordered preferences. A trivial corollary
is derived from Theorem 1.4.1.

Corollary 1.4.1 For each i, the correspondence Ui : X → 2Xi , has an
open graph and satisfies for each x, xi /∈ coUi(x), then there exists
x ∈ X with Ui(x) = ∅, for all i.

This result was also exploited by Shafer and Sonnenschein (for more
details, see for example Border [15], Florenzano [4]).

Game theory: the Nash equilibrium

A gameG((Xi)i∈N , (Ui)i∈N) is described by a finite setN = {1, · · · , n}
of players such that for any i ∈ N , we associate a set of strategies
Xi and a payoff function Ui : X =

∏n
i=1Xi → R. We denote by

BRi : X−i =
∏

j 6=iXj → Xi, x−i → argmaxxi∈Xi Ui(x−i, xi), the best
reply correspondence of player i consisting of the strategies leading
to greatest payoff of player i against x−i = (xj)j 6=i.
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Definition 4 (Nash equilibrium) We call x∗ = (x∗i , x
∗
−i) a Nash equi-

librium if and only if

∀i ∈ N, x∗i ∈ BRi(x
∗
−i).

Or identically,
∀i ∈, Ui(x∗−i, x∗i ) ≥ Ui(x

∗
−i, xi).

Therefore, a Nash equilibrium is a profile of strategies (x∗i , x
∗
−i),

where no player i has an action yielding to an output preferable to
the one given by choosing x∗i , knowing that every other player j
chooses his action x∗j . That is, no player can profitably deviate given
the actions of other players.
An issue to examine is the existence of such equilibrium. Notice
that not every strategic game has a Nash equilibrium. For instance,
the following game commonly called Matching Pennies game has no
Nash equilibrium in pure strategies(see for example [19]).

Example 1.4.1 Each of two people chooses either Head or Tail. If the
choices differ, person 1 pays person 2 a dollar; if they are the same,
person 2 pays person 1 a dollar. Each person cares only about the
amount of money that he receives. A game that models this situation
is shown in the following Table 1.1.

TABLE 1.1: Matching Pennies

Head Tail
Head (1-1) (-1,1)

Tail (-1,1) (1,-1)

However, by definition of a Nash equilibrium, in order to prove the
existence of such equilibrium for a game, it suffices to prove that
there is x∗ = (x∗i , x

∗
−i) such that ∀i ∈ N, x∗i ∈ BRi(x

∗
−i). There-

fore, we define the correspondence BR given by BR : X → X ,
x → (BR1(x−1), · · · , BRn(x−n)). Then, the above condition can be
rewritten as x∗ ∈ BR(x∗). Kakutani’s fixed point theorem gives con-
ditions under them the relation x∗ ∈ BR(x∗) is fulfilled. The exis-
tence result is given by the following. 2

Theorem 1.4.2 (Glicksberg theorem) The strategic game G has a
Nash equilibrium if for all i ∈ N

2Note that this result is slightly different from the original work of Nash [12],
which takes place within the context of finite games and mixed strategies.
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1. The set Xi is nonempty compact convex subset of a Euclidean
space.

2. Ui is continuous and quasi concave on Xi.

The existence of a Nash equilibrium enabled us to achieve our goals
in proving the last results of this thesis. The next section is deal-
ing with our last chapter results. As mentioned before, our work
borrows from the work of Warglien and Gärdenfors [20]. Their ap-
proach, however, is merely existential and thus offers no insight in
the structure of the possible outcomes associated with establishing
a common conceptual space. Gärdenfors [23] highlighted this point
by writing “The result by Warglien and Gärdenfors(2003) only shows
that fixpoints always exist, but it says very little about how such fix-
points are achieved. In practice there exist many methods for inter-
locutors to reach a fixpoint that depend on perceptually or culturally
available salient features”.

1.4.3 Main results

In introducing this section we quote this following expression by
Stalnaker (1979) [24]:
“One may think a nondefective conversation as a game where the
common context set is the playing field and the moves are either at-
tempts to reduce the size of the set in certain ways or rejections of
such moves by others. The participants have a common interest in
reducing the size of the set, but their interest may diverge when it
comes to the question of how it should be reduced. The overall point
of the game will of course depend on what kind of conversation it is,
for example, whether it is an exchange of information, an argument,
or a briefing”.
We shed a constructive light by framing the problem of how two
agents reach a common understanding as the equilibrium outcome
of a bargaining procedure. We borrow from the theory of conceptual
spaces the assumption that agents’ categorisations correspond to a
collection of convex categories or, for short, to a convex categorisa-
tion. However, the neutrality of this latter term is meant to help the
reader keeping in mind that our results are consistent with, but logi-
cally independent from, the theory of conceptual spaces.
Each agent has his own binary convex categorisation over the closed
unit disk C in R2. The categorisation of an agent over C corresponds
to two regions L (Left) and R (Right) fully characterised by the chord
(tb). This may look like the following figure 1.9.
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L Rl r

t

b

FIGURE 1.9: A binary convex categorisation.

Now, Figure 1.10 provides a pictorial representation for the process:
Agent 1 (Primus) and Agent 2 (Secunda) negotiate a common cate-
gorisation as a compromise between their own individual systems of
categories.

L R ⊕ L R ⇒ L R

Primus Secunda Common ground

FIGURE 1.10: The search for a common categorisation.

We provide a simple game-theoretic model for their interaction and
study the equilibrium outcomes. Each agent evaluates the common
categorisation against his own. Superimposing these two spaces,
there is one region where the common categorisation and the indi-
vidual one agree and (possibly) a second region where they disagree.
Each agent wants to minimise the disagreement between his own in-
dividual and the common categorisation. For simplicity, assume that
the payoff for an agent is the opposite of the area of the disagreement
region D; that is, Ui = −λ(Di) where λ is the Lebesgue measure. We
distinguish two cases depending on whether the disagreement be-
tween agents individual spaces is focused or widespread (see Fig-
ure 1.11).

L R L R

FIGURE 1.11: Focused (left) and widespread disagree-
ment (right).
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Under focused disagreement, t1 precedes t2 and b2 precedes b1 in
the clockwise order. The disagreement region is convex and the inter-
action is a game of conflict: as Primus’s choice of t moves clockwise,
his disagreement region (with respect to the common categorisation)
increases, while Secunda’s decreases. In particular, under our simpli-
fying assumption that payoffs are the opposites of the disagreement
areas, this is a zero-sum game. Intuitively, players have opposing in-
terests over giving up on their individual categorisations. Therefore,
we expect that in equilibrium each player concedes as little as pos-
sible. In our model, this leads to the stark result that they make no
concessions at all over whatever is under their control. That is, they
exhibit maximal stubbornness. This is made precise in the following
theorem, that characterises the unique equilibrium.

Theorem 1.4.3 Under focused disagreement, the unique Nash equi-
librium is (t∗, b∗) = (t1, b2). Moreover, the equilibrium strategies are
dominant.

L Ro

t1 t2

b1 b2

FIGURE 1.12: The unique equilibrium outcome under
focused disagreement.

Now, under widespread disagreement, t1 precedes t2 and b1 precedes
b2 in the clockwise order. The disagreement region is not convex and
the interaction is no longer a zero-sum game. We simplify the anal-
ysis by making the assumption that the two chords characterising
the players’ categorisations are diameters. Then the two angular dis-
tances τ = t̂1ot2 and β = b̂1ob2 are equal, the players have the same
strength and the game is symmetric.
Players’ stubbornness now has a double-edged effect, leading to a
retraction of consensus at the unique equilibrium. Before stating it
formally, we illustrate this result with the help of Figure 1.13, drawn
for the special case τ = β = π/2.
The thick line depicts the common categorisation at the unique equi-
librium for this situation. Consider Primus. Choosing t very close to
t1 concedes little on the upper circular sector, but exposes him to the
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L Ro

t1 t2
t∗

b∗
b2 b1

FIGURE 1.13: The unique equilibrium outcome under
widespread disagreement.

risk of a substantial loss in the lower sector. This temperates Primus’
stubbornness and, in equilibrium, leads him to choose a value of t∗

away from t1. However, as his opponent’s choice makes the loss from
the lower sector smaller than the advantage gained in the upper sec-
tor, the best reply t∗ stays closer to t1 than to t2. An analogous ar-
gument holds for Secunda. A surprising side-effect of these tensions
is that, in equilibrium, the common categorisation labels the small
white triangle between the thick line and the origin as R, in spite of
both agents classifying it as L in their own individual systems of cat-
egories. That is, in order to find a common ground, players retract
their consensus on a small region and agree to recategorize it. The
following theorem characterise the unique equilibrium by means of
the two angular distances t̂∗ot1 and b̂∗ob2. It is an immediate corollary
that the retraction of consensus always occurs, unless τ = 0 and the
two agents start off with identical categorisations.

Theorem 1.4.4 Suppose that the individual categorisations are sup-
ported by diameters, so that τ = β. Under widespread disagreement,
there is a unique Nash equilibrium (t∗, b∗) characterised by

t̂∗ot1 = b̂∗ob2 = arctan

(
sin τ√

2 + 1 + cos τ

)
.

Our remaining effort is to prove that since the equilibrium ne-
cessitates a retraction of consensus, it should not be surprising that
we have an efficiency loss that we call the cost of consensus. The
equilibrium strategies lead to payoffs that are Pareto dominated by
those obtained under different strategy profiles. The following re-
sult exemplifies the existence of such cost using the natural bench-
mark provided by the Nash bargaining solution (ts, bs), with ts and
bs being the midpoints of the respective arc intervals.

Proposition 1.4.1 Suppose that the individual categorisations are
supported by diameters. Under widespread disagreement,
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ui(t
∗, b∗) ≤ ui(t

s, bs) for each player i = 1, 2, with the strict inequality
holding unless τ = 0.

In concluding this section, notice that as explained before the ex-
istence results which proofs are based on Brouwer’s or Kakutani’s
fixed point theorems, are not constructive and do not usually lead
to efficient methods for computing explicitly fixed points. There-
fore, even computing two players Nash equilibrium may be quite
involved. This is one of the reasons why it would be wise to notice
that the proofs of our results are essentially based on trigonometry
formulas. Once again, we gave an answer to a common question that
could be heard: “ When am I ever going to make use of my trigo for-
mula?”. Many do not appreciate the importance of Trigonometry, at
least after the last chapter of this thesis, we deeply do.
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Chapter 2

A new approach of the Hairy
ball theorem

Abstract. In this paper, we establish an equivalent version of the
hairy ball theorem in the form of a fixed point theorem. In order to
prove our main result we use homotopy transformations, the topo-
logical degree properties and mainly connected paths. Thereafter, in
order to recover the case where smooth paths desirable for imple-
mentable methods are obtained, we employ approximation methods
for continuous functions by constructing a sequence of smooth reg-
ular mappings. Finally, we reconnect with the continuous case and
ensure that the transition smooth continuous case is possible. 1

Keywords: Hairy ball theorem, fixed point theorems, approximation
methods, homotopy, topological degree, connected components.

2.1 Introduction

In his paper [2] about the mathematical heritage of H. Poincaré,
Browder wrote: “ Among the most original and far-reaching of the
contributions made by Henri Poincaré to mathematics was his in-
troduction of the use of topological or "qualitative" methods in the
study of nonlinear problems in analysis...The ideas introduced by
Poincaré include the use of fixed point theorems, the continuation
method, and the general concept of global analysis.”
This paper is devoted to one of the results stated by H. Poincaré in the
late of 19th century given by the following: There is no non vanish-
ing continuous tangent vector field on even dimensional n- spheres.

1This Chapter is based on “A new approach of the Hairy ball theorem ” co-authored
with Pascal Gourdel [12].
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The theorem was proven for two dimensions by H. Poincaré and gen-
eralised by H. Hopf for higher dimensions. In 1910, Brouwer gave
another proof for this theorem, better known as the hairy ball the-
orem. Doubtless, currently there is numerous other proofs of this
theorem. Yet, this paper is devoted to present differently this result.
Namely, we prove that the hairy ball theorem is equivalent to the
following fixed point theorem: If f : S2n → S2n is continuous and
satisfying for any x ∈ S2n, f(x).x ≥ 1

2
, then it possesses a fixed point.

Thus, proving the above theorem gives an alternative proof of the
hairy ball theorem. A second and very important issue is the tech-
niques used in order to prove our main result. We construct an ex-
plicit continuous homotopy F between a function α and the function
f . As it is classical, we can think of F as a time indexed family of
continuous maps such that when times t varies from 0 to 1, F contin-
uously deform α into f .
We proved that there exists at least one connected component start-
ing from a fixed point of α and intersecting {1}×S2n. In other words,
this connected component enables us to recover some fixed points of
f and proved our main theorem.
On the other hand, it is important to notice that implementable meth-
ods are desirable for computing fixed points but only available for
following smooth paths. However, we have no guarantee that our
pull through connected component is smooth.
Our remaining effort is to approximate F by a sequence of smooth
mappings. This allowed us to obtain a sequence of smooth connected
components with at least one which is pull through. Besides, in the
last section, we prove that it is possible to guarantee the transition
smooth-continuous version. However, we may not recover necessar-
ily a connected component but only a connected set leading to some
fixed points of f .
The paper is organized as follows. Section 2.2 provides some basic
preliminaries and notations. In Section 2.3, we show the equivalence
between the hairy ball theorem and our main theorem. The proof of
the latter is postponed in Section 2.4. In Section 2.5, we present the
smooth case and recover our main result by ensuring the transition
smooth-continuous case. Section 2.6 is an Appendix collecting the
proofs of some intermediate results.
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2.2 Preliminaries and notations

Throughout this paper, we shall use the following notations and def-
initions. Let S = Sn = {x ∈ Rn+1 : ‖x‖ = 1} be the unit n- sphere.
In the sequel, we will suppose that the integer n is even. For any
0 < r < 1, we denote by B(S, r) = {x ∈ Rn+1 : d(x, S) < r} =

{x ∈ Rn+1 : 1− r < ‖x‖ < 1 + r}. For a subset X ⊂ Rn, we denote
by X the closure of X , by Xc the complement of X , by int(X) the
interior of X , and by ∂X = X\int(X) the boundary of X . We denote
by x0 = (0, 0, · · · , 1) and −x0 = (0, 0, · · · ,−1), respectively the north
and south pole of S and by ‘deg’ the classical topological degree.
Let F : [0, 1] × S → S be a continuous function, we denote by
CF := {(t, x) ∈ [0, 1]× S : F (t, x) = x} and H the set of continuous
functions F : [0, 1] × S → S such that CF ∩ ({0} × S) = {x0,−x0}.
Finally, the translation F of F is defined by F (t, x) = F (t, x)− x.
For getting our main result, we need the following topological de-
gree properties (see for example [13]).

Proposition 2.2.1 Let Ω be a bounded open set of Rm, f : Ω −→ Rm

be a continuous function and y ∈ Rm such that y /∈ f(∂Ω). Then, we
have

1. (Local constancy) The deg(.,Ω, y) is constant in{
g ∈ C(Ω)\ ‖g − f‖ < r

}
where r = d(y, f(∂Ω)).

2. (Excision) Let Ω1 be an open set of Ω. If y /∈ f(Ω\Ω1), then
deg(f,Ω, y) = deg(f,Ω1, y).

3. (Homotopy invariance) Let V be an open and bounded set of
[0, 1]× Rm, V (t) := {x ∈ Rm : (t, x) ∈ V } and F : V → Rn, with
ft = F (t, .) ∈ C1(V (t)). Suppose that there exists a continuous
path t→ pt such that pt /∈ ft(∂V (t)), then t→ deg(ft, V (t), pt) is
constant on [0, 1].

We need also the following.

Proposition 2.2.2 [5] In a compact set, each connected component is
the intersection of all open and closed sets that contain it.

Proof. See the appendix.
The aim of this note is to provide a variant proof of the following
theorem.

Theorem 2.2.1 (Hairy ball theorem) An even dimensional sphere
does not admit any continuous field of non-zero tangent vectors.
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In other terms, if g : S → Rn+1 is continuous and for every x ∈ S, we
have g(x).x = 0, then there exists x such that g(x) = 0.
In what follows, we establish two equivalent versions of the hairy
ball theorem presented as fixed point theorems.

2.3 Equivalent versions

In the following, we state the first equivalent version to the hairy ball
theorem.

Theorem 2.3.1 If f : S → S is continuous, then either f or −f pos-
sesses a fixed point.

As a first step, we prove that Theorem 2.3.1 is equivalent to the hairy
ball theorem.
Proof. First, we claim that the hairy ball theorem implies Theo-

rem 2.3.1. Indeed, let f : S → S be a continuous function and
consider the tangent component g : S → Rn+1 given by g(x) =

f(x)− (x.f(x))x. By the hairy ball theorem, g has a zero x on S. That
is, f(x) = (x.f(x))x. Now, using that f(x) is collinear to x and that
both of them belongs to the sphere, we conclude that either f(x) = x

or f(x) = −x.
Conversely, let g : S → Rn+1 be a continuous function such that
for any x ∈ S, g(x).x = 0. Then, translating the radial component
gives that for any x ∈ S, g(x) + x 6= 0. So, we consider the function
f(x) = x+g(x)

‖x+g(x)‖ . By Theorem 2.3.1, there exists x such that f(x) = εx,
where ε ∈ {−1, 1}. This implies that g(x) = 0.

Now, we state the main result and prove that it is equivalent to the
hairy ball theorem.

Theorem 2.3.2 If f : S → S is continuous and satisfying for any
x ∈ S, f(x).x ≥ 1

2
, then it possesses a fixed point.

Proof. Obviously, Theorem 2.3.1 implies Theorem 2.3.2. In fact, since
‖x‖ = 1 on S, then it is trivial to see that f(x) = −x is impossible.
Conversely, we will prove that Theorem 2.3.2 implies the hairy ball
theorem. Indeed, let g : S → Rn+1 be a continuous function such
that for any x ∈ S, g(x).x = 0. Let M = supx∈S ‖g(x)‖. So, put α =√

3
M

and consider the function fα(x) = x+αg(x)
‖x+αg(x)‖ . We have fα(x).x =

1
‖x+αg(x)‖ > 0 and by simple calculus, we obtain

(fα(x).x)2 =
1

‖x+ αg(x)‖2 =
1

‖x‖2 + α2 ‖g(x)‖2 ≥
1

1 + α2M2
=

1

4
.
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By Theorem 2.3.2, fα possesses a fixed point x. Setting fα(x).x = 1

above implies that g(x) = 0, and the result follows.

Remark 2.3.1 Let us notice that the choice of the real number 1/2 is
arbitrary. The main idea of the theorem is that we can allow a radial
component if it is not fully opposite to x. Here we state the general
version.
For any real number λ > −1, we denote by Pλ the following propo-
sition
If f : S → S is continuous and for any x ∈ S, f(x).x ≥ λ, then f has
a fixed point.

It is not difficult to prove that Pλ is equivalent to Theorem 2.3.1.
To sum up, we have Theorem 2.3.2 is equivalent to the hairy ball
theorem. Thereafter, providing a proof of Theorem 2.3.2 will enable
us to have a new proof of the hairy ball theorem which differs from
the classical proofs [10].

2.4 Main results

First, remark that the proof of Theorem 2.3.2 depends on
Lemma 2.4.1 (Subsection 2.4.1) and Theorem 2.4.1 (Subsection 2.4.2).

Lemma 2.4.1 If f : S → S is continuous such that for any x ∈ S,
f(x).x ≥ 1

2
, then there exists F ∈H such that F (1, .) = f .

Theorem 2.4.1 There exists a connected component Γ subset of CF
such that Γ ∩ ({0} × S) 6= ∅ and Γ ∩ ({1} × S) 6= ∅. Consequently,
F (1, .) has a fixed point.

Once we prove Lemma 2.4.1 and Theorem 2.4.1, then Theorem 2.3.2
is deduced immediately.

2.4.1 Proof of Lemma 2.4.1

For any (t, x) ∈ [0, 1] × S, we will consider the function F given by
the normalisation of an homotopy between f and some function α

F (t, x) =
tf(x) + (1− t)α(x)

‖tf(x) + (1− t)α(x)‖ . (2.1)



Chapter 2. A new approach of the Hairy ball theorem 34

Before introducing precisely the function α, we can easily remark
that F satisfies the conclusion of Lemma 2.4.1 provided that for any
(t, x) ∈ [0, 1]× S, the function α met the three following properties

(P1) tf(x) + (1− t)α(x) 6= 0.

(P2) α : S → S is continuous.

(P3) “α(x) is positively collinear to x" is equivalent to “ x = ±x0".

First, we will start by constructing the function α.

The construction of the function α

First, let us define the function β : S → S by β(x) = y, where x =

(x1, · · · , xn+1) and y = (y1, · · · , yn+1) such that

∀i ∈ {1, · · · , n} , yi = xi

√
x2

1 + · · ·+ x2
n = xi

√
1− x2

n+1,

and
yn+1 = xn+1

√
2− x2

n+1.

Second, consider the following function Rθ whose matrix is given by

Rθ =




cos θ − sin θ · · · 0 0

sin θ cos θ
...

...
... cos θ − sin θ

...
0 sin θ cos θ 0
... . . . ...

...
0 · · · · · · · · · 1




where 0 < θ < π
2
.

Finally, we define the function α : S → S by α(x) = Rθ(β(x)).
In the following, we will present some of its geometrical properties.

Geometrical properties of the function α: For any xn+1 ∈
[−1, 1], let us denote by Pxn+1 , the following set Pxn+1 :=

{x ∈ S such that xn+1 = xn+1}. By analogy with the unit sphere of
R3, this set is called a ‘parallel’ of altitude xn+1. Remark that except
at the poles, it is a sphere of dimension n− 1.

• The image by α of a parallel of altitude xn+1 is a parallel of
altitude xn+1

√
2− x2

n+1 and closer to the corresponding pole.

• The image by α of a polar cap of altitude xn+1 is a polar cap of
altitude xn+1

√
2− x2

n+1 and closer to the corresponding pole.
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To gain intuition, this may look like the following figure 2.1.

xn+1

α

xn+1

√
2 − x2

n+1

FIGURE 2.1: The image of a polar cap by α

Therefore, the parallel of altitude −1 (reduced to the south pole), of
altitude 0 (reduced to the equator) and of altitude 1 (reduced to the
north pole) are the only one that are globally invariant. In addition,
since α(x) and x are on the sphere and belongs both either to the
north semi-sphere or to the south semi-sphere, then positive colin-
earity means equality. Finally, the following proposition shows that
we can construct a set closed to the north pole which is ‘strongly’
invariant by α.

Proposition 2.4.1 For any 0 < µ < 1
2
, we have

α(B(x0, µ) ∩ S) ⊂ B(x0,
µ

2
) ∩ S.

Proof. See the appendix.

Now, in the next section, we prove that the properties (P1), (P2) and
(P3) are satisfied.

Principal step

In order to prove (P1), it suffices to prove that (tf(x)+(1−t)α(x)).x >

0. Moreover, since f(x).x > 1
2
, then we just need to prove that

α(x).x > 0. This follows from the expression of α. Indeed, we have

α(x) = Rθ(β(x)) =




√
1− x2

n+1(x1 cos θ − x2 sin θ)√
1− x2

n+1(x1 sin θ − x2 cos θ)√
1− x2

n+1(x3 cos θ − x4 sin θ)√
1− x2

n+1(x3 sin θ − x4 cos θ)
...√

1− x2
n+1(xn−1 cos θ − xn sin θ)√

1− x2
n+1(xn−1 sin θ − xn cos θ)

xn+1

√
2− x2

n+1




Therefore, we obtain that
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α(x).x = (1− x2
n+1)

3
2 cos θ + x2

n+1

√
2− x2

n+1

≥ (1− x2
n+1)

3
2 cos θ + x2

n+1 ≥ min(
2

3
, cos θ) > 0,

for any θ ∈]0, θ],where θ < π/2.
On the other hand, since all the components of the function β are
continuous, then (P2) is trivial. This completes the proof of (P1) and
(P2). In order to prove (P3), note that the sufficient condition is easy
to verify. Now, suppose that α and x are positively colinear. This
implies that there exists λ > 0 such that α(x) = λx. Yet, since both
α and x belong to the sphere, then we have λ = 1. Thus, we have
xn+1

√
2− x2

n+1 = xn+1. That is, xn+1 ∈ {−1, 0, 1}. In order to finish
the proof, it remains to show that xn+1 = 0 is impossible. By contra-
diction, if it is the case, then we obtain β(x) = x. Therefore α coincide
with the ‘rotation’ Rθ. Since α(x) = x, then Rθ(x) = x. We can easily
check that the only fixed points of Rθ are ±x0 (a similar argument
has been used in [11]), then xn+1 6= 0.

�

2.4.2 Proof of Theorem 2.4.1

Let F be the function given by Equation (2.1) and Ω = B(S, 1/2).
Consider the extension F̃ : [0, 1] × Ω → S defined by F̃ (t, x) =

F (t, x
‖x‖).

First, remark that we have bothCF andCF̃ are included in [0, 1]×S ⊂
[0, 1]× Ω and F and F̃ coincide on [0, 1]× S, then CF̃ = CF . Second,
notice that since [0, 1]× S is compact, then CF̃ is compact.
On the other hand, it is important to notice that we can partition the
set of components in CF̃ as (C1, C2), where C1 denotes the family of
components intersecting {0} × Ω and C2 the family of components
that does not intersect {0} ×Ω. We index the family Ci by Ii. To gain
some intuition, you can consider the following figure 2.2 .

Now, in order to prove our result suppose that there exists no com-
ponent in C1 intersecting {1} × Ω. Then, since for any i ∈ I1, Γi ∈ C1

is compact, then there exists ti < 1 such that Γi ⊂ [0, ti)× Ω.
By Proposition 2.2.2, we have Γi = ∩j∈JiUi,j , where for any j ∈ Ji,
Ui,j is open and closed in CF̃ . Let Di = CF̃\([0, ti) × Ω), then
(∩j∈JiUi,j) ∩ Di = ∅. Remark that since Di can be rewritten as
CF̃\((−1, ti) × Ω), then Di is compact. Consequently, since Ui,j are
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t = 0 t = 1

Ω

Connected components belonging to C1

Connected components belonging to C2

FIGURE 2.2: Example of a partition (C1, C2)

closed, then there exists J1
i ⊂ Ji finite such that

(∩j∈J1
i
Ui,j) ∩Di = ∅ (2.2)

Note that Ui = ∩j∈J1
i
Ui,j remains an open and closed set contain-

ing Γi, then without loss of generality, we may assume that Ui can
be written as Ui,j0 and that j0 ∈ J1

i . Using the definition of Di and
Equation 2.2, we conclude that Ui = Ui,j0 is included in [0, ti)× Ω.
For the second type of components belonging to CF̃ , by a similar
argument, there exists j′0 ∈ J2

i finite such that U = U ′i,j′0
open and

closed included in (ri, 1]× Ω, for some ri > 0.

The family
{
{Ui,j0}i∈I1 ,

{
U ′i,j′0

}
i∈I2

}
forms an open covering of the

compact set CF̃ . Therefore, we can extract a finite sub-covering{
U1, · · · , Uk, U ′k+1, · · · , U ′n

}
such that the first k members are in-

cluded in [0, t)× Ω and the remaining (n− k) members are included
in (r, 1]× Ω, where t = max(ti)1≤i≤k and r = min(ri)k+1≤i≤n.
The set E = ∪i≤kUi is open and closed in the compact set CF̃ . So
E is compact and contained in [0, t) × Ω. Moreover, Ec = CF̃\E
is also compact, open and contained in (r, 1] × Ω. Using the sep-
aration criteria T4 in the metric space [0, 1] × Ω, there exists two
disjoint open sets V1 and V2 in [0, 1]×Ω such thatE ⊂ V1, andEc ⊂ V2.

Now, consider the function F : [0, 1] × Ω → Rn+1 defined by
F (t, x) = F̃ (t, x) − x and V1(t) := {x ∈ Ω : (t, x) ∈ V1}. Then, we
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obtain the following.2

(1) deg(F (0, .),Ω, 0) = −2.

(2) deg(F (0, .),Ω, 0) = deg(F (0, .), V1(0), 0).

(3) t→ deg(F (t, .), V1(t), 0) is constant on [0, 1].

Assuming these computations are established, then we will obtain a
contradiction. Indeed, by statement (1), (2) and (3), we have

deg(F (t, .), V1(t), 0) = deg(F (0, .), V1(0), 0) = −2.

Yet, by construction for t close enough to 1, we have V1(t) = ∅.
Therefore, deg(F (t, .), V1(t), 0) = 0, which establishes a contradiction,
as required. In conclusion, we proved that there exists a component
Γ ⊂ CF such that Γ ∩ ({0} × S) 6= ∅ and Γ ∩ ({1} × S) 6= ∅.

2.5 Transition smooth-continuous version

To sum up, we obtained the existence of a connected component Γ

of CF starting from a fixed point of a function α and enables us to
recover some fixed points of f . Besides, it is important to notice that
computational methods for finding such fixed points are desirable.
Yet, implementable methods are available for following smooth path
(see for example [3]). However, we have no guarantee that Γ is
smooth (see Figure 2.3).

S × {0} S × {1}

−x0

x0

A

FIGURE 2.3: Example of a non smooth path Γ

2 The proof of the following result is based on the degree properties and is
related in the appendix.
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At the point A, a bifurcation occurs creating a loss of the direction
to follow and the shaded area makes the tracking even harder.
In the sequel, the purpose is to present the method to find the
desirable smooth case. But, before giving our formal results and
proofs postponed in Section 2.5, we present here the main idea of
the process.
Indeed, the key intuition is to approximate F by a sequence of
smooth mappings Gp. This allows us to obtain a sequence of smooth
connected components Γp. Then, applying a result of Mas-Colell, we
claim that every Γp such that Γp intersect Ω× {0} is diffeomorphic to
a segment.
Moreover, recycling the same argument used for F , we prove that
for p large enough, there exists a pull through connected component
intersecting Ω× {1} (see Figure 2.4).

Ω × {0} Ω × {1}

FIGURE 2.4: Example of a smooth path Γp

Finally, taking an appropriate limit, we construct a compact set
Z such that Z ⊂ CF satisfying Z is connected, Z ∩ (S × {0}) 6= ∅
and Z ∩ (S × {1}) 6= ∅. Note that Z is not necessarily a connected
component.

In the sequel, we will collect formally those results. The main propo-
sition is given by the following.

Proposition 2.5.1 Let Ω be an open subset of Rn. Let A ⊂ Ω be open
and such that A ⊂ Ω and let F be the set of twice continuously dif-
ferentiable functions: F : [0, 1] × Ω → A. Then, there exists an
open dense set F′ ⊂ F and a function G̃p : [0, 1] × Ω → A , where
A = B(S, 3

8
) such that

1. For any p ∈ N, G̃p ∈ F′ and for any (t, x) ∈ [0, 1] × Ω, we have∥∥∥G̃p(t, x)− F (t, x
‖x‖)

∥∥∥ ≤ 1
p
.
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2. For p large enough, there exists a connected component Γp ⊂
CG̃p such that Γp ∩ ({0}×Ω) 6= ∅ is diffeomorphic to a segment.

3. For p large enough, there exists a connected component Γp ⊂
CG̃p such that Γp ∩ ({0} × Ω) 6= ∅ and Γp ∩ ({1} × Ω) 6= ∅.

2.5.1 Proof of Proposition 2.5.1

The proof of each statement is stored in a different subsection. As
explained before, in the sequel, we will use the following theorem of
Mas-Colell [8].

Theorem 2.5.1 (Mas-Colell) There is an open and dense set F′ ⊂ F
such that for every F ∈ F′, any non empty component Γ of CF with
Γ ∩ ({0} × Ω) 6= ∅ is diffeomorphic to a segment.

Notice that Mas-Colell presented and proved his result on a convex
set Ω. However, a careful reading of the proof shows that this
assumption was only used in a subsequent part.

The construction of G̃p

Let F be the function given by (2.1) and recall the function F̃ :

[0, 1]×Ω→ S defined by F̃ (t, x) = F (t, x
‖x‖). By Stone Weierstrass ap-

proximation method, for any integer p ≥ 2, there exists a C2 function
F̃p : [0, 1]×Ω→ A, such that

∥∥∥F̃ − F̃p
∥∥∥
∞
≤ 1

2p
. Let F′ be an open dense

set given by Mas-Colell’s theorem. Since F̃p ∈ F = F′, then there ex-
ists G̃p ∈ F′ such that G̃p : [0, 1] × Ω → A and

∥∥∥G̃p − F̃p
∥∥∥
∞
≤ 1

2p
. So,

we obtain that
∥∥∥G̃p − F̃

∥∥∥
∞
≤ 1

p
. (2.3)

Existence of connected components

For p large enough, we have to show that CG̃p 6= ∅. This follows
from deg(Gp(0, .),Ω, 0) = −2. Indeed, let f and gp given by the
following: for any x ∈ Ω, f(x) = F (0, x) = F̃ (0, x) − x = α( x

‖x‖) − x
and gp(x) = Gp(0, x). We claim that 0 /∈ f(∂Ω). Indeed, if there
exists x ∈ ∂Ω such that f(x) = 0, then x is a fixed point of α.
That is, x = ±x0 /∈ ∂Ω, which yields a contradiction. On the other
hand, for any x ∈ Ω, we have

∥∥∥G̃p(0, x)− α( x
‖x‖)

∥∥∥ ≤ 1
p
. That is,
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‖gp(x)− f(x)‖ ≤ 1
p
≤ r, where r = d(0, f(∂Ω)) > 0. By Proposi-

tion 2.2.1 (i), we have deg(Gp(0, .),Ω, 0) = deg(F (0, .),Ω, 0) = −2.

Note that using Proposition 2.4.1, we can prove alternatively
that CG̃p 6= ∅. Indeed, it can be shown that there exists a neighbor-

hood of x0 which is stable by G̃p (see Extra result in the appendix),
which allows us to apply Brouwer’s fixed point theorem.

A pull through connected component

At this step, applying Theorem 2.5.1 to G̃p, we conclude that any
component Γp ∈ CG̃p intersecting ({0} × Ω) is diffeomorphic to a
segment.
In order to prove the last statement, it remains to show that there
exists a component Γp such that in addition Γp ∩ ({1} × Ω) 6= ∅. The
result follows immediately by reproducing the same arguments for
Gp then those used for the function F in Section 2.4.2.

2.5.2 Transition smooth-continuous versions

Now, we claim that there exists Z connected subset of CF such that
Z intersect ({0} × S) and ({1} × S). The proof is ruled as follows.

1. Construction of Z.
We have already established that for p large enough, there ex-
ists a connected component Γp ⊂ CG̃p such that Γp∩({0}×Ω) 6=
∅ and Γp ∩ ({1} × Ω) 6= ∅. Let xp ∈ Γp ∩ ({0} × Ω). Since the
sequence xp is bounded, then we may assume that it converges
to some x. Now, we denote by Γtrp , the translated component of
Γp, given by Γtrp = Γp + (x − xp). In the spirit of Kuratowski’s
limit, we introduce Z given by Z = (∩p≥1∪k≥pΓtrk )3.

2. Connectedness of Z.
Since the components Γtrk are connected, for all k, and contains
a common point (0, x), then ∪k≥pΓtrk is connected. Therefore,
the set Zp = ∪k≥pΓtrk is the closure of a connected set, then it
is connected compact. Finally, using that the intersection of a
decreasing sequence of connected compact sets is connected,
we conclude that Z is connected.

3Note that since the translation tends to zero, then the set Z can be written
as ∩p≥1∪k≥pΓk but the formulation used above allows us to conclude about the
connectedness of Z.
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3. Z ⊂ CF .
Let (t, z) ∈ Z, using the alternative definition of Z, we obtain
that ∀p ≥ 1, (t, z) ∈ ∪k≥pΓk. That is, ∀p ≥ 1, B((t, z), 1

p
) ∩

(∪k≥pΓk) 6= ∅. Therefore, there exists k(p) ≥ p such that
(tp, zp) ∈ Γk(p) ∩ B((t, z), 1

p
). Thus, G̃k(p)(tp, zp) = zp. Passing to

the limit yields to F̃ (t, z) = z. Consequently, (t, z) ∈ CF̃ = CF .

4. Z ∩ ({1} × S) 6= ∅.
We have already established that for p large enough, Γp∩({1}×
Ω) 6= ∅. Therefore, there exists x′p ∈ Ω such that G̃p(1, x

′
p) =

x′p. Adopting the same argument and notations, passing to the
limit yields to F̃ (1, x′) = x′, which implies that x′ ∈ S. On the
other hand, (1, x′p) ∈ Γp ∈ ∪k≥pΓk ⊂ Z. By compactness, x′p
converges to x′ ∈ Z. That is, Z ∩ ({1} × S) 6= ∅.

In the light of the above, we conclude this paper with a series of
remarks related to the difference between the limit taken above and
the classical Kuratowski limit.

Remark 2.5.1 Let (An)n∈N be a sequence of sets of Rp and the Kura-
towski limit given by lim sup

p−→+∞
Ap = ∩p≥1 ∪k≥p Ak.

Then, it is important to notice that trivially lim sup
p−→+∞

Ap is a subset

of Z = ∩p≥1∪k≥pAk. However, Z is not necessarily identical to
lim sup
p−→+∞

Ap. Indeed, let us consider for any p ∈ N, fp(x) : [0, 1] −→
[0, 1], x −→ 1

px+1
.

Let Ap = Gr (fp) = {(x, 1
px+1

), x ∈ [0, 1]}. It is easy to compute that
lim sup
p−→+∞

Ap = {(0, 1)}, while Z = ({0} × [0, 1]) ∪ ([0, 1]× {0}).

Remark 2.5.2 Let (An)n∈N be a sequence of sets of Rp and the Kura-
towski limit given by lim sup

p−→+∞
Ap = ∩p≥1 ∪k≥p Ak. We can notice that

even if for any p ≥ 1, Ap are smooth and diffeomorphic to a segment,
then using our concept of limit, we may end up with a ‘thick’ set Z.
Indeed, let us consider for any p ∈ N, fp(x) : [0, 1] −→ [0, 1], x −→
sin2(px). Let Ap = Gr (fp) = {(x, sin2(px)), x ∈ [0, 1]}. Then, we ob-
tain that Z = [0, 1]2.
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2.6 Appendix

1. Proof of Proposition 2.2.2
Let C be a connected component of the compact set K and
(Ki(C))i∈I be the family of all open and closed sets of K that
contains C. We denote byK(C) = ∩i∈IKi(C). We have,K(C) is
closed in the compact set K, then compact. We intend to prove
that C = K(C). We have C ⊂ Ki(C), for any i ∈ I . Indeed,
since Ki(C)c is also open and closed, then if C ∩ Ki(C)c 6= ∅,
this will contradicts that C is connected. Therefore, C ⊂ K(C).
Conversely, it suffices to prove that K(C) is connected. We
argue by contradiction. Suppose that K(C) = F1 ∪ F2, where
F1 and F2 are nonempty, open, closed and disjoints sets. Using
the separation criteria T4, we obtain that there exists U1, U2

two disjoints open sets of K such that F1 ⊂ U1 and F2 ⊂ U2.
Since C ⊂ K(C), then we may assume that C ⊂ F1 ⊂ U1. Let
U = U1 ∪ U2, then K(C) ∩ U c = ∅. That is, ∩i∈IKi(C) ∩ U c = ∅.
Using the finite intersection property, we obtain that there
exists J ⊂ I finite such that ∩i∈JKi(C) ∩ U c = ∅. Let
Ki0 = ∩i∈JKi(C), then Ki0 ⊂ U . However, Ki0 ∩ U1 is open
and closed in K containing C but not K(C), which establish a
contradiction.

�

2. Proof of Proposition 2.4.1
Let x ∈ B(x0, µ) ∩ S, then ‖x− x0‖2 = 2(1− xn+1) ≤ µ2.
On the other hand, we have

‖α(x)− x0‖2 = ‖β(x)− x0‖2 = 2(1− xn+1

√
2− x2

n+1)

=
2(1− x2

n+1(2− x2
n+1))

1 + xn+1

√
2− x2

n+1

=
2(1− x2

n+1)2

1 + xn+1

√
2− x2

n+1

≤ 2(1− xn+1)2(1 + xn+1)2

1 + xn+1

= 2(1− xn+1)2(1 + xn+1)

≤ 4(1− xn+1)2 ≤ µ4 ≤ µ2

4

, for any 0 < µ < 1
2
.

�

Proposition 2.6.1 (Extra result)
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Let 0 < r < 1
3
, then for any x ∈ B(x0, r), we have α( x

‖x‖) ∈
B(x0,

r
√

2
√

1+
√

1−r2
).

Proof. Let x ∈ B(x0, r), then ‖x− x0‖2 = ‖x‖2− 2xn+1 + 1 ≤ r2.
Let t = x2

1 + · · · + x2
n and s = xn+1, then t + s2 − 2s + 1 =

(1 − s)2 + t ≤ r2. On the other hand, we have
∥∥∥ x
‖x‖ − x0

∥∥∥
2

=

2(1 − xn+1

‖x‖ ) = 2(1 − s√
t+s2

). Put f(t) = 2(1 − s√
t+s2

) for any
t ∈ (0, r2 − (1− s)2), then f is increasing and f(t) ≤ f(r2 − (1−
s)2) = 2(1 − s√

r2−1+2s
) = g(s). Now, the function g is defined

on (1− r, 1) and g reaches its maximum at (1− r2), then g(s) ≤
g(1 − r2) = 2(1 −

√
1− r2) = 2r2

1+
√

1−r2 . Hence, we obtain that∥∥∥ x
‖x‖ − x0

∥∥∥ ≤
√

2r√
1+
√

1−r2
< 1

2
. By Proposition 2.4.1, we have

α( x
‖x‖) ∈ B(x0,

r
√

2
√

1+
√

1−r2
), as required.

Proof. of degree properties

1. We claim that deg(F (0, .),Ω, 0) = −2. Indeed, recall that

deg(F (0, .),Ω, 0) =
∑

x∈F−1
(0,.)({0})

sgn(det DF (0, x))

=
∑

x∈{x0,−x0}

sgn(det DF (0, x)).

Next, we compute the differential of F (0, .) at the points x0 and
−x0. Define h : Rn+1\ {0} → Rn+1 by h(x) = β( x

‖x‖), then we
have for x 6= 0, DF (0, .)(x) = Rθ(Dh(x))− In+1.

Let us denote by x = (x′, xn+1), we have

h(x′) =
‖x′‖x′
‖x‖2 ,

and

(h(x))n+1 =
xn+1

√
2 ‖x′‖2 + x2

n+1

‖x‖2 .

The function h is differentiable at x0 and Dh(x0) = 0. Indeed,

we have h(x)− h(x0) = (‖x
′‖x′
‖x‖2 ,

xn+1(x2n+1+2‖x′‖2)
1
2

‖x‖2 − 1).
It suffices to prove that h(x) − h(x0) = o(‖x− x0‖). Since we
have ‖x− x0‖2 = ‖x′‖2 + (xn+1 − 1)2, then we have only to
prove that every component belongs to o(‖x′‖). It is clear that
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‖x′‖x′
‖x‖2 = o(‖x′‖). On the other hand, for the second component

of h(x)− h(x0), we have

xn+1(x2
n+1 + 2 ‖x′‖2)

1
2

‖x‖2 − 1 =
x2
n+1(1 + 2‖x′‖2

x2n+1
)
1
2 − ‖x‖2

‖x‖2

=
x2
n+1(1 + ‖x′‖2

x2n+1
+ o(‖x

′‖2

x2n+1
))− ‖x′‖2 − x2

n+1

‖x‖2 =
o(‖x′‖2)x2

n+1

‖x‖2 .

Hence, h is differentiable at x0 and Dh(x0) = 0. A similar cal-
culus leads to Dh(−x0) = 0. Finally, we can conclude that
DF (0, .)x0 = DF (0, .)(−x0) = −In+1. Thus, since n is even then,
we have

deg(F (0, .), X, 0) = (−1)n+1 + (−1)n+1 = −2,

and the result follows.

2. We recall that V1(t) = {x ∈ Ω : (t, x) ∈ V1} and let Ω1 = V1(0).
We have 0 /∈ F (Ω\V1(0)). Indeed, suppose that there exists
x ∈ Ω\V1(0) such that F (0, x) = 0. That is, x /∈ V1(0) and
(0, x) ∈ CF ⊂ V1 ∪ V2. This implies that (0, x) ∈ V2. Though,
by construction, V2 doesn’t contain (0, x) which set a contra-
diction. By Proposition 2.2.1 (ii), we get deg(F (0, .),Ω, 0) =

deg(F (0, .), V1(0), 0).

3. Let V (t) = V1(t), ft = F (t, .) and pt = 0. We have 0 /∈ ft(∂V1(t)).
Suppose that there exists x ∈ ∂V1(t) such that F (t, x) = 0, then
by definition (t, x) ∈ ∂V1 = V 1\V1 and (t, x) ∈ CF = E ∪ Ec.
Thus, we have two cases. If (t, x) ∈ E, then (t, x) ∈ V1, an
impossibility since (t, x) ∈ V c

1 . Otherwise, we have (t, x) ∈
Ec, then by construction of V1 and V2, we have Ec ∩ ∂V1 = ∅,
contradiction. Hence, by By Proposition 2.2.1 (iii), we conclude
that deg(F (t, .), V1(t), 0) is constant in t ∈ [0, 1].
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Chapter 3

A convex selection theorem
with a non separable Banach
space

Abstract. As in Michael’s convex-valued selection theorem, we con-
sider a nonempty convex valued lower semicontinuous correspon-
dence ϕ : X → 2Y . We prove that if ϕ has either closed or finite
dimensional images, then there admits a continuous single valued
selection, where X is a metric space and Y is a Banach space. We
provide a geometric and constructive proof of our main result.

Keywords: barycentric coordinates, continuous selections, lower
semicontinuous correspondence, closed valued correspondence, fi-
nite dimensional convex values, separable Banach spaces. 1

3.1 Introduction

The area of continuous selections is closely associated with the pub-
lication by Ernest Michael of two fundamental papers [10]. It is im-
portant to notice that the axiom of choice ensures the existence of a
selection for any nonempty family of subsets of X [9]. Yet, the axiom
of choice does not guarantee the continuity of the selection. Michael
studies are more concerned about continuous selections for corre-
spondences ϕ : X → 2Y . He guarantees the continuity under specific
structures on X (paracompact spaces, perfectly normal spaces, col-
lectionwise normal spaces,· · · ) and on Y (Banach spaces, separable
Banach spaces, Fréchet spaces,· · · ) [11].

1This Chapter is based on “A convex selection theorem with a non separable Banach
space ” co-authored with Pascal Gourdel [13].
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Without any doubt, the most known selection theorems are: closed-
convex valued, compact valued, zero dimensional and finite dimen-
sional theorems [6, 7, 8].
The closed-convex valued theorem is considered as one of the most
famous Michael’s contribution to the continuous selection theory for
correspondences. This theorem gives sufficient conditions for the
existence of a continuous selection with the paracompact domain:
Paracompactness of the domain is a necessary condition for the ex-
istence of continuous selections of lower semicontinuous correspon-
dences into Banach spaces with convex closed values [9].

However, despite their importance, all the theorems mentioned
above were obtained for closed-valued correspondences. One of
the selection theorems obtained by Michael in order to relax the
closeness restriction is the convex valued selection theorem [Theo-
rem 3.1′′′] [6]. The result was obtained by an alternative assumption
on X (Perfect normality), a separability assumption on Y and an
additional assumption involving three alternative conditions on
the images. Besides, Michael shows that when Y = R, then perfect
normality is a necessary and sufficient condition in order to get a
continuous selection of any convex valued lower semicontinuous
correspondence. The proof of the convex valued selection theorem
is based on the existence of a dense family of selections. The tech-
nique is quite involved and exploits the characterization of perfect
normality of X and separability of Y .

An interesting question is the following: is it possible to relax the
separability of Y ? To answer this question, Michael provided in his
paper [6] a counter example (Example 6.3) showing that the sepa-
rability of Y can not be omitted. Even though, the correspondence
satisfies one of the three conditions, Michael established an overall
conclusion.
One question arises naturally: Is it possible to omit the separability
of Y when the images satisfy one of the two remaining conditions?
This study aims to prove that the answer is affirmative.
The paper is organized as follows. In Section 2, we begin with some
definitions and results which will be very useful in the sequel. Sec-
tion 3 is dedicated to recall the two Michael’s selection theorems that
will be used later: the closed-convex valued and the convex valued
theorems. In section 4, we first state a partial result when the dimen-
sion of the images is finite and constant. Then, we introduce and
motivate the concept of peeling. Finally, we state the general case
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and Section 5 and 6 provide the proofs of our results.

3.2 Preliminaries and notations

We start by introducing some notations which will be useful
throughout this paper.

3.2.1 Notations

Let Y be a normed space and C ⊂ Y . We shall denote by

1. C the closure of C in Y .

2. co(C) the convex hull of C and aff(C) the affine space of C.

3. dima(C) = dim aff(C) the dimension of C which is by definition
the dimension of aff(C).

4. If C is finite dimensional2, then ri(C) the relative interior of C
in aff(C) is given by,

ri(C) = {x ∈ C, ∃ a neighborhood Vxof x such that Vx∩aff(C) ⊂ C}.

5. BC(a, r) := B(a, r) ∩ aff(C), where B(a, r) is the open ball of
radius r > 0 centered at a point a ∈ X , andBC(a, r) := B(a, r)∩
aff(C), where B(a, r) is the closed ball of radius r > 0 centered
at a point a ∈ X .

6. Si−1(0, 1) := {x = (x1, · · · , xi) ∈ Ri, ‖x‖ = 1} the unit (i − 1)−
sphere of Ri embedded with the euclidean norm.

7. (Y p
ai)p∈N the set of affinely independent families of (Y p)p∈N.

We recall that if {x0, x1, · · · , xi} is a set of (i + 1) affinely in-
dependent points of Y . We call an i− simplex the convex hull of
{x0, x1, · · · , xi} given by

Si = {z ∈ Y, z =
i∑

k=0

αkx
k, αk ≥ 0,

i∑

k=0

αk = 1} = co(x0, · · · , xi).

2C is said to be finite dimensional if C is contained in a finite dimensional sub-
space of Y .
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3.2.2 Classical definitions

We go on with formal definitions and related terms of correspon-
dences. Let us consider nonempty topological spaces X and Y .

Definition 5 Let ϕ : X → 2Y be a correspondence, B ⊂ Y . We define
by

ϕ+(B) = {x ∈ X | ϕ(x) ⊂ B}, ϕ−(B) = {x ∈ X | ϕ(x) ∩B 6= ∅}.

Definition 6 Let ϕ : X → 2Y be any correspondence. A correspon-
dence ψ : X → 2Y satisfying ψ(x) ⊂ ϕ(x), for each x ∈ X , is called
a selection of ϕ. In particular, if ψ is single-valued (associated to
some function f : X → Y ), then f is a single-valued selection when
f(x) ∈ ϕ(x), for each x ∈ X .

We recall some alternatives characteristics of lower semicontinuous
correspondences.

Definition 7 [4] Let ϕ : X → 2Y be a correspondence. We say that ϕ
is lower semicontinuous (abbreviated to lsc) if one of the equivalent
conditions is satisfied.

1. For all open set V ⊂ Y , we have ϕ−(V ) is open.

2. For all closed set V ⊂ Y , we have ϕ+(V ) is closed.

In the case of metric spaces, an alternative characterization is
given by the following proposition.

Proposition 3.2.1 [4] Let X and Y be metric spaces and ϕ : X → 2Y

a correspondence. We have ϕ is lsc on X if and only if for all x ∈ X ,
(xn)n∈N convergent sequence to x, and all y ∈ ϕ(x), there exists a
sequence (yn)n≥n0 in Y such that yn → y and for all n ≥ n0, yn ∈
ϕ(xn).

3.3 Michael’s selection theorems (1956)

Let us first recall one of the main selection theorems: the closed-
convex valued selection theorem.

Theorem 3.3.1 (Closed-Convex valued selection theorem) Let X

be a paracompact space, Y a Banach space and ϕ : X → 2Y a
lsc correspondence with nonempty closed convex values. Then ϕ

admits a continuous single-valued selection.
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Before stating the next theorem, we recall3 that a topological space is
perfectly normal if it is normal and every closed subset is a G-delta
subset (Gδ).

The following Michael selection theorem dedicated for non-closed
valued correspondences is much more difficult to prove. The as-
sumption on Y is reinforced by adding the separability. We recall
that perfectly normality does not imply paracompactness nor the
converse.

Theorem 3.3.2 (Convex valued selection theorem) Let X be a per-
fectly normal space, Y a separable Banach space and ϕ : X → Y a
lsc correspondence with nonempty convex values. If for any x ∈ X ,
ϕ(x) is either finite dimensional, or closed, or have an interior point,
then ϕ admits a continuous single-valued selection.

Note that as explained before, in his paper [6] (Example 6.3), Michael
provided the following counter example showing that the assump-
tion of separability of Y can not be omitted in Theorem 3.3.2.

Example 3.3.1 There exists a lsc correspondence ϕ from the closed
unit interval X to the non empty, open, convex subsets of a Banach
space Y for which there exists no selection.

Indeed, let X be the closed unit interval [0, 1] and Y = `1(X) = {y :

X → R,
∑

x∈X |y(x)| < +∞}. Michael showed that the correspon-
dence ϕ : X → 2Y given by ϕ(x) = {y ∈ Y | y(x) > 0} has open val-
ues, consequently, images have an interior point but Michael proved
that there does not exists a continuous selection.
The case where the correspondence is either finite dimensional or
closed values still remain to be dealt with. In order to provide an
answer, we now state the main results of this paper.

3.4 The results

We start by recalling that if X is a metric space, then it is both para-
compact and perfectly normal. In many applications, both paracom-
pactness and perfect normality aspects are ensured by the metric
character. Therefore, throughout this section, we assume that (X, d)

is a metric space. In addition, let (Y, ‖.‖) be a Banach space. We
recall that the relative interior of a convex set C is a convex set of

3A subset of a topological space is termed a Gδ subset if it is expressible as a
countable intersection of open subsets.
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same dimension and that ri(C) = ri(C) and ri(C) = C. In the first
instance, in order to prove the main result, we focus on the case of
constant (finite) dimensional images. In addition, compared with
Theorem 3.3.2 of Michael, we suppose first that X is a metric space
and omit the separability of Y . We denote by Di, the following set
Di := {x ∈ X, dima ϕ(x) = i}. Then, we state the following theorem.

Theorem 3.4.1 Let ϕ : X → 2Y be a lsc correspondence with
nonempty convex values. Then, for any i ∈ N, the restriction of
ri(ϕ) to Di admits a continuous single-valued selection hi : Di → Y .
In addition, if i > 0, then there exists a continuous function βi :

Di → ]0,+∞[ such that for any x ∈ Di, we have Bϕ(x)(hi(x), βi(x)) ⊂
ri(ϕ(x)).

Once we have Theorem 3.4.1, we will be able to prove our main result
given by

Theorem 3.4.2 Let X be a metric space and Y a Banach space. Let
ϕ : X → 2Y be a lsc correspondence with nonempty convex values.
If for any x ∈ X , ϕ(x) is either finite dimensional or closed, then ϕ

admits a continuous single-valued selection.

Note that the property of ϕ being either closed or finite dimensional
values is not inherited by co(ϕ). Consequently, we can not directly
convert Theorem 3.4.2 in terms of the convex hull. Yet, first, a direct
consequence of both Theorem 3.4.2 and Theorem 3.3.1 is the follow-
ing.

Corollary 3.4.1 Let X be a metric space and Y a Banach space. Let
ϕ : X → 2Y be a lsc correspondence with nonempty values. Then
co(ϕ(x)) admits a continuous single-valued selection.

Second, we can also deduce from Theorem 3.4.2 the following result.

Corollary 3.4.2 Let X be a metric space and Y a Banach space. Let
ϕ : X → 2Y be a lsc correspondence with nonempty values. If for
any x ∈ X , ϕ(x) is either finite dimensional or closed convex, then
co(ϕ) admits a continuous single-valued selection.

It is also worth noting that under the conditions of Theorem 3.4.2, we
may have a l.s.c correspondence with both closed and finite dimen-
sional values. This is made clear in the following example.
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Example 3.4.1 Let Y be an infinite Banach dimensional space and
X = [0, 1]. Consider (e0, · · · , en, · · · ) some linearly independent
normed family of Y . Let ϕ : R→ 2Y defined by

ϕ(x) =





{0} if x ∈ {0, 1}

ri(co(0, e0)) if x ∈ [1
2
, 1)

ri(co(0, e0, e1)) if x ∈ [1
3
, 1

2
)

...

Y if x ∈ Xc

Remark that ϕ is l.s.c on ]0, 1[ since it is locally increasing. In other
terms, for any x ∈ X , there exists Vx such that ∀x′ ∈ Vx, ϕ(x) ⊂ ϕ(x′).
Besides, ϕ is l.s.c at the point x = 0. It suffices to remark that for ε > 0,
we have ϕ−(B(0, ε)) = R. Indeed, since for any x ∈ R, 0 ∈ ϕ(x), then
B(0, ε) ∩ ϕ(x) 6= ∅. The same argument is used for x = 1. Therefore,
we conclude that ϕ is l.s.c.
By Theorem 3.4.2, we can conclude that ϕ admits a continuous se-
lection. It should also be noted that we can even build an explicit
selection.

The proof of Theorem 3.4.1 and Theorem 3.4.2 are postponed re-
spectively in Section 5 and 6. The proof of Theorem 3.4.1 is based on
the concept of “peeling" that we will introduce and motivate here.

Definition 8 Let C be a nonempty finite dimensional subset of Y .
We say that C ′ is a peeling of C of parameter ρ ≥ 0 if

C ′ = Γ(C, ρ) :=
{
y ∈ C such that BC(y, ρ) ⊂ ri(C)

}
.

In order to gain some geometric intuition, the concept is illustrated
by Figure 3.1.

Definition 9 Let η be a non negative real-valued function defined
on X , and ϕ a correspondence from X to Y . We will say that the
correspondence ϕη : X −→ 2Y , is a peeling of ϕ of parameter η if for
each x ∈ X , we have ϕη(x) = Γ(ϕ(x), η(x)).

The motivation of the peeling concept is given by the next proposi-
tion (whose proof is postponed in the next section) where we show
that when the dimension is constant, continuous peeling of a lsc



Chapter 3. A convex selection theorem with a non separable
Banach space

54

correspondence is also (possibly empty) lsc correspondence. This
proposition is a key argument for the proof of Theorem 3.4.1.

Proposition 3.4.1 Let ϕ : X → 2Y be a lsc correspondence with
nonempty convex values. If there exists i ∈ N∗ such that for any
x ∈ X , dimaϕ(x) = i, then the continuity of the function η implies
the lower semicontinuity of ϕη.

Remark 3.4.1 The following simple example shows that the above
proposition is no more valid if the dimension of ϕ is equal to zero.
Let ϕ : R→ 2R, defined by ϕ(x) = {0} and η(x) = |x|. Obviously ϕ is
lsc and η is continuous, but ϕη : R → 2R is not lsc since ϕη(0) = {0}
while for x 6= 0, ϕη(x) = ∅.

Remark 3.4.2 Modifying slightly the previous example, we also
show that the above proposition does not hold true if the dimen-
sion of ϕ is not constant. Let us consider the case where X = R,
Y = R2, and ϕ : X → 2Y , is the lsc correspondence defined by
ϕ(x) = {(y1, y2) ∈ R2 | y1 ≥ 0 and y2 ≥ tan(2 arctan(|x|))y1} if
x 6= 0 and ϕ(0) = [0, 1/2] × {0}. Using the same η(x) = |x|,
we obtain that when x 6= 0, ϕη(x) is a translation of ϕ(x). More
precisely, ϕη(x) = {(1, |x|)} + ϕ(x), (See Figure 3.2). In particular
d(ϕ(0), ϕη(x)) ≥ 1/2, which allows us to conclude that ϕη is not lsc.

3.5 Proof of Theorem 3

In the first subsection, we first present elementary results about the
“peeling” of a set. Subsection 2 is dedicated to prove some affine
geometry results used to prove Proposition 3.4.1 in Subsection 3. Fi-
nally, we deduce Theorem 3 from this proposition in the last subsec-
tion.

3.5.1 Elementary results on a set “Peeling”

In this subsection, C is a finite dimensional set of a Banach set Y .

Definition 10 We define4 the internal radius of a finite dimensional
set C by

α(C) := sup
{
ρ ∈ R+,∃y ∈ C such that BC(y, ρ) ⊂ ri(C)

}
.

4Note that α may value +∞. The proofs need to distinguish whether α is finite
or infinite.
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Lemma 3.5.1 Let C be a nonempty convex set, one has Γ(C, 0) =

ri(C). Yet, if α(C) is finite, then Γ(C, α(C)) = ∅.

Proof. The equality on Γ(C, 0) is a simple consequence of the

definition. Let us prove by contradiction that Γ(C, α(C)) = ∅. Indeed
if y ∈ Γ(C, α(C)), we have BC(y, α(C)) ⊂ ri(C). By a compactness
argument on the circle of center y and radius α(C) and the openness
of ri(C) in aff(C), we can prove the existence of some ε > 0 such that
BC(y, α(C) + ε) ⊂ ri(C). �

We first establish that a peeling of a convex set remains convex.
In addition, we can characterize the nonemptiness.

Lemma 3.5.2 LetC be a nonempty convex set and ρ ∈ [0,+∞[. Then,
the set Γ(C, ρ) is convex. In addition, the set Γ(C, ρ) is nonempty if
and only if ρ < α(C).

Proof. First, we have Γ(C, ρ) is convex. Let x1, x2 ∈ Γ(C, ρ) and

λ ∈ [0, 1]. We claim that BC((λx1 + (1− λ)x2), ρ) ⊂ ri(C). By triangle
inequality, it is easy to see thatB(λx1 +(1−λ)x2, ρ) = λB(x1, ρ)+(1−
λ)B(x2, ρ). Yet, since ri(C) is convex, then we have (λB(x1, ρ) + (1−
λ)B(x2, ρ))∩aff(C) ⊂ λ ri(C)+(1−λ) ri(C) = ri(C), which establishes
the result.
Now, remark that if Γ(C, ρ) 6= ∅, then by definition of Γ, we have
ρ ≤ α(C). We have to distinguish two cases. First, if α(C) = +∞,
then ρ < α(C). Second, if α(C) is finite, then in view of Lemma 3.5.1,
we have also ρ < α(C). It remains to prove the converse. Using
the definition of α, there exists yρ ∈ C such that BC(yρ, ρ) ⊂ ri(C).
Therefore, yρ ∈ Γ(C, ρ). �

Lemma 3.5.3 Let C be a convex set and ρ1, ρ2 non negative real num-
bers such that ρ1 < ρ2. Then, we have Γ(C, ρ2) ⊂ Γ(C, ρ1) ⊂ ri(C).

Proof. Let y ∈ Γ(C, ρ2), since ε = ρ2 − ρ1 > 0, then there ex-

ists y ∈ Γ(C, ρ2) ∩ B(y, ε). Consequently, by triangle inequality,
BC(y, ρ1) ⊂ BC(y, ρ2), and therefore y ∈ Γ(C, ρ1). Finally, it comes
from the definition that Γ(C, ρ1) ⊂ ri(C).

3.5.2 Affine geometry

Next, we will use known results about linear independence in order
to raise a series of results about affine independence and barycentric
coordinates.
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Lemma 3.5.4 Y i+1
ai is an open set of Y i+1.

Proof. Let (z0, · · · , zi) ∈ Y i+1
ai . By contradiction, we suppose that

∀r > 0,∀k ∈ {0, · · · , i}, ∃z′k ∈ B(zk, r) such that (z′0, · · · , z′i) are
affinely dependent. In particular, ∀p ∈ N∗,∀k ∈ {0, . . . , i}, there
exists z′k,p ∈ B(zk, 1/p) such that (z′0,p, . . . , z

′
i,p) are affinely dependent.

Thus, the family of vectors (vp1, . . . , v
p
i ) = (z′1,p − z′0,p, . . ., z′i,p − z′0,p)

is linearly dependent. Hence, ∃λp = (λp1, · · · , λpi ) ∈ Ri\{0}
such that

∑i
k=1 λ

p
kv

p
k = 0. We can normalize by letting

µp = λp/‖λp‖ ∈ Si−1(0, 1). By a compactness argument, the se-
quence µp admits a convergent subsequence µϕ(p) to µ ∈ Si−1(0, 1).
Since ∀k ∈ {0, · · · , i}, ∃z′k,p ∈ B(zk, 1/p), then the se-
quence (z′k,p)p∈N∗ converges to zk. Therefore, we have∑i

k=1 µ
ϕ(p)v

ϕ(p)
k =

∑i
k=1(λ

ϕ(p)
k /‖λϕ(p)‖)vϕ(p)

k = 0 → ∑i
k=1 µk(zk − z0).

That is,
∑i

k=1 µk(zk − z0) = 0. Since, by the starting assumption,
(z1 − z0, · · · , zi − z0) is linearly independent, then we obtain µ = 0,
absurd. �

We recall that if yn = (yn0 , · · · , yni ) ∈ Y i+1
ai , then every point zn of

aff(yn) has a unique representation

zn =
i∑

k=0

λnky
n
k , λ

n = (λn0 , · · · , λni ) ∈ Ri+1,
i∑

k=0

λnk = 1,

where λn0 , · · · , λni are the barycentric coordinates of the point zn rela-
tive to (yn0 , . . . , y

n
i ). Using the previous notations and adopting obvi-

ous ones for the limits, our next result is formulated in the following
way, where the assumption y ∈ Y i+1

ai can not be omitted.

Lemma 3.5.5 Let yn ∈ Y i+1
ai tending to y ∈ Y i+1

ai . Let zn ∈ aff(yn).
Hence, we have

1. If zn is bounded, then λn is bounded and zn has a cluster point
in aff(y).

2. If zn converges to z, then λn converges to λ.

Proof. We start by proving Assertion 1. We denote by wn = zn − yn0 .

Since
∑i

k=0 λ
n
k = 1, it follows that wn =

∑i
k=0 λ

n
k(ynk − yn0 ) . Hence,

wn =
∑i

k=1 λ
n
k(ynk − yn0 ).

We denote by λ̃n = (λn1 , · · · , λni ) ∈ Ri, where the first compo-
nent is omitted. First, we will prove by contradiction that λ̃n

is bounded. Assume the contrary. Then, there exists a subse-
quence λ̃ψ(n) of λ̃n such that ‖λ̃ψ(n)‖ diverges to infinity. Since
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zn is bounded, then wψ(n)

‖λ̃ψ(n)‖ → 0. Moreover, by normalizing,

the sequence µψ(n) = λ̃ψ(n)/‖λ̃ψ(n)‖ belongs to the compact set
Si−1(0, 1). Therefore, the sequence µψ(n) admits a convergent subse-
quence µψ(ϕ(n)) converging to µ in Si−1(0, 1). Thus, we obtain that
wψ(ϕ(n))

‖λ̃ψ(ϕ(n))‖ →
∑i

k=1 µk(yk − y0). By uniqueness of the limit, we deduce

that
∑i

k=1 µk(yk − y0) = 0. Since (y1 − y0, · · · , yi − y0) is independent,
then we obtain µ = 0, which is impossible.
Now it suffices to remark that since λn0 = 1 − ∑i

k=1 λ
n
k , then the

boundedness of λ̃n implies the one of λn0 and therefore of the whole
vector λn.
It remains to check that zn has a cluster point. We have al-
ready established that λn is bounded. Therefore, there ad-
mits a convergent subsequence λψ(n) converging to λ. Hence,
zψ(n) =

∑i
k=0 λ

ψ(n)
k y

ψ(n)
k → z =

∑i
k=0 λkyk. That is z is a cluster point

of zn. Moreover, observe that since
∑i

k=0 λ
ψ(n)
k = 1 converges to∑i

k=0 λk, then we have z ∈ aff(y), which establish the result.

Now, we are able to prove the second assertion. By Assertion
1, we know that λn is bounded. By [1], in order to prove that λn

converges to λ, we claim that the bounded sequence λn has a unique
cluster point. Using the same notations, let a ∈ F , where F is the set
of cluster points of λn. Then, there exists λϕ(n) a subsequence of λn

such that λϕ(n) → a.
Consequently, wϕ(n) =

∑i
k=1 λ

ϕ(n)
k (y

ϕ(n)
k − yϕ(n)

0 )→∑i
k=1 ak(yk − y0).

Alternatively, we have wϕ(n) = zϕ(n) − y
ϕ(n)
0 converges to

z − y0 =
∑i

k=0 λkyk − y0 =
∑i

k=1 λk(yk − y0), since
∑i

k=0 λk = 1.
By uniqueness of the limit and given that (y1 − y0, · · · , yi − y0)

is independent, we obtain that ak = λk, ∀k ∈ {1, · · · , i}. There-
fore, we have a unique cluster point. Consequently, λnk → λk,
∀k ∈ {1, · · · , i}. In addition, for the first component, we obtain
λn0 = 1−∑n

k=1 λ
n
k → 1−∑n

k=1 λk = λ0. Thus, ∀k ∈ {0, · · · , i}, λnk → λk.
We complete the proof. �

3.5.3 Proof of Proposition 3.4.1

The key argument we will use is based on the following lemma. Note
that Tan and Yuan ( [12]) have a similar but weaker result, since they
only treated the case of a finite dimensional set Y when the images
have a non empty interior which avoids to introduce the relative in-
terior.



Chapter 3. A convex selection theorem with a non separable
Banach space

58

Lemma 3.5.6 [Fundamental Lemma]
Under the assumptions of Theorem 3, let x ∈ Di, γ > 0 and y ∈
Γ(ϕ(x), γ). Then, for any ε ∈ ]0, γ[, there exists a neighborhood V a
of x, such that ∀x ∈ V ∩Di, we have Γ(ϕ(x), γ − ε) ∩B(y, ε) 6= ∅.

Proof. First, let us fix some ε ∈ ]0, γ[. In order to simplify the

notations, we will assume within this proof that X = Di. We will
start by proving the following claim.

Claim 1: There exists a neighborhood V1 of x, such that for all x ∈ V1,
we have Bϕ(x)(y, γ − ε/3) ⊂ ϕ(x).

Proof of Claim 1: Let us denote by r the positive quantity r = γ −
ε/3. By contradiction, assume that ∀n > 0, ∃xn ∈ B(x, 1/n), ∃zn ∈
Bϕ(xn)(y, r) such that zn /∈ ϕ(xn).
Since ∀x ∈ X , we have dimaϕ(x) = i, then there exists (ŷ0, · · · , ŷi) ∈
Y i+1
ai ∩ ϕ(x). Moreover, we have xn → x and ϕ is lsc. Therefore, for
n sufficiently large, there exists ynk → ŷk such that ynk ∈ ϕ(xn), for all
k ∈ {0, · · · , i}. Using Lemma 3.5.4, for n large enough, we obtain
that dima (yn0 , · · · , yni ) = i.
Besides, we have zn ∈ aff(ϕ(xn)) = aff(yn0 , · · · , yni ). Since zn ∈ B(y, r),
then applying the first assertion of Lemma 3.5.5, we conclude that zn

has a cluster point z in aff(ϕ(x)) = aff (ŷ0, · · · , ŷi). Moreover, since
zn ∈ B(y, r), then z ∈ B(y, r) ⊂ B(y, γ). It follows that z belongs to
ri (Bϕ(x)(y, γ)).

Hence, in view of the dimension of Bϕ(x)(y, γ), there exists an
i−simplex Si = co(U0, · · · , U i) contained in Bϕ(x)(y, γ) such that
z ∈ ri(Si). We can write the affine decomposition z =

∑i
k=0 µkUk, for

some µ ∈ Ri+1 such that
∑i

k=0 µk = 1 and µk > 0. In particular, in
view of the assumption of the lemma, Uk ∈ Bϕ(x)(y, γ) ⊂ ri(ϕ(x)).
Using again that xn −→ x and the lower semicontinuity of ϕ,
we obtain that there exists a sequence Un

k −→ Uk such that
Un
k ∈ ϕ(xn), ∀k ∈ {0, · · · , i} and n large enough. Then, we consider

µn = (µn0 , · · · , µni ) the affine coordinates of zn in (Un
0 , · · · , Un

i ). Since
zn has a cluster point z, then there exists zψ(n) a subsequence of zn

converging to z. By Assertion 2 of Lemma 3.5.5, we have µψ(n)
k → µk,

∀k ∈ {0, · · · , i}.
However, µk > 0, then µ

ψ(n)
k ≥ 0, for n large enough. Consequently,

zψ(n) is a convex combination of Uψ(n)
k . By convexity of ϕ(xψ(n)),

we conclude that zψ(n) ∈ ϕ(xψ(n)), contradiction. This proves Claim 1.
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Note than an obvious consequence of Claim 1 is that for all x ∈ V1,
we have Bϕ(x)(y, γ − 2ε

3
) ⊂ ri(ϕ(x)).

Now, since ε > 0, we have y ∈ ϕ(x) ∩ B(y, ε/3). From the lower
semicontinuity of ϕ, there exists a neighborhood V2 of x, such that
for all x ∈ V2, we have the existence of some y ∈ ϕ(x) ∩ B(y, ε/3).
Therefore, for any x ∈ V = V1 ∩ V2, we have

Bϕ(x)(y, γ − ε) ⊂ Bϕ(x)(y, γ −
2ε

3
) ⊂ ri(ϕ(x)).

Thus, we finish the proof. �

Note that Proposition 3.4.1 was already stated without proof in
Section 4. We are now ready to prove it.

Proof of Proposition 3.4.1. Let us consider an open set O and
x ∈ ϕ−η (O). This means that ϕη(x) ∩ O is nonempty and contains
some y. Since O is an open set containing y, we can first remark that
there exists r > 0 such that B(y, r) ⊂ O.

On one hand, by the condition on η, letting γ = α(x)−η(x)
3

> 0 and
ηi = η(x) + iγ, for any i = {0, · · · , 3}, we have

η(x) = η0 < η1 < η2 < η3 = α(x).

By definition of α, there exists z ∈ Γ(ϕ(x), η2). Applying the funda-
mental lemma, we obtain that there exists a neighborhood V1 of x
such that for any x ∈ V1, there exists z ∈ Γ(ϕ(x), η1) ∩B(z, γ).

On the other hand, we will distinguish two cases depending whether
at point x, there is or not a significant peeling. Let us denote by
M = 1 + 2

γ
(‖y − z‖ + γ), we will consider the positive number ε =

min(r/M, γ)

• First case, η(x) > 0

Let us denote ε = min(ε, η(x)/2). Since y ∈ ϕη(x) =

Γ(ϕ(x), η(x)), then once again, by the fundamental lemma, we
have the existence of a neighborhood V2 of x such that for any
x ∈ V2, there exists y ∈ Γ(ϕ(x), η(x)− ε) ∩B(y, ε).

Now, let us consider λ = 2ε
γ+ε
∈ ]0, 1] and yλ = (1− λ)y + λz.
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• Second case, η(x) = 0

In this case, ϕη(x) = ri(ϕ(x)). Let ε = ε, since ϕ is lsc, then there
exists a neighborhood V2 of x such that for any x ∈ V2, there
exists y ∈ ϕ(x) ∩B(y, ε) satisfying

Bϕ(x)(y, 0) ⊂ ri(ϕ(x)).

Now, let us consider λ = ε
γ
∈ ]0, 1] and yλ = (1− λ)y + λz.

In both cases, since the set ϕ(x) is convex, in view of our choice of
λ, by a simple computation, we can prove that if x ∈ V1 ∩ V2, then
yλ ∈ Γ(ϕ(x), η(x) + ε).

Note that in both cases λ ≤ 2ε/γ. The following computation will
show that our choice of ε implies that yλ ∈ O.

‖yλ − y‖ ≤ (1− λ)‖y − y‖+ λ‖z − y‖
≤ ‖y − y‖+ λ(‖z − z‖+ ‖z − y‖)
≤ ε+ 2ε

γ
(‖z − z‖+ ‖z − y‖)

≤ ε+ 2ε
γ

(γ + ‖y − z‖) = εM ≤ r.

Finally, by continuity of η, there exists a neighborhood V3 of x such
that for any x ∈ V3, we have η(x)− ε < η(x) < η(x) + ε. Summarizing
the previous results, for all x ∈ V1 ∩ V2 ∩ V3, there exists yλ ∈ O such
that Bϕ(x)(yλ, η(x)) ⊂ Bϕ(x)(yλ, η(x) + ε) ⊂ ri(ϕ(x)), which means
that yλ ∈ ϕη(x) ∩O and establishes the result. �

3.5.4 Proof of Theorem 3

Using the above lemma 3.5.6, we are able to prove the following re-
sult on the regularity of the internal radius of a lsc correspondence.

Lemma 3.5.7 Let us consider ϕ : X → 2Y such that there exists some
positive integer i such that for all x ∈ X , dima ϕ(x) = i, then α ◦ ϕ :

X → R+ ∩ {+∞} is a lower semicontinuous function.

Proof. Let us first recall that

α(ϕ(x)) := sup
{
ρ ∈ R+, ∃y ∈ ϕ(x) such that Bϕ(x)(y, ρ) ⊂ ri(ϕ(x))

}
,

Let us fix x in X , and ρ < α(ϕ(x)). We can consider γ such that
ρ < γ < α(ϕ(x)). By definition of α, there exists y ∈ Γ(ϕ(x), γ). Now,
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by the fundamental lemma, there exists a neighborhood V of x, such
that ∀x ∈ V , Γ(ϕ(x), ρ) 6= ∅. Using Lemma 3.5.2, we obtain that for
all x in V , α(ϕ(x)) > ρ, which establishes the result. �

An immediate consequence is the following result

Corollary 3.5.1 For all positive integer i, There exists ηi : Di → R+

continuous such that 0 < ηi(x) < α(ϕ(x)).

Proof. Since on Di, α ◦ ϕ is a lower semicontinuous, then the corre-

spondence given by Λ : Di → 2R, x → ]0, α(ϕ(x))[ is lsc. Applying
Michael’ selection theorem 3.3.2, we deduce that there exists ηi a
single-valued continuous selection of Λ. �

Proof of Theorem 3.4.1.

• If i = 0, then ϕ is reduced to a singleton on D0. Moreover,
on D0, the correspondences ϕ and ri(ϕ) coincide. Therefore,
there exists a mapping h0 : D0 → Y such that for all x ∈ D0,
ϕ(x) = {h0(x)}. Since ϕ is lsc on D0, it is well known that h0 is
a continuous function.

• If i > 0, let us first apply Corollary 3.5.1 in order to get a contin-
uous function ηi. Consequently by Proposition 3.4.1, we have
for any i ∈ N∗, ϕηi is lsc on Di. By a classical result, this im-
plies that ϕηi is also lsc on Di. Moreover, in view of the dou-
ble inequality satisfied by ηi, we can apply Lemma 3.5.2, in or-
der to state that ϕηi is a correspondence with nonempty convex
closed values. Therefore, applying Theorem 3.3.1 of Michael
gives a continuous single-valued selection hi of ϕηi . That is for
any x ∈ Di, hi(x) ∈ Γ(ϕ(x), ηi(x)). Since ηi(x) > 0, we can ap-
ply Lemma 3.5.3 in order to show that hi(x) ∈ Γ(ϕ(x), ηi(x)/2).
Now, let for all x ∈ Di, βi(x) := ηi(x)/2, the previous condition
can be rewritten as Bϕ(x)(hi(x), βi(x)) ⊂ ri(ϕ(x)), which proves
the result. �

It is worth noting that the idea of peeling should be distinguished
from the approximation method introduced by Cellina [2]. Indeed,
mainly Cellina’s method consists of approximating an upper semi
continuous correspondence ϕ by a lower semi continuous one.5 In
addition, unlike the peeling concept which can be seen as an “inside
approximation” (the approximated set is a subset of the original

5The approximation is given by the following, ϕε(x) = co(∪z∈(B(x,ε)∩X)ϕ(z)).
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one), the approximation of Cellina is an "outside one" ( the original
set is a subset of the approximated one). As it is well known (see [2]),
applying selection theorems to Cellina approximations is used to
deduce Kakutani’s fixed point theorem.

We are now ready to prove the main result of this paper.

3.6 Proof of Theorem 4

3.6.1 Notations and Preliminaries

We denote by

1. D∞ = {x ∈ X | ϕ(x) has an infinite dimension}.

2. D≤i = D0 ∪D1 ∪ · · · ∪Di.

3. D≥i = (Di ∪Di+1 ∪ · · · ) ∪D∞.

As in the previous section, we begin with listing a series of parallel
results which will be used in order to prove Theorem 3.4.2. The first
one is a classical result (see for example [3]).

Lemma 3.6.1 Let C be a convex set such that ri(C) 6= ∅. Then, for any
α such that 0 < α < 1, we have (1− α)A+ α ri(A) ⊂ ri(A).

Lemma 3.6.2 D≥i is an open set of X .

Proof. Let x ∈ D≥i. That is dimaϕ(x) ≥ i. Therefore, there exists y ∈
Y i+1
ai ∩ϕi+1(x) where ϕi+1(x) is the cartesian product ϕi+1(x) = ϕ(x)×
· · ·×ϕ(x). Since the lower semicontinuity of ϕ implies that ϕi+1 is also
lsc, in view of the openness of Y i+1

ai , there exists a neighborhood Vx
of x such that for any x′ ∈ Vx, Y i+1

ai ∩ ϕi+1(x′) 6= ∅. This implies that
dimaϕ(x′) ≥ i and finishes the proof. �

Lemma 3.6.3 D≤(i−1) is closed in D≤i.

Proof. In view of the partition, D≤i = D≤i−1 ∪ Di, in order to prove

the result, it suffices to prove that Di is an open set in D≤i. Using the
previous remark, we already know that D≥i is an open set of X . Yet,
since Di = D≥i ∩D≤i, the result is established.

Lemma 3.6.4 Let X and Y be two topological spaces and F a closed
subset of X . Suppose that ϕ : X −→ 2Y is a lsc correspondence and
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f : F → Y is a continuous single-valued selection of ϕ|F . Then, the
correspondence ψ given by

ψ(x) =

{
{f(x)} if x ∈ F
ϕ(x) if x /∈ F

is also lsc.
Proof. Let V be a closed subset of Y . We have, ψ+(V ) = {x ∈ F ,

ψ(x) ⊂ V }∪{x ∈ X\F, ψ(x) ⊂ V } = {x ∈ F, f(x) ∈ V } ∪ {x ∈
X\F, ϕ(x) ⊂ V }. Since f is a selection of ϕ|F , then we deduce that
{x ∈ X,ϕ(x) ⊂ V } = {x ∈ X\F, ϕ(x) ⊂ V } ∪ {x ∈ F, ϕ(x) ⊂
V } = {x ∈ X\F, ϕ(x) ⊂ V } ∪ {x ∈ F, f(x) ∈ ϕ(x) ⊂ V }. Therefore,
ψ+(V ) = {x ∈ F, f(x) ∈ V } ∪ {x ∈ X,ϕ(x) ⊂ V } = f−1(V ) ∪ ϕ+(V ).
Since ϕ is lsc, then ϕ+(V ) is closed. Moreover, since V is a closed
subset of Y and f is continuous, then f−1(V ) is a closed subset of
F . Now, since F is closed in X , then f−1(V ) is closed in X . Hence,
ψ+(V ) is closed, as required. �

3.6.2 Proof of Theorem 4

The proof of Theorem 3.4.2 is ruled out in three steps as follows.

Step 1: For any k ∈ N, we have ri(ϕ) admits a continuous selec-
tion h≤k on D≤k.

Step 2: For any k ∈ N, there exists jk : X → Y such that

• jk is a continuous selection of ϕ on X .

• jk is a continuous selection of ri(ϕ) on D≤k.

Step 3: There exists f a continuous selection of ϕ on X .

Proof of Step 1. Let us apply for any k ∈ N Theorem 3.4.1 in order to
get the existence of a continuous single-valued function hk defined
on Dk such that ∀x ∈ Dk, hk(x) ∈ ri(ϕk(x)).
Let Pn be the following heredity property: the restriction of ri(ϕ) to
D≤n admits a continuous selection h≤n.

• For n = 0, it suffices to notice that D≤0 = D0. Therefore, we can
let h≤0 := h0 which is a continuous selection of ri(ϕ). Thus, P0

is true.

• Let n ≥ 1, suppose that Pn−1 holds true and let us prove that
Pn is true. By the heredity hypothesis, we have ri(ϕ) admits
a continuous selection h≤(n−1) on D≤(n−1). We will introduce
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an auxiliary mapping ϕ̃n defined on D≤n, lsc and such that the
graph is contained in the graph of ϕ, by taking:

ϕ̃n : D≤n → 2Y defined by ϕ̃n(x) =

{
{h≤(n−1)(x)} if x ∈ D≤n−1

ϕ(x) if x ∈ Dn

By Lemma 3.6.3 and Lemma 3.6.4, we conclude that ϕ̃n is lsc.
Moreover, ϕ̃n has closed convex values. By Michael selection
Theorem 3.3.1, there exists gn continuous such that gn(x) ∈
ϕ̃n(x) ⊂ ϕ(x),∀x ∈ D≤n.
In the following, we will construct a continuous single-valued
selection h≤n of ri(ϕ) on D≤n. We consider the continuous ap-
plication λ : Dn −→ ]0, 1[ given by,

λ(x) =
min(d(x,D≤n−1), 1)

2 + ‖hn(x)‖

Then, we define h≤n : D≤n → Y given by,

h≤n(x) =

{
gn(x) if x ∈ D≤n−1

(1− λ(x))gn(x) + λ(x)hn(x) if x ∈ Dn

Using the heredity property, we know that h≤(n−1) is a selection
of ri(ϕ) on D≤(n−1).
On the other hand, on Dn, the function h≤n is a strict convex
combination of gn ∈ ϕ and hn ∈ ri(ϕ), thus by Lemma 3.6.1,
h≤n ∈ ri(ϕ). Therefore, we conclude that h≤n is a selection of
ri(ϕ) on D≤n.
It remains to check the continuity of h≤n. It is clear that the
restriction of h≤n on Dn (respectively on D≤n−1) is continuous.
SinceDn is open inD≤n, then it suffices to consider the case of a
sequence xk ∈ Dn such that xk → x ∈ D≤n−1. It is obvious that
since d(xk, D≤n−1) tends to zero, then λ(xk) tends to zero when
xk tends to x. Besides, we have that ‖hn(x)‖/(2 + ‖hn(x)‖) is
bounded. That is λ(xk)hn(xk) tends to zero when xk tends to x.
Therefore, combining the previous remarks and the continuity
of gn allow us to conclude that h≤n(xk) tends to gn(x) = h≤n(x),
which establishes the result.

Proof of Step 2. Using Lemma 3.6.2, we have already proved that
D≥i is an open set of X . Consequently, D≤i−1 is closed in X . Using
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again Lemma 3.6.3, we can define a lsc T k : X → 2Y given by

T k(x) =

{
{h≤k(x)} if x ∈ D≤k
ϕ(x) if x ∈ D≥k+1

By Michael selection theorem 3.3.1, there exists jk continuous such
that ∀x ∈ X , jk(x) ∈ T k(x) ⊂ ϕ(x). That is jk is a selection of ϕ. On
the other hand, for any x ∈ D≤k, we have jk(x) ∈ T k(x) = {h≤k(x)},
which finishes the proof of Step 2.

Proof of Step 3. We can write X as a partition between
X1 and D∞, where X1 = ∪k∈NDk. Under the hypothesis of
Theorem 3.4.2, we have D∞ is a subset of X2, where X2 =

{x ∈ X such that ϕ(x) has closed values}.
Now, in the spirit of Michael’s proof, for any k ∈ N∗,

we define fk(x) = λk(x)jk(x) + (1 − λk(x))j0(x), where
λk(x) = 1

max(1,‖jk(x)−j0(x)‖)
. It is easy to check in view of Lemma 3.6.1

that for each k ∈ N∗, fk is also a selection of ϕ on X satisfying for any
x ∈ D≤k, fk(x) ∈ ri(ϕ(x)). In addition, we have fk(x) is bounded
since fk(x) can be written as fk(x) = j0(x) +λk(x)(jk(x)− j0(x)) and
our choice of λk(x) ensures that ‖fk(x)‖ ≤ ‖j0(x)‖+ 1.

We can now define for any k ∈ N∗,

f̃n(x) =
n∑

k=1

1

2k
fk(x) f(x) =

∑

k∈N∗

1

2k
fk(x).

First, we claim that f is continuous at any x ∈ X . As a consequence
of the continuity of j0, the set Wx = {x ∈ X | ‖j0(x)‖ ≤ ‖j0(x)‖ + 1}
is an open neighborhood of x. Indeed, each fk is continuous and the
series f̃n converges uniformly to f on Wx

‖f(x)− f̃n(x)‖ ≤
∞∑

k=n+1

1

2k
∥∥fk(x)

∥∥ ≤ (‖j0(x)‖+ 2)
∞∑

k=n+1

1

2k

Moreover, we have for any x ∈ X , since f is an “infinite convex
combination”6 of elements of ϕ(x), then f(x) ∈ ϕ(x).

6 We recall that if C is a convex subset of Y then for any bounded sequence
(ck)k∈N ∈ C and for any sequence of non negative real numbers (λk)∈N with∑
k∈N λk = 1, the series

∑
∈N λkck converges to an element of C.
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Now, we claim that for all x ∈ X , f(x) is an element of ϕ(x). We have
to distinguish three cases.

• If x ∈ D0, then f(x) = j0(x) since ϕ(x) is a singleton.

• If x ∈ X1 \D0, then there exists k0(x) > 0 such that x ∈ Dk0(x) ⊂
D≤k0(x). Let us remark that f(x) can be written as

f(x) = µfk0(x)(x) + (1− µ)
∑

k 6=k0(x)

fk(x)

2k(1− µ)
,

where µ = 1
2k0(x)

.
Using once again Footnote 6, we easily check that∑

k 6=k0(x)
fk(x)

2k(1−µ)
belongs to ϕ(x). Therefore, by Lemma 3.6.1,

f(x) is an interior point of ϕ(x) then a selection of ϕ, which
finishes the proof.

• If x ∈ D∞, then x ∈ X2. That is ϕ(x) = ϕ(x). Since, we have
already established that ∀x ∈ X , f(x) ∈ ϕ(x), then the result is
immediate. �

.
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Chapter 4

Bargaining over a common
categorisation

Abstract. Two agents endowed with different categorisations engage
in bargaining to reach an understanding and agree on a common cat-
egorisation. We model the process as a simple non-cooperative game
and demonstrate three results. When the initial disagreement is fo-
cused, the bargaining process has a zero-sum structure. When the
disagreement is widespread, the zero-sum structure disappears and
the unique equilibrium requires a retraction of consensus: two agents
who individually associate a region with the same category end up
rebranding it under a different category. Finally, we show that this
last equilibrium outcome is Pareto dominated by a cooperative solu-
tion that avoids retraction; that is, the unique equilibrium agreement
may be inefficient. 1

Keywords: categorical reasoning, conceptual spaces, semantic bar-
gaining, organisational codes, shared cognitive maps.

4.1 Introduction

It is widely documented that agents organise information by means
of categories, with significant implications over their behaviour (Co-
hen and Lefebvre, 2005). This paper is a theoretical foray in a strictly
related but still poorly explored territory: what kind of outcome may
emerge when two agents endowed with individual categorisations
interact and develop a common categorisation?

There exist different families of models for categorical reason-
ing; see Section 1 in Kruschke (2008) for a concise overview. The

1This Chapter is based on “Bargaining over a common categorisation ” co-authored
with Marco LiCalzi [13].
This paper was featured on LesAffaires.com.

http://www.lesaffaires.com/blogues/olivier-schmouker/comment-faire-pour-trouver-un-terrain-d-entente/564832
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model developed in this paper borrows from the theory of con-
ceptual spaces, proposed in Gärdenfors (2000) as an alternative ap-
proach for the modelling of cognitive representations. A tenet of this
theory is the claim that natural concepts may be associated with con-
vex regions of a suitable space and, in particular, that a conceptual
space consists of a collection of convex regions. This underlying geo-
metric structure resonates with early theories of categorisation based
on prototypes (Rotsch, 1975; Mervis and Rotsch, 1981), and has re-
cently been given both evolutionary (Jäger, 2007) and game-theoretic
foundations (Jäger et al., 2011).

Conceptual spaces, on the other hand, provide a representational
framework that may accommodate different notions. Recently, Gär-
denfors (2014) has expanded their scope towards semantics and the
study of meaning. In particular, Warglien and Gärdenfors (2013) sug-
gest an interpretation of semantics as a mapping between individ-
ual conceptual spaces. People negotiate meaning by finding ways to
map their own personal categorisations to a common one; see War-
glien and Gärdenfors (2015) for an insightful discussion with refer-
ences. A well-known example is the integration of different cultures
within an organisation, when different communication codes blend
into a commonly understood language (Wernerfelt, 2004).

Warglien and Gärdenfors (2013) rely on the theory of fixed points
to argue for the plausibility of two individuals achieving a “meet-
ing of minds” and sharing a common conceptual space. Their ap-
proach, however, is merely existential and thus offers no insight in
the structure of the possible outcomes associated with establishing a
common conceptual space. We shed a constructive light by framing
the problem of how two agents reach a common understanding as
the equilibrium outcome of a bargaining procedure.

We borrow from the theory of conceptual spaces the assumption
that agents’ categorisations correspond to a collection of convex cat-
egories or, for short, to a convex categorisation. However, the neu-
trality of this latter term is meant to help the reader keeping in mind
that our results are consistent with, but logically independent from,
the theory of conceptual spaces.

We analyse a simple non-cooperative game where two agents, en-
dowed with their own individual convex categorisations, negotiate
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over the construction of a common convex categorisation. Agents ex-
hibit stubbornness as they are reluctant to give up on their own cate-
gorisation, but they are engaged in a dialectic process that must ulti-
mately lead to a common categorisation. The common convex cate-
gorisation emerges as the (unique) equilibrium of the game, aligning
it with the argument that meaning is constructed and shared via an
equilibrating process (Parikh, 2010).

We demonstrate two main phenomena, depending on whether
the disagreement between agents’ individual spaces is focused or
widespread. Under focused disagreement, the bargaining process
has a zero-sum structure: agents’ stubbornness leads to a unique
equilibrium where each concedes as little as possible, and the agents
who has a larger span of control over the process ends up being bet-
ter off. Under widespread disagreement, the zero-sum structure dis-
appears and each agent confronts a dilemma: holding on to one of
his individual categories weakens his position on another one. At
the unique equilibrium, these conflicting pressures force a retraction
of consensus: two agents who individually agree on a region falling
under the same category end up relabeling it in order to minimise
conflict. Moreover, we uncover that convex categorisations may be a
source of inefficiency: the equilibrium outcome is Pareto dominated
by the Nash bargaining solution without retraction.

The rest of the paper is organized as follows. Section 4.2 describes
our game-theoretic model. Section 4.3 defines two forms of disagree-
ment (focused and widespread) and states our results as theorems.
Section 4.4 provides concluding comments. All proofs are relegated
in the appendix.

4.2 Model

There are two agents. Each agent i = 1, 2 has his own binary con-
vex categorisation over the closed unit disk C in R2. Our qualitative
results carry through for any convex compact region C in R2, but
this specific choice is elegant and analytically advantageous because
C is invariant to rotations. Interestingly, Jäger and van Rooij (2007)
also choose to develop their second case study under the assumption
that the meaning space is circular. Conventionally, we label the two
concepts L for Left and R for Right and use them accordingly in our
figures.
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The agents agree on the classification of two antipodal points in
C: they both label l = (−1, 0) asL and r = (0, 1) asR, respectively. In-
tuitively, this implies that the agents’ categorisations are not incom-
patible. More formally, define the intersection of the agents’ initial
categorisations as their shared (partial) categorisation. Under our
assumption, the individual categorisations are compatible because
the shared categorisation is not empty. On the other hand, since in
general the individual categorisations are different, the shared cate-
gorisation is only partial. The agents’ problem is to move from their
(partial) shared categorisation to a common (total) categorisation.

The categorisation of Agent i over C consists of two convex re-
gions Li and Ri. Dropping subscripts for simplicity, this may look
like in Figure 4.1. Clearly, the representation is fully characterized by

L Rl r

t

b

FIGURE 4.1: A binary convex categorisation.

the chord tb separating the two convex regions. The endpoints t and
b for the chord are located in the top and in the bottom semicircum-
ference, respectively. (To avoid trivialities, assume that the antipodal
points l and r are interior.) The two convex regions of the categorisa-
tion may differ in extension and thus the dividing chord need not be
a diameter for C.

Consider the categorisations of the two agents. Unless t1b1 = t2b2,
the regions representing the concepts are different and the shared
categorisation is partial. If the agents are to reach a common cate-
gorisation, they must negotiate an agreement and go through a bar-
gaining process over categorisations, where each agent presumably
tries to push for preserving as much as possible of his own original
individual categorisation. Figure 4.2 provides a pictorial representa-
tion for the process: Agent 1 (Primus) and Agent 2 (Secunda) nego-
tiate a common categorisation as a compromise between their own
individual systems of categories.

We provide a simple game–theoretic model for their interaction
and study the equilibrium outcomes. We do not claim any generality
for our model, but its simplicity should help making the robustness
of our results transparent.
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L R ⊕ L R ⇒ L R

Primus Secunda Common categorisation

FIGURE 4.2: The search for a common categorisation.

The two agents play a game with complete information, where
the endpoints (ti, bi) of each agent i are commonly known. Without
any loss of generality, let Primus be the agent for whom t1 precedes
t2 in the clockwise order. Primus picks a point t in the arc inter-
val [t1, t2] from the top semicircumference, while Secunda simulta-
neously chooses a point b between b1 and b2 from the bottom semi-
circumference. The resulting chord tb defines the common categori-
sation. Under our assumption that the antipodal points l and r are
interior, the agents cannot pick either of them.

Each agent evaluates the common categorisation against his own.
Superimposing these two spaces, there is one region where the com-
mon categorisation and the individual one agree and (possibly) a sec-
ond region where they disagree. For instance, consider the left-hand
side of Figure 4.3 where the solid and the dotted chords represent the
agent’s and the common categorisation, respectively. The two clas-

L R L R

FIGURE 4.3: The disagreement area.

sifications disagree over the central region, coloured in grey on the
right-hand side.

Each agent wants to minimise the disagreement between his own
individual and the common categorisation. For simplicity, assume
that the payoff for an agent is the opposite of the area of the dis-
agreement region D; that is, ui = −λ(Di) where λ is the Lebesgue
measure. (Our qualitative results carry through for any absolutely
continuous measure µ.) Note that the region D need not be convex:
when the chords underlying the agent’s and the common categori-
sation intersect inside the disc, D consists of two opposing circular
sectors.
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4.3 Results

The study of the equilibria is greatly facilitated if we distinguish
three cases. First, when t1 = t2 and b1 = b2, the two individual
categorisations (as well as the initial shared categorisation) are iden-
tical: the unique Nash equilibrium has t∗ = t1 and b∗ = b2, and the
common categorisation agrees with the individual ones. This is a
trivial case, which we consider no further. From now on, we assume
that the two individual categorisations disagree and thus the initial
shared categorisation is only partial; that is, either t1 6= t2 or b1 6= b2

(or both).
The other two cases depend on the shape of the disagreement re-

gion D. When t1b1 and t2b2 do not cross inside the disc, then D is a
convex set as in the left-hand side of Figure 4.4. We define this situ-

L R L R

FIGURE 4.4: Focused (left) and widespread disagree-
ment (right).

ation as focused disagreement, because one agent labels D as L and
the other as R. The disagreement is focused on whether D should be
construed as L or R.

Instead, when t1b1 and t2b2 cross strictly inside the disc, then D

is the union of two circular sectors as in the right-hand side of Fig-
ure 4.4. This is the case of widespread disagreement, because the
two agents label the two sectors in opposite ways: the top sector is L
for one and R for the other, while the opposite holds for the bottom
sector.

4.3.1 Focused disagreement

Under focused disagreement, t1 precedes t2 and b2 precedes b1 in the
clockwise order. The disagreement region is convex and the interac-
tion is a game of conflict: as Primus’s choice of t moves clockwise,
his disagreement region (with respect to the common categorisation)
increases, while Secunda’s decreases. In particular, under our simpli-
fying assumption that payoffs are the opposites of the disagreement
areas, this is a zero-sum game.
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Intuitively, players have opposing interests over giving up on
their individual categorisations. Therefore, we expect that in equi-
librium each player concedes as little as possible. In our model,
this leads to the stark result that they make no concessions at all
over whatever is under their control. That is, they exhibit maximal
stubbornness. This is made precise in the following theorem, that
characterises the unique equilibrium. All proofs are relegated in the
appendix.

Theorem 4.3.1 Under focused disagreement, the unique Nash equi-
librium is (t∗, b∗) = (t1, b2). Moreover, the equilibrium strategies are
dominant.

Figure 4.5 illustrates the equilibrium outcome corresponding to
the situation depicted on the left-hand side of Figure 4.4. The thick

L Ro

t1 t2

b1 b2

FIGURE 4.5: The unique equilibrium outcome under
focused disagreement.

line defines the common categorisation. In this example, Primus
and Secunda give up the small grey area on the left and on the
right of the thick line, respectively. Note how Primus and Secunda
stubbornly stick to their own original t1 and b2. Moreover, Primus
gives up a smaller area and thus ends up being better off than Se-
cunda. This shows that, in spite of its simplicity, the game is not
symmetric. Our next result elucidates which player has the upper
hand in general. Formally, let (ts, bs) be the Nash bargaining solu-
tion, with ts and bs being the midpoints of the two players’ strategy
sets. We say that in equilibrium Primus is stronger than Secunda if
u1(t∗, b∗) ≥ u1(ts, bs) = u2(ts, bs) ≥ u2(t∗, b∗).

To gain intuition, consider again Figure 4.5. The thick line defin-
ing the common categorisation divides the disagreement region into
two sectors S1(t1t2b2) and S2(b2b1t1). Primus wins S1 and loses S2; so
he is stronger when λ(S1) ≥ λ(S2). The area of S1 depends on the
angular distance τ = t̂1ot2 controlled by Primus and on the angu-
lar distance θR = t̂2ob2 underlying the arc that is commonly labeled
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R; similarly, the area of S2 depends on β = b̂1ob2 and θL = t̂1ob1.
Primus is advantaged when τ ≥ β and θR ≥ θL. The first inequal-
ity implies that his span of control is higher. The second inequality
makes the common categorisation for R less contestable than for L, so
that Primus’ stubborn clinging to t1 is more effective than Secunda’s
choice of b2. The next result assumes that a player (say, Primus) has
the larger span of control: then Primus is stronger when his span of
control is sufficiently large, or when R is more contestable than L but
the opponent’s span of control is small enough.

Proposition 4.3.1 Suppose τ ≥ β. If τ ≥ β + (θL − θR), then Primus
is stronger. If τ < β + (θL − θR), then there exists β such that Primus
is stronger if and only if β ≤ β.

4.3.2 Widespread disagreement

Under widespread disagreement, t1 precedes t2 and b1 precedes b2

in the clockwise order. The disagreement region is not convex and
the interaction is no longer a zero-sum game. We simplify the anal-
ysis by making the assumption that the two chords characterising
the players’ categorisations are diameters. Then the two angular dis-
tances τ = t̂1ot2 and β = b̂1ob2 are equal, the players have the same
strength and the game is symmetric.

Players’ stubbornness now has a double-edged effect, leading to
a retraction of consensus at the unique equilibrium. Before stating
it formally, we illustrate this result with the help of Fig. 4.6, drawn
for the special case τ = β = π/2. The thick line depicts the common

L Ro

t1 t2

b2 b1

FIGURE 4.6: The unique equilibrium outcome under
widespread disagreement.

categorisation at the unique equilibrium for this situation.
Consider Primus. Choosing t very close to t1 concedes little on

the upper circular sector, but exposes him to the risk of a substantial
loss in the lower sector. This temperates Primus’ stubbornness and,
in equilibrium, leads him to choose a value of t∗ away from t1. How-
ever, as his opponent’s choice makes the loss from the lower sector
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smaller than the advantage gained in the upper sector, the best re-
ply t∗ stays closer to t1 than to t2. An analogous argument holds for
Secunda.

A surprising side-effect of these tensions is that, in equilibrium,
the common categorisation labels the small white triangle between
the thick line and the origin as R, in spite of both agents classifying
it as L in their own individual systems of categories. That is, in or-
der to reach an agreement, players retract their consensus on a small
region and agree to recategorize part of their initial shared categori-
sation. The following theorem characterise the unique equilibrium
by means of the two angular distances t̂∗ot1 and b̂∗ob2. It is an imme-
diate corollary that the retraction of consensus always occurs, unless
τ = 0 and the two agents start off with identical categorisations.

Theorem 4.3.2 Suppose that the individual categorisations are sup-
ported by diameters, so that τ = β. Under widespread disagreement,
there is a unique Nash equilibrium (t∗, b∗) characterised by

t̂∗ot1 = b̂∗ob2 = arctan

(
sin τ√

2 + 1 + cos τ

)
.

As the equilibrium necessitates a retraction of consensus, it
should not be surprising that we have an efficiency loss that we call
the cost of consensus. The equilibrium strategies lead to payoffs that
are Pareto dominated by those obtained under different strategy pro-
files. The following result exemplifies the existence of such cost us-
ing the natural benchmark provided by the Nash bargaining solution
(ts, bs), with ts and bs being the midpoints of the respective arc inter-
vals.

Proposition 4.3.2 Suppose that the individual categorisations are
supported by diameters. Under widespread disagreement,
ui(t

∗, b∗) ≤ ui(t
s, bs) for each player i = 1, 2, with the strict inequality

holding unless τ = 0.

4.4 Concluding comments

The game-theoretic model presented and solved in this paper is a
mathematically reduced form, consistent with different interpreta-
tions. As discussed in the introduction, our motivation originates
with a few recent contributions about the negotiation of meaning.
Accordingly, we suggest to interpret the convex regions of a concep-
tual space as the (simplified) representation of lexical meanings for
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words (Gärdenfors, 2014a). Each agent enters the negotiation with
his own mapping between words and their meaning, and the pur-
pose of their interaction is to generate a common mapping. This is a
first step in the ambitious program of “modelling communication be-
tween agents that have different conceptual models of their current
context”, as proposed by Honkela et al. (2008).

If one also accepts the classical view that concepts have defini-
tional structures, it is possibile to expand the scope of our model to
the negotiation of concepts. However, we believe that the underly-
ing philosophical difficulties make this a slippery path and we pre-
fer to confine our discussion to the negotiation of lexical meaning
for words. This places our contribution within the recent literature
emphasising a game–theoretic approach to the analysis of language
(Benz et al., 2005; Clark, 2012; Parikh, 2010).

Finally, we mention some advantages and limitations in our
model. The use of noncooperative game theory highlights the
“mixed motives” described in Warglien and Gärdenfors (2015): the
negotiation agents have a common interest in achieving coordina-
tion on a common categorisation, tempered by individual reluctance
in giving up their own categories. This conflict is a channel through
which egocentrism affects pragmatics (Keysar, 2007), and we show
that it may impair efficiency. On the other hand, the simplicity of
our model leaves aside important issues of context, vagueness and
dynamics in the negotiation of the lexicon (Ludlow, 2014).

.1 Proofs

.1.1 Proof of Theorem 4.3.1

The proof is a bit long, but straightforward. It is convenient to in-
troduce some additional notation. The endpoints (ti, bi) for the two
agents’ chords and their choices for t and b identify six sectors. Pro-
ceeding clockwise, these are numbered from 1 to 6 on the left-hand
side of Figure 7. For each sector i, we denote its central angle by θi;
that is, we let θ1 = t̂1ot, θ2 = t̂ot2, θ3 = t̂2ob2, θ4 = b̂2ob, θ5 = b̂ob1, and
θ6 = b̂1ot1. The following lemma characterises the disagreement area
of each player as a function of the six central angles.
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FIGURE 7: Visual aids for the proof of Theorem 4.3.1.

Lemma .1.1 The disagreement areas for Primus and Secunda are, re-
spectively:

λ(D1) =
θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
, (1)

and
λ(D2) =

θ2 + θ4 + sin θ3 − sin (θ2 + θ3 + θ4)

2
.

Proof. The disagreement region D1 for Primus can be decomposed
into the two sector-like regions S1(t1bb1) and S2(t1tb) as shown on the
right-hand side of Figure 7. (The figure illustrates a special case, but
the formulas hold in general.) We compute the areas λ(S1) and λ(S2),
and then add them up to obtain λ(D1).

Consider S1(t1bb1). It can be decomposed into two regions: the
circular segment from b to b1 with central angle θ5, and the triangle
T (t1bb1). The area of a circular segment with central angle θ and ra-
dius r is r2(θ − sin θ)/2, which in our case reduces to (θ5 − sin θ5)/2.
Concerning the triangle, the inscribed angle theorem implies that the
angle b̂1t1b = θ5/2; hence, by the law of sines, its area can be written
as

t1b · t1b1 · sin(θ5/2)

2
. (2)

Finally, by elementary trigonometry, t1b = 2 sin [(θ5 + θ6)/2] and
t1b1 = 2 sin [(θ6)/2]. Substituting into (2) and adding up the areas
of the two regions, we obtain

λ(S1) =
θ5 − sin θ5

2
+ 2 sin

(
θ5

2

)
sin

(
θ6

2

)
sin

(
θ5 + θ6

2

)
.

By a similar argument, we obtain

λ(S2) =
θ1 − sin θ1

2
+ 2 sin

(
θ1

2

)
sin

(
θ5 + θ6

2

)
sin

(
θ1 + θ5 + θ6

2

)
.
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Summing up λ(S1) and λ(S2), we find

λ(D1) =
θ1 − sin θ1

2
+
θ5 − sin θ5

2
(3)

+ 2 sin

(
θ5 + θ6

2

)[
sin

(
θ1

2

)
sin

(
θ1 + θ5 + θ6

2

)
+ sin

(
θ5

2

)
sin

(
θ6

2

)]
.

After some manipulations shown separately in the following
Lemma .1.2, this expression simplifies to

λ(D1) =
θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
.

The derivation of a specular formula for λ(D2) is analogous.

Lemma .1.2 The expression in (3) for λ(D1) can be rewritten as

λ(D1) =
θ1 + θ5 + sin θ6 − sin (θ1 + θ5 + θ6)

2
.

Proof. Let p = θ5/2 and q = θ6/2. Then

λ(S1) =
2p− sin (2p)

2
+ 2 sin (p) sin (q) sin (p+ q)

=
2p− sin (2p)

2
+ 2 sin (p+ q) [cos (p− q)− cos (p+ q)]

=
2p− sin (2p)

2
+ 2 sin (p+ q) cos (p− q)− sin [2 (p+ q)]

2

=
2p− sin (2p)

2
+

sin (2p) + sin (2q)

2
− sin [2 (p+ q)]

2

=
2p+ sin (2q)− sin [2 (p+ q)]

2

=
θ5 + sin (θ6)− sin (θ5 + θ6)

2
.

An analogous derivation with p = θ1/2 and q = (θ5 + θ6)/2 leads to

λ(S2) =
θ1 + sin (θ5 + θ6)− sin [(θ1 + θ5 + θ6)]

2
.

Summing up λ(S1) and λ(S2) we obtain the target formula for λ(D1).

Proof of Theorem 4.3.1 We compute Primus’ best reply function.
Given t1, b1, t2, b2, and b, Primus would like to choose t in order to
minimise λ(D1). Because of the 1–1 mapping between t and θ1, we
can reformulate this problem as the choice of the optimal angle θ1
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and compute his best reply with respect to θ1. Differentiating (1)
from Lemma .1.1, we find

∂λ(D1)

∂θ1

=
1− cos(θ1 + θ5 + θ6)

2
> 0

for any argument, because 0 < |θ1 + θ5 + θ6| < 2π under the as-
sumption that l and r are interior. Since λ(D1) is (strictly) increasing
in θ1, minimising θ1 by choosing t = t1 is a dominant strategy for
Primus. By a similar argument, b = b2 is a dominant strategy for Se-
cunda. Thus, the unique Nash equilibrium (in dominant strategies)
is (t∗, b∗) = (t1, b2).�

.1.2 Proof of Proposition 4.3.1

We use the same notation of the previous proof. Hence, τ = t̂1ot2 =

θ1 + θ2 and β = b̂1ob2 = θ4 + θ5. Moreover, θR = θ3 and θL = θ6.

Proof. The thick line defining the common categorisation divides the
disagreement region into two sectors S1(t1t2b2) and S2(b2b1t1). The
area λ(S1) is the difference between the areas of the circular segment
from t1 to b2 with central angle (τ + θ3) and of the circular segment
from t2 to b2 with central angle θ3. Hence,

λ(S1) =
τ + sin θ3 − sin(τ + θ3)

2
.

Similarly,

λ(S2) =
β + sin θ6 − sin(β + θ6)

2
.

Note that (τ+θ3)+(β+θ6) = 2π; consequently, sin(τ+θ3) = − sin(β+

θ6).
Clearly, Primus is stronger if and only if λ(S1) − λ(S2) ≥ 0. The

sign of the difference

λ(S1)− λ(S2) =
τ − β + sin θ3 − sin θ6 − 2 sin(τ + θ3)

2
(4)

is not trivial. We distinguish two cases and study such sign.

1) Assume τ+θ3 ≥ π ≥ β+θ6. We consider two sub-cases, depending
on the sign of θ6 − θ3. Let us begin with θ6 ≥ θ3. We have

λ(S1)− λ(S2) =
τ − β + sin θ3 − sin θ6 − 2 sin(τ + θ3)

2
(5)

=
2(τ + θ3 − π) + [(θ6 − sin θ6)− (θ3 − sin θ3)]− 2 sin(τ + θ3)

2
.
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Since τ + θ3 ≥ π by assumption, the first and the last term in the
numerator are positive. Moreover, as the function x − sinx is in-
creasing on (0, π), the term in square brackets is also positive. Hence,
λ(S1)− λ(S2) ≥ 0.

Consider now the sub-case θ6 < θ3. Decomposing S1 into the
circular segment from t1 to t2 with central angle τ and the triangle
T (t1t2b2), we obtain

λ(S1) =
τ − sin τ

2
+ 2 sin

(
θ3

2

)
sin

(
τ + θ3

2

)
sin
(τ

2

)
,

and, similarly,

λ(S2) =
β − sin β

2
+ 2 sin

(
θ6

2

)
sin

(
β + θ6

2

)
sin

(
β

2

)
.

Hence,

λ(S1)− λ(S2) =
(τ − sin τ)− (β − sin β)

2
(6)

+2 sin

(
τ + θ3

2

)[
sin

(
θ3

2

)
sin
(τ

2

)
− sin

(
θ6

2

)
sin

(
β

2

)]
.

The first term is positive by the increasing monotonicity of the func-
tion (x − sinx) on (0, π). We claim that the second term is also pos-
itive. If θ3 ≤ π, this follows because sinx is increasing in (0, π/2),
and thus sin(θ3/2) sin(τ/2) ≥ sin(θ3/2) sin(β/2) ≥ sin(θ6/2) sin(β/2).
If θ3 > π, then θ6 ≤ τ + β + θ6 = 2π − θ3 < π; thus, sin (θ6/2) ≤
sin (π − θ3/2) = sin(θ3/2), which suffices to establish the claim. From
the positivity of the two terms, we conclude that λ(S1) ≥ λ(S2).

2) Assume τ + θ3 < β + θ6. Since by assumption τ ≥ β, we have
θ6 ≥ θ3. By (4), using the identity τ + β + θ3 + θ6 = 2π, we have

2 [λ(S1)− λ(S1)] = τ − β + sin θ3 + sin (τ + β + θ3)− 2 sin(τ + θ3)

and it suffices to study the sign of the right-hand term. Fix t2 and
b2. Given τ in (0, π), consider the function f(β) = τ − β + sin θ3 +

sin (τ + β + θ3)−2 sin(τ+θ3) for β in (0, π). Since f ′(β) = −1+cos(τ+

β + θ3) < 0, the function is strictly decreasing on [0, τ ]. Moreover,

f(0) = τ+sin θ3−sin (τ + θ3) = [(τ + θ3)− sin (τ + θ3)]−(θ3 − sin θ3) ≥ 0
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by the increasing monotonicity of (x − sinx) on [0, π]. Finally, we
have

f(τ) = sin θ3 + sin(θ3 + 2τ)− 2 sin(τ + θ3) (7)

= sin(θ3) + [sin(θ3) cos(2τ) + cos(θ3) sin(2τ)]− 2 [sin(τ) cos(θ3) + cos(τ) sin(θ3)](8)

= sin(θ3) [1 + cos(2τ)− 2 cos τ ] + cos(θ3) [sin(2τ)− 2 sin τ ]

Using the identities cos(2τ) = 2 cos2 τ − 1 and sin(2τ) = 2 sin τ cos τ ,
we obtain

f(τ) = 2 [cos τ − 1] sin (τ + θ3) ≤ 0.

By the intermediate value theorem, there exists a unique β in [0, τ ]

such that f(β) = 0. For β ≤ β, λ(S1) ≥ λ(S2) and Primus is stronger.
For β > β, the opposite inequality holds and Secunda is stronger.

.1.3 Proof of Theorem 4.3.2

Similarly to the above (except for switching b1 and b2), the endpoints
(ti, bi) for the two agents’ chords and their choices for t and b identify
six sectors. Proceeding clockwise, these are numbered from 1 to 6 on
the left-hand side of Figure 8.
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FIGURE 8: Visual aids for the proof of Theorem 4.3.2.

For each sector i, we denote its central angle by θi. The nota-
tion is similar, except that now θ3 = t̂2ob1, θ4 = b̂1ob, θ5 = b̂ob2, and
θ6 = b̂2ot1. Recall that τ = θ1 + θ2 and β = θ4 + θ5; moreover, since
the categorisations are characterised by diameters, τ = β. The fol-
lowing lemma characterises the disagreement area of each player as
a function of the six central angles.

Lemma .1.3 The disagreement areas for Primus and Secunda are, re-
spectively:

λ(D1) =
θ1 − sin θ1

2
+
θ4 − sin θ4

2
+2 cos

(
θ1

2

)
cos

(
θ4

2

)
sin2 (θ1/2) + sin2 (θ4/2)

sin (θ1/2 + θ4/2)
,

(9)
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and

λ(D2) =
θ2 − sin θ2

2
+
θ5 − sin θ5

2
+2 cos

(
θ2

2

)
cos

(
θ5

2

)
sin2 (θ2/2) + sin2 (θ5/2)

sin (θ2/2 + θ5/2)
.

Proof. The disagreement region D1 for Primus can be decomposed
into the two sector-like regions S1(t1tk) and S2(kb1b) as shown on the
right-hand side of Figure 8. We compute the areas λ(S1) and λ(S2),
and then add them up to obtain λ(D1).

The region S1(t1tk) can be decomposed into two parts: the circu-
lar segment from t1 to twith central angle θ1, and the triangle T (t1tk).
The area of the circular segment is (θ1 − sin θ1)/2. The computation
of the area of the triangle needs to take into account that the position
of k depends on t. We use the ASA formula: given the length a of
one side and the size of its two adjacent angles α and γ, the area is
(a2 sinα sin γ)/ (2 sin(α + γ)). We pick a = tt1, α = k̂t1t, and γ = t̂1tk.
By the inscribed angle theorem, α = (π − θ1)/2 and γ = (π − θ4)/2.
Recall that tt1 = 2 sin(θ1/2); moreover, sinα = sin ((π − θ1)/2) =

cos(θ1/2) and, similarly, sin γ = cos(θ4/2). Hence,

λ(T ) =
2 (sin(θ1/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

Adding up the two areas, we obtain

λ(S1) =
θ1 − sin θ1

2
+

2 (sin(θ1/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

By a similar argument,

λ(S2) =
θ4 − sin θ4

2
+

2 (sin(θ4/2))2 · cos(θ1/2) · cos(θ4/2)

sin (θ1/2 + θ4/2)
.

Summing up λ(S1) and λ(S2) provides the formula for λ(D1). The
derivation of a specular formula for λ(D2) is analogous.

A direct study of the sign of the derivative ∂λ(D1)/∂θ1 is quite in-
volved, but the following lemma greatly simplifies it. An analogous
result holds for Secunda.

Lemma .1.4 Let a = cos(θ4/2), b = sin(θ4/2), c = ab = sin(θ4)/2, and
x = tan(θ1/4). Then

sgn

[
∂λ(D1)

∂θ1

]
= sgn

[
P (x)

]
, (10)
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where

P (x) = −
[
c
(
1 + x2

)2 − 2
(√

2 + 1
)
x
(
1− x2

) ]
.

Proof. Differentiating (9) from Lemma .1.3 and using a few trigono-
metric identities, we obtain

∂λ(D1)

∂θ1

=
1− cos θ1

2
+

2 sin(θ1/2) cos2(θ1/2) cos(θ4/2)

sin (θ1/2 + θ4/2)
− cos(θ4/2)

[
sin2(θ1/2) + sin2(θ4/2)

]

sin2 (θ1/2 + θ4/2)

·
[

sin(θ1) sin(θ1/2 + θ4/2) + cos(θ1) cos(θ1/2 + θ4/2)
]

= sin2(θ1/2) +
sin(θ1) cos(θ1/2) cos(θ4/2)

sin (θ1/2 + θ4/2)
− cos2(θ4/2)

[
sin2(θ1/2) + sin2(θ4/2)

]

sin2 (θ1/2 + θ4/2)

Let a = cos(θ4/2), b = sin(θ4/2), and x = tan(θ1/4). Recall the double
angle formulas sin(θ1/2) = 2x/(1 + x2) and cos(θ1/2) = (1− x2)/(1 +

x2). Then

sin

(
θ1 + θ4

2

)
= a

(
2x

1 + x2

)
+ b

(
1− x2

1 + x2

)
=

2ax+ b(1− x2)

1 + x2
.

Substituting with respect to the new variable x, we find

∂λ(D1)

∂θ1

=

(
2x

1 + x2

)2

+
4ax(1− x2)2

(1 + x2)2 [2ax+ b(1− x)2]
− a2 [4x2 + b2(1 + x2)2]

[2ax+ b(1− x)2]2

= − N(x)

(1 + x2)2 [2ax+ b(1− x2)]2
, (11)

where, using the identity a2+b2 = 1, the polynomial in the numerator
can be written as

N(x) = a2
(
1 + x2

)2 [
4x2 + b2

(
1 + x2

)2]−4ax
(
1− x2

)2 [
2ax+ b(1− x2)

]
−4x2[2ax+b(1−x2)]2.

Let c = ab = sin(θ4)/2 and rewrite N(x) after collecting terms with respect to c:

N(x) = c2
(
1 + x2

)4 − 4cx
(
1− x2

) (
1 + x2

)2 − 4x2
(
1− x2

)2

=
[
c
(
1 + x2

)2 − 2x
(
1− x2

)]2
−
[
2
√

2x
(
1− x2

)]2

=
[
c
(
1 + x2

)2 − 2
(√

2 + 1
)
x
(
1− x2

)]
·
[
c
(
1 + x2

)2
+ 2

(√
2− 1

)
x
(
1− x2

)]
.

As both θ1 and θ4 are in the open interval (0, π) by construction, we have x =

tan(θ1/4) > 0 and c = sin(θ4)/2 > 0; hence, the second term in the multiplication
is strictly positive. Returning to (11), this implies

sgn

[
∂λ(D1)

∂θ1

]
= − sgn

[
N(x)

]
= sgn

[
P (x)

]
,
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with P (x) = −
[
c(1 + x2)2 − 2(

√
2 + 1)x(1− x2)

]
, as it was to be shown.

It is convenient to work with the central angles subtended by
the points on the circumference. Recall that, given t1, t2, b1, and b2,
Primus and Secunda simultaneously choose t and b, respectively.
Then Secunda’s choice of b is in a 1-1 mapping with the angle θ5 =

b̂2ob, while Primus’ choice of t has a similar relation to θ1 = t̂1ot.
The following lemma characterizes Primus’ best reply using the

central angles θ1 and θ5, rather than the endpoints t and b. As it
turns out, such best reply is always unique; hence, with obvious no-
tation, we denote it as the function θ1 = r1(θ5). Correspondingly, let
θ5 = r2(θ1) be the best reply function for Secunda. Finally, recall our
assumption that the individual categorisations are supported by di-
ameters: this implies that the two angular distances τ = θ1 + θ2 and
β = θ4 + θ5 are equal with 0 ≤ τ = β < π; moreover, players’ initial
positions have the same strength and the game is symmetric.

Lemma .1.5 The best reply functions for the two players are

r1(θ5) = arcsin

(
sin (β − θ5)√

2 + 1

)
and r2(θ1) = arcsin

(
sin (τ − θ1)√

2 + 1

)
,

with 0 ≤ θ5 ≤ β and 0 ≤ θ1 ≤ τ .

Proof. Consider Primus. (The argument for Secunda is identical.)
For any θ5 in [0, β], we search which value of θ1 in [0, τ ] minimises
λ(D1). We distinguish two cases.

First, suppose θ5 = β. Then θ4 = 0 and λ(D1) = (θ1 + sin θ1) /2.
As this function is increasing in θ1, the optimal value is θ∗1 = 0.

Second, suppose θ5 < β. We begin by finding the stationary
points of λ(D1). Recall that we let x = tan(θ1/4). By Lemma .1.4,
∂λ(D1)/∂θ1 = 0 if and only if P (x) = 0; that is, if and only if

c =
2
(√

2 + 1
)
x (1− x2)

(1 + x2)2 .

Replacing the double angle formulæ sin(θ1/2) = 2x/(1 + x2) and
cos(θ1/2) = (1− x2)/(1 + x2), we obtain

c =
(√

2 + 1
)

sin

(
θ1

2

)
cos

(
θ1

2

)
=
(√

2 + 1
) sin θ1

2
.
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On the other hand, since c = (sin θ4) /2 by definition and θ4 + θ5 = β,
this yields

sin θ1 =
sin θ4√
2 + 1

=
sin (β − θ5)√

2 + 1
.

Since θ5 ∈ [0, β], the only solutions to this equation are the supple-
mentary angles θ′1 and θ′′1 = π − θ′1 with

θ′1 = arcsin

(
sin (β − θ5)√

2 + 1

)
<
π

2
< π − θ′1 = θ′′1 .

These are the stationary points for λ(D1).
Clearly, θ′1 ≥ 0. We claim that θ′1 < τ . If π/2 ≤ τ , this is obvious.

Suppose instead τ < π/2. Since θ4 < β = τ < π/2, we have sin θ′1 =(√
2− 1

)
sin(θ4) < sin θ4 < sin τ and thus θ′1 < τ . We conclude that

the stationary point θ′1 belongs to the interval [0, τ ].
For θ1 = 0, we have x = 0 and P (x)|x=0 = −c = −(sin θ4)/2 <

0. Therefore, we have by continuity that P (x) changes sign from
negative to positive in θ′1 and from positive to negative in θ′′1 . By
Lemma .1.4, this implies that the only local minimisers for λ(D1) in
the compact interval [0, τ ] are θ = θ′1 and θ = τ . Comparing the
corresponding values for λ(D1), we find

λ(D1)|θ1=θ′ < λ(D1)|θ1=0 < λ(D1)|θ1=τ ,

where the first inequality follows from the (strict) negativity of
∂λ(D1)/∂θ1 in [0, θ− 1′) and the second inequality from a direct com-
parison. Hence, the global minimiser is θ′. Combining the two
cases, it follows that, for any θ5 in [0, β], the unique best reply is
r1(θ5) = arcsin

[
sin (β − θ5) /

(√
2 + 1

)]
.

Proof of Theorem 4.3.2 A Nash equilibrium is any fixed point
(θ1, θ5) of the map (

θ1

θ5

)
=

(
r1(θ5)

r2(θ1)

)

from [0, τ ]× [0, β] into itself. Substituting from Lemma .1.5 and using
τ = β, we obtain the system of equations





sin(θ1) =
sin (τ − θ5)√

2 + 1

sin(θ5) =
sin (τ − θ1)√

2 + 1

(12)
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Multiplying across gives

sin(θ1) sin(τ − θ1) = sin(θ5) sin(τ − θ5);

or, using the prosthaphaeresis formula,

cos (2θ1 − τ)− cos τ = cos (2θ5 − τ)− cos τ

from which we get that the only two possible solutions in [0, τ ] are

θ1 = θ5 or θ1 = τ − θ5.

When τ > 0, the second possibility can be discarded because, when
replaced in (12), it would yield the contradiction θ1 = θ5 = τ = 0.
(When τ = 0, we trivially obtain θ1 = −θ2 as in the first case.) Hence,
we are left with θ1 = θ5.

Substituting in the first equation of (12), we obtain

sin(θ1) =
sin (τ − θ1)√

2 + 1
=

sin τ cos θ1 − cos τ sin θ1√
2 + 1

.

As 0 ≤ θ1 < π/2, dividing by cos θ1 yields

tan(θ1) =
sin τ√

2 + 1 + cos τ

and the result follows.

.1.4 Proof of Proposition 4.3.2

Proof. Recall that the payoff for an agent is the opposite of the area of
the disagreement region. Consider Primus. (The proof for Secunda
is analogous.) Let D∗ and Ds be the region of disagreement between
Primus’ and the common categorisation at the equilibrium and, re-
spectively, at the Nash cooperative solution. For τ = 0, D∗ = Ds.
Hence, we assume τ 6= 0 and show that λ(D∗)− λ(Ds) > 0.

At the Nash bargaining solution, θs1 = θs2 = τ/2; replacing these
into (10), we find λ(Ds) = τ/2. At the Nash equilibrium, θ∗1 = θ∗5 and
thus θ∗4 = τ − θ∗1; substituting these into (10) and dropping super-
scripts and subscripts for simplicity, we obtain

λ(D∗) =
τ

2
−
[

sin θ + sin (τ − θ)
2

]
+2 cos

(
θ

2

)
cos

(
τ − θ

2

)
sin2 (θ/2) + sin2 ((τ − θ)/2)

sin (τ/2)
.
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Hence, using standard trigonometric identities,

λ(D∗)− λ(Ds) = −
[

sin θ + sin (τ − θ)
2

]

+ 2 cos

(
θ

2

)
cos

(
τ − θ

2

)
sin2 (θ/2) + sin2 ((τ − θ)/2)

sin (τ/2)

= − sin
(τ

2

)
cos
(
θ − τ

2

)

+

[
1

sin(τ/2)

] [
cos
(τ

2

)
+ cos

(
θ − τ

2

)] [
1− cos θ

2
− cos(τ − θ)

2

]

= −
[

1

sin(τ/2)

] [
1− cos2

(τ
2

)]
cos
(
θ − τ

2

)

+

[
1

sin(τ/2)

] [
cos
(τ

2

)
+ cos

(
θ − τ

2

)] [
1− cos

(τ
2

)
cos
(
θ − τ

2

)]

=

[
cos(τ/2)

sin(τ/2)

]
sin2

(
θ − τ

2

)
,

from which we obtain

sgn [λ(D∗)− λ(Ds)] = sgn [tan(τ/2)] .

Since 0 < τ < π, tan(τ/2) > 0, and the claim follows.



90

Bibliography

[1] Benz, A., Jager, G., van Rooy, R. (2005), editors. Game Theory and
Pragmatics. Basingstoke, UK: Palgrave Macmillan.

[2] Clark, R. (2012). Meaningful Games: Exploring Language with
Game Theory. Cambridge, MA: The MIT Press.

[3] Cohen, H. & Lefebvre, C. (2005), editors. Handbook of Categoriza-
tion in Cognitive Science. Amsterdam: Elsevier.

[4] Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought.
Cambridge, MA: The MIT Press.

[5] Gärdenfors, P. (2014). The Geometry of Meaning: Semantics based
on Conceptual Spaces. Cambridge, MA: The MIT Press.

[6] Gärdenfors, P. (2014a). Levels of communication and lexical se-
mantics. Synthese, accepted for publication.

[7] Honkela, T., Könönen, V., Lindh–Knuutila, T., Paukkeri, M.-S.
(2008). Simulating processes of concept formation and commu-
nication. Journal of Economic Methodology 15, 245–259.

[8] Jäger, G. (2007). The evolution of convex categories. Linguistics
and Philosophy 30, 551–564.

[9] Jäger, G., & Van Rooij, R. (2007). Language structure: Psycho-
logical and social constraints. Synthese 159, 99–130.

[10] Jäger, G., Metzger, L.P., Riedel, F. (2011). Voronoi languages:
Equilibria in cheap-talk games with high-dimensional types
and few signals, Games and Economic Behavior 73, 517–537.

[11] Keysar, B. (2007). Communication and miscommunication: The
role of egocentric processes, Intercultural Pragmatics 4, 71–84.

[12] Kruschke, J.K. (2008). Models of categorization. In: R. Sun (Ed.),
The Cambridge Handbook of Computational Psychology, New
York: Cambridge University Press, 267–301.

[13] LiCalzi, M. & Mâagli, N. (2016) Bargaining over a common cate-
gorisation. Synthese 193, 705-723.



BIBLIOGRAPHY 91

[14] Ludlow, P. (2014). Living Words: Meaning Underdetermination and
the Dynamic Lexicon. Oxford, UK: Oxford University Press.

[15] Mervis, C., & Rotsch, E. (1981). Categorisation of natural objects.
Annual Review of Psychology 32, 89–115.

[16] Parikh, P. (2010). Language and equilibrium. Cambridge, MA: The
MIT Press.

[17] Rotsch, E. (1975). Cognitive representations of semantic cate-
gories. Journal of Experimental Psychology: General 104, 192–233.

[18] Warglien, M. & Gärdenfors, P. (2013). Semantics, conceptual
spaces, and the meeting of minds. Synthese 190, 2165–2193.

[19] Warglien, M. & Gärdenfors, P. (2015). Meaning negotiation. In:
Zenker, F. & Gärdenfors, P. (eds.), Applications of Conceptual
Spaces: The Case for Geometric Knowledge Representation, Dor-
drecht: Springer, 79–94.

[20] Wernerfelt, B. (2004). Organizational languages. Journal of Eco-
nomics and Management Strategy 13, 461–472.


	Declaration of Authorship
	Acknowledgements
	Introduction
	The Banach fixed point theorem
	Applications
	Brouwer's fixed point theorem
	From the non retraction theorem to Brouwer's theorem
	Poincaré-Miranda theorem


	Chapter 2: The hairy ball theorem
	Milnor's proof
	Main results

	Brouwer's theorem extensions
	Topological extension
	Multimaps extension
	Kakutani's fixed point theorem


	Chapter 3: Selection theory
	Michael's selection theorems
	Main Results

	Chapter 4: Applications of Brouwer's and Kakutani's fixed point theorems
	Brouwer's fixed point theorem applications
	Kakutani's fixed point theorem applications
	Joint applications with selection theory: the equilibrium theory
	Game theory: the Nash equilibrium

	Main results


	A new approach of the Hairy ball theorem
	Introduction
	Preliminaries and notations
	Equivalent versions
	Main results
	 Proof of Lemma 2.4.1
	The construction of the function 
	Principal step

	Proof of Theorem 2.4.1

	Transition smooth-continuous version
	Proof of Proposition 2.5.1
	The construction of G"0365Gp
	Existence of connected components
	A pull through connected component

	Transition smooth-continuous versions

	Appendix

	A convex selection theorem with a non separable Banach space
	Introduction
	Preliminaries and notations
	Notations
	Classical definitions

	Michael's selection theorems (1956)
	The results
	Proof of Theorem 3
	Elementary results on a set ``Peeling''
	Affine geometry
	Proof of Proposition 3.4.1
	Proof of Theorem 3

	Proof of Theorem 4
	Notations and Preliminaries
	Proof of Theorem 4


	 Bargaining over a common categorisation
	Introduction
	Model
	Results
	Focused disagreement
	Widespread disagreement

	Concluding comments
	Proofs
	Proof of Theorem 4.3.1
	Proof of Proposition 4.3.1
	Proof of Theorem 4.3.2
	Proof of Proposition 4.3.2



