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Abstract

More and more large repositories of texts which must be automatically processed rep-
resent their content through the use of descriptive markup languages. This method
has been diffused by the availability of widely adopted standards like SGML and,
later, XML, which made possible the definition of specific formats for many kinds
of text, from literary texts (TEI) to web pages (XHTML). The markup approach
has, however, several noteworthy shortcomings. First, we can encode easily only
texts with a hierarchical structure, then extra-textual information, like metadata,
can be tied only to the same structure of the text and must be expressed as strings
of the markup language. Third, queries and programs for the retrieval and pro-
cessing of text must be expressed in terms of languages where every document is
represented as a tree of nodes; for this reason, in documents where parallel, overlap-
ping structures exists, the complexity of such programs becomes significantly higher.
Consider, for instance, a collection of classical lyrics, with two parallel hierarchies
lyric > stanzas > verses > words, and lyric > sentences > words, with title and in-
formation about the author for each lyric, and where the text is annotated both with
commentary made by different scholars, and with grammatical categories in form
of tree-structured data. Such a collection, if represented with markup techniques,
would be very complex to create, manage and use, even with sophisticated tools,
requiring the development of complex ad-hoc software. To overcome the above limi-
tations due to the use of markup languages partial solutions exist, but at the expense
of greatly increasing the complexity of the representation. Moreover, markup query
languages need to be extended to take these solutions into consideration, making
even more difficult to access and use such textual collections.

In the project “Musisque deoque II. Un archivio digitale dinamico di poesia
latina, dalle origini al Rinascimento italiano”, sponsored by the Italian MIUR, we
have built a model and a language to represent repositories of literary texts with
any kind of structure, with multiple and scalable annotations, not limited to textual
data, and with a query component useful not only for the retrieval of information,
but also for the construction of complex textual analysis applications. This approach
fully departs from the markup principles, borrowing many ideas from the object-
oriented models currently used in programming languages and database areas. The
language (called Manuzio) has been developed to be used in a multi-user system to
store persistently digital collections of texts over which queries and programs are



evaluated.
Our model considers the textual information in a dual way: as a formatted

sequence of characters, as well as a composition of logical structures called textual
objects. A textual object is a software entity with a state and a behavior. The state
defines the precise portion of the text represented by the object, called the underlying
text, and a set of properties, which are either component textual objects or attributes
that can assume values of arbitrary complexity. The behavior is constituted by a
collection of local procedures, called methods, which define computed properties or
perform operations on the object. A textual object T is a component of a textual
object T ′ if and only if the underlying text of T is a subtext of the underlying text
of T ′. The Manuzio model can also represent aggregation of textual objects called
repeated textual objects. Trough repeated textual objects it is possible to represent
complex collections like “all the first words of each poem” or “all the first sentences
of the abstracts of each article” in a simple and clean way. A repeated textual object
is either a special object, called the empty textual object, or a set of textual objects
of the same type, called its elements. Its underlying text is the composition of the
underlying text of its elements. Each textual object has a type, which represents a
logical entity of the text, such as a word, a paragraph, a sentence, and so on. In the
Manuzio model types are organized as a lattice where the greatest element represents
the type of the whole collection, and the least is the type of the most basic objects
of the schema. Types can also be defined by inheritance, like in object-oriented
languages.

Manuzio is a functional, type-safe programming language with specific constructs
to interact with persistently stored textual objects. The language has a type system
with which to describe schemas and a set of operators which can retrieve textual
objects without using any external query language. A persistent collection of doc-
uments can be imported in a program and its root element can be referenced by
a special variable collection. From this value all the textual objects present in
the collection can be retrieved through operators that exploit their type’s structure:
the get operator retrieve a specific component of an object, while the all operator
retrieve recursively all the components and subcomponents of a certain type of an
object. Other operators allow the creation of expressions similar to SQL or XQuery
FLOWR expressions. Since the queries are an integrated part of the language,
they are subject to type-checking and can be used in conjunction with all the other
language’s features transparently.

The concepts introduced by the thesis have been exploited to develop a prototype
of a system where Manuzio programs can be evaluated over a collection of texts.
Such system has been successfully used to test and refine our approach.
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1
Introduction

Research in the field of humanities is often concerned with texts in the form of
documents, literary works, transcriptions, dictionaries, and so on. Interpreting,
analyzing, sharing insights and results on these documents is the core of scholarship
and research in literature, history, philosophy, and other, similar, fields. The recent
technology advancements are affecting profoundly the study and use of texts in
the humanities area, and a growing number of projects and experiments have been
presented in literature to explore the possibilities given by electronic representations
of those texts. Such digital collections are considered to be an extremely useful
addition to the set of tools available to humanities researchers. Computational
methods can provide an overall picture of large quantities of textual material, or
particular patterns in the text, that would be difficult to obtain otherwise. These
methods, even if advanced, rarely provide final results, but are nevertheless powerful
tools in the hand of humanities researchers that can use them to reduce the cognitive
gap between physical texts (like books, handwritten documents, and so on) and their
digital representation.

The process of digital analysis has been approached firstly in the late 60s, when
early ad-hoc systems were used for textual storage and retrieval. In 1986 the Stan-
dard Generalized Markup Language (SGML) begun to offer a mechanism to define
a markup scheme that could handle many different types of text, could deal with
metadata, and could represent complex scholarly interpretation along with basic
structural features of documents. In 1990 the first edition of the Guidelines for
Electronic Text Encoding and Interchange from the Text Encoding Initiative (TEI)
has been distributed to serve as an SGML encoding standard, later converted to XML.
The TEI is often considered the most significant intellectual advance in the field,
and has influenced the markup community as a whole. The use of the XML data
model, however, brings some important drawbacks caused by its tree-like structure.
The representation of multiple, concurrent hierarchies, a common situation in lit-
erary analysis, becomes a challenge in such context. Multiple solutions has been
proposed to overcome this problem and to adapt XML query languages, but they are
in fact workarounds that substantially store a graph structure in a tree one. At
the end of the 90s an important contribution in literature proposed to see text like
an “ordered hierarchy of content objects”; a text is viewed as multiple hierarchy
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of logically recognizable entities like words, paragraphs, and so on. Other systems
employ an ad-hoc data model and their query languages can successfully handle
multiple hierarchies. While many are based on XML, others depart completely from
it or offer a different markup language based on a graph data model as a way to
represent textual information.

The Manuzio project aims to be a general tool to be used in the field of liter-
ary text analysis. Manuzio offers a powerful, yet simple, formal model to represent
complex, concurrent textual structures and their annotations in an efficient way; its
underlying data model is in fact a directed acyclic graph. The model is based on
the idea of texts as multiple hierarchies of objects: objects are modeled in a way
similar to classical object-oriented programming languages objects. Each textual
object has a type, and each type has a specific interface that specify which com-
ponents, attributes, and methods are accessible by the user. Textual objects also
support inheritance, so that objects can be declared as members of a subtype of
another object’s type. All the characteristics of such object are inherited. Textual
schemas arises from well-established concepts of the object-oriented programming
and databases field. They are instanced through the use of a data definition lan-
guage that allows users to specify which textual objects types are present in the
text, their relationships, and which annotations can be applied to them. In our
project, all the documents in a corpus must conform to a certain Manuzio model.
The possible specification of constraints directly in the model definition is also being
investigated.

Textual objects are stored persistently in what we call a textual database. In
our project each textual database represents a self-contained corpus where all docu-
ments share the same Manuzio model. This choice makes the implementation of the
prototype easier and seems to be the main way in which textual analysis systems
are organized. The persistent layer is abstracted from the final user and can accom-
modate all the possible Manuzio models. The user interacts with textual databases
through the Manuzio language, a Turing-complete programming language with per-
sistent capabilities and specific constructs to query, annotate, and explore textual
objects and their annotations. From the language point of view the persistency is
transparent, so that textual objects are treated just like any other of the language’s
values.

We developed also a simple but working prototype to test and explore the po-
tentialities of our approach. To easily reach this goal, we designed the prototype
in a modular way: the constructs of the Manuzio language are partitioned in self-
contained bundles. Each bundle represents a logical portion of the language, like
query operators or selection, or a specific type with some associated operators, like
integers, records, or textual objects. The Manuzio interpreter has been developed
entirely in an object-oriented way so that each element of the language is repre-
sented by an object. Bundles are collections of these elements and each one can be
included or excluded dynamically when the interpreter is started. We find that this
approach gives a high degree of control on the evolution of a language and is, at the
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same time, appropriate for the development of a prototype.
The Manuzio language is meant to be used in a system that allows users to

perform common queries in a simple, graphical way, but, at the same time, gives
the possibility of using more complex interfaces to perform arbitrary complex tasks.
The results of such queries can be annotated and shared with other users. Layers
of annotations on the same corpus can be created, shared, and eventually merged.

The Manuzio project aims to draw a bridge between humanities researchers and
programmers; when analyzing a text the humanities researchers often experience a
cognitive distance between their work and the data they work with. When work-
ing with XML-encoded texts with multiple hierarchies, for instance, the difficulty in
expressing queries of arbitrary complexity can hinder the research process. When
using ad-hoc, graphical systems, instead, the researcher is limited to the answers
the system is meant to give, and to expand such limits is an often difficult task.
Through the use of an interactive query language with specific, SQL-like, constructs
users can express common queries in a simple way. At the same time, however, they
are working with a full language that can express algorithms of arbitrary complexity,
so that they are not limited by a set of predefined inquiries.

In our opinion a system like the one we just sketched allows a rich environment
for humanities researchers that works in the field of literary analysis. The goal of this
work is to explore such possibility by defining a formal model for texts, a specification
of an ad-hoc programming language, and the sketch of a system where users can
interact with such language. We are aware that the project is ambitious and that the
development of a completely new programming language is a difficult task. For this
reasons the main outcome of the thesis is not a full system, but a prototype that,
despite its limitations, will be used to test the feasibility of the whole project. While
departing from the de facto standard of XML can be considered unpropitious, we feel
that the representation of concurrent structures in textual data requires the use of a
different, graph-based, data model. In our project XML still plays an important role
as the preferred language to export and share results with other systems, as well as
the most probable way of feeding the textual database’s parsing process. We also
choose to not make use, for now, of other approaches that already exists in literature
like other textual data models, specific storage systems, or text retrieval languages.
We felt that, in this way, our results would not be biased in a direction or another.
We are aware that the development of a system like the one we just described from
sketch is a long and difficult task that goes beyond the scope of this work; in the
thesis, in fact, we only scratched the surface of our ideal system’s features. We
feel that, however, a prototype that could be tested by experts of the domain of
applications has been an useful guideline to follow in future implementations.
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2
Motivations and Literature Survey

“Talk of nothing but business, and dispatch that business quickly.” –
Aldo Manuzio (on a placard placed in the door of his printing office)

2.1 Motivations and Goals

Literary text analysis is usually carried out through the use of programs written
in a general-purpose programming language. In these programs textual data is of-
ten stored persistently in XML, a meta-markup language that has recently become
a de facto standard in data representation and interchange. The data is then ac-
cessed from the programming language through the use of XML parsing libraries that
performs a mapping between XML hierarchies and the language’s data structures.
Despite some standard DTDs, like the one proposed by the TEI initiative, exist, the
encoding schemas are often arbitrary and the details of their structure are left to the
single implementations. Moreover, the XML markup language is not well-suited to
represent the structure of literary texts, since its underlying data model is basically a
tree, unable to denote parallel structures. This is not an uncommon requirement in
the field of literary analysis: a typical digitalization of a poem, for instance, should
provide information about both metrical and prosodic structures, such as verses and
sentences, that are not hierarchically nested. Another important shortcoming can
be found in annotations, an important feature in programs of textual analysis. In
systems that use XML as their data model annotations are often stored as simple
strings or only basic data types.

Finally, the lack of integration between the data and the programming language
do not encourage a clean programming style: the XML structures are usually accessed
through the use of query languages, like XPath or XQuery, that are embedded in
the programming language rather then part of it. The lack of specific constructs to
interact with text can also be an obstacle to the production of new queries for both
programmers and experts of the domain of application.

While different approaches, that will be discussed in the rest of the chapter,
exists, our analysis of such approaches and the exchange of views with experts hu-
manities researchers led us to believe that the field could benefit from the creation
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of a general-purpose tool to write complex programs of textual analysis over persis-
tently stored encoded texts where:

1. the data is stored persistently with an encoding system suitable to hold par-
allel, overlapping, hierarchies;

2. annotations on portions of the text can be of complex type, with the possibility
of referencing other portions of the text;

3. a full programming language with persistent capabilities and special textual
features is used to define the structure of the data and access it in a transpar-
ent, type-safe, way;

4. results of computations can be shared and compared between users.

The Manuzio system, presented in this work, is a proposal of such tool. The
goal of Manuzio is to encode literary texts in a model where portions of text with
a logical meaning are seen as textual objects, entities with strong similarities to
objects of object-oriented language. Textual objects have types, and are organized
in a containment relation. Such structure can be defined by an expert humanities
researcher through a formal data definition language where concurrent hierarchies
and complex annotations can be defined in a straightforward way. Textual objects
are stored persistently in a textual repository together their annotations. Each
textual repository contains a set of documents with the same structure, created by
parsing an input text with a set of recognizer functions, one for each declared textual
object type.

The Manuzio programming language, a Turing-complete language with persis-
tent capabilities and specific constructs to deal with textual objects, allows to express
textual analysis algorithms of arbitrary complexity. A subset of the language, with
a syntax and a semantics similar to the one of other query languages like SQL, can
also be used to interactively retrieve and annotate specific portions of text without
strong programming skills. The language is intended to be used in an environment
where textual repositories are available online and users with different access privi-
leges can perform simple queries, launch complex text analysis programs, annotate
textual objects, and share their results with other users. Figure 2.1 shows the main
components of the system and their users. A domain expert models a collection of
textual documents with the model discussed in Chapter 3. The Manuzio system
takes the model in input to produce a textual repository. A set of parsing tools
are used to load the documents into the repository. The data can then be accessed
through programs and queries written in the Manuzio language, either by expert
users or by means of a graphical interface.

During the rest of the thesis such components will be discussed in turn and,
in Chapter 6, the schema will be revisited to explain in depth how they interact
with each other to shape the Manuzio system. In the following sections a brief
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Figure 2.1: The Manuzio system.

history of text encoding will be presented, with particular attention to the problem
of overlapping hierarchies, data structure definition, and annotation capabilities of
the discussed approaches. After this discussion, in Section 2.4, the main drawbacks
of these approaches are put in evidence and we show how our approach, the Manuzio
system, can solve the majority of them in a graceful way.

2.2 A brief history of text encoding

In this section a quick overview of text encoding history will be given. While this
brief introduction will be useful to understand the motivations of the proposed
work and to justify some of our design choices, the reader can see [Hockey, 2004,
Schreibman et al., 2004] for a more in depth discussion.

2.2.1 Introduction and Descriptive Markup

The simplest way of representing text in computing is through the use of plain text, a
sequence of bits that can be interpreted as characters according to some encoding like
ASCII or Unicode. Plain text is the most used way to represent generic texts without
attributes such as fonts, subscripts, boldfaces, or any other formatting instruction.
All the information that a plain text carries is included in the text itself. The main
advantage of plain text is its human readability. A literary text can be represented
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by a plain text document, like in the following example that contains the first lines
of the Peer Gynt from Ibsen.

Example 1 (Plain Text)

1 AASE: Peer , you ’ re l y i n g !
2 PEER GYNT : No , I ’m not !
3 AASE: Well then , swear to me i t ’ s t r u e .
4 PEER GYNT: Swear? why shou l d I ?
5 AASE: See , you dare not ! Every word o f i t ’ s a l i e .

Note that extra-textual information, like the name of the speaker, can be included
in plain text format by the use of conventions. In Example 1, for instance, each line
contains a speech and the speaker name is placed at the head of the line, separated
from the speech itself by a colon and a space. As the complexity of extra-textual
data grows, it can be difficult to represent all such information in a plain text while
still maintaining a good degree of readability.

It is common to enrich digital text transpositions with information, distinct
from the text, to identify logical or physical features of such text or to give some
instructions on how to control text processing. Typically this additional information,
called markup, is represented as codes or character sequences that intersperses the
original text. The term markup is derived from the traditional publishing field where
it refer to the practice of “marking up” a manuscript with conventional symbolic
printer’s instructions in the margins and text of a paper manuscript. Markup was
commonly applied by typographers, editors, proofreaders, publishers, and graphic
designers.

In the mid-60s the use of computers to compose, print, and typeset text was
achieved by marking a binary representation of the text with codes distinguished
from the text by special characters or sequence of characters. The file could then
be processed and such codes were to be translated in formatting instructions for the
printer or phototypesetter that created the final output.

These codes quickly evolved into macros, abbreviations of formatting commands
that made easier the work of the compositor. The use of macros gave rise to an
interesting question; was the macro simply an abbreviation for a set of formatting
instructions, or would it be more natural to see a macro as an identity for a text
component such a title, a chapter or an extract? In the first case two different text
components that happen to share the same formatting are regarded as equals, but
are still different in the second case. This latter approach had a number of advan-
tages. It was possible, for instance, to alter the appearance of a textual component,
like a figure caption, without necessarily altering the appearance of any other text
component, thus simplifying the compositor work. Moreover, such approach al-
lows documents to be treated as structured data and thus be stored, queried, and
analyzed in an efficient way.

Such practice took the name of descriptive markup and has since then been
regarded as the most natural and correct approach to organize and process text
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[Goldfarb and Rubinsky, 1990, Coombs et al., 1987b]. In late 70s the widespread
usage of such markup methods gave birth to the first effort to develop a standard
machine-readable definition of markup languages, SGML.

2.2.2 SGML

The first effort to produce a text description language standard has been taken in the
80s by the American National Institute (ANSI) and the results of such efforts have
been published in 1986 under the name of Standard Generalized Markup Language
(SGML) [Goldfarb and Rubinsky, 1990].

SGML is a language to create other descriptive markup languages. For this rea-
son a more precise definition of SGML is metalanguage, a language for defining other
languages. This decision was taken to overcome the difficulty of defining a common
markup vocabulary for the entire publishing industry and to make the standard open
to new opportunities and innovations. At the same time this approach ensured that
any machine capable of recognize and parse SGML would have been capable of handle
any SGML compliant language. SGML generates tag languages that use markup to de-
limitate different portions of text and organize them in a hierarchical way. Elements
can have associated attributes to specify metadata on them. This logical view of
the text was paired with a standard for assigning general formatting instructions to
markup tags called Document Style and Semantics Specification Language (DSSSL).

In SGML a portion of marked text is called an element. The term element can be
used in a slightly ambiguous way, sometimes it refers to a specific entity like a title
or a verse, and sometimes it refers to the general kind of object like title or verse.
While in natural language such ambiguity is common enough to allow the reader
to clearly distinguish between the two different meanings, in SGML there is a formal
distinction between the two, so that the latter is called an element type.

One of the main notion of SGML is that of document type, a specification of a par-
ticular set of element types and relationships among them. Examples of document
type can be a novel, a letter, a scientific article, a catalogue and so on. An example
of relationship can be: an item of a catalogue can occur in a category, or a play has
a title and one or more acts, composed by speeches, and so on. Such definitions are
not predefined in the SGML standard but are left to the specific language designer.
A Document Type Definition (DTD) defines a specific document type language in a
formal way through a series of markup declarations.

SGML did not have a large scale application in the consumer publishing industry
and text processing as it was expected. According to [Schreibman et al., 2004] such
lack of success was related to the emergence of What You See Is What You Get
(WISIWYG) word processing on desktop publishing. Another explanation, given by
the same authors, is that SGML specification was too long, had too much optional
features, and some of them were too hard to program. For instance the CONCUR

feature of the language, that will be discussed more in depth in the next section
when we will talk about overlapping hierarchies, while useful for certain applications
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were not implemented by all the SGML parsers and thus could not be used outside
a controlled environment. One of the main applications of SGML has been its usage
for the definition of HTML. However even if successful HTML had flaws, like missing
a DTD, that made some of the lacks of the metalanguage clear. Other sources that
examine the perspective of using SGML as part of a document management system
can be found in [Alschuler, 1995, Travis and Waldt, 1995].

2.2.3 XML

XML, Extensible Markup Language, is a standard for document markup. It defines a
generic syntax used to markup data with human-readable tags and aims to provides
a standard format for computer documents. Data is included in XML as strings of
text surrounded by markup that describes the data and its properties. XML’s basic
unit of data is called an element. The XML specification defines the exact syntax that
the markup must follow: how elements are delimited by tags, which characters are
used to define tags, what names are valid element’s names, how to specify attributes,
and so on. XML is a metamarkup language, it does not have a fixed set of tags and
elements but, instead, allows developers to define the elements they need. In XML

the tags structure must be strictly hierarchical, but few other restrictions apply.
Restrictions on the permitted markup in a particular XML document can be de-

fined in a schema. Document instances can be compared to the schema: documents
that match the schema are said to be valid, while documents that does not match are
said to be invalid. There are several different XML schema languages, with different
levels of expressivity, the most broadly supported is the document type definition
(DTD). All current schema languages are declarative, thus there are always some
constraints that cannot be expressed without a Turing-complete programming lan-
guage.

XML is a descendant of SGML and it has been of immediate success from the
time the first specification was born in 1998. Many developers who needed a struc-
tural markup language but hadn’t been able to bring themselves to accept SGML’s
complexity adopted XML. It has since then used in the most different contexts. In
the course of years other, related, standards arose, like the Extensible Stylesheet Lan-
guage (XSL), an XML application for transforming XML documents into a form that
could be viewed in web browsers. This technology soon become XSLT, a general-
purpose language for transforming one XML document into another. The Cascading
Style Sheets (CSS) language, already in use in the HTML standard, were adapted by
the W3C to have the explicit goal of styling XML documents to be displayed in a
browser.

XML is essentially a simpler, more constrained version of SGML, so that it would
be easier to develop applications based on XML languages. The original specification
was only 25 pages long instead of the 155 of SGML. The main difference of XML is
that it allows the creation of new markup languages without the need to specify
a DTD for them. In SGML, for instance, a closing tag could be omitted; without a
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document definition such omission could generate ambiguity in many cases. In XML

the mandatory closing tag makes every well-formed document sound. If an XML

document is valid its semantics can be understood by a parser unambiguously even
without a DTD. We will see that each XML document is essentially a hierarchy (or
tree) of elements with attributes. Even if it is not strictly required an XML document
can have an associated document type definition to which it must conform.

Source Code 1 An example of XML text encoding: dramatical hierarchy.

1 <document>
2 <play t i t l e=”Peer Gynt” author=” Henrik Ibsen ”>
3

4 . . .
5

6 <sp who=’ Aase ’> Peer , you ’ re l y i n g ! </sp>
7 <sp who=’ Peer ’> No , I ’m not ! </sp>
8 <sp who=’ Aase ’> Well then , swear to me
9 i t ’ s t rue ! </sp>

10 <sp who=’ Peer ’> Swear? why should I ? </sp>
11 <sp who=’ Aase ’> See , you dare not !
12 Every word o f i t ’ s a l i e !
13 </sp>
14

15 . . .
16

17 </ play>
18

19 . . .
20

21 </document>

Source Code 2 An example of XML text encoding: metrical hierarchy.

1 <document>
2 <play t i t l e=”Peer Gynt” author=” Henrik Ibsen ”>
3

4 . . .
5

6 < l> Peer , you ’ re l y i n g ! No , I ’m not ! </ l>
7 < l> Well then , swear to me i t ’ s t rue ! </l>
8 <l> Swear? why should I ? See , you dare not ! </l>
9 <l> Every word o f i t ’ s a l i e ! </ l>

10

11 . . .
12

13 </ play>
14

15 . . .
16

17 </document>

While this quick introduction is sufficient for the purpose of the thesis further
informations on XML metalanguage can be found in [Bray et al., 2000]. In Source
Code 1 the Peer Gynt text presented earlier has been encoded in XML. Other parts
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Figure 2.2: The graphical representation of dramatic structure.

Figure 2.3: The graphical representation of metrical structure.
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of the document have been omitted and replaced by dots. Extra textual informa-
tion is encoded as attributes, while the XML elements represents the play’s speech
structure. In Source Code 2, instead, the metrical structure is represented. Both
these structures are in fact trees, as shown in Figure 2.2 and Figure 2.3. However,
since in a well formed XML document’s tags cannot overlap, it is difficult to represent
both metrical and dramatic structures at the same time. For further information on
the XML metalanguage, see [Light, 1997, Connolly, 1997]. A plethora of Web-based
material is present, among which the World Wide Web Consortium (W3C) pages
that provides official documentation on XML as well as SGML.

2.2.4 The Text Encoding Initiative

The first encoding of a literary text in digital format is attributed to Father Roberto
Busa that encoded in IBM punched cards the Index Thomisticus in 1949. Similar
works proliferated and in 1967 an already long list of “Literary Works in Machine
Readable Format” were published [Carlson, 1967]. Since then a standard encoding
format has been pursued, as it would have brought a number of obvious advantages
in data sharing and results access. Hindering such achievement were mainly the non-
trivial differences among the texts to be encoded and the difficulty to define a single
schema to accommodate all of them. Experts felt that the proliferation of different,
poorly designed, encoding systems would have been a treat to the computer support
in humanities research.

To solve this problem the Text Encoding Initiative (TEI) [Sperberg-McQueen et al., 1994,
Burnard and Sperberg-McQueen, 2005] was founded in the late 80s. Its goal was the
definition of a standard encoding for literary texts. The first draft of their guidelines
were published in 1990 and is, at the present time, one of the most extensively used
encoding systems in humanities applications. Since 2005, the guidelines are released
under GNU Public license and the development is taking place in public.

The TEI encoding is based on some principles that have been formulated in the
course of its evolution. In particular, in the P1 document the main design goals are:

The following design goals are to govern the choices to be made by
the working committees in drafting the guidelines. Higher-ranked goals
should count more than lower-ranked goals. The guidelines should

• suffice to represent the textual features needed for research

• be simple, clear, and concrete

• be easy for researchers to use without special-purpose software

• allow the rigorous definition and efficient processing of texts

• provide for user-defined extensions

• conform to existing and emergent standards
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The first choice of the guidelines has been the adoption of SGML as a metalanguage
for the encoding schema definition, language that has been later replaced by XML.
The TEI schema has been formalized in a DTD, a descriptive grammar of documents
in the humanities research field. The TEI schema reflect, in general, the main idea
of declarative markup languages, so that the emphasis is on logical and abstract
structures of the text rather then on physical features. However, the markup can
be used also in a presentational way, by marking physical structures, when a logical
interpretation is not practicable or the research methods employed are based on a
physical description of the document.

The textual features set of the TEI guidelines are partitioned in three levels: the
first is made up of textual elements that are considered universally valid for any kind
of document in the domain; the second includes all the elements that are proper of
a macro-subset of texts, like prose, poems, drama, dictionaries, and so on; the third
set is made of elements that are specific for certain analysis procedures.

This stratified ontology corresponds to a modular structure of the DTD, that has
been divided in tag sets so that the core tag set contains the universal elements, the
base tag set contains five subsets of elements, one for each of the basic document
types, and, finally, the additional tag set contains all the document-specific elements.
Every TEI user can customize his DTD by combining the core set with one of the basic
sets and any number of additional elements. By the use of such modularity, there is
no need of an antecedent agreement on what features of a text are important, since
such decision is largely left to the encoder. In practice, the TEI defines about 400
elements, but the complexity of schemas is usually kept tractable by the flexibility
of the specification.

2.2.5 Text as an OHCO

The success of descriptive markup suggested that it could be more than a way of
working with text, it could be the foundation of a digital text model. This idea has
been presented in [DeRose et al., 1997] under the label of “what is text, really?”.
The general idea behind such model is that text consists of objects of a certain
sort, structured in a certain way. The nature of objects is suggested by the logical
decomposition of a text in, for instance, chapters, sections, paragraphs, sentences
and so on, and not by a typographical decomposition in pages, lines etc.

Such objects are organized according to some hierarchical relation, they are
contained and contains other objects, and are ordered linearly by the natural lin-
ear order of the text they represent. With such assumptions text can be seen as
an “Ordered Hierarchy of Content Objects” (OCHO). The OCHO model performs a
basic kind of data abstraction over a text, where every portion of text can be ab-
stracted in an object with some fixed properties. The containment relation partially
constrain the structure of the text as, for instance, a chapter cannot occur inside
a paragraph. Other models of text have been compared to the OCHO like treat-
ing the text as a sequence of ASCII characters or graphical glyphs. According to
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Peer, you're lying!

No, I'm not!

Well then, swear to me it's true.

Swear? why should I?

See, you dare not! Every word of it's a lie.

Peer, you're lying!

No, I'm not!

Well then, swear to me it's true.

Swear? why should I?

See, you dare not!           Every word of it's a lie.

Figure 2.4: An example of content objects.

[DeRose et al., 1997, Coombs et al., 1987b] such model are inferior in functionality
and can be automatically generated from an OCHO encoding of the text. Moreover
such model copes well with formal languages like SGML or XML.

In Figure 2.4 an example of content objects is given. On the left a dialogue
have been split in speeches, on the right the same dialogue is split in metrical lines
of verse. The dialogue of the previous section example has been stripped of extra
textual information and content objects have been enclosed in boxes. On the left
the full dialogue is an object, together with each line of speech. On the right, the
dialogue is marked again but this time the verses have been enclosed in boxes. For
clearness reasons we omitted to enclose each single word in a box. It is easy to see
how content objects can be put in a containment relation: the dialogue contains
both verses and speeches, that contains words. The reader will also notice that
lines and speeches structures are parallel, and that it is not possible to establish a
containment relation between them. This problem, called overlap, will be discussed
in depth in Section 2.3.

The OCHO view of the text will be of central importance in the development of
the Manuzio model, since our approach also see the text as a hierarchy of objects
similar to the objects typical of object-oriented languages.

2.2.6 TexMECS and GODDAG

The approach presented in this section is part of the MLCD (Markup Languages
for Complex Documents) project, that aims to integrate a novel notation, a data
structure, and a constraint language to overcome the overlapping problem. One
of the MLCD achievements is the specification of the GODDAG (Generalized Ordered-
Descendant Directed Acyclic Graph) data structure [Sperberg-McQueen and Huitfeldt, 2004],
based on the idea that overlaps can be represented as multiple parentage between
text nodes. A GODDAG is a directed acyclic graph where each node is either a leaf
node, labeled with a string, or a nonterminal node, labeled with a generic identi-
fier. Directed arcs connect nonterminal nodes with each other and with leaf nodes.
No node dominate another node both directly an indirectly, but any node can be
dominated by any number of nodes.
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Figure 2.5: Peer Gynt represented as a GODDAG data structure.

In Figure 2.5 the GODDAG data model has been applied to the Peer Gynt example
and the results are shown as a graph.

The GODDAG data structure can be generalized or restricted. The former is a
complex data structure that lend itself to the representation of complex documents
with multiple roots, alternate text ordering, fragmented elements, and so on. The
latter is simpler, often sufficient for literary text representation of documents with
concurrent hierarchies and arbitrarily overlapping elements, but without the complex
features exemplified above.

The XML data model can be seen as a subset of GODDAGs, since trees are a subset
of directed acyclic graphs. This means that it is possible to construct a GODDAG data
structure from any XML document. This achievement is very important because
it ensure backward compatibility with existing XML corpora. It is also possible,
through specific algorithms, to construct GODDAGs from multiple hierarchy documents
encoded in XML by one of the techniques presented later in thic chapter.

To denote in a natural and simple way a GODDAG structure a language alternative
to XML, called TexMECS has been developed [Huitfeldt and Sperberg-McQueen, 2001].
TexMECS is a markup language intended for experimental work in dealing with com-
plex documents. Every TexMECS document is directly mapped to a GODDAG structure
and vice versa. One of its main characteristics is its isomorphism with XML for docu-
ments that do not exhibit multiple hierarchies in their structure. Specific algorithms
exists to translate XML conventions to represent complex structures to TexMECS and
vice versa [Durusau and O’Donnell, 2002].

In Source Code 3 a simple example of TexMECS syntax is presented. The reader
can see that the syntax is pretty clear and the human readability of the document
is almost the same as plain XML. Since TexMECS is a non-XML syntax, it cannot take
advantage of existing XML software and infrastructure, nor of its wide adoption as a
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Source Code 3 TexMECS encoding of Peer Gynt example.

1 <sp who=”AASE” |< l | Peer , you ’ re l y i n g ! | sp>
2 <sp who=”PEER GYNT” |
3 |− l><+l |No , I ’m not ! | l> | sp>
4 <sp who=”AASE” |< l |Well then , swear to me i t ’ s t rue . | l >|sp>
5 <sp who=”PEER GYNT”|< l | Swear? why should I ? | sp>
6 <sp who=”AASE” | See , you dare not ! | l>
7 < l | Every word o f i t ’ s a l i e . | l> | sp>

standard.

2.2.7 LMNL

LMNL (Layered Markup and aNnotation Language) is a non-xml approach to model
textual data that has been presented in 2002. The main contribution of LMNL is
its abstract data model:“LMNL documents contain character data which is marked
up using named and occasionally overlapping ranges. Ranges can have annotations,
which can themselves be annotated and can have structured content. To support au-
thoring, especially collaborative authoring, markup is namespaced and divided into
layers, which might reflect different views on the text”[Tennison and Piez, 2002].

The main idea behind the LMNL data model is the concept of range. The basic
form of a range is a contiguous sequence of characters of the base text, enclosed by
named tags that indicates the range start and end. Unlike XML ranges can overlap
freely. A document consisting of just text and ranges are called a flat document, a
document where exists just two layers, the text layer and the range layer. LMNL can
extend flat documents with additional layers to define complex relationship between
ranges in two way. First, other layers that contains ranges built over the text can
be added. This gives a completely alternative view of the document where ranges
of different layers are not related to each other. Second, layers can contains ranges
that range over other ranges instead that over the base text. With this feature
it is possible to create complex relationships between layers. Each range can be
annotated with a string, a simple annotation, or with a portion of LMNL code, a
complex, structured, annotation.

The example in Source Code 4 shows the first lines of Peer Gynt encoded in
LMNL. The reader can easily understand the syntax, where the speaker is denoted as
an attribute of the speaker element. An example of structured annotations can be
seen in the author name of the example, where a simple first name and last name
structure has been adopted.

The example shown above uses a LMNL ad-hoc syntax. Other encoding syntaxes
have been proposed: one of them, called CLIX (Canonical LMNL In XML) is a way
to encode the LMNL abstract data model into a plain XML document. Presented in
[DeRose, 2004], CLIX is based on the work done with OSIS (Open Scripture Infor-
mation Standard), this approach main idea is is to flatten a LMNL document into an
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Source Code 4 The Peer Gynt example encoded in LMNL.

1 [ document}
2 [ p lay [ author [ f i r s tname }Henrik{ f i r s tname ] [ lastname } Ibsen { lastname ] ] }
3 . . .
4 [ speaker [ who}AASE{who ] } [ l i n e }Peer , you ’ re l y i n g !{ speaker ]
5 [ speaker [ who}PEER GYNT{who ] No , I ’m not !{ speaker ]{ l i n e ]
6 [ speaker [ who}AASE{who ] [ l i n e }Well then , swear to me i t ’ s t rue !{ l i n e ]{ speaker ]
7 [ speaker [ who}PEER GYNT{who ] [ l i n e }Swear? why should I ?{ speaker ]
8 [ speaker [ who}AASE{who ] See , you date not !{ l i n e ]
9 [ l i n e }Every word o f i t ’ s a l i e !{ l i n e ]{ speaker ]

10 . . .
11 {play ]
12 {document ]

XML document encoded with a sort of milestones called Trojan Milestones.
LMNL is an emerging data model that can represent textual information in a natu-

ral way. While efficient implementations are still under development, the possibility
to represent a LMNL model in XML adds an high degree of portability to such solution.

2.2.8 Textual Models

Textual models focus on the representation of textual data. The goal of such models
is to describe texts by their structure, to allow operations of different nature on the
texts and to express constraint both structure and operations. In this section two
different textual models will be presented, TOMS and MdF. Both shares with Manuzio
the ability to represent textual information without being constrained by markup
language limitations but, on the other hand, they require an ad-hoc way to store
and retrieve data.

Textual Object Management System

The TOMS (Textual Object Management System) model has been developed in early
90s [Deerwester et al., 1992] and has been used as part of a full text retrieval system.

TOMS deals with typed textual objects, a component of logical interest in the text
that can be recognized in some way. The textual model of TOMS consists in a set of
textual object types which relationships are defined by a grammar that can express
the relationships between objects. The possible relationships are:

• Repetition: a list of objects of the same type. For instance a paragraph can
be seen as a repetition of sentences.

• Choice: disjoint union of objects. For instance a chapter can be made by
either sections or tables.

• Sequence: cartesian product of objects. A fixed sequence of different objects.
An email, for instance, can be seen as a sequence of a subject and a body.
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• Parallel: union of objects. A set of parallel objects that occurs together in the
text. For instance a Bible chapter can be sees as composed of paragraphs and
of verses at the same time, thus allowing multiple views of the text.

The actual object recognition occurs from a text written in natural language and
encoded as plain text through a set of functions called the recognizer functions. A
recognizer function is dedicated to a specific type; it accepts a string of characters
and returns a list of pairs in the form (index, offset) of objects of that type present
in the text. The combination of the recognizer functions for all the types in the
grammar is called a document parser. Recognizer functions are partitioned in three
macro-categories:

• Regular Expressions: the TOMS system have a built-in regular expressions en-
gine that permits to easily identify all the textual objects that can be recog-
nized by pattern matching.

• Internal: complex recognizer functions can be written in the C programming
language and integrated into the TOMS function’s library.

• Enumeration: a workaround useful for textual objects that are difficult to
recognize algorithmically. This kind of functions allows manual specification
of the indexes that can be the results of human interaction, previous markup,
external recognizers, and so on.

Source Code 5 The TOMS structure of the Peer Gynt example.

1 document [ poem
2 SEQ (
3 t i t l e [ word ] ,
4 body PAR(
5 [ l i n e [ word ] ] ,
6 [ speech [ word ] ]
7 )
8 )
9 ]

The Source Code 5 shows how the Peer Gynt example textual objects can be
put in relation to form a TOMS structure. In this simple example we view the corpus
composed of a repetition of poems, each one composed by a title and a body. The
body is a parallel structure composed both of a repetition of lines and a repetition
of speeches, both composed of words. The syntax used is the one proposed in
[Deerwester et al., 1992] where SEQ and PAR represent, receptively, the sequence
and the parallel structuring constructs. The REP construct is, instead, abbreviated
by square brackets. The CHO construct for disjoint union is not used since it will
not have a correspondent in Manuzio.
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TOMS is better described as an indexing toolkit, a series of algorithms that create
an index of the logical objects of the text, with the word as the fixed basic, indivisible
object. A TOMS model is constrained by a grammar that permits to express basic
assumption on the text structure. It is not possible, for instance, to constrain
the cardinality of repetitions, while it is possible, through the parallel grammar
construct, to have concurrent elements, even at root level. The TOMS object model
is a C data structure that can be interrogated by a C library The document hierarchy
can be traversed starting from a predefined root cursor, a pointer to the top node
of the hierarchy. Finally, TOMS also allows for the definition attributes related to
objects. Such attributes, however, are not structured and cannot be queried easily
as the main text.

The TOMS system was implemented in C at first, but a more flexible version has
been subsequently written as an extension of a Perl interpreter, where each TOMS

function appears as a Perl primitive.
The TOMS introduces the important concept of basic, indivisible object. However

this basic object type is fixed, while a more flexible model should allow the encoder
to freely define such type. Another interesting concept of this system is the definition
of the root cursor as an entry point to traverse the hierarchy of objects. Both these
concepts will be present, with some improvements, in the Manuzio model presented
in section 3.

Mdf Model

The MdF (Monad dot Features) has been developed in [Doedens, 1994]. It is a
database oriented model well suited to store textual data and information about
that text. MdF offers an high level view of the underlying database and defines also
an access language to query such high level structure. The model has subsequently
been refined in [Petersen, 2002, Petersen, 1999].

The MdF model conforms to thirteen requirements described in [Petersen, 2002]:

• Objects: the model must be able to identify separate parts of the text, called
objects.

• Objects are unique: each object must be uniquely identifiable.

• Objects are independent: each object in the database must exists without the
need of referencing other objects.

• Object types: objects with similar, distinguishable characteristics must be
partitioned in types. Most of the times a type identify a logical, human rec-
ognizable, part of the text like a chapter or a paragraph.

• Multiple hierarchies: objects types can be organized in multiple, different
hierarchies.
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• Hierarchies can share types: an object type can be part of one or more hier-
archies.

• Object features: objects can have attributes, called features in the model, that
represent addition information not present in the text tied to a specific object.

• Variations: the model must be able to accommodate for word variations.

• Overlapping objects: object can overlap, even if they have the same type.

• Gaps: the text identified by an object is not required to be a contiguous
portion of the base text.

• Type language: the model needs a type language to specify object types and
their features.

• Data language: the model needs a strongly typed data language in which it
can specify its CRUD operations.

• Structural relations between types: objects of different types can be in relation
with each other. The model should provide a language to specify such relations.

The MdF model satisfies the first ten requirements. It defines a model for text
and a query language, but it does not provides languages to constraint the structure
of the objects, to insert, change or delete objects in an high level way, not to specify
how objects are structured.

The MdF model is based on the concept of monad. Monads are the basic building
blocks of the database and are represented by integer numbers. An object is a set of
monads. Every object has an object type that determines what features an object
has. A feature is a function that takes an object as parameter and returns another
value.

The backbone of the MdF model is a linear sequence of atomic elements called
monads. A monad is an entity that can be represented simply by an integer, so that
their associated integer number carries their relative ordering and that it is possible
to apply standard arithmetic relational operations to them to check for equality or
inequality. Note that monads are not text, just integers. The text will be tied to
monad through a special object, described later, which instances are composed of
just one monad. This high level view of the model data means that the MdF model
can be successfully applied not only to text but to anything that is strictly linear in
nature like, for instance, DNA sequences.

An object in a MdF model is a set of monads. There are no particular restrictions
on this set, so that objects can, for instance, have gaps by being composed by non
contiguous monads. Objects are grouped in types, with the only constraint that no
two objects of the same type can be composed of exactly the same set of monads.
This constraint is needed to satisfy the object identity principle described earlier in
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Figure 2.6: Peer Gynt represented as a MdF data structure.

the section. On the other hand, two objects of different type can be composed of
the same monads without breaking the model rules. It is important to note that, in
MdF objects are not composed by other objects, but by monads. Relations between
objects can be computed by computing basic set operations between their monad
sets and by taking the monads ordering into account.

Features are functions from objects to values. The object type of an object
determines which features that object has. The domain of a feature is always the
set of objects of the object type that define it, while the codomain is unrestricted
and can be of any type. In MdF features can be partial functions, so that a feature
value can be undefined for some objects even if their type specify it. In the MdF

model the text is modeled by defining an object type, usually Word, which serves as
the basic type of the model. Every object of this type are composed by exactly one
monad and have a special feature, called surface, that contains a string representing
a portion of the base text. Since monads are ordered following the base text linear
ordering the union of the basic object surfaces will reconstruct the parts of the text
that the model takes into account for analysis.

The EMdF (Extended Monad dot Features) model, developed in [Petersen, 1999],
is an extension of the MdF model. It defines and names a set of concepts derived
from the four Mdf basic concepts. Among them the concept of all m and any m
have been of particular interest for our work. all m is the type which have just
one object: the one consisting of all monads in the database. It represents the full
base text. any m is the object type that we called the base type in the previous
paragraph. Every object of that type is composed by exactly one monad.

A graphical representation of an MdF database that model the first verse of the
Peer Gynt example can be found in Figure 2.6. Each monad is simply an integer
number and have a corresponding object of the minimal type word. Each word has



2.3. Overlapping Hierarchies 23

Figure 2.7: MdF example.

a surface feature to store it’s corresponding text. Other objects are composed of
monads and have features but no text on their own. The full potential of an MdF

database can be better explained, however, by the example that the author gives in
[Petersen, 2002], proposed here in Figure 2.7. Here the modeled textual objects can
have gaps and self-overlapping, as can be seen in the phrase object of the figure.

The MdF model has been of great inspiration to Manuzio thanks to its clean
simplicity and its sound mathematical foundations. The concept of maximal and
minimal objects, as well as that of object types, will be present in Manuzio as well.
On the other hand, differently from MdF, objects in Manuzio are composed by other
objects. This makes MdF best suited for complex, semi-structured hierarchies, text
criticism applications, and so on, while our model will be best suited for highly
structured text, making its query and constraint languages will be easier to write
and use.

2.3 Overlapping Hierarchies

Markup languages have a fundamental shortcoming when dealing with literary texts.
They allow the representation of exactly one hierarchy: one single structure of the
document can be modeled over a text. XML-based markup, for instance, requires
that a document is organized hierarchically as a single tree, where each fragment of
text is contained in exactly one element and has only one parent.

In some cases this shortcoming is avoidable. For instance the logical structure
of a text, i.e. the decomposition in captions, lists, sections etc., differs completely
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from the syntactic structure such as sentences and phrases, but none of this element
types overlaps, so it is possible to represent them in a single hierarchical structure.
However the result is not only an admixture of elements taken from different con-
texts, but ignoring the problem also induces a containment relation between element
types that is not necessarily present in the text.

There are, in literature, plenty of examples in which the same fragment of text
needs to be associated to different, possibly hierarchically incompatible, marking.
For instance in verse dramas the metrical structure and the dramatic structure are
not only different in nature, but can generate what is referred, in literature, as an
overlapping problem [DeRose, 2004], for instance where a sentence goes beyond the
boundaries of a metrical line1.

Source Code 6 Overlapping Structures.

1 <document>
2 <play t i t l e=”Peer Gynt” author=” Henrik Ibsen ”>
3

4 . . .
5

6 < l>
7 <sp who=’ Aase ’> Peer , you ’ re l y i n g ! </sp>
8 <sp who=’ Peer ’> No , I ’m not ! </sp>
9 </ l>

10 < l>
11 <sp who=’ Aase ’> Well then , swear to me
12 i t ’ s t rue ! </sp>
13 </l>
14 <l>
15 <sp who=’ Peer ’> Swear? why should I ? </sp>
16 <sp who=’ Aase ’> See , you dare not !
17 </l>
18 <l>
19 Every word o f i t ’ s a l i e !
20 </ l>
21 </sp>
22

23 . . .
24

25 </ play>
26

27 . . .
28

29 </document>

In the Source Code 6 and Figure 2.8 both metrical and dramatic hierarchies are
encoded. This code fragment, however, is not a well-formed XML document since the
<l> and <sp> tags are not hierarchically nested. While an invalid XML document
has no meaning to a machine, it is easy to understand intuitively that the meaning
of such notation is that a part of the <l> element overlaps with a part of the
<sp> element. In the next section this problem, called overlapping of elements, is
discussed and different approaches to overcome it are overviewed. We will also see,

1Such situation is common in poetry and is called enjambment [Abrams and Harpham, 2008]
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Figure 2.8: The graphical representation of both dramatic and metrical structures.

in later sections, that by using an ad-hoc model for text, like the Manuzio model, is
an elegant an efficient way to solve overlaps.

2.3.1 Solutions to the Overlapping Problem

The overlapping problem has been largely discussed in literature. Different ways
to mark concurrent elements have been proposed: some o them are special kind of
XML or SGML encoding, while others, like TexMECS, LMNL, or ah-hoc textual models,
relay on a different data model to totally avoid the problem. The choice of using
an XML based solution to model overlapping hierarchies is mainly dictated by the
view of XML as a standard for data interchange. In a research environment the use
of standards is important so that different groups can work on the same data set,
results can be shared, and so on. In the rest of the section the main techniques used
to overcome the overlapping problem with SGML and XML are presented and briefly
discussed. A far more complete discussion can be found in [DeRose, 2004].

• CONCUR: an optional feature of SGML that allows multiple hierarchies to be
marked concurrently in a document. Since the definition of this feature was
optional in SGML it is not implemented by all SGML-languages parsers, making
its use architecture dependent and thus unreliable. The CONCUR feature have
not been ported to standard XML, even if some attempts to include this option
to vanilla XML have been proposed [Hilbert et al., 2005]. In Source Code 7 a
CONCUR example is given.

• Milestone Elements : this technique is described in depth in the TEI guidelines
[Sperberg-McQueen et al., 1994]. In order to encode overlapping structures
the milestones approach is to represent one hierarchy as standard XML, and
the others with empty elements that are seen as virtual starting and ending
tags. Such empty elements are called milestones and gives the name to the
technique. One of the main problem of this approach is the need to define a
primary hierarchy. An example of such approach is given in Source Code 8.
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A variant, called flat milestones, overcome this problem by marking all hier-
archies with milestones, but, on the other hand, produces very complex XML

documents.

• Fragmentation of Items : also called partial elements sometimes, is another
technique described in the TEI guidelines [Sperberg-McQueen et al., 1994].
Whenever an element overlaps another element, the former is split into two
separated elements in a way that preserves the document well-formedness.
Syntactic conventions are used to identify partial and non-partial elements and
to recognize a fragmented element pieces, as shown in Source Code 9. While
this technique allows advanced behaviors like the creation of non-contiguous
elements, it also introduces a dominance relationship between different hier-
archies that could not be meant by the encoder. Another way to express split
elements aggregation is also defined in the TEI specifications under the name
of reconstruction of virtual elements.

• Redundant Encoding : one of the simples approaches to solve the overlapping
problem is to have multiple copies of the document, each marked up with a dif-
ferent hierarchy. While no special tools are required to handle the documents,
each hierarchy has to be handled separately, so that relationships between el-
ements of different hierarchies cannot be examined. Moreover, multiple copies
have to be maintained, a practice that require additional space and is error
prone.

Source Code 7 Overlapping hierarchies: SGML concur.

1 <div1 type=” act ”>
2 <(D,V) div2 type=” scene ”>
3 <(V) l>
4 <(D) sp who=’ Aase ’> Peer , you ’ re l y i n g ! </(D) sp>
5 <(D) sp who=’ Peer ’> No , I ’m not ! </(D) sp>
6 </(V) l>
7 <(V) l>
8 <(D) sp who=’ Aase ’>
9 Well then , swear to me

10 i t ’ s t rue ! </(D) sp>
11 </(V) l>
12 <(V) l>
13 <(D) sp who=’ Peer ’> Swear? why should I ? </(D) sp>
14 <(D) sp who=’ Aase ’> See , you dare not !
15 </(V) l>
16 <(V) l> Every word o f i t ’ s a l i e !</(D) sp>
17 </(V) l>
18 . . .
19 </(D,V) div2>
20 </ div1>

With the exception of CONCUR all these approaches are in fact workarounds. They
complicate the document compromising human readability and requires special tools
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Source Code 8 Overlapping hierarchies: milestones in XML.

1 <sp who=’ Aase ’><lb n=”1”/>
2 Peer , you ’ re l y i n g ! </sp>
3 <sp who=’ Peer ’>
4 No , I ’m not ! </sp>
5 <sp who=’ Aase ’><lb n=”2”/>
6 Well then , swear to me i t ’ s t rue ! </sp>
7 <sp who=’ Peer ’><lb n=”3”/>
8 Swear? why should I ? </sp>
9 <sp who=’ Aase ’>

10 See , you dare not !
11 <lb n=”4”/>
12 Every word o f i t ’ s a l i e !
13 </sp>

Source Code 9 Overlapping hierarchies: fragmentation of XML elements.

1 <sp who=”Aase”>
2 < l part=” i ”>Peer , you ’ re l y i n g !</ l>
3 </sp>
4 <sp who=”Peer”>
5 <stage>without stopping </stage>
6 < l part=”f”>No , I ’m not !</ l>
7 </sp>
8 <sp who=”Aase”>
9 < l part=”n”>Well then , swear to me i t ’ s t rue !</ l>

10 </sp>
11 <sp who=”Peer”>
12 < l part=” i ”>Swear? Why should I?</ l>
13 </sp>
14 <sp who=”Aase”>
15 < l part=”f”>See , you dare not !</ l>
16 < l part=”n”>Every word o f i t ’ s a l i e .</ l>
17 </sp>

to be handled. Standard query languages for XML like, for instance, XPath and
XQuery are not natively compatible with such approaches2.

Stand-off Markup

Another technique, initially defined in the TEI guidelines [Sperberg-McQueen et al., 1994],
is the stand-off markup technique that has later been widely adopted by various
projects as a way to represent multiple, concurrent hierarchies of a single document.
The main idea is to have a source document written in XML or in plain text, and
a number of external documents, written in XML, where each element references a
portion of the source document3. Each external document is a view of the source
and represents an independent hierarchy. If the source document is plain text then
all hierarchies have equal importance, but we can define a main hierarchy by includ-

2There are, however, specialized versions of such languages that takes multiple hierarchies into
account [Jagadish et al., 2004, Witt, 2004a], but this goes beyond the scope of this thesis.

3While any sufficiently powerful pointing mechanism will work the TEI suggest the usage of
XPointer. Using a powerful tool allows also the creation of non-contiguous elements.
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ing it in the main document without losing the possibility of working with external
documents. The creation of unwanted dominance relationships between hierarchies
is thus avoided.

In the example in Source Code 10 the Peer Gynt metric and dramatic struc-
tures are encoded using a stand-off markup. In the main document the dramatical
hierarchy is encoded in standard XML, together with other elements that represents
line fragments. In the external document presented in Source Code 11 the metrical
structure is reconstructed through the TEI join element.

Source Code 10 Standoff markup example, the main document contains the dra-
matical structure.

1 <sp who=”Aase”>
2 < l id=”L1a”>Peer , you ’ re l y i n g !</ l>
3 </sp>
4 <sp who=”Peer”>
5 <stage>without stopping </stage>
6 < l id=”L1b”>No , I ’m not !</ l>
7 </sp>
8 <sp who=”Aase”>
9 < l id=”L2”>Well then , swear to me i t ’ s t rue !</ l>

10 </sp>
11 <sp who=”Peer”>
12 < l id=”L3a”>Swear? Why should I?</ l>
13 </sp>
14 <sp who=”Aase”>
15 < l id=”L3b”>See , you dare not !</ l>
16 < l id=”L4” >Every word o f i t ’ s a l i e .</ l>
17 </sp>

Source Code 11 Standoff markup example, the external document realize the
metrical structure.

1 <jo inGrp r e s u l t=” l ” targOrder=”y” targType=”L”>
2 < j o i n scope=” branches ” t a r g e t s=”L1a L1b”/>
3 < j o i n scope=” branches ” t a r g e t s=”L3a L3b”/>
4 </ joinGrp>

The main advantage of stand-off markup is the capability of working on read
only documents. In this way a read-only corpus can be analyzed or annotated by
different teams in different ways with ease. While powerful the stand-off markup ap-
proach completely destroy the XML documents human readability, and the resulting
documents cannot be queried, edited or validated without specific, ad-hoc, tools.

2.4 Conclusions and Comparison

In this chapter a survey of existing approaches to the digital representation and
analysis of literary texts has been given. While the topic is broad, each solution
has been presented from an high-level point of view to emphasize the need of other,
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more specific tools to define textual schemas and to allow different classes of users
to interact with persistently stored collections of texts. The main problems that
we observed in the approaches discussed so far are compared with the solutions
provided by our approach.

1. Limitations on Overlap: the main drawback when using a markup language
like SGML or XML to encode literary texts is the difficulty of representing mul-
tiple, concurrent hierarchies. While different approaches exists to overcome
such limit, they are substantially workarounds. The XML data model is, in
fact, a labeled, ordered tree structure, while a graph structure is needed to
represent concurrent hierarchies. These workarounds complicate the encod-
ing and usually they allow concurrent but not independent elements to exists.
Different approaches, like the use of an ad-hoc textual model, allow the use of
concurrent, independent hierarchies natively. The TOMS model, for instance,
allow textual object to be in a PAR relation, meaning that they share a same
portion of text in a non-hierarchical way. The MdF model, instead, takes a
different approach: all the objects are subsets of the basic building block set,
the monad set, so that the hierarchy of objects is in fact a two-level hierarchy
where all objects can overlap freely, even among the same type.

The Manuzio model solve the problem of concurrent hierarchies by the use
of a graph-based data model that allows a straight representation of such
structures. Textual object types are organized in a schema where each textual
object has a set of other textual objects of different type as components. While
the graph has to be acyclic to prevent loops in the structure, there are no other
limitations on the structure, such as the number of components an object can
have and so on.

2. Limitations on Structure Definition: XML is an ordered, labeled, tree
structure. The core XML standard imposes no restrictions on the labels that
appear in a given context; instead, each document may be accompanied by
a document type, also called schema, describing its structure. A number of
schema languages has been proposed4.

The first approach in the field of schema languages has been the XML DTD, a
subset of SGML DTD. The use of DTDs, however, is limited:

• their syntax is not XML;

• they do not support namespacing;

• they have a limited set of predefined types and no support for user-defined
types;

• attributes can not be in an exclusive or relation, nor conditional defini-
tions can be given;

4A comparison of the early XML schema languages can be found in [Lee and Chu, 2000]
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• they do not support any form if inheritance.

While other schema languages overcome such limits, the most important schema
in computational humanities, the TEI schema, is in fact defined as a DTD, mak-
ing this approach the de facto standard of the field. Different approaches, like
XDuce or RelaxNG, could allow the specification simpler, yet more expressive
schemas for literary texts.

Ah-hoc solutions like textual models, instead, have their own language to
define the structure of the texts they represent. In the TOMS, for instance, such
structure is defined by the declaration of relationship between objects. It is
not possible, however, to define complex relationships, attribute constraints,
or to limit the cardinality of repetitions. The MdF model takes a different
approach, the text does not need to conform to a schema of textual object
types, but structural relationships can be inspected instead from the query
language dynamically.

In Manuzio the schema is defined through the use of a set of declarations given
in the Manuzio language. These declarations represent a specific instance of
a Manuzio model that must be valid for each document of a textual repos-
itory. By using structured data we allow the Manuzio language to have a
statically checked, strong type system, where a number of programming errors
can be caught before the actual execution of the program. This is of particu-
lar importance in a language with persistent capabilities where operations are,
in general, time expensive. On the other hand, however, the use of a fixed,
structured, schema in a textual repository limits the flexibility of the system,
and assume that the structure of the text is known a priori by the encoder.
Some analysis, in particular the ones related to text criticism, may find such
assumption too restrictive.

3. Limitations on Annotations: the main limit of the markup approach when
dealing with literary annotations is the impossibility of using complex, struc-
tured annotations. In XML all attributes are in fact strings, which can be
interpreted as different types only if the schema language allows so. Moreover,
only single elements can have attributes, so that it is difficult to annotate non-
contiguous portions of text. Moreover, marking an element with an array of
attributes is not natively possible, so that it is hard to model situations like a
set of comments on a textual object, or an history of annotations.

In the field of annotations even other approaches tend to be vague. The TOMS

annotations seems to be not clearly defined by the model, while the MdF is
explicitly generic by modeling annotations, called features, as partial functions
from textual objects to values of any type.

In Manuzio, annotations are typed and their type can be of arbitrary com-
plexity. Since the schema language is a component of the full Manuzio pro-
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gramming language it is possible to declare annotations of any type, including
basic types, constructed types, or other textual object types. Moreover, for
the same reason, an annotation can be a function that takes in input a textual
object and, eventually, other parameters, and produces a computed results
when invoked.

4. Limitations on the Associated Query/Programming Language: the
XML language has a rich set of efficient query languages, like XPath or XQuery,
to retrieve specific elements from a document. These languages, however, per-
form poorly in terms of efficiency and usability when used to query XML doc-
uments that represents multiple concurrent hierarchies through workarounds.
Solutions have been proposed in [Iacob et al., 2004, Iacob and Dekhtyar, 2005a,
Iacob and Dekhtyar, 2005b], but the resulting language, while efficient and us-
able, is still not optimal for literary analysis applications. Moreover, the use
of such languages in complex programs is difficult because of the paradigm
mismatch between the programming language and the query language.

Textual models often employ an ad-hoc query language. The MdF model for in-
stance, is paired with MQL, “full access language” that lets users create, delete,
modify and query the objects of and MdF database. The query aspects of MQL
are structural, in the sense that “the structure of the query mirrors the struc-
ture of the objects found by the query in terms of nesting, consecutiveness,
and arbitrary space”[Petersen, 2004c]. On the other hand the TOMS system
do not feature an ad-hoc query language. The documents indexing can be
accessed through the functions contained in a C library. Another, more in-
teresting, TOMS implementation, instead, extends a Perl interpreter to allow a
direct interaction with the textual database.

Manuzio takes a different approach. One of our goals was to minimize the
paradigm mismatch between the programming language used to write the al-
gorithms and the query language used to access the data. In the Manuzio
language there is a native textual object type constructor to instance textual
object types that are in effect like any other type of the language. The per-
sistent module of Manuzio take care of translating operators on those types
to calls to the textual repository’s API, so that the programmer can trans-
parently operate on textual objects just as on any other value. To simplify
access to the persistently stored data, a set of query-like operators with a syn-
tax similar to the one of SQL have been defined. The queries created with
these operators, however, are part of the language, and so subject to type-
check as any other of the language’s expressions. While, on one hand, this
solution allow the programmer to stay in the comfortable programming lan-
guage paradigm while writing textual analysis programs, on the other hand
this approach performs an automatic mapping between the language’s expres-
sions and the textual repository primitive operations, and considerations on
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efficiency and optimizations have to be made.

5. Cooperative Annotations: We are not aware of any general system that
gives a vision of the textual data as a persistent, remote, object that can be ac-
cessed and annotated concurrently by different users with different privileges.

In Manuzio, instead, annotations can be accessed, modified, or created on
the basis of user permissions. Each annotation made on an object is stored
together with a reference to the user who made it. Annotations also have an
history, so that when an annotation is modified the old version is stored for
comparative analysis.

In this chapter the main goal of the thesis has been presented and motivated
through an analysis of existing digital text representation approaches drawbacks.
Particular attention has been given to the problem of literary texts with overlapping
hierarchies and to the expressiveness of annotations. The proposed solutions have
can be categorized in XML-based solutions and non XML-based solutions, also called
textual models. Both categories have advantages and shortcomings that have been
taken into account during the design of Manuzio. In the last section a recap of
the main drawbacks of the discussed encoding techniques has been proposed, and a
survey on the characteristics of the current implementation of our solution has been
made.

During the Ph.D. work at the base of this thesis the following goals have been
achieved:

• The Manuzio model for texts has been formally defined. The model allow
textual data to be structured as a directed acyclic graph where nodes represent
portions of text and arcs represent a containment relation between them. A
graphical representation of Manuzio models has been also defined to visually
represent textual schemas.

• The Manuzio programming language was designed. With the Manuzio pro-
gramming language it is possible to both define schemas and create textual
repositories and connect to existing repositories to access and analyze data.
While the textual schema declaration portion of the language has been spec-
ified only by its syntax and some examples, the rest of the language, a full
programming language with support for transparent access to textual reposi-
tories, has been specified with a formal semantics.

• The first specifications of a system to store textual data and allow users with
different permissions to query and annotate it has been given. The system
feature a persistent store for textual data, an interpreter for the Manuzio
language, and a graphical user interface to allow users of different levels (pro-
grammers or experts of the domain) to exploit the system’s capabilities.
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• A prototypal implementation of the most important parts of the Manuzio
system has been developed. The textual repository has been implemented
with a relational database, and an interpreter for the Manuzio programming
language, written in Ruby, allows programmers to use a functional-object-
oriented programming language to write programs and access transparently
textual data with the full benefits of static type checking.

An interpreter for the textual schema declarations and different, more complex,
user interfaces are in course of development as well as a set of standard parsing
algorithms and a more efficient implementation of the language interpreter.

In the rest of the thesis the components of Manuzio, the model, the language,
and the system, will be presented in turn. After that, the implemented prototype
will be then discussed along with some examples.
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3
The Manuzio Model

“We chose to do this work mathematically, which has the advantage of
precision but is not always appreciated by readers.” – Luigi Luca Cavalli-
Sforza

3.1 Introduction to the model

The Manuzio textual model considers the textual information from two different
points of view: as a formatted sequence of characters, as well as a composition of
logical structures called textual objects. These objects will be defined both in terms
of the text which they represent (called the underlying text), as well as in terms of
the other textual objects which are related to them with two different aggregation
mechanisms: composition and repetition. Textual objects can have also attributes
and methods, and are classified through a set of types, called textual object types,
among which a specialization relation is defined.

The Manuzio model takes inspiration from a number of other data models present
in literature and combine some of these model’s features with new ones to adapt
to textual data. Our model concept of textual objects and object types is similar
to that of objects and classes in object-oriented languages [Bruce, 2002]. The idea
of a database dependent textual schema organized as a lattice and other features
comes from the concept oriented model discussed in [Savinov, 2008]. While the
Manuzio model is not concept oriented, it shares some of these model’s terminology
and characteristics.

In the following sections an introduction to the model, with the aid of a graphical
syntax, and its formal definition are given. Here Manuzio is presented as an abstract
model, so an implementation will not be specified until the prototype presented later
in Chapter 6.
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3.2 Model Definition

Text

The basic concept of the Manuzio model is the concept of text. Since we are pre-
senting Manuzio as an abstract model the text concept will be abstracted, without
loss of generality, to that of a finite, ordered sequence of characters expressed in
any encoding system. In a real implementation such text can be represented in a
multitude of ways like relational databases data fields, xml documents, and so on.
We will call this entity the full text , and it will represent the whole text of a Manuzio
textual model instance.

Definition 1 The full text is a sequence of Unicode characters that represents all
the text described by a specific Manuzio textual model.

The full text entity has some associated operations needed to access contiguous
portions of the text using some indices. Since we are considering such text as an
ordered sequence of characters we can isolate a portion of such sequence by specifying
a pair of integers in the form (index, offset). Such pair is called a range. We can then
enumerate the elements of the sequence from zero to n, where n is the cardinality
of the textual sequence, and use the range to obtain a contiguous slice of the text.

Definition 2 If t is a textual sequence in the form t = [c1, c2, . . . , cn] and r is a
range in the form (index, offset) with:

0 ≤ index ≤ n

index < offset ≤ 0

then the expression

t :: r

is called the slice of t given by r and is a new sequence of characters with the same
encoding as t composed by the characters of t in the range r.

As we will see in the rest of the chapter the slice operation will be of central impor-
tance in the model. Programming such operation, while conceptually simple, can
be an implementation challenge when the text to be modeled is large. A panoramic
on possible approaches is given in Chapter 6.
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Textual Objects

A textual object is an abstract representation of a portion of the full text together
with structural and behavioral aspects. Textual objects have been inspired by the
content objects expressed in [Bruce, 2002], from concepts of concept-oriented data
modeling [Savinov, 2005a], and from objects of modern object-oriented program-
ming languages.

Definition 3 A textual object is a software entity with a state and a behavior.
The state defines the precise portion of the full text represented by the object, called
the underlying text, and a set of properties, which are either component textual
objects or attributes that can assume values of arbitrary complexity. The behavior
is constituted by a collection of local procedures, eventually with parameters, called
methods, which define computed properties or perform operations on the object.

Usually a textual object is the instance of a logically identifiable concept in
the text, like a paragraph, a chapter, a word, and so on. Textual objects can be
in relation with each other. The main kind of relationship we are interested in
exploiting is the component relation between textual objects.

Definition 4 A textual object TO1 is a component of a textual object TO2 if and
only if the underlying text of TO1 is a subtext of the underlying text of TO2.

It is important to note that the concept of subtext is not equivalent to the concept
of substring. According to [Kelley, 1995]:

A substring (or factor) of a string t = [c1 . . . cn] is a string t′ =
[c1+i . . . cm+i] where 0 ≤ i and m+ i ≤ n.

According to the definition a substring is a contiguous portion of the original
string. The concept of subtext, instead, is broader, as a subtext can comprise non-
contiguous parts of the original string.

A subtext of a string t = [c1 . . . cn] is a string t′ in the form t′ =
[c1+i1 . . . cm1+i1 ] ∪ · · · ∪ [c1+i2 . . . cm2+i2 ]

1≤j≤k with, for each j ∈ 1 . . . k,
0 ≤ ij, mj + ij ≤ n, and [c1+i1 . . . cm1+i1 ] ∩ · · · ∩ [c1+i2 . . . cm2+i2 ] = ∅.

This is an essential aspect of the model and has an important consequence on
textual objects: a textual object can consist of a repetition of components that does
not need to be contiguous.

Definition 5 A repeated textual object is either a special object, called the empty
textual object, or it is a homogeneous sequence of textual objects, and its underlying
text is the composition of the underlying text of its components.



38 3. The Manuzio Model

Another important concept is the concept of contiguous textual objects. Two
textual objects are contiguous if their underlying text seen as a portion of the full
text is contiguous.

Since sequences of textual objects, like the sequence of words of a sentence, or
the sequence of acts of a poem, will be an entity of central importance in our model,
we use the concept of repeated textual objects to abstract their characteristics. Dif-
ferently from a classical sequence a repeated textual object elements cannot contains
duplicates. The ordering of the elements is induced by the position in the text of
their underlying text, so that it cannot be changed. Moreover, in our model, repe-
titions can have gaps, so that it is not required that their elements are contiguous1.
For instance we can consider the first three words of a sonnet as a repeated textual
object, all the lines of a poem another one, all the first lines of Shakespeare’s plays
another, and so on.

Textual Object Types

Each textual object is an instance of its textual object type. These concepts have
numerous synonymous used in different models. Textual objects could also be called
items, entities, values, while textual object types are also called classes, concepts,
or domains. In the rest of the thesis the “textual object type” will be abbreviated
with “type” when such abbreviation will not raise ambiguities in the text.

Definition 6 A textual object type specifies the type name, the names and types
of the properties, as well as the names and the parameters of the methods together
with their types of the textual objects that are instances of that type. The type of a
component is always another textual object type, while the type of an attribute is a
data type, like integer, string, boolean, a record type, etc. The parameters and result
types of a method can be of any type.

A textual object type T is characterized by an intent I and an extent E. The
intent is a set of variables associated with the textual object type, also called at-
tributes, properties, or features in other models. The extent of a textual object type
is a set of textual objects that are instances of that type. The intent of a textual
object is partitioned in components and attributes . While attributes are values of
any type that represent extra-textual information, components are used to store in-
formation about textual object type’s relationships. We can denote a textual object
type with T =< C,A,E >, where C is the set of the type’s components, A are the
attributes, and E its extent.

Repeated textual objects also have types, and such types are more than simple
type constructors like, for instance, the sequence type constructor of programming
languages. A repeated textual object type can include other useful information
about the collection of textual objects they represent.

1Here the intuitive notion of contiguous objects according to their underlying text is used.
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Definition 7 A repeated textual object type R is a type which instances are re-
peated textual objects. Each repeated textual object type is an aggregation of a type
T , the textual object type of its elements, and of a collection of variables of hetero-
geneous type called its attributes.

Differently from textual object types, repeated textual object types does not
have components, but elements, while both can have attributes. This distinction
is important because it gives a wide flexibility to the text annotation process. A
repeated textual object composed by the three words, for instance, can be annotated
with a comment. Such comment will be tied to the three words as a set, but not to
them individually. A repeated textual object type, also called repetition for brevity,
can be denoted with R = [T ], where T is the type of the repetition’s elements.

To simplify the model we can define a special bound between textual objects of
type T and repeated textual objects composed by elements of type T .

Definition 8 A textual object type T has an associated plural form, usually named
with the plural form of its type name. The repeated textual object S which elements
are of type T and name is the plural form of T is called the plural type of T .
Conversely T is called the singular type of S.

For example a Poem can have a component with name title and type Sentence,
as well as a component with type lines and type Lines, which is the plural form
of the type Line. This means that the type of the lines of a poem is a repeated
textual object type with elements of type Line.

In our model each textual object type can have only one plural form. For in-
stance, if T is a type that represent a word, only one repeated textual object type
S with T as elements can exists. We feel that the trade off of having such a simple
and powerful conversion capabilities between singular and plural types justify this
slightly restriction of the type system.

The Component Relation

The component relation among textual objects is naturally extended to their types.

Definition 9 A type T1 is a direct component of a type T2 if there is a component
in T2 which is of type T1 or of its plural form T1s. A type T1 is a component of a
type T ′2 if it is a direct component of T ′2 or if it is a component of some of its direct
components. Given two types T and S if T is a component of S then S is also called
a parent of T . Moreover, given two types T and S, either S is a component of T or
vice-versa, but not both.

The component relation is asymmetric and transitive. When a type T is a
direct or indirect component of another type S we can also say that there is a link
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between such types. When we say there is a link between T and S we mean that S
is a component (either direct or indirect) of T , and not vice-versa.

The component relation can be modeled as a graph where nodes are textual
object types and arcs are links. Since the relation is asymmetric the resulting graph
is acyclic. It is also directed and we choose to direct the arcs so that if there is a
link between T and S the arc goes from T to S. Note that, since repeated textual
objects can be also seen as textual objects a component relation can exists between
both a type and another type and between a type and a repetition. In the first case
we say that a component relation is one-to-one, while in the latter is one-to-many.

Textual Objects Semantics

The semantics of a textual object type instance, or textual object, is similar to the
semantics of objects of an object oriented language. A textual object is characterized
by its type and by the values of its components and attributes.

An attribute’s value is an instance of that attribute’s type. For instance an
attribute could be of type String and its value could be “Shakespeare” to denote
the authorship of a poem as extra-textual information. There are no restrictions to
the attribute types, so that arbitrarily complex values can be stored, like records,
sequences or even references to other textual objects. For a more in-depth discussion
on available types and type constructors see the discussion on types in Section 4.
On the other hand, components are just textual objects. They can be either textual
objects or repeated textual objects of the type specified by the component definition.

Objects that have no components and are also called primitive objects. Primitive
objects, unlike other textual objects, are atomic and can define their own semantics.
Each primitive object has a special attribute, called text, which value is a set of
ranges. Each range identify a unique portion, or slice, of the full text.

Primitive objects play the role of basic building blocks for other objects. Since
in the Manuzio model objects are composed by other objects to retrieve some of
their characteristics, where their underlying text is the most important one, we
must proceed in a recursive way. Primitive objects forms the base of such recursion.
Since a Manuzio schema is always structured as a lattice (see later in Section 3.2)
such recursion is guaranteed to end. We say that textual objects cannot, in general,
define their semantics on their own. Their semantics is spread over the schema. The
underlying text of non-primitive objects is built by aggregation:

Definition 10 The underlying text of a non-primitive textual object is the portion
of the full text identified by the range set obtained by merging the ranges of the
underlying text of its components. The underlying text of a primitive object is the
portion of the full text identified by its range set.

Two ranges can be merged as the classical mathematical ranges. Note that,
since component textual objects do not need to be contiguous and primitive objects



3.2. Model Definition 41

underlying text can have gaps, this union can result in a set of subtexts of the full
text rather then on an atomic substring.

Subtyping and Inheritance

As in other traditional object-oriented models, in Manuzio a subtyping relation can
be defined among textual object types through which we can model textual objects
at different levels of detail. This feature adds to the model the ability to make
incremental changes to textual objects. A subtype may be defined from a base
textual object type by adding or modifying components and attributes. We will see
later that restrictions on the modification of components and attributes types are
necessary in order to preserve type safety.

For instance, if a type Work has components title and sentences, and at-
tributes author and year, we could define the type Poem as specialization of Work.
Poem, in addition to inheriting properties and methods from Work, could have a new
component, lines, and a new attribute, meter.

Definition 11 A type A is subtype of a type B if it is defined as such; in this case
T inherits all the properties and the behavior of S. T can also have new properties
and methods, and can redefine the type of its components with a more specialized
object type. In this case a value of type T can be used in any context where a value
of type S is expected.

We write the subtype relation as T <: S. The presence of the subtyping (or
specialization) relation between two textual object types T (the subtype) and S (the
supertype) has the effect that every instance of the subtype is also an instance of
the supertype. That is, a value of type T can masquerade as an element of type S
in all contexts where T <: S.

For example, every poem can be treated both as a generic work (for instance by
asking for its author), and as an object with a component lines (for instance to
count them).

The subtype relation among textual objects types is independent from the com-
ponent relation, expect from the fact that it applies to the same set of types. For
completeness, every type which is not defined as subtype of another is implicitly sub-
type of an abstract type TObject, which has no components nor attributes, and has
only a set of basic methods common to all textual objects, such as text extraction,
equality test, and so on.

A more complete discussion about how inheritance is implemented will be given
in Section 4 with the Manuzio language implementation principles.

Textual Schemas

A textual schema is a set of textual object types and links so that the resulting
graph is a bounded lattice.
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Definition 12 A well-formed textual schema of a certain full text is a set of textual
object types which forms a bounded partial order set with respect to the component
relation and for which: a) there exists a minimal, undecomposable type, (the Unit

type); b) there exists a maximal type, called by convention Collection, which has a
single instance, collection, the textual object whose underlying text is the full text
and the components are the top-level components of the model.

A textual object type can be labeled as Unit when it has no components. A
Unit type represent an atomic textual information that cannot be decomposed in
“smaller” logical units. The specific definition of such type is left to the text encoder,
so that, for certain schemas, the unit type can be the word, for others the syllable, for
others again a whole sentence, and so on. It is important to note that such property
of being undecomposable is valid only at the logical level where Manuzio models the
text. It is always possible, of course, to decompose any object underlying text into
characters by applying string operations, but since our model aims to give an high
level view of the text the unit type should be chosen, so that no such “low level”
operations are needed to accomplish the textual analysis required by a particular
schema.

The Collection type, also called Total , is a maximal type which always has a
single instance, called collection, which underlying text is the whole full text. The
Collection type does not have any parent and is a parent for all the other textual
object types of the schema.

In mathematics a lattice is a partially ordered set (also called a poset)
in which any two elements have a unique supremum (the elements’ least
upper bound; called their join) and an infimum (greatest lower bound;
called their meet). A bounded lattice has a greatest and a least element,
also called top and bottom.

A textual schema is a lattice where the elements of the set are the textual object
types of the schema partially ordered by the component relation, the greatest ele-
ment is the Collection type, and the least element is the Unit type. A path in the
schema consists in a sequence of types, starting from a source textual object type
and ending in another type that is one of its direct or indirect components. Since
the Manuzio data model is a graph there can be more than one path between two
textual object types if their component relation is indirect. A path can be denoted
with the following syntax:

T → c1 → · · · → cn → S (3.1)

where T is the source type and S is the target type. The number n is called the rank
of the path. A path of rank 0 is a path connecting two types in a direct component
relation. The set of different paths connection a textual object type to the Unit
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type are called the canonical path set of a type and will be of particular importance
to retrieve the underlying text of a textual object.

In Manuzio each textual database has a specific schema that is defined at design
time and does not change during the database lifetime. Such schema describe the
textual object types, their name, their attributes and their components, of all the
logical concepts of interest in the text such as words, paragraphs, chapters and so
on. Moreover, the Unit type is also database dependent, so that it can be different
from schema to schema to accommodate different types of analysis needs.

Graphical Notation

To represent our model instances we developed a simple graphical notation resem-
bling the object oriented languages UML one. In our notation textual object types
interfaces are represented as boxes split in two parts. The upper part contains the
name of the type, while the lower one, if present, contains the name and the types
of its attributes and methods. Each attribute or method is denoted by its name
followed by a colon and its type. Differently from UML, where classes and objects
can have a wider range of relations with each other, in our model the only relations
allowed between textual object types are the component and the inherited relation.

The component relation is defined by the name and type of the components of a
textual object type, so in our graphical notation a component is draw as a directed
arc connecting a type interface with the interface of that component type. An arc is
labeled with the component name and with the cardinality of the relation. One-to-
one relations are represented with a single-pointed arrow arc, with the arrow directed
toward the component, while one-to-many relations are represented by similar but
double-pointed arrow arcs.

In Figure 3.1 the graphical notation of a simple schema about poems is shown.
The Collection type has a text annotation to store its title and has a components
called poems which is a repetition of objects of type Poem. The Poem type is more
complex and has three different components along with a richer set of attributes
of different types. The Unit type of this schema is the Word type, since it has no
components.

For what concerns the subtype relation, a subtype is graphically connected to
its supertype through an arc with a hollow arrowhead pointing to the subtype. The
textual object subtype interface represents only the new attributes and only arcs
concerning new components are drawn.
In Figure 3.2, both Novel and Poem are subtypes of Work so that they inherit
the components title and sentences, as well as the attributes year and author.
Moreover, the Novel type has the new attribute subject, while the Poem type has
the new attribute meter and a component lines to model lines of a poem. As a
convention we draw the textual objects type interfaces from the top to the bottom,
so that the collection type will be always at the top of the graph and the unit type
at the bottom. Moreover, if a type T is component of another type S then T will
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Figure 3.1: Graphical representation of a poem related schema.
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Figure 3.2: Graphical representation of a schema about poems and novels.
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be drawn below S. It is always possible to draw the schema in such way since the
model is a lattice. By using these conventions the resulting graphical notation is
clean and easy to read.

3.3 Discussion and Comparison with Other Mod-

els

Our model have some similarities with the classical object-oriented models of pro-
gramming languages. In fact, if we consider textual objects as composed only by
attributes and methods, we can view them just as another kind of objects. The nov-
elty of our approach is given by the specific composition mechanism of our textual
objects which connects them in a structured hierarchy with characteristics specific
to the Manuzio domain of application. The nature of this specific domain allows the
construction of a bounded partial order set of textual object types so that interest-
ing, powerful, easy to use operators can be introduced in the associated language.

While other object models like the one of object oriented languages are more
powerful then the Manuzio one and permits to model complex behaviors like multiple
inheritance, bounded inheritance, more complex ways of subtyping, and so on, we
feel that the Manuzio object model is adequate to be used in computational linguistic
applications.

Differently from the XML (or SGML) based solutions, Manuzio is a model with an
associated ad-hoc programming and query language. Since this language is Turing
complete programs and queries of arbitrary complexity can be written over Manuzio
databases with just one, integrated language. Classical XML applications must over-
come the problem of overlapping hierarchies and often the workarounds used to
overcome this problem makes the use of query languages like XQuery or XPath dif-
ficult. While one could argue that XML is a wide spread standard and the use of
different models, like Manuzio, could hinder research projects, we feel that by in-
cluding algorithms to export views of a Manuzio database, or query results, in XML

largely overcome this problem.

Other textual models like TOMS of MdF have been of great inspiration to our
work. Differently from TOMS, where the minimal object is always considered to
be the word, in Manuzio the selection of such object can vary between different
schemas, increasing the overall flexibility of the model. Moreover it is possible,
through the Manuzio language, to define constraints on the schema, for instance on
the cardinality of elements in a repetition. In our opinion, moreover, the choice of
constraining schemas graph to a lattice and to avoid disjoint union of elements helps
the programmers to express programs and queries easily. We felt that the root-level
parallel structures and the “choice” construct of TOMS, while adding flexibility to
the model, could be an unneeded complication for the users.

The MdF model have a strong and sound mathematical model based on the con-
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cept of monad. The main difference with our model is that, in MdF, objects are
composed of monads, and not by other objects. For this reason MdF lacks the
concept of schema, and it is not possible to constraint at model level relationship
between objects. On the other side such freedom makes this model more suitable for
texts that lacks a precise schema, or for application where an heavy amount of text
criticism is needed. The MdF model is also paired with a powerful query language
called QL and subsequently extended by MQL[Petersen, 2004a], that allows users to
perform structural searches in very intuitive and easy way. While very different, in
goals and design, MQL inspired the presence of ad-hoc constructs to deal with textual
object hierarchies in the Manuzio language.

While both the XML-based models and TOMS can handle annotations only in string
format, the MdF model can handle annotations, or features, of any kind, but their
specific implementation is left open. In most application of such model annota-
tion are just strings or string-encoded values that the user have to interpret when
performing queries. Manuzio benefit from the presence of a Turing complete, type
safe, strongly typed language that ensure a full support to structured annotations
of arbitrary complexity by the use of a rich set of types and types constructors that
are natively present in the Manuzio programming/query language. An interesting
aspect of the Manuzio model is, in our opinion, the ability to reference repeated tex-
tual objects, a kind of sequence that occurs frequently in our domain of application,
in a native, easy way. With the introduction of repetitions the Manuzio language
will be able to treat repeated textual objects as single ones, in a simple and uniform
way.



4
The Manuzio Language

“Languages are not about what they make possible, but about what they
make beautiful” – Scott Davis

4.1 Motivations of the Manuzio Language

In this section we present the Manuzio programming language, whose main goals
are:

• to provide a syntax to define textual models;

• to be a query language for textual databases based on the Manuzio model;

• to be a Turing complete programming language that natively integrates per-
sistence and query capabilities to interact with textual databases.

One of the first considerations to be taken when dealing with a new language is:
was it really needed? The field of programming languages is overloaded by a huge
number of new languages that dies within one year. Indeed, other approaches could
have been followed in the development of the Manuzio language.

• Implementing Manuzio as a library. Since the model relies on objects that are
similar to object-oriented language objects one of the most straightforward
ways to design our language could have been to choose a suitable, existing, ob-
ject oriented language and develop a library to add the textual object concept
to it. This solution grants good performances and, most of all, by choosing a
wide spread language we can ensure a good base of users that are familiar with
the syntax and the construct of such language. At the same time, however, we
felt that choosing this solution was not interesting enough for a research work.
It is for sure the best way of getting something done in a short time, but it
is not suitable to research new programming constructs useful to the specific
domain of application, since we must rely on the constructs of the existing
language.
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• Extending an existing programming language. To overcome some of the pre-
viously discussed problem we could have designed the Manuzio language as
an extension of another language. By extending we mean to add capabilities
directly to the language compiler or interpreter, in our case to support tex-
tual objects. While this solution permits to add new constructs and behaviors
that are not present in the original language of choice, we felt that our results
could have been biased by the language choice. During the development, for
instance, different solutions have been carried out for a number of features
such as making Manuzio a class-based or object-based language, or choos-
ing between name or structural equality. By using an existing language such
choices must be made in advance, while we needed a more free environment
to test and play with. Indeed, with the results presented in the last chapter of
this work, we can define a suitable language to implement Manuzio with, and
choose this solution for a more advanced, efficient compiler or interpreter.

Our choice to implement a completely new language grants an unbiased, free
environment to experiment new features such as partial persistence and textual
objects support. We are aware that the resulting language, as discussed in Section 6,
will not be adequately efficient nor it will have wide acceptance to be used for more
than prototypal systems. However the obtained results will be of great use to design
and develop a real-life, efficient, language, or a language extension, that implements
the Manuzio model.

In the rest of the section a quick overview of the main Manuzio language char-
acteristics is given. We start with an introduction to functional programming and
functional programming languages and we then move on to discuss the most impor-
tant aspects of our language by an informal description and examples. The goal of
this chapter is to give an introduction to the language and its features. The formal
language specification will be the argument of the next chapter.

4.2 A Brief Introduction to Functional Languages

The topic of functional programming languages is broad and a complete discussion
is beyond the scope of this thesis. Only the main features of such languages that
are useful to understand the Manuzio language concepts will be presented here as
an overview. Further information on functional programming languages, types, and
other related concepts can be found in [Scott, 1999].

Functional programming has its roots in lambda calculus , a formal system for
function definition, application, and recursion introduced by Church in 1932 as part
of an investigation in the foundation of mathematics [Selinger, 2001]. In functional
programming computation is treated as the evaluation of mathematical functions,
avoiding states and mutable data. A function is a mapping between elements of two
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sets:

f : A→ B (4.1)

this notation indicated that the function f takes in input a value of the set A,
called its domain, and returns an element of type B, called codomain. With this
approach the focus of programming is given on what is to be computed and not how
we compute it. The application of a function to an argument is usually denoted by
juxtaposition, as in fact(n) that indicates the application of the function fact to
the argument n.

The approach used to evaluate programs is radically different from the one of
imperative languages. In a functional languages the expressions of a program gets
evaluated and the results are displayed to the user. The process of evaluation is
a simplification process also called reduction. Starting from a language expression
the goal of reduction is to obtain a value, or an normal form associated to the
expression. It is also said that the meaning of an expression is its value.

Reduction steps are usually denoted as follows:

e→ e′ (4.2)

meaning that there is a reduction step that transforms the expression e in an
expression e′ with the same meaning. For instance to evaluate square6 the evaluator
replaces the function application of square x = x ∗ x with the function body and
the parameter x with the actual value 6, obtaining the new expression 6 ∗ 6.

Example 2 Consider the expression:

(1 + 1) ∗ (2/2) (4.3)

Assuming that the reduction takes place left to right we can simplify this expression
as follows:

(1 + 1) ∗ (2/2)→ (1 + 1) ∗ 1→ 2 ∗ 1→ 2 (4.4)

We can say that the value, or meaning, of the initial expression is 2.

In the previous example we assumed the reduction to be executed left to right,
but other approached could have been possible, like right to left. In both cases the
value of the expression is the same. This is a property of functional programs called
unicity of normal form: the value of an expression is independent from the order of
reduction.

All functional languages allow functions to be passed as arguments to other
functions, or returned as results. Functions that take functional arguments are
called higher-order functions.
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Programs in functional languages are in general shorter, easier to understand,
debug, and maintain than imperative ones. The main domains of application
of functional languages until now have been in the field of artificial intelligence,
text processing, graphical interfaces, natural language processing, telephony, music
composition, symbolic mathematical systems, theorem provers of proof assistants
[Fernandez, 2004]. The ancestor of functional languages can be considerer LISP

(LISt Processing) a language born to process lists of numbers and characters that
has been introduced in the 50’s [Steele, 1990]. In LISP both programs and data are
represented as lists, so it is easy to define higher order functions in LISP. Functional
languages evolved from the untyped, dynamically scoped, LISP to more complex
languages with static scoping and a strong type system like ML and Haskell, etc.

Functional programming languages discussed so far are also called a purely func-
tional, or pure, language. In other words, the functional programming paradigm
avoids the use of state and mutable data, so that evaluation of an expression is inde-
pendent of its context. Haskell, for instance, is a popular academic pure functional
language. On the other hand languages like ML are functional languages that have,
often for efficiency reasons, some imperative features. Purely functional program-
ming languages have several useful properties, many of which can be used in code
optimization:

• If an expression result is not used it can be removed without affecting the rest
of the program.

• Since the result of a function call is constant and does not produce any side
effect, its value can be memoized so that, if the function is called again with
the same parameters, there is no need to execute again the function body.

• The evaluation of a purely functional language’s expressions is thread-safe.
Since there is no side effect and no data dependency between the body of to
different functions, they can be executed in parallel without issues.

• The evaluation strategy of purely functional languages does not influence the
results of their computation.

Another distinctive feature of functional languages is the use of recursion: in the
definition of a function f it is possible to use the function f itself. Recursion is the
functional counterpart of iteration, one of the main control structures of imperative
languages.

In a functional programming language the value of a function is represented by
a closure: a record that contains the code of the function body and the values of
the necessary non-local variables. The concept of non-local variables, also called the
free variables of a function, is similar to its mathematical counterpart: in program-
ming a free variable is a variable referred to in a function that is not local nor an
argument for that function. Such concept have a meaning only in a statically scoped
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environment, where the values of free variables are always the values they had at
the time of the function definition.

Some functional languages implements lazy evaluation, also called call-by-need.
In lazy evaluation each variable is not a value but a thunk : a function that is invoked
on demand to compute the variable value. Each thunk is also equipped with a cache:
when the thunk is called the first time it computes its value and memoize it in the
cache. The next time that such value is needed the thunk does not get executed
but the cached value is returned instead. With lazy evaluation values get computed
only one time and only when they are really needed, so that unused values are never
calculated.

In most functional languages values are categorized into types according to the
operations that can be performed on them. If a functional language is typed every
expression has an associated value of a certain type. Types are generally used as a
complement to programs: they are concise descriptions of programs which goal is to
detect errors before the program gets executed and to allow the compiler to perform
code optimizations. A typed programming language comes with a set of predefined
basic types such as integers, reals, characters, booleans, and so on, and with a set
of type constructors to create complex, structured types like lists, tuples, functions,
and so on.

The process of checking a program for type errors is called type checking and may
occur at compile time, under the name of static type checking, or at execution time,
under the name of dynamic type checking. In a strongly typed language expressions
that cannot be typed are considered erroneous and are rejected by the compiler or
interpreter prior to evaluation. Type systems can be classified as monomorphic or
polymorphic depending on the number of types that an expression can have. In a
monomorphic language each expression has exactly one type, while in polymorphic
ones some expressions can have more than one type. Such behavior can be obtained
througin several ways:

• Generic types: a type variable can be defined as generic and be instantiated
with an actual type at a later time in the program.

• Overloading: several functions with the same name can work on different
types. The choice of the specific function to use can be made statically by
examining the parameters type.

• Subsumption: if the type system supports subtypes than the subtyping rela-
tion can allow functions to use different, compatible, types.

Functional languages usually achieve polymorphism through generic types.

Example 3 Consider the identity function f(x) = x. The type of this function
is X → X, where X is a generic type. Such type can then be instantiated to, for
instance, Integer to obtain the integer identity function of type Integer → Integer
and allow expressions such as f(3).
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Most modern functional programming languages offer a type inference mecha-
nism. In a language with type inference the programmer does not need to explicitly
write the type of expressions. The type inference algorithm can infer their type
based on the type of their primitive values and operations. Types can still be de-
clared so that the programmer can force type control.

Example 4 Assuming that:

let x = (5 ∗ 5) (4.5)

we can infer the type of x by knowing that 5 is a constant of type Integer and that ∗
is an operation of type (Integer, Integer)→ Integer. The type checker first reduces
the ∗ operation and obtain an Integer value. Then create a new constant x and
assign the Integer type to it. If, for instance, the programmer would have declared:

let x : Boolean = (5 ∗ 5) (4.6)

this would have lead to a type clash and to a rejection of the expression from the
type checker.

An important concept when discussing a type system is the concept of type
equivalence. In a structural type system type equivalence is determined by the type
structure. Different type systems check such properties basing their decision on
explicit declaration (name equivalence) or by checking dynamically if parts of the
type structure accessed at run time are compatible (duck typing). In structural
typing two types are considered to have the same type if they present the same
structure. The exact definition of structure depends on the language semantics.
The main issue of structural equality is the inability of distinguish between types
that the programmer may think are different, but which happens by coincidence to
have the same internal type structure.

This simple introduction to functional languages should be enough to understand
the main concepts of the Manuzio programming language presented in the following
section.

4.3 Overview of the Manuzio Language

The Manuzio language is a programming language built to be highly dynamic and
extensible. For this reason, differently from the majority of other programming
languages, Manuzio does not have a fixed set of types, operators, expressions, and
so on. The Manuzio language can be seen, instead, as an empty core language
that defines basic behaviors, together with a set of additional components, called
bundles, that are used to import new functionalities into the language. The concept
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of extensibility is discussed in depth later in Section 4.3.1. In this section, however,
the core and the most important bundles will be presented together to give an
overview of the whole language. An in-depth discussion about the single bundles
and their structure can be found in Chapter 5.

The Manuzio language has the following features:

1. It is an expression language: every construct returns a value.

2. It is an interactive language: the system prompts the user for input and returns
the results of computation.

3. It is higher order: functions are denotable values of the language, so that they
can be passed as parameters, used as record fields values, and so on.

4. Every denotable value of the language has a type:

• a type is a set of values sharing common characteristics, equipped with
primitive operators which can take these values as parameters;

• the predefined types of the language are booleans, integers, strings, ranges,
and so on with their classical operators, together with the command type
used to denote non-functional constructs and the null type, a singleton
set with the element nil only, used to type undefined values. Strings, in
particular, are an important basic type in a textual analysis program,
and their type is equipped with a rich set of operators such as pattern
matching;

• type constructors are available to define new types, like sequences, tuples,
objects, and so on. Each type constructor can accept as parameters both
primitive types and other constructed types;

• the type system supports subtyping, so that subsumption can be used to
achieve a form of polymorphism.

5. Every expression has a type, that is the type of the value it returns. Types of
expressions can be statically determined, so that semantic errors in programs
can be detected by a static type check. Static type check brings a considerable
benefit in testing and debugging programs and allows type information to be
discarded at runtime. Moreover, a static type checker allows the language to
give the correct meaning to overloaded operators before the actual program
execution.

6. A special kind of objects, called textual objects, are equipped with persistent
capabilities so that, by issuing a special command to the language, a particular
set of predefined textual object types and instances gets loaded. Each of those
sets of types and instances are the digital representation of a collection of texts
organized in a Manuzio model, and can be used in textual analysis programs.
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The main goal in the Manuzio design has been to make it a language that can be
approached in a dual way: a programmer can use it to write programs of arbitrary
complexity, while a humanities researcher can, even without a full programmer back-
ground, use it in a way similar to that of a query language to interactively interrogate
a textual database.

4.3.1 Extensibility

In the development of Manuzio we choose to use a newly created language to test our
model in a non constrained environment. To achieve such goal in full we decided to
design our language following some ideas presented in [Albano and Procopio, 1998].
Manuzio can be considered “dynamic”, meaning that it is easy to extend with new
types, expressions, or operators. In the same way it is also easy to remove features
without affecting other functionalities.

To achieve such goal Manuzio has been designed initially as an empty language
with basic behaviors but no types, values, or operators. This empty language de-
scribes only the general rules of Manuzio: how the type checker works, how the
environments are structured, and so on. Later, it has been extended with new
elements to reach a full featured functional object-oriented language with specific
constructs and operator for textual analysis. Each element of Manuzio can be iden-
tified as a logical portion of a programming language such as a specific construct (or
family of constructs) or a data type. Examples of elements are: integers and their
associated arithmetic operators, records and their operators, variable declarations,
the if-then-else construct, and so on. The empty language, called µManuzio, has
no expressive power and it is not possible to write anything more than the empty
program with it.

Additional elements are introduced as part of bundles . A bundle is an interpreter
extension that can add new types, values, constants, or expressions to the language.
Each bundle specifies its specific static and dynamic semantic rules, so that every
bundle represents a self-contained portion of the final language. Some bundles can
depend on others. It would be impossible, for instance, to define textual objects
without knowing about objects, or regular expressions without strings. When a
bundle B depends on a bundle B′ we say that the bundle B is required by B′. If B
is not required by any other bundle of the language it is possible to remove B from
the language. Removing a bundle creates a new interpreter without that bundle
functionalities. In the current implementation bundles must be disjoint, so that it
is not possible, for two different bundles, to define the same operation twice.

The Manuzio interpreter is designed in an object-oriented way, where each bundle
of the language is an object of an object-oriented language. For this reason it will
be convenient, but not required, to implement it in an object-oriented language of
choice. In the next section the Manuzio language’s formal specification will be given
following the principles presented here, so that the empty language rules will be
defined first and then each bundle will be presented following a rough general-to-
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specific order. The dependency relation between bundles will be explicitly given and
represented by a graph.

The adoption of this design has the benefit of making the language highly dy-
namic. By taking into consideration only the bundles dependency relationship we
can add or remove features from the language without issues. In the course of the
development, for instance, we gave Manuzio the concept of memory and variables,
making it an impure functional language, to allow the users to modify annotations
on textual objects. Later on we removed such capability by just disabling the cor-
respondent bundle without the need of touching the interpreter code. Disabled
bundles can be reintroduced in the language at anytime. The only precaution that
has to be taken manually, for now, is to avoid name clashes of types and values
between different bundles. With this powerful implementation of our interpreter it
is easy to test new features of the language, restrict the language capabilities, or
modify the existing ones without breaking other bundles behaviors. We found this
design a well-suited platform for our research.

4.3.2 Type System

Manuzio is strongly typed with a static type system. Each expression of the Manuzio
language must pass the type checker before execution. Expressions that cannot be
typed are not executed to prevent runtime errors. The type system of Manuzio can
infer types, so that it is not necessary to always declare them. Type equivalence is
calculated by structure, so that if two types have the same structure they are also
considered the same type.

While according to some opinions structural type equivalence can lead to ambi-
guity in programs [Pierce, 2002], our choice of structural equivalence is motivated
by two reasons. Firstly, it copes well with the concept of modular implementation
discussed later, in Section 6. Secondly, the main focus of Manuzio is on textual ob-
jects. Such objects are less general than standard object-oriented languages objects,
since they all represent the concept of “a portion of text with some logical meaning”.
With this assumption it feels perfectly reasonable that two different textual objects
are treated as the same if they have exactly the same components and attributes.
For instance, if a line and a sentence are structurally equivalent, it could be rea-
sonable in some contexts to pass a line to a function that works on sentences and
vice-versa. This behavior helps to achieve a certain degree of freedom when writing
programs in a way similar to dynamic typing while still preserving type safety.

The Manuzio type system also supports subtypes, and the exact subtyping rules
will be specified with each new type introduced by bundles. Subsumption between
subtypes is supported, so that when a type T is subtype of another type S then a
value of type T can be used wherever a value of type S is expected.

While by exploiting structural equivalence we can apply code written for a certain
type to another, structurally equivalent, type, with polymorphism we can apply the
same chunk of code to different types. Manuzio implements polymorphism through
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parametric polymorphism: it is possible to declare generic functions that takes type
parameters and returns actual functions as result. A form of ad-hoc polymorphism
is implemented in built-in operators so that some of them can be applied to different
types. For instance, as we will see in depth in the next section, the plus (+) operator
works for integer and real numbers as well as strings. Another case is the dot (.)
operator is used to access record fields, but works also on objects and textual objects.
Since the Manuzio type system supports subtypes subsumption can also be used as
a mean of achieving polymorphism.

The predefined types of the language are integer, boolean, real, equipped with a
minimal set of operators. Strings, instead, are equipped with a richer set of opera-
tors to allow comparison, computation of distances (like Levenshtein distance), and
pattern matching with regular expressions. Other primitive types of the language
includes command and null. Both are singletons types with the value, respectively,
of nop and nil. The former is used to denote the value of expressions that have
side-effect. The latter is used, instead, to denote the value of unassigned memory
locations, unknown values, and so on. Also ranges and regular expressions types are
treated as primitive in Manuzio due to their importance when dealing with textual
data.

4.3.3 Declarations

In the Manuzio language two concepts of declarations coexists. On one hand we have
the classical concept of variable declaration, an expression that can be used to add a
new bind between an identifier and a type or a value to the language’s environments.
On the other hand a special block, called the textual schema declaration block, can be
passed to a Manuzio program to declare the names and types of a schema’s textual
objects.

When a textual schema declaration block is encountered, a new schema with the
supplied name is created in the textual repository. The internal persistent storage
is then initialized with the specified textual object types so that it is ready to be
instanced with textual objects instances. During the parsing process of such block
a parsing graph is created, so that the constraints specified in chapter 3 can be
checked. A schema that does not satisfy the lattice-like structure required, for
instance, would be rejected at compile time. An example of schema definition is
presented in Source Code 12, where the schema for a set of poems from the italian
poet and journalist Eugenio Montale is shown. Each textual object declaration is
composed by a name, a list of components and their types, a list of annotations and
their type, the name of its plural associated type, and list of annotations for the
plural type and their types. A type can inherit all the characteristics of another type
through the keyword inherits. Declaration blocks are usually given only in programs
that parse an input text to instance a textual repository. When the instantiation
is done, the information about types are also stored in the repository. In this way,
when a program connects to the repository to analyze or annotate the text, all type
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information are retrieved without the need of further declarations1.

Source Code 12 Example of schema definition for Eugenio Montale’s poems; type
names are in italian.

1 d e c l a r e schema montale
2 type PAROLA = t e x t u a l o b j e c t t y p e
3 a t t r i b u t e s stem : Fun ( ) : S t r ing i s s tem of ( s e l f . u n d e r l y i n g t e x t )
4 p l u r a l PAROLE,
5 p l u r a l a t t r i b u t e s comment : S t r ing
6 end
7

8 type VERSO = t e x t u a l o b j e c t t y p e
9 components pa ro l e : PAROLE

10 a t t r i b u t e s metr ica : S t r ing
11 p l u r a l VERSI
12 p l u r a l a t t r i b u t e s comment : S t r ing
13 end
14

15 type FRASE = t e x t u a l o b j e c t t y p e
16 component paro l e : PAROLE
17 p l u r a l FRASE
18 end
19

20 type TITOLO = t e x t u a l o b j e c t t y p e
21 i n h e r i t s FRASE
22 p l u r a l TITOLI
23 end
24

25 type STROFA = t e x t u a l o b j e c t t y p e
26 components v e r s i : VERSI , f r a s i : FRASI
27 p l u r a l STROFE
28 end
29

30 type POESIA = t e x t u a l o b j e c t t y p e
31 components s t r o f e : STROFE, t i t o l o : TITOLO
32 a t t r i b u t e s dedica : S t r ing
33 p l u r a l POESIE
34 end
35

36 type LIBRO = t e x t u a l o b j e c t t y p e
37 components p o e s i e : POESIE, t i t o l o : TITOLO
38 a t t r i b u t e s autore : {nome : Str ing , cognome : S t r ing }
39 p l u r a l POESIE
40 end
41

42 type COLLECTION = t e x t u a l o b j e c t t y p e
43 components l i b r i : LIBRI
44 a t t r i b u t e s t i t o l o : S t r ing
45 end
46 end

For what concerns the declaration of identifiers, instead, the Manuzio language
uses the notion of environment, a map from identifiers to definitions of types or
values. Environments can be extended with new pairs at runtime through declara-
tions. A declaration is an expression that returns a nop and, as a side effect, adds
to the environments a new bind between an identifier and a type (in the case of a

1See Section 5.5.20 for further information about connecting to a repository.
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type declaration) or a value (in the case of a constant declaration). An example of
declaration’s usage can be found in Source Code 13.

Note that textual object types declarations are available only in the schema
declaration block of the language, and are otherwise considered invalid expressions.
This restriction is useful to define two distinct contexts, or program classes: one
where the textual schema is defined and instanced, and one where the connection
with a textual repository is performed to query and annotate the contained textual
data.

Source Code 13 Example of declarations in Manuzio.

1 type N = Int ;
2 l e t n :N = 0 ;
3 l e t another n : Int = n ;

4.3.4 Numbers

In Manuzio numbers are represented by integers and reals. Integers are equipped
with the classical binary arithmetic operators (+, ∗,−, /) and with the unary minus
to for negative values. Also the classical relational operators are present. Since
to deal with numbers is not a central topic in Manuzio only these basic integer
operations has been included so far. If the need of a more complete set should arise
it will be easy to add the required operations. A division by zero raise a runtime
error and cause the stop of the current computation. The same set of operators
is valid for real numbers. Manuzio does not, at the current time, support implicit
conversions between integers and reals, so a cast operator (discussed later) must
be explicitly called. A cast performs a round of the real number, but a truncate
operator is also present. Integer constants are denoted by the equivalent integer
number, while real constants are denoted by a their integer part followed by a dot
and by their decimal part. In Source Code 14 an example of usage of some basic
operators is given, while in Table 4.1 the complete list of operators on those types
is presented.

Source Code 14 Integers and reals usage.

1 l e t n : Int = 1 ;
2 n + 4 ;
3 #=> 5 : In t
4 l e t r : Real = 2 . 5 ;
5 l e t s : Real = 3 . 0 ;
6 2 .5 / 3 .0
7 #=> 0.833333333333333 : Real
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Integer Operators Real Operators
Arithmetic +,−, ∗, / +,−, ∗, /
Relational >,≥, <,≤,= >,≥, <,≤,=
Others trunc, round

Table 4.1: Numerical operators in Manuzio.

4.3.5 Booleans

Manuzio has a specific type to represent boolean values. The boolean type is a set of
two values that are denoted, in our language, with the literals true or false. As with
numbers only a limited, basic set of operators on boolean values is present, with the
same motivations. Booleans can be tested for equality, negated, or combined with
an AND or OR logic. Boolean values can be declared directly but are more often
obtained as the result of a relational operator. Examples of booleans usage is given
in Source Code 15, while in Table 4.2 a complete list of booleans operators is shown.

Source Code 15 Booleans usage.

1 t rue ;
2 #=> t rue : Bool
3 NOT true ;
4 #=> f a l s e
5 r > s
6 #=> t rue : Bool
7 l e t b : Bool = f a l s e ;
8 b AND ( r>s )
9 #=> f a l s e : Bool

Boolean Operators
AND,OR,NOT,=

Table 4.2: Boolean operators in Manuzio.

4.3.6 Strings

The string type is a type of a certain importance in Manuzio since it is the data
type normally used to contain texts. In Manuzio strings are a primitive type with
their own set of operators. String literals are denoted by enclosing an arbitrary
long list of characters in double quotes and can contain escape characters to control
formatting.

Strings can be compared with relational operators to obtain their lexicographic
order, concatenated, or repeated n times. Strings in Manuzio can also be matched
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with a regular expression with the match operator. A regular expression literal
is prepended by the regexp keyword and delimited by forward slashes. Regular
expressions are used to describe a textual pattern and follow closely the syntax of
Ruby ones. For brevity regular expressions syntax rules are not reported here, but an
introduction can be found in [Matsumoto and Ishituka, 2002], while a book-length
coverage can be found in [Friedl, 2006].

Examples of strings usage is given in Source Code 16, while in Table 4.3 a
complete list of strings operators is shown.

Source Code 16 Strings usage in Manuzio.

1 ”manuzio” + ” i s slow ” + ”but good”
2 #=> ”manuzio i s s low but good” : S t r ing
3

4 ”manuzio ” ∗ 3
5 #=> ”manuzio manuzio manuzio ” : S t r ing
6

7 ”manuzio” s l i c e ( 1 . . 3 )
8 #=> ”man” : S t r ing
9

10 l e t r = regexp / [mM] anu .∗/
11 #=> regexp / [mM] anu .∗/ : Regexp
12

13 ”manuzio” ˜ r
14 #=> t rue : Bool
15

16 ”Manubrio” ˜ r
17 #=>t rue : Bool
18

19 ”MANUZIO” ˜ r
20 #=> f a l s e : Bool

String Operators
Comparison >,≥, <,≤,=
Manipulation +, ∗
Matching ∼

Table 4.3: String operators in Manuzio.

4.3.7 Variables

Even tough Manuzio is in principle a functional language one of its bundles include
the non-purely functional notion of memory and memory locations as variables. A
variable is a location in memory that can be updated by an assignment operation.
In Manuzio the type of an updateable value of type T is denoted by vartype T,
while a variable value is denoted by the value itself prepended by the keyword var.
The special operators relative to variables are the assign operator, denoted by a
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colon followed by an equal sign, that is used to store a variable value in a location
of memory, and the at operator, denoted by an exclamative mark, that is used to
retrieve a value from a memory location.

Manuzio has also the concept of unknown value. The NULL type is a subtype of
any other type, so that its singleton value nil can be stored into memory locations
of any type to denote an unknown or invalid value that can be later updated with
a valid one. When an unknown value must be evaluated the evaluator returns a
runtime error.

4.3.8 Functional Abstractions

In Manuzio functions are first-order values, so that a function can be the result
of an expressions, can be passed as parameter, and so on. Function values are
denoted by the fun keyword, while function application is, differently from other
languages, denoted by the @ symbol followed by the name of the function. The
value of a function is a closure. Manuzio employ the static binding technique, so
that a function body is evaluated in an environment formed by the values of the
actual parameters and the values of other constants at the time of the function
definition. For instance, in Source Code 17 the value of the function application
does not change when the value of a changes.

Source Code 17 Functions usage.

1 l e t a = 0 ;
2 l e t f = fun ( x : Int ) : Int i s x+a ;
3 @f (0 )
4 #=> 0 : In t
5 l e t a = 1 ;
6 @f (0 )
7 #=> 0 : In t

Recursive functions need a different syntax to be declared. A recursive function
is denoted by the recfun keyword followed by the name of an identifier that will be
used for self-reference in the body of the function. In Source Code 18, for instance,
a recursive function to compute the factorial of an integer number is declared as
fact2, with the self-identifier me.

Source Code 18 Recursive functions usage.

1 l e t f a c t = rec fun me(n : Int ) : Int i s i f n=1 then 1 e l s e n∗@me(n−1) end
2 @fact (4 )
3 #=> 24 : In t
4 @fact (5 )
5 #=> 120 : In t

2For simplicity, we assume the parameter to be greater then zero in this context.
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Manuzio supports the declaration of polymorphic functions. A polymorphic
function is a function that takes types as parameters and returns a function as result.
Such functions are declared with the polyfun keyword followed by the parametric
types identifiers enclosed in square brackets. A polymorphic function can later be
instantiated by using the application operator @ followed by the the actual types.
The returned value is a function on those types that can be later applied to values.
For instance, in Source Code 19, the identity function is declared and then applied
to integer and boolean values. A polymorphic function with two type parameters
is also declared. Since parametric types consistency is also enforced by the type
checker, the last line of the code yields to a type error, since the return type and
the function body type are not compatible after the polymorphic function has been
instanced.

Source Code 19 Polymorphic functions usage.

1 l e t id = polyfun [X] i s fun ( x :X) :X i s x
2 l e t i d I n t = @id [ Int ]
3 @idInt (0 )
4 #=> 0 : In t
5

6 l e t idBool = @id [ Bool ]
7 @idBool ( f a l s e )
8 #=> f a l s e : Bool
9

10 l e t f = polyfun [X,Y] i s fun ( x :X, y :Y) :X i s y
11 l e t g = @f [ Int , Int ]
12 @g(0 , 1 )
13 #=> 1 : In t
14

15 l e t u = @f [ Bool , Bool ]
16 @u( true , f a l s e )
17 #=> f a l s e : Bool
18

19 l e t u = @f [ Int , Bool ]
20 #=> TypeClashError

4.3.9 Records

The record data structure consists in a set of pairs (label, value), where the order
is not important. Records are equipped with the dot operator to access their fields
through label names, with the extend operator to create a new record with additional
fields, and with the project operator to create a new tuple with less fields than the
original one.

The program in Source Code 20 shows an example of record usage in Manuzio.
A record type POINT is defined along with an object of that type named p. Then
another type, COLORPOINT is defined and an instance of it is declared as an extension
of p. The shift function takes a record as parameter and returns a new record built
by shifting the parameter coordinates. The project operator is then used to return
another new, narrowed, record.
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Source Code 20 Records usage.

1 type POINT = {x : Int , y : Int } ;
2 #=> nop : Command
3 l e t p :POINT = {x=0, y=0};
4 #=> nop : Command
5

6 type COLORPOINT = {x : Int , y : Int , c o l o r : S t r ing } ;
7 #=> nop : Command
8 l e t pc :COLORPOINT = p extend { c o l o r=” Black ” } ;
9 #=> nop : Command

10

11 l e t s h i f t = fun (p :POINT, dx : Int , dy : Int ) :POINT i s {x=(p . x + dx ) , y = (p . y +dy ) } ;
12 #=> nop : Command
13

14 @sh i f t (p , 1 , 1 ) ;
15 #=> {x=1, y=1} : POINT
16

17 l e t s h i f t e d p = @sh i f t (p , 1 , 1 ) ;
18 #=> nop : Command
19

20 s h i f t e d p p r o j e c t {x } ;
21 #=>{x=1} : {x : In t }

4.3.10 Sequences

Sequences are important values in functional languages since they cope well with
recursive algorithms. Manuzio features a sequence type constructor equipped with
a rich set of operators. A sequence is denoted by a list of values, separated by
commas, all enclosed in square brackets. A sequence’s type is the most general
type among its element’s types. This means that the elements of a sequence do not
need to be of the same type, but their types must be at least compatible with each
other. Empty sequences exists in Manuzio, but since the type checker needs to know
the type of such sequences too it is necessary to declare them with the emptyseqof
keyword followed by a type name, rather then with the simpler []. Sequences are
equipped with classical operators to extract the head of the sequence and to return
its tail. The first operator returns an element of the same type of the sequence’s
elements type, while the second returns a new sequence of the same type. The cons
operator return a sequence with a new value inserted in the head position, while the
append operator is used to concatenates two different sequences. Sequences can also
be treated as multisets by the use of the intersect, union, and difference operators.
Examples of such operators usage can be found in Source Code 21.

A number of other, more specific, sequence operators exists in Manuzio. The
flatten operator performs a flattening of sequence of sequences values, so that the
returned value is a one-level sequence of values. The isin operator, instead, returns
a boolean value dependent on the presence of a value as at least one of the list
elements. In the same way the isempty operator returns true if an empty sequence
is passed. Examples of such operators usage can be found in Source Code 22.

Finally, the in operator constructs a sequence of records from a sequence of
values. This operator usage will be discussed later when it will be used in conjunction
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Source Code 21 Sequence basic operators usage.

1 l e t s = [0 , 1 , 2 , 3 ]
2 head s
3 #=> 0 : In t
4 t a i l s
5 #=> [ 1 , 2 , 3 ] : [ In t ]
6 −1 cons s
7 #=> [−1 ,0 ,1 ,2 ,3] : [ In t ]
8

9 emptyseq o f Int
10 #=> [ ] : In t
11 0 cons emptyseq o f Int
12 #=> [ 0 ] : [ In t ]
13

14 [{ x=0,y=0} , {x=1,y=1} , {x=0, y=0, z =0}]
15 #=> [{ x=0,y=0} , {x=1,y=1} , {x=0, y=0, z=0}] : [{ x : Int , y : In t } ]
16

17 [ 1 , 1 , 2 ] union [ 1 , 2 , 2 , 3 ]
18 #=> [ 1 , 1 ,1 ,2 ,2 ,2 ,3 ] : [ In t ]
19

20 [ 1 , 1 , 2 ] i n t e r s e c t [ 1 , 2 , 2 , 3 ]
21 #=> [ 1 , 2 ] : [ In t ]
22

23 [ 1 , 1 , 2 ] d i f f e r e n c e [ 1 , 2 , 2 , 3 ]
24 #=> [ 1 ] : [ In t ]

Source Code 22 Sequence basic operators usage.

1 f l a t t e n [ [ 0 , 1 ] , [ 1 , 2 ] , [ 3 , 4 ] ]
2 #=> [ 0 , 1 , 1 ,2 ,3 ,4 ] : [ In t ]
3

4 0 i s i n [ 0 , 1 , 2 , 3 ]
5 #=> t rue : Bool

with query-like operators and discussed later.

4.3.11 Objects

Manuzio have a simple object model that takes inspiration from the work presented
in [Albano and Procopio, 1998]. An object is an entity with a state, an identity and
a behavior. The state is a set of values called properties, the behavior is a set of local
procedures, called methods. The identity of an object is a time-invariant property
which function is to make every object different from each other. Two objects with
the same properties values but with different identity are thus different. An object
can receive messages to which it responds by returning one of its properties values or
the return value of a method. Objects have types, and the type of an object is also
called its interface because it lists the messages that the object can accept. Manuzio
objects are voluntarily simple because their goal is to be used as the foundation in
the design of textual objects. They lack some advanced features present in other,
classical, object-oriented languages that we felt were not useful or interesting when
applied to a textual analysis context.
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Manuzio is an object-based, or prototype based, language. In object-based pro-
gramming classes are not present and behavior reuse is performed via a process of
cloning existing objects that serves as prototype, in a way similar to the class-based
languages inheritance one. An object can be extended with new properties to cre-
ate a new object. The choice of an object-based language has been made mainly to
achieve simplicity in implementation and for the freedom of not being constrained by
a class structure. Future implementations could, if needed, introduce other concepts
like class and encapsulation without breaking the textual model.

Source Code 23 Example of objects usage in Manuzio.

1 type CELL = OBJECT(
2 { contents : vartype Int ,
3 getContents : methodtype ( ) : Int ,
4 setContents : methodtype ( Int ) : Command
5 }
6 ) ;
7

8 l e t c e l l :CELL = ob j e c t (
9 { contents=var 0 ,

10 getContents = method ( ) : Int i s ! s e l f . contents ,
11 setContents = method (n : Int ) : Command i s s e l f . contents := n
12 }
13 ) ;
14

15 type RECELL = OBJECT(
16 { contents : vartype Int ,
17 backup : vartype Int ,
18 getContents : methodtype ( ) : Int ,
19 getContents : methodtype ( Int ) : Command,
20 r e s t o r e : methodtype ( ) : Command
21 }
22 ) ;
23

24 l e t r e C e l l :RECELL = c e l l ob j ec textend {
25 backup = var ! s e l f . contents ,
26 getContents = method (n : Int ) : Command i s begin
27 s e l f . backup := ! s e l f . contents ;
28 s e l f . contents := n ;
29 end ,
30 r e s t o r e = method ( ) : Command i s s e l f . contents := ! s e l f . backup
31 } ;
32

33 r e C e l l . @set ( 5 ) ;
34 l e t a = r e C e l l . @getContents ( ) ;
35 r e C e l l . @restore ( ) ;
36 l e t b = r e C e l l . @getContents ( ) ;

In Manuzio, object types are denoted by the OBJECT keyword, followed by a
record of instance variables and methods enclosed in parenthesis. Object instances,
instead, are denoted by the keyword object, followed by a record value enclosed in
parenthesis. In the object definition the special identifier self is used to refer to
the object itself. Inside an object type the keyword methodtype is used to denote
methods signatures, while the keyword method is used to denote a method definition
inside an object value. The program in Source Code 23 shows an example of objects
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usage.
In object types only method signatures are specified, while method bodies are

contained in the single instances definitions. For this reason, in Manuzio, two ob-
jects of the same type can implement a method in two different ways, as long as the
implementation is consistent with the specified signature. This behavior is called
multiple implementations of objects. To create objects with the same method im-
plementation it is possible to define a function that works as a constructor. A
constructor takes in input the values required to set an object instance variables
with and returns an object. For instance, a constructor for the CELL type of Source
Code 23 can be defined as shown in Source Code 24, where a cell constructor is used
to instantiate a cell constant containing the integer value of zero.

Source Code 24 Example of an object constructor.

1 l e t c r e a t e C e l l = fun (n : Int ) :CELL i s
2 ob j e c t (
3 { contents=var n ,
4 getContents = method ( ) : Int i s ! s e l f . contents ,
5 setContents = method (n : Int ) : Command i s s e l f . contents := n
6 }
7 )
8 l e t c e l l : CELL = c r e a t e C e l l ( 0 ) ;

4.3.12 Textual Objects

The Manuzio language features a peculiar data type called textual objects. With
“textual object” we refer to both single and repeated textual objects. The pre-
cise notion of textual object has been defined in the Manuzio model, presented in
Section 3.

A single textual object is a special kind of object with some unique characteris-
tics. Textual objects are used to represent a portion of a text with a logical meaning.
Textual objects are composed by a state, a behavior, and a set of relationships with
other textual objects. The state is represented by a collection of instance variables,
values of any type that, when applied to textual objects, are also called attributes.
The behavior is represented by a set of local procedures called methods. Finally,
the relationships with other textual objects are described by a set of values called
components. Each of these values can be generically referred to as a field of its
textual object.

Repeated textual objects, instead, are an homogeneous repetition of textual ob-
jects. Repeated textual objects, also called repetitions for brevity, can be seen as a
sequence of textual objects of a certain type with the addition of a set of associated
values as attributes and a set of methods. The textual objects that constitute a
repetition are called its elements.

When a message is sent to a textual object, the corresponding method is exe-
cuted. Since encapsulation is not required nor defined in the model, asking directly
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for the value of an attribute or component is also considered a valid message. Tex-
tual objects are equipped with a set of predefined operators, the most important
is the dot operator used to access its fields. Another family of operators, called
the component access operators, are used to access components. Such operators are
used to traverse the textual hierarchy by exploiting the component relation among
textual types defined in the model. Such operators are the get..of and the getall..of
operators.

The get operator behave just like direct component access. By specifying the
name of a component the textual object (or repeated textual object) associated to
that component is returned. Textual objects operators works in a seamless way on
both single and repeated textual objects. When applied to repeated textual objects
the get operator flatten its results to a single repeated textual object which elements
are a union of the corresponding mapping elements. This behavior has been chosen
because it represents the most common way of accessing data in a literary text
context. A mapping can instead be obtained by applying the collect operator of the
language3. The get operator can be used in the same way to access attributes. In
this case the semantics, when applied to repetitions, is exactly the one of a mapping.

Source Code 25 Textual objects usage in an italian songs textual database.

1 get t i t l e o f c o l l e c t i o n
2 #=> ” Co l l e c t i on o f Songs from F. Guccini” : S t r ing
3

4 l e t p1 = head get poems o f c o l l e c t i o n
5 l e t p2 = head t a i l get poems o f c o l l e c t i o n
6

7 t ex t o f get t i t l e o f p1
8 #=> ” I l Vecchio e i l Bambino” : S t r ing
9

10 t ex t o f get t i t l e o f p2
11 #=> ”Canzone d e l l e Domande Consuete” : S t r ing
12

13 l e t w = g e t a l l WORD of p2
14 t ex t o f w
15 #=> [ ” Ancora” , ” qui ” , ”a” , ”domandarsi ” , . . . ” t e ” ] : [ S t r ing ]

The getall operator is used to access both direct and indirect components of
a textual object. By specifying a textual type T the getall operator traverse the
hierarchy of types starting from the caller object t and fetch all the textual objects
of type T that are direct or indirect components of t. The resulting value is a
repeated textual object which elements are of type T that contains the results.
Note that, since there can be multiple paths connecting the type T with another
type S, one component can be found multiple times. This is not an issue because
as stated in definition 5 in Section 3, all the elements of a repetitions are unique, so
a set union of the results is performed.

3It is important to note that the collect operator is not a textual objects specific operator, but
can be applied to textual objects without issues because textual objects are a native type of the
language.
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Another important operator on textual objects is the text of operator, that
performs the mapping between textual objects and their underlying text. Such
operator returns a string, and can be applied both to single textual objects and
to repetitions. When applied to repetitions the operator returns a sequence of
strings, each containing the text of one of the repetition’s elements. An example of
component access and text operators usage can be found in Source Code 25.

Starting from a textual object t the operator parent of can be invoked with
a textual type T parameter to retrieve the object of type T that is, directly or
indirectly, a parent of t. Note that the component relation definition implies that
this object is always unique. Textual objects are ordered following the natural
ordering of text. For this reason, given two textual objects of the same type, we
can compute their distance as the number of textual objects of the same type that
separate them, plus one. Two object whose distance is 1 are said to be contiguous.
The distance is computed by the distance from operator; its results is a positive
integer if the first argument occur after the second, negative vice-versa. An object
have distance 0 from itself. An useful operator, derived from the distance operator,
is the surround operator, that, given a textual object t and a positive integer number
n, returns the repeated textual object composed by t and all the objects at distance
n or less from it.

Textual objects are also equipped with a set of operators for textual comparison.
Such operators can be used to test for various properties of a textual object under-
lying text. The semantics of these operators is based on the definition 10 presented
in Section 3. Such operators take into account the natural linear order of their
underlying text. The language has operators to test the relations between object’s
positions, known as the Allen’s relations[Allen, 1991]. They allow, for instance, to
know if an object is fully contained in another one, if one partially precedes another,
and so on4.

4.3.13 Persistence and Query Operators

A persistent programming language seamlessly allows values to continue existing
after the program has been terminated. In such languages the persistence is trans-
parent, differently from other techniques, like SQL embedding, where the programmer
must make two different paradigms coexist.

One of the oldest programming language with persistent capabilities has been
MUMPS [Wasserman and Sherertz, 1976], a language created in the 1960s and still
in use in the field of medical records keeping, and also widely used in banking.
In MUMPS, all global lists are automatically persisted. Other notable examples
of such languages include Napier88 [Morrison et al., 1999] and Persistent Modula-
3 [Hosking and Chen, 1999]. A large number of external libraries to perform some

4Since the underlying text of objects may be non-contiguous, complex situations can arise. It
is sufficient to say here that the comparison operators are always well defined for every possible
pair of objects.
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sort of persistence (most notably object-relational mappings) on other languages
also exists, like Ruby’s ActiveRecord or Java Hibernate.

While Manuzio is not a persistent programming language, it shares some char-
acteristics of such languages when handling textual databases and textual objects.
When a textual database that follows the Manuzio model is available it can be
accessed by issuing the use database command to the interpreter. Such command
checks the effective availability of the database and its conformance with the Manuzio
model, and then, if everything is fine, creates a link between the database and the
language. When such link is created the Manuzio language can handle textual ob-
jects as native data types. The textual types contained in the database are added to
the environment and a special value, called collection is created to refer to the per-
sistent collection root. Textual objects are read from the textual database without
any need from the coder to write in a language different from the Manuzio language
or to deal with data type mismatching like it would have been necessary with SQL

embedding. Everything is done in an high-level way, so that the language user does
not need to know about the persistent layer implementation to use it.

The language has specific operators to query the textual database, called query-
like operators. Some of these operators are inspired by the ones present in the Galileo
language[Albano et al., 1985]. The syntax is similar to the one typical of relational
databases query languages. Since textual objects are values of the language, query-
like operators in Manuzio can be applied to both sequences and repeated textual
objects with exactly the same logic.

The key operator when discussing query-like operators is the in operator. It
takes two arguments, an identifier id and a sequence or a repeated textual object,
and returns a sequence of records in the form [{id = e1}, ...{id = en}], where ei is
the i-nth element of the input sequence or repetition. The in operator is overloaded
to work on both sequences and repeated textual objects alike.

The following constructs are available on sequences of records:

• (s where b): returns the sequence of the values that satisfy the boolean
expression b.

• (some s with b): tests whether at least one element in s satisfies b.

• (each s with b): tests if all elements of s satisfies b.

• (select e from s): returns the sequence of the values of the expression e
evaluated for each element in a sequence s.

• (s extend* {id1 : T1 = v1, . . . , idn : Tn = vn}): returns the sequence of values
obtained by applying the operator extend to each element in s.

• (s project* {id1 : T1, . . . , idn : Tn}): returns the sequence of values obtained
by applying the operator project to each element in s.
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• (s groupby {id1 = v1, . . . idn = Tn}): returns a sequence with type [{id1 :
T1, . . . , idn : Tn, partition : [Ts]}]. The elements of partition are those of s
with the same value of {id1 = v1, . . . idn = Tn}, which is evaluated for each
element e of e in the current environment extended with the fields of e. The
results are evaluated as follows:

1. For each element e of s the record {id1 = v1, . . . , idn = vn} is evaluated
in the current environment, extended with the fields of e, to produce a
sequence w of pairs [e, {id1 = v1, . . . , idn = vn}].

2. The elements of w are partitioned in subsequences that shares the same
value of {id1 = v1, . . . , idn = vn}. We call [ei] the sequence of the fields e
of the elements of a partition.

3. A sequence of one element for each partition is produced. Such elements
are in the form {id1 = v1, . . . , idn = vn, partition = [ei]}.

where s is a sequence of records, b is a boolean expression, idi is an identifier, and e
is an expression. Some simple examples of the use of these operators can be found in
Source Code 26, where a program to compute and show all the words with a specific
suffix in different songs is given. Other query examples are shown ad explained in
more detail in Section 6.5.

Source Code 26 Example of a program to retrieve a set of similar words from two
different songs.

1 #connecto to the gucc in i database
2 usedb ” g u c c i n i ” ;
3

4 l e t c o l l e c t i o n T i t l e :SENTENCE = get t i t l e o f c o l l e c t i o n ;
5 output ” Analyzing c o l l e c t i o n : ” + ( text o f c o l l e c t i o n T i t l e ) ;
6

7 l e t song1 :SONG = head ( get songs o f c o l l e c t i o n ) ;
8 l e t song2 :SONG = head t a i l get songs o f c o l l e c t i o n ;
9

10 output ” Analyzing song : ” + ( get t i t l e o f song1 ) ;
11 l e t words = g e t a l l WORD of song1 ;
12

13 l e t areWords = s e l e c t word
14 from ( word in words )
15 where ( t ex t o f word ) ˜ regexp ” .∗ are$ ” ;
16 output ” In ” + ( get t i t l e o f song1 ) +
17 ” the words that f i n i s h in −are are ” + ( s i z e o f areWords)%St r ing +
18 ” : ” + ( text o f areWords ) ;
19

20 output ” Analyzing song : ” + ( get t i t l e o f song2 ) ;
21 l e t words = g e t a l l WORD of song2 ;
22

23 l e t areWords = s e l e c t word
24 from ( word in words )
25 where ( t ex t o f word ) ˜ regexp ” .∗ are$ ” ;
26 output ” In ” + ( get t i t l e o f song2 ) +
27 ” the words that f i n i s h in −are are ” + ( s i z e o f areWords)%St r ing +
28 ” : ” + ( text o f areWords ) ;
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Lazy Evaluation and Query Composition

One of the drawbacks of persistent languages is that it is hard to do automatic
optimizations. Accessing persistently stored data is a costly operation and the
access overhead could hinder the performances of such approach. This problem
very important in Manuzio because even a medium sized text corpora, analyzed at
word-level, is composed by a large number of textual objects5.

We discussed lazy evaluation in the context of functional programming languages
earlier in Section 4.2. A modified version of lazy evaluation can help performances
by delaying the execution of queries to the last possible moment [Zi et al., 1992].
We plan to apply lazy evaluation only to expressions involving textual objects, that
is, expressions with the need to access the persistent textual database. The result of
such operators is a special kind of function called thunk. A thunk is a non-evaluated
value that knows how to retrieve the needed data from the textual database, for
instance by issuing an SQL query to a relational database, assuming our system uses
this technology for storage.

If a thunk result is needed, for instance to display the results, the language
evaluate it and materialize its actual value. Instead, if such results must be fur-
ther manipulated, lazy evaluation can be exploited to perform query composition.
With query composition the programmer can avoid to write complex commands all
together and, instead, write a chain of simpler language statements that yield the
same result in roughly the same time. Moreover, by using memoization techniques
discussed earlier, the persistence layer can store the results of queries for future
reuse.

The query composition implementation is heavily dependent on the solution
adopted for storage. In our prototype the use of a relational database made possible
to express some operator chaining in SQL, but a more complete and useful solution
would be achieved by the use of an ad-hoc storage system.

Other languages adopt a similar behavior. Microsoft LINQ [Meijer et al., 2006],
for instance, allows the programmer to express SQL queries directly from the language
as Manuzio do with textual objects. Their extensive work on adapters made possible,
however, to apply this idea to a wider range of data types and operators. While
not needed in the toy examples presented in this thesis, query composition will be
a central topic when developing real-world applications, where not only the textual
objects cardinality will be higher but performances will be a more concrete problem.
While open problems exists for the implementation of this solution, some possible
implementation principles are discussed in Section 6.6.

5The 43 Shakespeare’s works, for instance, contains 884,429 words in 34,896 lines.
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5
The Manuzio Language Semantics

“Good code is its own best documentation.” – Steve McConnell

5.1 An Introduction to Operational Semantics

The Semantics of a language defines the meaning of programs written in that lan-
guage, how they behave when they are executed. Often different languages use
different syntax and different semantics to express similar constructs. While vari-
ations in syntax are in general superficial, semantic differences express a difference
in the meaning of the program. As a consequence, similar constructs with different
semantics may produce very different results.

The semantics of programming languages can be defined by two different steps:
static semantics, also called typing, and dynamic semantics, also called just seman-
tics.

Static Semantics

Types are part of the semantics of the language, called its static semantics. The
goal of static semantics is to detect programs that will give errors during execution
before the actual execution of such programs. Note that, since static semantics
checks take place after the syntax analyzer, we assume that programs are, at this
stage, syntactically correct. When an expression of the language has a defined type it
is said that it is typeable. The process of checking for consistency of static semantics
rules is called typechecking. The set of rules that compose the static semantics of a
language are called its type system. A type checking rule can be in one of two forms.
A rule in the form:

ε ` e : T (5.1)

indicates that with the types specified in the type environment ε, the expression e
has type T . A rule in the form:

ε1 ` e1 : T1, . . . , εn ` en : Tn

ε ` e : T
(5.2)
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indicates that with the typing in ε, expression e has type T as long as the assertions
above the horizontal line all hold. The assertions over the line are called hypothesis
while the assertion below the line is called the conclusion. In the rest of the thesis
the following abbreviation will be used, if two hypothesis shares the same type envi-
ronment, the repetition of the type environment can be omitted and the associated
assertions are separated by commas, as in:

ε1 ` e1 : T1, . . . en : Tn . . . , εn+1 ` en+1 : Tn+1

ε ` e : T
(5.3)

where the first n hypothesis are valid in the ε1 environment, while the n + 1th one
is valid in the εn+1 one.

We will use such formalism to express type-checking rules and define the set of
legal expressions of our language.

Dynamic Semantics

The dynamic semantics of a language describes the behavior of programs written in
that language at execution time. Often it is given by informal definitions and exam-
ples, but such way of defining dynamic semantics can be incomplete and ambiguous.
The right way of defining a language semantics is through formal specification, for
several reasons:

• Language Implementation: a formal semantics facilitates the implementation
of compilers and interpreters, due to a clear and machine independent speci-
fication of each language construct.

• Programming: a clear description of the language constructs meaning can,
along with examples, ease the learning curve of a new language to program-
mers.

• Language Design: in the process of language design a formal semantics speci-
fication can aid to avoid inconsistencies and suggest improvements.

There are several approaches to specify formal semantics of programming lan-
guages, the main ones are:

• Denotational: in denotational semantics mathematical objects, called denota-
tions, are used to describe the meaning of expressions from the language in an
abstract way.

• Axiomatic: in axiomatic semantics the meaning of programs is given by de-
scribing the properties that hold before and after the execution of the program,
using axioms and deduction rules in a specific logic. Each construct of the lan-
guage is constrained by some preconditions and postconditions.



5.1. An Introduction to Operational Semantics 75

• Operational: operational semantics describes how a valid program is inter-
preted as a sequence of computational steps. Transition systems are used
as a tool to give operational specification: the execution of the program is
described as a sequence of transitions in an abstract machine, often a state
machine. Axioms and rules are used to define the possible transition relations
of such machine.

Each formal definition of semantics has its advantages. Operational semantics,
however, has been proven to be of particular practical use during the implementation
of a language compiler or interpreter, since it describes the computational steps
required to execute each expression. For this reason the Manuzio language presented
in this thesis will be given a formal specification with operational semantics.

Mathematical Foundations of Operational Semantics

Operational semantics is based on the concept of transition system. A transition
system is a mathematical entity that can be used to model computation.

Definition 13 (Transition System) A transition system is specified by:

• a set S of states;

• a binary relation →⊆ S × S called the transition relation.

We use the notation s→ s′ to indicate that s and s′ are in such relation. A transition
relation can be interpreted as a change of state from s to s′. We denote by → ∗ the
reflexive closure of the transition relation, so that s → ∗s′ hold if and only if there
is a sequence of transitions:

c→ c1 → c2 → · · · → cn (5.4)

where n ≥ 0 and cn = c′.
We distinguish two subsets of S, I and T , containing initial and final configura-

tions. A final configuration is a configuration s with no possible transitions out, so
that there is no s′ for which s → s′ exists. The intuitive idea is that a sequence of
transitions from an initial state s ∈ I to a final state s′ ∈ T represents the run of a
program.

Definition 14 (Deterministic Transition System) A transition system is de-
terministic when for every state s, if s→ s′ and s→ s′′ then s′ = s′′.

In a deterministic transition system at each point of computation there is only one
possible transition. By specifying a transition system it is possible to give a formal
semantics to a programming language. The system is seen as an abstract machine
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that simulate the execution of a program that can be used as a model to implement
an interpreter for the programming language.

While an abstract machine is useful to implement interpreters since it describe
the execution step by step, it include usually too much details to be easily understood
by users. Another way to give a language an operational semantics is through
structural operational semantics, which is based on transition systems and gives
an inductive definition of the execution of programs. The transition relation is
defined by induction and each command of the language is described in terms of its
components.

By using the mathematical notion of induction applied to trees[Fernandez, 2004]
we can define subsets of a set T . We write inductive definitions as axioms, that
represent the base of induction, and rules, that represent inductive steps.

Definition 15 (Axioms and rules) An axiom is an element of the final states
set T . A rule is a pair (H, s) where:

• H is a non-empty subset of T , called the hypothesis of the rule;

• s is an element of T , called the conclusion of the rule.

Definition 16 (Inductive Set) The subset I of T inductively defined by a collec-
tion A of axioms and a set R of rules consists of those t ∈ T such that:

• t is an axiom, or

• there are t1, t2, . . . , tn ∈ I and a rule (H, s) ∈ R such that H = {t1, . . . , tn}
and t = s.

To show that an element t is in the set I it is sufficient to show that t is an axiom or
that exists a proof tree with root in t. A proof tree is a tree of rules where the root
is the conclusion and the leaves are axioms. Such trees are written in the following
way:

...
t11

...

...
t1m1

t1
. . .

...
tn1

...

...
tnmn

tn

t
(5.5)

where for each non-leaf node ti there is a rule ({ti1 , . . . , timi
}, ti).

We can define an evaluation relation for a programming language using axioms
and rules applied to an abstract syntax tree of expressions. We will write e⇒ v to
indicate that the expression e evaluate in the value v. An axiom is denoted by the
following scheme:

e⇒ v (5.6)
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and represent an unconditioned evaluation. A rule is represented as:

e1 ⇒ v1, e2 ⇒ v2

+(e1, e2)⇒ v1 + v2

(5.7)

meaning that if the expression e1 evaluates in the value v1 and the expression e2 in
the value v2 then the expressions +(e1, e2) evaluates in the sum of v1 and v2.

Usually evaluation takes place in a certain environment Γ, a set of pairs that
bind an identifier to a value. In this case axiom and rule schemes change to reflect
the presence of this structure.

Γ ` e⇒ v (5.8)

meaning that in the environment Γ the expression e evaluates in the value v without
conditions, while:

Γ1 ` e1 ⇒ v1,Γ2 ` e2 ⇒ v2

Γ ` +(e1, e2)⇒ v1 + v2

(5.9)

means that if in the environment Γ1 the expression e1 evaluates in the value v1 and
in the environment Γ2 the expression e2 in the value v2 then in the environment Γ
the expressions +(e1, e2) evaluates in the sum of v1 and v2. If two or more hypothesis
shares the same environment then repeated environment declarations will be omitted
in the rest of the thesis, like in:

Γ1 ` e1 ⇒ v1, e2 ⇒ v2

Γ ` +(e1, e2)⇒ v1 + v2

(5.10)

meaning that both e1 and e2 have the indicated value when evaluated in Γ1.

5.2 Formal Language Specification

The Manuzio programming language is a prototype language enriched with special
constructs to assist the writing of programs that needs to analyze, annotate and
store persistently textual data, with a special focus on literary texts. The main
features of Manuzio are:

• Manuzio is a strongly statically typed language: each expression of the lan-
guage has a type and each sentence is type checked before being executed.

• Manuzio is an interactive language: each sentence of the language is an ex-
pression and each expression has a type and produces a value.
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• Manuzio is a functional language: functions are first order objects, that can
be passed as parameters, returned by other functions or be used in data struc-
tures.

Analyzing this language will be the main focus of this section. We will first
carefully give formal specifications of the syntax, type-checking rules, and semantics
of Manuzio. With that specifications we will be able to introduce its innovative
features in a painless, sound way. In order to make simple to write down semantics
and type-checking rules for our language the syntax will be somewhat more rigid and
less elegant than other, more advanced, object-oriented languages. Abbreviations
and syntactic sugar can be easily applied in subsequent time.

Manuzio has been developed in an modular way. We will start by describing
only the general rules of the language, without referring to specific data types or
values like integers, functions, strings and so on. We will call this empty language
µManuzio, and while it will have no expressive power (you can’t write anything more
then the empty program with it) it will be the platform over which the extensions,
called bundles will be specified and developed. Each bundle of the language can
enrich the language with its own values, types, type-checking rules, and expressions.
Each of these aspects will be defined in each of the bundles subsection.

5.2.1 Bundle Dependency Graph

In Manuzio bundles are not independent. For instance when we defined the Integers
bundle we made use of the Bool type to type check the relational operators between
integers, a declaration needs an identifier to be written, and so on. To make things
clear we draw a graph of the dependencies between the proposed bundles. An arrow
from a bundle b to a bundle b′ means that b′ needs b to work.

In some case even if there is not a dependency between two bundles, they can
be strongly tied. For instance, it is possible to write a correct program that makes
use of iteration without variables, or to use integer numbers without anything else
than booleans, but the resulting programs would be trivial at least.

5.3 Types

Manuzio is a strongly, statically typed language. Types provide an implicit context
for many operations, and limit the set of operations that may be performed in a
semantically valid program. Informally, a type system consists of a mechanism for
defining types and associating them with certain language constructs and of a set
of rules for type equivalence, type compatibility, and type inference. In Manuzio each
construct of the language has a value, and each value has a specific type. Type
equivalence rules define when two types can be considered the same type. Type
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compatibility rules determine when values of a certain type can be used in a given
context. Type inference rules define the type of an expression based on the types of
its constituents parts.

Type checking is the process of ensuring that a program conforms to the lan-
guage’s type rules. A violation of those rules is called a type clash. Strongly typed
languages, like Manuzio, prevent the execution of programs that do not pass the
type check. The application of any operation to any object that is not intended to
support that operation is prohibited. A language is said to be statically typed if it
is strongly typed and type checking can be performed before the actual execution
of the program.

The Manuzio language has a small set of predefined types, such as integers or
booleans, but allows the construction of other, more complex types, through the use
of type constructors. Constructed, or composite, types must be declared and defined
before being used. A declaration introduces a name and indicate, usually implicitly,
the scope in which the name will be visible. A definition, instead, describes how a
type is constructed by applying a type constructor to a set of already defined types.
Types can be thought of in at least three ways, called denotational, constructive,
and abstraction-based. From a denotational point of view, types are seen as sets of
values. From the constructed point of view, instead, a type is either a primitive,
built-in, type or a composite type created by applying a type constructor to one or
more simpler types. Finally, from an abstraction-based point of view, a type is an
interface consisting of a set of well-defined operations.

In Manuzio, type equivalence is defined as structural equivalence. Structural
equivalence is based on the content of definitions: two types are the same if they
consists of the same components. While most object-oriented languages use name
equivalence, instead, we found that the particular domain of application of Manuzio
makes a structural approach well-suited. The classical objection to structural equiv-
alence, where two types with the same components but very different semantics are
compared, does not apply to textual objects, where the semantics is constrained.
Manuzio do not feature any implicit type conversion mechanism at the current level
of prototyping. Explicit type conversions, or casts, have been implemented but,
since they do not apply to textual objects, their semantics has been left out of this
work.

5.3.1 Type Environments

To successfully perform the type-checking of the language sentences we need to store
informations about the fundamental types of the language, as well as the type of the
identifiers, both type identifiers and value identifiers, that will be declared during a
program life. We begin by defining a logical storage for the predefined types of the
language.

Definition 17 A type constants environment γ0 is a set of type constants called the



5.3. Types 81

fundamental types of the language.

While in most languages the set of fundamental types is fixed, the modular
nature of the Manuzio language makes it a mutable set. Adding new features to
the language through the use of bundles can enrich the type constants environment
with new types, such as integers, booleans and so on.

In Manuzio it is possible to define new type names using by the use of declara-
tions. To allow the type-checking of expressions containing such types it is necessary
to include a type constraint system to store type expressions. A type constant is a
type identifier which semantics is equivalent to another type identifier or to one of
the predefined types of the language.

Definition 18 A static type identifiers environment is defined as follows:

• γ = ∅ is a type identifiers environment.

• γ′ = γ ∪ {T : τ} is a type identifiers environment.

we call the relations in the form {T : τ} type identifier constraints.
To store the type of values an identifiers environment is defined as follows.

Definition 19 An identifiers environment ε is a set of pairs (x, T ) composed of a
type expression T and an identifier or constant x. The relation x : T ∈ ε can be
written ε(x) = T .

The identifiers environment can be seen as partitioned in two distinct environ-
ments. One, called εC stores the types of constants introduced by the bundles of the
language (like, for instance, that the constant 1 is of type Integer), while the other,
called εI stores the pairs of value identifiers and their type (like, for instance, x is
of type Boolean). The union of the type identifiers environment and the expressions
type environment is called the static types environment.

5.3.2 Type Equivalence

The Manuzio language type equivalence is a structural equivalence. In structural
type equivalence two types are considered compatible if and only if they have the
same structure. Since two types with different names can be in effect “the same”
type the type system must be able to compute the structure of each type and to
compare them.

The representation type function ρ(T ) returns a type expressions T ′ obtained by
replacing all the occurrences of type identifiers in T with their definitions, recursively,
until no more type identifiers are present. If two types are compatible we can write
T ∼= T ′.
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Definition 20 Let T be a type of the language, then:

1. if T is a fundamental type of the language then ρ(T ) ∼= T .

2. if T is a type identifier then ρ(T ) ∼= S if and only if γ(T ) = S.

3. for any other type we must refer to its specific type equivalence rules to deter-
mine the value of ρ(T ).

The function ρ(T ) is guaranteed to terminate because the first clause rules out
recursive or mutually recursive type definitions.

The type equivalence relation in Manuzio is reflexive :

γ, ε ` T ∼= T (types-reflexive)

and also transitive:

γ, ε ` T ∼= T ′, T ′ ∼= T ′′

γ, ε ` T ∼= T ′′
(types-transitive)

In Manuzio each free identifier has a type as defined in the type environment:

γ, ε ∪ {id : T} ` id : T (types-identifier)

each constant has a type as defined by the constant values environment:

γ, ε ` c : C (types-constant)

where C is the pre-assigned type for the built-in constant c.

5.3.3 Sub-typing Rules

A type T is subtype of another type S if a value of type T can be used in any context
where a value of type S is expected. Such a relation can be written T <: S, and
S is said to be a super-type of T . In the Manuzio programming language a type
S is subtype of another type T if and only if their representation types are in such
relation:

γ, ε ` ρ(S) <: ρ(T )

γ, ε ` S <: T
(subtype)

the subtype relation is transitive and reflexive:
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γ, ε ` T <: T (subtype-reflexive)

γ, ε ` ρ(S) <: ρ(T ), T <: U

γ, ε ` S <: U
(subtype-transitive)

This is only a generic rule, the sub-typing rules for each specific type will be
introduced precisely in the rest of the chapter. The sub-typing definition can be
made more concrete by introducing the subsumption rule, a formal way to inform
the type checker that a value of type T can actually masquerade a value of type S
if and only if T <: S.

γ, ε ` E : S, S <: T

γ, ε ` E : T
(subtype-subsumption)

These definitions are the basic type-checking rules of the Manuzio language.
The type-specific rules will be given by each of the types that will be added to the
language in the next sections.

5.4 Values

In this section we will provide the basics of the Manuzio semantic rules. Values are
the results of the evaluation of expressions that are statically been proved valid by
the type-checker. Since expressions can include identifiers, a values environment is
needed to store the relations between such identifiers and their value.

Definition 21 A values environment Γ is a set of finite associations between iden-
tifiers and values in the form x = v where each x is unique in Γ and v is a value.
The relation x = v ∈ Γ can be written Γ(x) = v. If in a values environment Γ exists
the relation Γ(x) = v and an expression yields to add the relation x = v′ to Γ then
Γ ∪ {x = v′} = Γ′ and Γ′(x) = v′.

The basic kind of values are the constants. While traditional programming
languages has a finite set of predefined constants, also called literals, Manuzio is a
modular language where new bundles can extend the set of constant present in the
language.

Definition 22 A constant environment ∆ is defined as follows:

1. The empty set ∅ is a constant environment.
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2. If Delta is a constant environment and δ is a literal with an associated value
of v of type T then ∆′ = ∆ ∪ {δ = v : T} is a constant environment.

The constant environment extension is a clean and simple way to extend the
interpreter with new literals. The extension notation includes informations about
the characters sequences that identify such literals, their types and their value in
the language. For instance, including the Integer bundle (see 5.5.5) yields to the
following constant environment extension.

∆′ = ∆ ∪ {0 = 0 : Int, 1 = 1 : Int, ...} (5.11)

This notation is used to tell the language that, in the resulting environment ∆′,
the literal 0 is a constant of type Int that must be interpreted as an integer value
0. By convention, in this thesis, we write in plain text the literals and we use an
underlined notation to denote semantic values and semantic operations.

The Manuzio programming languages also includes the concept of references and
memory. A reference is a value yielded by the evaluation of a location expression,
and the memory is a set of locations. Each location can contain a value of any type.
Values contained in memory locations can be updated, that is, substituted by other
values as the results of expression evaluations.

Definition 23 A memory M is a finite set of locations such as:

1. The empty set ∅ is a valid memory.

2. If M is a valid memory, l is a location and v is a value then M ∪ {l = v} is
a valid memory.

If l = v is an element of M we can write (l = v) ∈M or M(l) = v. Each l is unique
in M , if in memory M exists the relation M(l) = v and an expression yields to add
the relation l = v′ then M ∪ {x = v′} = M ′ and M ′(x) = v′. We can conveniently
write this behavior as M ← {v′ \ v}.

For a more comprehensive discussion about memory locations, addresses and the
effect that the introduction of such constructs has on the language, see 5.5.7.

5.5 Language Elements

In this section the Manuzio core that have been given in the previous sections will
be enriched with other language elements . An element can be informally defined as
a logical portion of the language that adds a meaningful set of functionalities. An
example of element is the Integer element. In general, by defining an element the
following features can be added to the language:
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1. New types: one or more new fundamental types and type constructors can be
added. For instance, the Integer bundle adds the Int type to the language.

2. New constants: the constants values environment can be extended to include
new values. For instance the Integer bundle introduces a syntax to denote
integer constants, the String bundle introduces string literals, and so on.

3. New values. For instance the IntValue(0), IntValue(1), ... are introduced
by the Integer bundle.

4. New expressions: to make use of new values, constants and types new expres-
sions are defined. The Integer bundle, for instance, introduces the classical
arithmetic expressions between integers.

5. Static semantics rules: if a new type is introduced in this section we will
find the rules to calculate its free type variables, the substitution rules, the
well-formedness rules and the subtyping rules. For each expression the free
identifiers and visibility rules are given, along with the type checking rules.

6. Dynamic semantics: here each of the new expressions’s semantics is given.

7. Extra: some particular constructs of the language can require additional ex-
tensions that will be discussed when presented. For example, when discussing
the TextualObject bundle, we will have to introduce the concept of persistent
environment.

If a bundle does not implement one or more of the previous features, then that
entry will be omitted in its description. For example, since relational operators will
not define any new type nor constant or values, their relative entries will be left out.
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5.5.1 Commands

The Command bundle introduces one of the fundamental types of the Manuzio Lan-
guage, the Command type. The Command type has only one possible value, called
nop, that is the value of all the expressions that manipulate the environments, such
as declarations, variable assignments, while loops and so on. The Command type is
different from the NULL type, as we will see in Section 5.5.8 when the NULL type
will be introduced. While the behavior of the two types is similar, they denotes
very different concepts, the former signal that an expression brings some side-effect,
while the latter denotes a non-existent or unknown value.

Note that, since the only value introduced by the bundle, nop, is not a denotable
value, we can skip the entire dynamic semantics section of the bundle. The Com-
mand type and its only value will only be used as yielded values of other expressions,
and they have not any semantic use.

Types Environments Extension

The static types environment γ is extended with the new type Command, obtaining
the new static types environment γ′.

γ′ = γ ∪ {Command} (5.12)

Constants Environment Extension

The constants environment ∆ not extended, since the only value introduced by the
bundle, nop, is not intended to be used directly anywhere in the language.

Syntax

The Command bundle does not defines any new expression, since the nop value is not
intended to be used by any expression.

Free Type Variables and Type Substitutions

The Command type is not a type constructor, so it does not yield to any free type
variable.

FTV (Command) = ∅ (command
(

ftv
stat

)
)

For the same reason, substitutions do not affect the Command type.

Command[Xi ← τ i∈1..n
i ] = Command (command

(
subs
stat

)
)
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Type Checking Rules

We only need a simple rule to tell the interpreter the type of the nop value.

γ, ε ` nop : Command (command-binomexpstat)

Subtyping Rules

The Command type is only subtype of itself.

γ, ε ` Command <: Command (command-binomsubstat)
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5.5.2 Identifiers

In this section the behavior of type and value identifiers of the Manuzio language
is explained. An identifier is a string that will be bound with a type or a value of
the language. We will refer to the sequence of characters that form that string as
the identifier’s name. The name of the identifier must be composed of alphanumeric
characters and must start with a letter or an underscore. Moreover, identifier names
must be different from the language keywords or unexpected results (most of the
time a parsing error) can happen.

A type identifier is a name bound to a type expression. Each type identifier can
be only declared once, or the interpreter will issue a static error. Type identifiers
must begin with an uppercase letter (the convention, however, is to use capitalized
identifiers) and can be considered as an alias for primitive types and type construc-
tors instances. A value identifier is a name that will become bound to a value. A
value identifier must start with a lowercase letter or with an underscore.

Syntax

The syntax of identifiers is trivial, they are denoted by their name. In the following
syntax X is a type identifier and x a value identifier.

X (type-ide)

x (value-ide)

Static Semantics

The static semantics rules for dealing with identifiers follow.

Free Variables and Type Substitutions

Since we are defining a new type of the language, the type identifier, we must also
define what are it’s free type variables. The only free type variable of a type identifier
is the type identifier itself.

FTV (X) = X (type-ide
(

ftv
stat

)
)

When we perform a substitutions of the form [Xi ← τi] with i ∈ 1..n a type
identifier gets substituted if and only if it is present in the list of substitutions.

X[Xi ← τi] =

{
X if X /∈ Xi

Xi if X = Xi
(type-ide

(
subs
stat

)
)
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Well-formedness

A type identifier is well-formed only if it has been declared and thus it is present in
the type environment.

γ ∪ {X = τ}, ε ` X (type-ide
(

well
stat

)
)

Subtyping Relations

A type identifier is subtype only of itself. Remember that, due to the type equiva-
lency, this means that a type identifier is subtype of all the types that are equivalent
to it. We could write:

γ, ε ` ρ(X) <: T

γ, ε ` X <: T
(type-ide

(
sub
stat

)
)

but with type equivalency rule we gave earlier we can simply write, without
omitting anything:

γ, ε ` X <: X (type-ide
(

sub
stat

)
)

Free Identifiers and Visibility Rules

A value identifier is a free identifier and does not introduces any new type definition.

FV (x) = x (val-ide
(

fv
stat

)
)

DV (x) = ∅ (val-ide
(

dv
stat

)
)

Type Checking Rules

The type of a type identifier is the type itself. The type of a value identifier is the
type of the value that is associated to it.

γ ∪ {x = τ}, ε ` x : τ (val-ide
(

exp
stat

)
)

Dynamic Semantics

Evaluating a value identifier yields the value to which that identifier is bound.

Γ ∪ {x = v},M ` x⇒ v (val-ide
(

exp
dyn

)
)
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5.5.3 Declarations

This section will introduce two fundamental expressions to the Manuzio language,
called declarations. A declaration can be of two kinds, a type declaration that
introduces a new type identifier or a value declaration that introduces a new value
identifier.

Processing a declaration results in adding new bound into an environment. The
symbol � is used to enrich the type checking rules of declarations with the effect
they have on the environments. Both axioms and rules can be enriched in such a
way. We call such rules judgements. For example the judgement:

γ, ε ` declaration : T � γ′, ε′ (judgemnt-axiom)

tells that, when type-checked in a type constraint system γ and a static type
environment ε, the expression expression has type T and it leads to a new type
constraint system γ′ and a new type environment ε′.

Syntax

A type declaration is introduced by the keyword type followed by the name of the
new type identifier. The type expression after the equals can be any valid type, type
constructor or type identifier of the language.

type τ = T (type-dec)

let x = e (let-dec)

let x : τ = e (let-dec-typed)

Where τ is a type identifier, T is a type expression, x is an identifier and e is any
expression. It is worth notice that since Manuzio is an expression-based language,
both type and value declarations are just another kind of expressions.

Static Semantics

The following paragraphs describes the static semantics rules for declarations.

Free Identifiers and Visibility Rules

A type declaration does not introduces new free or definition identifiers.

FV (type τ = T ) = ∅ (type-dec
(

fv
stat

)
)
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DV (type τ = T ) = ∅ (type-dec
(

dv
stat

)
)

Value declarations, typed or untyped, declare a new identifier and their free
identifiers are the free identifiers of the expression that yield the identifiers value.

FV (let x = e) = FV (e) (let-dec
(

fv
stat

)
)

DV (let x = e) = {x} (let-dec
(

dv
stat

)
)

FV (let x : τ = e) = FV (e) (type-dec-typed
(

fv
stat

)
)

DV (let x : τ = e) = x (type-dec-typed
(

dv
stat

)
)

Type Checking and Sub-typing Rules

A type declaration type is Command and checking the declaration extends the type
environment with the new type identifier.

γ, ε ` type τ = T : Command � γ ∪ {τ = T}, ε (type-dec
(

exp
stat

)
)

The value declaration type checking rules are dependent on the presence of a
type in the left-hand part of the expression. If the type constraint is not present the
declaration just yield to a new entry in the type environment. In the other case the
type checker ensures that the given type identifier and the type of the right-hand
expression are compatible. In both cases the type of the let expression is Command.

γ, ε ` e : T

γ, ε ` let x = e : Command � γ, ε ∪ {x : T}
(let-dec

(
exp
stat

)
)

γ, ε ` e : T, T <: S

γ, ε ` let x : S = e : Command � γ, ε ∪ {x : S}
(let-dec-typed

(
exp
stat

)
)

Dynamic Semantics

The dynamic semantics of declarations is straightforward.

Γ,M ` type τ = T ⇒ nop (type-dec
(

exp
dyn

)
)

Γ,M ` e⇒ v

Γ,M ` let x = e⇒ nop � Γ ∪ {x = v},M
(let-dec

(
exp
dyn

)
)
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Γ,M ` e⇒ v

Γ,M ` let x : T = e⇒ nop � Γ ∪ {x = v},M
(let-dec-typed

(
exp
dyn

)
)

Examples

Some simple usage of the declaration bundle expressions follows. Since this is one of
the first bundle we introduce the examples are trivial. During the rest of the section
the language will be enriched by the introduction of new types and expressions and
the examples will more and more interesting.

1 type T = Int #=> nop :Command & ET <− {T = Int }
2 l e t a :T = v #=> nop :Command & EV <− {a = v}
3 l e t b = u #=> nop :Command & EV <− {b = u}

In the listing we use the notation described in Chapter 4 where we write the
sentence followed by the # => symbol. After that symbol we write the value and
type of the sentence and, if the sentence modifies the environment, we append the
symbol & and how the environment gets modified.
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5.5.4 Booleans

The Booleans bundle adds the common primitive Boolean type to the Manuzio
language. In Manuzio there are two boolean constants, true and false, with the
obvious semantic value.

Types Environment Extension

The static types environment Γ is extended with the Bool type.

γ′ = γ ∪ {Bool} (5.13)

Constants Environment Extension

The constants environment is extended to add the true and false literals to the
language. both of type Bool. Their semantic value is the obvious truth value of
true/yes/1/on for true and false/no/0/off for false.

∆′ = ∆ ∪ {true = true : Bool, false = false : Bool} (5.14)

Syntax

The Booleans bundle includes the most basic operations on booleans and, or, not.

e and e (bool-and)

e or e (bool-or)

not e (bool-not)

Static Semantics

The following paragraphs introduces all the rules the type checker needs to handle
boolean values.

Free Type Variables and Type Variables Substitution

Since the Bool type is not a type constructor it does not yield to any free type
variable.

FTV (Bool) = ∅ (bool
(

ftv
stat

)
)
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For the same reason, when a type variable substitution is invoked on the Bool
type, the results, independently of the substitution, is again of type Bool.

Bool[Xi ← τ i∈1..n
i ] = Bool (bool

(
sub
stat

)
)

Well Formedness

The Bool type is always well formed.

Subtyping Relations

The Bool type is subtype only of itself.

γ, ε ` Bool <: Bool (bool
(

sub
stat

)
)

Free Identifiers and Visibility Rules

Since none of the boolean operations defines new identifiers we omit such rules from
the list below. The result of such rules is always the empty set.

FV (e op e′) = FV (e) ∪ FV (e′) ∀ op ∈ {and, or} (bool-op
(

ftv
stat

)
)

FV (not e) = FV (e) (bool-not
(

ftv
stat

)
)

Type Checking Rules

The type checking rules for booleans are presented in the following formulas.

γ, ε ` e : Bool, e′ : Bool

γ, ε ` e op e′ : Bool
∀ op ∈ {and, or} (bool-op

(
exp
stat

)
)

γ, ε ` e : Bool

γ, ε ` not e : Bool
(bool-not

(
exp
stat

)
)

Dynamic Semantics

To specify the dynamic semantics of boolean values we assume to have the logical
operations and, or and not as basic semantic operations. We will refer to such oper-
ations with {and, or, not}. Given these semantic operators the dynamic semantics
rules are straightforward.
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Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e op e′ ⇒ v op v′
∀ op ∈ {and, or}, op ∈ {and, or} (bool-op

(
exp
dyn

)
)

Γ,M ` e⇒ v

Γ,M ` not e⇒ not v
(bool-not

(
exp
dyn

)
)
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5.5.5 Integers

The Integers bundle adds the common integer type to the Manuzio language. This
is one of the most common features of any language and it is also one of the primitive
types of Manuzio. Many other bundles will depend on Integer. The formalism of
integers is so common that we will not explain it in depth here, assuming the reader
is familiar with it.

Types Environment Extension

The static types environment γ is extended with the new Int type, representing the
type of all integer values of the language.

γ′ = γ ∪ {Int} (5.15)

Constants Environment Extension

The constants environment ∆ is extended to include all the denotable natural integer
numbers. Each of such constants semantics is their common numerical meaning, so
the constant composed by the characters 1 and 0 is translated in the integer value
representing the number ten.

∆′ = ∆ ∪ {0 = 0 : Int, 1 = 1 : Int, ...} (5.16)

Syntax

The Integer bundle introduces new expressions representing the common integer
arithmetic and relational operators.

e+ e (int-sum)

e− e (int-sub)

e ∗ e (int-mult)

e/e (int-div)

−e (int-neg)

e > e′ (int-gt)

e < e′ (int-lt)
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e ≥ e′ (int-gte)

e ≤ e′ (int-lte)

e = e′ (int-eq)

e ! = e′ (int-neq)

Static Semantics

The following paragraphs introduces all the rules the type checker needs to handle
integer numbers.

Free Type Variables and Type Variables Substitution

Since the Integer type is not a type constructor it does not yield to any free type
variable.

FTV (Int) = ∅ (int
(

ftv
stat

)
)

For the same reason, when a type variable substitution is invoked on the integer
type, the results is again the integer type, independently of the substitution.

Int[Xi ← τ i∈1..n
i ] = Int (int

(
subs
stat

)
)

Well Formedness

The integer type is always well formed.

γ, ε ` Int (int
(

well
stat

)
)

Subtyping Relations

The Int type is subtype only of itself.

γ, ε ` Int <: Int (int
(

sub
stat

)
)
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Free Identifiers and Visibility Rules

Since none of the integer operations defines new identifiers we omit such rules from
the list below. The result of such rules is always the empty set.

FV (e op e′) = FV (e)∪FV (e′) ∀ op ∈ {+,−, ∗, /, <,>,≤,≥,=, ! =} (int-op
(

ftv
stat

)
)

FV (−e) = FV (e) (int-neg
(

ftv
stat

)
)

Type Checking Rules

The type checking rules for integers are presented in the following formulas. The
first rule is used when typecheking arithmetic infix operators, while the second is
used for relational comparisons. The last rule refer to the unary minus operator.

γ, ε ` e : Int, e′ : Int

γ, ε ` e op e′ : Int
∀ op ∈ {+,−, ∗, /} (int-arop

(
exp
stat

)
)

γ, ε ` e : Int, e′ : Int

γ, ε ` e op e′ : Bool
∀ op ∈ {<,>,≤,≥,=, ! =} (int-relop

(
exp
stat

)
)

γ, ε ` e : Int

γ, ε ` −e : Int
(int-neg

(
exp
stat

)
)

Dynamic Semantics

To specify the dynamic semantics of integer arithmetic expressions we assume to
have the four integers basic operations as basic semantic operations. We will refer
to such operations with {+i, −i, ∗i, /i} where the - operator is used to denote both
the unary integer negation and the binary subtraction. In the same way we assume
to have basic relational semantic operations such as <i, >i, and so on and we use
them to express the dynamic semantics of comparisons between integers. Given
these semantic operators the dynamic semantics rules are straightforward.

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e op e′ ⇒ v op v′
∀ op ∈ {+,−, ∗, /}, op ∈ {+i,−i, ∗i, /i} (int-arop

(
exp
dyn

)
)

Γ,M ` e⇒ v

Γ,M ` −e⇒ −iv
(int-neg

(
exp
dyn

)
)
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Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e op e′ ⇒ v op v′
∀ op ∈ {<,>,≤,≥,=, ! =}, op ∈ {<i, >i,≤i,≥i,=i, ! =i}}

(int-relop
(

exp
dyn

)
)
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5.5.6 Reals

The Reals bundle add the primitive Real type to the Manuzio language to represent
floating-point numbers.

Types Environment Extension

The static types environment γ is extended with the new Real type, representing
the type of all real values of the language.

γ′ = γ ∪ {Real} (5.17)

Constants Environment Extension

The constants environment ∆ is extended to include all the denotable positive real
numbers. In Manuzio a real number is denoted by one or more numeric characters
followed by a dot and one or more other numeric characters. Each of such literals
semantics is their common numerical meaning, so the constant composed by the
characters ’1’, ’.’ and ’0’ is translated in the real value representing the number
1.0. Since reals cannot be enumerated we use a regular expression like notation to
formalize the constants environment extension.

∆′ = ∆ ∪ {[0− 9]+.[0− 9]+} (5.18)

Syntax

The Reals bundle introduces new expressions representing the common arithmetic
operators among real numbers.

e+ e (real-sum)

e− e (real-sub)

e ∗ e (real-mult)

e/e (real-div)

−e (real-neg)

e > e′ (real-gt)

e < e′ (real-lt)
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e ≥ e′ (real-gte)

e ≤ e′ (real-lte)

e = e′ (real-eq)

e ! = e′ (real-neq)

Static Semantics

The following paragraphs introduces all the rules the type checker needs to handle
real numbers.

Free Type Variables and Type Variables Substitution

Since the Real type is not a type constructor it does not yield to any free type
variable.

FTV (Real) = ∅ (real
(

ftv
stat

)
)

For the same reason, when a type variable substitution is invoked on the real
type, the results is again the real type, independently of the substitution.

Real[Xi ← τ i∈1..n
i ] = Real (real

(
subs
stat

)
)

Well Formedness

The real type is always well formed.

γ, ε ` Real (real
(

well
stat

)
)

Subtyping Relations

The Real type is subtype only of itself.

γ, ε ` Real <: Real (real
(

sub
stat

)
)
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Free Identifiers and Visibility Rules

Since none of the real operations defines new identifiers we omit such rules from the
list below. The result of such rules is always the empty set.

FV (e op e′) = FV (e)∪FV (e′) ∀ op ∈ {+,−, ∗, /, <,>,≤,≥,=, ! =} (real-op
(

ftv
stat

)
)

FV (−e) = FV (e) (real-neg
(

ftv
stat

)
)

Type Checking Rules

The type checking rules for reals are presented in the following formulas.

γ, ε ` e : Real, e′ : Real

γ, ε ` e op e′ : Real
∀ op ∈ {+,−, ∗, /} (real-arop

(
exp
stat

)
)

γ, ε ` e : Real, e′ : Real

γ, ε ` e op e′ : Bool
∀ op ∈ {<,>,≤,≥,=, ! =} (real-relop

(
exp
stat

)
)

γ, ε ` e : Real

γ, ε ` −e : Real
(real-neg

(
exp
stat

)
)

Dynamic Semantics

Like we did for integers to specify the dynamic semantics of real numbers we assume
to have four floating point operations as basic semantic operations. We will refer to
such operations with {+r, −r, ∗r, /r} where the −r operator is used to denote both
the unary real negation and the binary subtraction. In the same way we assume
to have basic relational semantic operations such as <r, >r, and so on and we use
them to express the dynamic semantics of comparisons between reals. Given these
semantic operators the dynamic semantics rules are straightforward.

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e op e′ ⇒ v op v′
∀ op ∈ {+,−, ∗, /}, op ∈ {+r,−r, ∗r, /r} (real-arop

(
exp
dyn

)
)

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e op e′ ⇒ v op v′
∀ op ∈ {<,>,≤,≤,=, ! =}, op ∈ {<r, >r,≤r,≥r,=r, ! =r}

(real-relop
(

exp
dyn

)
)
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Γ,M ` e⇒ v

Γ,M ` −e⇒ −rv
(real-neg

(
exp
dyn

)
)
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5.5.7 Locations and Variables

The Variables bundle introduces the classical programming languages concept of
variable, a location in a memory, identified by an address, that contains an update-
able value. This bundle is based on the concept of memory discussed in Section 5.

By introducing updatable variables in a functional language we are in fact de-
classing it from a purely functional language to a functional language. A purely
functional language has no memory or I/O side effects, (other then the computa-
tion of the result). This means that pure functional languages have several useful
properties, many of which can be used to optimize the code in a multi processor
implementation.

The fact that variables are not a fundamental feature of our modular language,
but only a bundle, means that we can easily revert Manuzio to a purely functional
language by removing this bundle (possibly along with all other bundles that make
it impure).

Memory details like addresses, limits, cell size, and so on are left to the specific
implementation, here the concept of memory will be presented in a very simple, high
level way. An address is simply an integer, but we will use a notation to distinguish
addresses from numbers. The address of the first cell in memory is 0x1 the second
one is 0x2 and so on. Cells have a variable size that is always enough to contain the
value that they store.

In this section we will explore the new location type and we will present the
expressions to create a variable, update it, and access its value.

Types Environment Extension

The Variables bundle introduces a new parametric type, or type constructor, in
Manuzio, that will be the type of locations, called vartype. Each location type must
know the type of the value it points to, so we can have many location types like
vartype Int, vartype Bool, and so on. In general the static types environment γ is
extended in the following way.

γ′ = γ ∪ {vartype τ} ∀ τ ∈ γ (5.19)

Constants Environment Extension

The Variables bundle itself does not define any new constant, but see Section 5.5.8
to learn about the Null bundle which defines the nil constant, not mandatory but
closely tied to the concept of variables.

Syntax

The Variables bundle add to the language the expressions needed to declare a
variable, to fetch its value from the memory with the at operator (!), and to update
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its value with the assignment operator (:=).

var e (var-varvalue)

!e (var-at)

e := e (var-assign)

Static Semantics

The following paragraphs introduces all the rules the type checker needs to handle
variable types and expressions involving variables.

Free Type Variables and Type Variables Substitution

Since vartype is a type constructor that references another type, the type of the
referenced value, it also introduces a free type variable as follows.

FTV (vartype τ) = FTV (τ) (var
(

ftv
stat

)
)

In case of a variable substitution the substitution must be carried over the ref-
erenced type.

(vartype τ)[Xi ← τ i∈1..n
i ] = (vartype τ [Xi ← τ i∈1..n

i ]) (var
(

subs
stat

)
)

Well Formedness

The well formedness of a variable type depends directly on the well formedness of
the referenced type.

γ, ε ` τ
γ, ε ` vartype τ

(var
(

well
stat

)
)

Subtyping Relations

A variable type τ is subtype of another type τ ′ if and only if it τ ′ is a variable type
and its referenced type is subtype of the type referenced by τ .

γ, ε ` τ <: τ ′

γ, ε ` vartype τ <: vartype τ ′
(var

(
sub
stat

)
)
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Free Identifiers and Visibility Rules

Since none of the Variables bundle expressions defines new identifiers we omit such
rules from the list below. The result of such rules is always the empty set.

FV (var e) = FV (e) (var-varvalue
(

exp
stat

)
)

FV (!e) = FV (e) (var-at
(

exp
stat

)
)

FV (e := e′) = FV (e) ∪ FV (e′) (var-assign
(

exp
stat

)
)

Type Checking Rules

The var-varvalue expression is used to construct variable values, so it must yield to
values of type vartype.

Γ,M ` e : T

Γ,M ` var e : vartype T
(var-varvalue

(
exp
stat

)
)

The at expression is used to fetch a value from the memory, so the type of such
expression is the type of the referenced value.

Γ,M ` e : vartype T

Γ,M `!e : T
(var-at

(
exp
stat

)
)

Finally, the assignment expression that updates a value is an expression that
carry a side effect, so it must be of type Command. The left-hand expression type
must be variable and the right-hand expression type must be a subtype of the left-
hand expression type.

Γ,M ` e : vartype T, e′ : S, S <: T

Γ,M ` e := e′ : Command
(var-assign

(
exp
stat

)
)

Dynamic Semantics

To specify the dynamic semantics of variables we only need to refer to the concept
of memory discussed in Section 5.4. As a quick reminder if M is a memory we can
denote the insertion of a value in a new cell of address l a value v with:

M ′ = M ∪ {l, v} (5.20)
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the storage of a value v in the location l is written:

M(l)← v (5.21)

while the retrieval of a value from a specific address l is written:

M(l) = v (5.22)

the process of finding a free cell, allocate it, storing the value in a meaningful way,
and returning the address of the allocated cell is assumed, and details are left to the
actual memory implementation. We only need to declare a function newloc that,
given a memory M , returns the address of a free cell in M . With these assumptions
the dynamic semantics rules are straightforward.

Γ,M ` e⇒ v, newloc(M) = l

Γ,M ` var e⇒ l � Γ,M ∪ {l, v}
(var-varvalue

(
exp
dyn

)
)

Γ,M ` e⇒ l,M(l) = v

Γ,M `!e⇒ v
(var-at

(
exp
dyn

)
)

Γ,M ` e⇒ l, e′ ⇒ v

Γ,M ` e := e′ ⇒ nop � Γ,M(l)← v
(var-assign

(
exp
dyn

)
)
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5.5.8 Null

The Null bundle introduces an unknown value called nil. The nil value is tied to
identifiers to indicate that they have no meaning, do not exists, as well as indicating
an uninitialized reference to a location in memory. The nil value is the only instance
of the NULL type, defined to be subtype of all other types of the language. The direct
consequence of this fact and the subsumption rule as defined in equation subtype-
subsumption is that we enrich all other types of the language with a nil value,
to represent an unknown. The unknown is meant to be used as a placeholder,
an expression can be tested to know if it is nil with the exists operator but a nil
expression cannot be evaluated. If such an evaluation is performed a runtime error
is raised.

Types Environment Extension

The Null bundle introduces a new type called NULL.

γ′ = γ ∪ {NULL} (5.23)

Constants Environment Extension

The Null bundle defines a new constant nil of type NULL to represent an unknown
value. We assume to have a value with the same semantics in the underlying virtual
machine used for the implementation, called nil .

∆′ = ∆ ∪ {nil = nil : NULL} (5.24)

Syntax

The bundle introduces, along with the constant nil, the exists operator that can be
used to test a value for being nil.

exists e (null-exists)

Static Semantics

The following paragraphs introduces all the rules the type checker needs to handle
the Null type and expressions involving it.
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Free Type Variables and Type Variables Substitution

Since the NULL type is not a type constructor it does not yield to any free type
variable.

FTV (NULL) = ∅ (null
(

ftv
stat

)
)

For the same reason, when a type variable substitution is invoked on the NULL
type, the results is again the NULL type, independently of the substitution.

NULL[Xi ← τ i∈1..n
i ] = NULL (null

(
subs
stat

)
)

Well Formedness

The NULL type is always well formed.

γ, ε ` NULL (null
(

well
stat

)
)

Subtyping Relations

As stated in the introduction of the bundle, the NULL type is subtype of any other
legal type of the language.

γ, ε ` τ
γ, ε ` NULL <: τ

(null
(

sub
stat

)
)

Free Identifiers and Visibility Rules

Since none of the bundle operations defines new identifiers we omit such rules from
the list below. The result of such rules is always the empty set.

FV (exists e) = FV (e) (null-exists
(

ftv
stat

)
)

Type Checking Rules

The only expression of the bundle, exists, yields always a truth value.

γ, ε ` e : τ

γ, ε ` exists e : Bool
(null-exists

(
exp
stat

)
)
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Dynamic Semantics

To specify the dynamic semantics of the exists expression we need to assume a
semantic operator η that, applied to a value, returns a truth value true if that value
is nil, a false otherwise.

Γ,M ` e⇒ v

Γ,M ` exists e⇒
{

true if η(v) = nil
false otherwise

(null-exists
(

exp
dyn

)
)

The evaluation of any other operator ρ when applied to of an unknown value
yields to a runtime error.

Γ,M ` e⇒ nil

Γ,M ` ρ(e)⇒ Runtime Error
(5.25)
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5.5.9 Functional Abstractions

The concept of procedure, function, and recursive function is common to almost
all the recent programming languages. A function is a portion of code within a
larger program, which performs a specific task and is relatively independent of the
remaining code. It is coded to obtain a specific set of data values from the calling
program (its parameters), and provide a result of a specific type (its return value).

In Manuzio functions and recursive functions are supported and are first order
values: they can be passed as a parameter, returned by another function, and so on.
The concept of procedure, a functional abstraction that does not returns a value, is
not present in Manuzio but can be seen just as a function that returns nop without
loss of expressive power. Differently from other programming languages, Manuzio
uses an explicitly different syntax for functions with or without recursion. Moreover,
the identifier used to refer to self in the scope of a recursive function is variable, and
gets defined during the function definition itself.

Functional abstractions introduce a new type, the Function type to represent
the type of functional values. A functional value is also called closure or recursive
closure. The Function bundle adds the support for functional abstractions to the
Manuzio language, along with the operators to apply a function with a set of actual
parameters.

Types Environment Extension

Functional abstractions introduce a new type, the Function type. Such type is called
Fun and is a composite type that stores the types of the function parameters and
its return type.

γ′ = γ ∪ {Fun(τ1, τ2, . . . , τn) : τn+1} ∀ τi ∈ γ (5.26)

Syntax

In Manuzio functions and recursive functions are distinguished by a different syntax.
Differently from many other languages where a function application is invoked by
writing the name of an identifier bound to a function value, in Manuzio there is an
explicit operator @ (the application operator) to performs such task. Such operator
works both for recursive and non-recursive functions.

fun(id1 : τ1, id2 : τ2, . . . , idn : τn) : τn+1 is e (fun)

recfun id(id1 : τ1, id2 : τ2, . . . , idn : τn) : τn+1 is e (recfun)

@e(e1, e2, . . . , en) (fun-app)
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Static Semantics

The static semantics rules for functional abstractions are defined in the following
sections.

Free Type Variables and Type Variables Substitution

The free type variables of a Function type is the union of the sets of the free type
variables of its parameters type and its return type.

FTV (Fun(τ1, τ2, . . . , τn) : τn+1) =
⋃

i∈1..n

FTV (τi) ∪ FTV (τn+1) (fun
(

ftv
stat

)
)

When substituting types in a functional type it is necessary to perform the
substitution on its parameters type and on its return type.

(Fun(τ1, . . . , τn) : τn+1)[Xi ← τi]
i∈1..n =

Fun(τ1[Xi ← τi]
i∈1..n, . . . , τn[Xi ← τi]

i∈1..n) : τn[Xi ← τi]
i∈1..n (fun

(
sub
stat

)
)

Well Formedness

A Function type is well formed when the type of its parameters and its result type
are well formed.

γ, ε ` τ1, τ2, . . . , τn, τn+1

γ, ε,` Fun(τ1, τ2, . . . , τn) : τn+1

(fun
(

well
stat

)
)

Subtyping Relations

Manuzio use the classical sub-typing rule for functions: a Function type T is subtype
of another Function type S if and only if the type of S formal parameters are all
subtypes of the respective T ’s formal parameters type and if the return type of T is
subtype of the return type of S.

γ, ε ` τ ′1 <: τ1, τ
′
2 <: τ2, . . . , τ

′
n <: τn, τn+1 <: τ ′n+1

γ, ε,` Fun(τ1, τ2, . . . , τn) : τn+1 <: Fun(τ ′1, τ
′
2, . . . , τ

′
n) : τ ′n+1

(fun
(

sub
stat

)
)
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Free Identifiers and Visibility Rules

To compute the free identifiers of a functional abstraction we must compute the free
identifiers of the body and remove from that set the formal parameters identifiers.
When dealing with a recursive function the auto-reference identifier must be taken
into account too.

FV (fun(id1 : τ1, id2 : τ2, . . . , idn : τn) : τn+1 is e) = FV (e)−{idi}i∈1...n (fun
(

fv
stat

)
)

FV (recfun id(id1 : τ1, id2 : τ2, . . . , idn : τn) : τn+1 is e) = FV (e)− {idi}i∈1...n

(recfun
(

fv
stat

)
)

When using the application expression the free identifiers are the union of the
function expression and the actual parameters free identifiers.

FV (@e(e1, e2, . . . , en)) = (
⋃

i∈1..n

FV (e1)) ∪ FV (e) (fun-app
(

fv
stat

)
)

Type Checking Rules

The type-checking rules for functional abstractions are straightforward. If the body
of the function definition has a type compatible with the attended return type in a
type environment extended with the bounds between the formal parameters types
and identifiers, then the functional abstraction type check is correct and the returned
type is a Function type.

γ, ε ∪ {id1 : τ1, . . . , idn : τn} ` e : τn+1

γ, ε ` fun(id1 : τ1, . . . , idn : τn) : τn+1 is e : Fun(τ1, . . . , τn) : τn+1

(fun
(

exp
stat

)
)

Dealing with recursive functions is similar. We must take into account the self-
reference and it’s type. The type of the self-reference identifier is the type of the
functional abstraction, assuming that it is correct.

γ, ε ∪ {id1 : τ1, . . . , idn : τn, id : Fun(τ1, . . . , τn) : τn+1} ` e : τn+1

γ, ε ` recfun id(id1 : τ1, . . . , idn : τn) : τn+1 is e : Fun(τ1, . . . , τn) : τn+1

(recfun
(

exp
stat

)
)

A functional abstraction application expression is correct when the expression to
which the @ operator is applied is a function and the types of the actual parameters
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are compatible with the types of the formal parameters. The yielded type is the
return type of the function.

γ, ε ` e : Fun(τ1, . . . , τn) : τn+1, e1 : τ1, . . . , en : τn
γ, ε ` @e(e1, . . . , en) : τn+1

(fun-app
(

exp
stat

)
)

Dynamic Semantics

The value of a function definition is a closure. A closure value wraps the function
itself with an environment composed by all the free identifiers of the function body
and their value at the time of the function definition. In Manuzio functional ab-
stractions obey to what is called static scoping. We can denote a closure as follows,
where Γfv is the free identifiers environment. Recursive closures are analogue for
recursive functions.

〈Γfv, fun(id1 : τ1, . . . , idn : τn) : τn+1 is e〉 (5.27)

〈Γfv, recfun id(id1 : τ1, . . . , idn : τn) : τn+1 is e〉 (5.28)

When a function is defined the interpreter has to compute the closure of that
function and yield it as the value of the fun or recfun expression. If we assume for
brevity that:

f = fun(id1 : τ1, . . . , idn : τn) : τn+1 is e (5.29)

frec = recfun id(id1 : τ1, . . . , idn : τn) : τn+1 is e (5.30)

the dynamic semantics of functions follows.

Γfv = {xi = Γ(xi)}i∈1...n ∀ x ∈ FV (f)

Γ,M ` f ⇒ 〈Γfv, f〉
(fun

(
exp
dyn

)
)

Γfv = {xi = Γ(xi)}i∈1...n ∀ x ∈ FV (frec)

Γ,M ` frec ⇒ 〈Γfv, frec〉
(recfun

(
exp
dyn

)
)

For function applications the body of the function must be evaluated in an
environment composed by the function closure extended with the actual parameters.
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Γ,M ` f ⇒ 〈Γfv, [rec]fun(id1 : τ1, . . . , idn : τn) : τn+1 is e〉
Γ,M ` e1 ⇒ v1, . . . , en ⇒ vn

Γ ∪ {id1 = v1, . . . , idn = vn},M ` e⇒ v

Γ,M ` @f(e1, . . . , en)⇒ v
(fun-app

(
exp
dyn

)
)
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5.5.10 Blocks

In Manuzio a block is a sequence of valid language’s sentences grouped to form a
single instruction. Such sentences are enclosed in by the old fashioned begin ... end
keywords and are separated by a semicolon (a semicolon after the last sentence is
optional). The type of a block is the type of the last sentence of the block. For
this reason blocks are meant to be used in conjunction with expressions that brings
a side effect such as the ones given in Section 5.5.7. Blocks are introduced by the
blocks bundle defined in this section. The blocks bundle is rather simple and does
not require much comments.

Syntax

The blocks bundle defines only the block statement.

begin exp; exp; . . . exp[; ] end (block)

Static Semantics

The definitions needed to check the static correctness of blocks follow.

Free Identifiers and Visibility Rules

The free variables of a block can be defined as the union of all the free variables of
all its composing sentences.

FV (begin e1; e2; ... en end) =
⋃

i=1...n

FV (ei) (block
(

fv
stat

)
)

Type Checking Rules

The type of a block is the type of its last sentence, provided that all the sentences
of the block type-checked correctly.

γ, ε ` e1 : τ1, e2 : τ2, . . . , en : τn
γ, ε ` begin e1; e2; . . . en; end : τn

(block
(

exp
stat

)
)

Dynamic Semantics

When a block is evaluated all its sentences are evaluated sequentially in appearing
order. The value of a block is the value of its last sentence.

Γ,M ` e1 ⇒ v1, e2 ⇒ v2, . . . , en ⇒ vn

Γ,M ` begin e1; e2; . . . , en end⇒ vn

(block
(

exp
dyn

)
)
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5.5.11 Parenthesis

The Manuzio language supports the use of parenthesis to override the normal oper-
ator precedence rules. Parenthesis are defined by the Parenthesis bundle and their
use is intuitive.

Syntax

The Parenthesis bundle defines only the parenthesis statement.

(e) (par)

Static Semantics

The definitions needed to check the static correctness of parenthesis follow.

Free Identifiers and Visibility Rules

The free variables of a parenthesis expression are simply the free variables of the
enclosed expression.

FV ((e)) = FV (e) (par
(

fv
stat

)
)

Type Checking Rules

The type of a parenthesis expression is simply the type of the enclosed expression.

γ, ε ` e : τ

γ, ε ` (e) : τ
(par

(
exp
stat

)
)

Dynamic Semantics

A parenthesis expression gets evaluated by evaluating the enclosed expression and
yielding that value.

Γ,M ` e⇒ v

Γ,M ` (e)⇒ v
(par

(
exp
dyn

)
)
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5.5.12 Iteration

Since some of the Manuzio bundles can include imperative-style features in the
language, like variables, the While bundle adds an imperative iteration statement
to the language to make it capable of express imperative-style programs. Of course
this is not the intended paradigm of Manuzio, but since the language is modular
we can add or remove this feature by just including or not the While bundle when
interpreting. A while statement always yield a nop value to indicate the presence of
side effects.

Syntax

The while bundle defines only the while statement.

while condition do e1; e2; . . . ; en end (while)

Static Semantics

The definitions needed to check the static correctness of the while statement follow.

Free Identifiers and Visibility Rules

The free variables of a while statement can be defined as the union of all the free
variables of all its composing block and its condition.

FV (while e do e1; e2; . . . ; en end) =
⋃

i=1...n

FV (ei) ∪ FV (e) (while
(

fv
stat

)
)

Type Checking Rules

The type of a while statement is always Command, provided that the condition’s
type is Bool and all the enclosed instructions type-check correctly.

γ, ε ` e1 : τ1, e2 : τ2, . . . , en : τn, e : Bool

γ, ε ` while e do e1; e2; . . . ; en end : Command
(while

(
exp
stat

)
)

Dynamic Semantics

A while statement is composed by a condition and a block of instructions. When
evaluating the statement the condition is checked first. The choice of the rule used
to evaluate it depends on the condition truth value. If it is true then the block is
evaluated and then the iteration is repeated, else the block is not evaluated and the
nop value is returned.
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Γ,M ` e⇒ false

Γ,M ` while e do e1; e2; . . . ; en end⇒ nop
(while-false

(
exp
dyn

)
)

Γ,M ` e⇒ true, e1 ⇒ v1, e2 ⇒ v2, . . . , en ⇒ vn

Γ,M ` while e do e1; e2; . . . ; en end⇒ while e do e1; e2; . . . ; en end

(while-true
(

exp
dyn

)
)

Examples

In the following example a succ function is defined to compute the successor of an
integer. Then a variable x of Int type is initialized to zero and increased with the
succ function application until it gets to 100. The last instruction test our code by
confronting the final value contained in x with the constant integer 99. The result
of such instruction is a boolean truth value of true.

1 l e t succ = fun (n : Int ) : Int i s n+1 #=> nop :Command
2 l e t x = var 0 #=> nop :Command
3 whi le ( ( ! x)<100) do
4 x := @succ ( ! x ) ;
5 end #=> nop :Command
6 ! x > 99 #=> t rue : Bool
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5.5.13 Selection

The Selection bundle import in the language the fundamental if ... then ... else
... end statement. The usage of such statement should be enough familiar to allow
us to dive into the syntax and semantics without further explanations.

Syntax

The if bundle defines only the if statement, which syntax is the following.

if e then et else ee end (if)

Static Semantics

The definitions needed to check the static correctness of the if statement follow.

Free Identifiers and Visibility Rules

The free identifiers of a selection are the union of the free identifiers of the condition
with the ones on both branches.

FV (if e then et else ee end) = FV (e) ∪ FV (et) ∪ FV (ef ) (if
(

fv
stat

)
)

Type Checking Rules

Since the check on the condition truth value can only be made at runtime the
selection statement needs to enforce type compatibility between its if branch and
its else branch. Remember that by type compatibility between two types T and S
we mean that either T is subtype of S or vice-versa. The type of the if statement
will then be the most general type between its if and else branch types. By doing
so we ensure that the type checker is sound independently from the branch chosen
at runtime.

γ, ε ` e : Bool, e1 : τ1, e2 : τ2, τ1 <: τ2

γ, ε ` if e then et else ee end : τ2

(if-1
(

exp
stat

)
)

γ, ε ` e : Bool, e1 : τ1, e2 : τ2, τ2 <: τ1

γ, ε ` if e then et else ee end : τ1

(if-2
(

exp
stat

)
)
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Dynamic Semantics

The evaluation of the selection statement is straightforward. First the condition is
evaluated, if its value is true then the if branch is evaluated and its results is yielded,
if it’s false then the else branch is evaluated and its results is yielded.

Γ,M ` e⇒ true, et ⇒ vt

Γ,M ` if e then et else ee end⇒ vt

(if-true
(

exp
dyn

)
)

Γ,M ` e⇒ true, ee ⇒ ve

Γ,M ` if e then et else ee end⇒ ve

(if-false
(

exp
dyn

)
)

Examples

In the following example we must make use of records, described in Section 5.5.16
to have two simple types that are one subtype of the other.

1 i f ( t rue ) then {a=1} e l s e {a=2, b=3} end #=> {a=1} : {a : In t }
2 i f ( f a l s e ) then {a=1} e l s e {a=2, b=3} end #=> {a=2, b=3} : {a : In t }

The first two lines report the same statement with a different condition. We
can see that, in both cases, the yielded value is of type a : Int, the most general
type between the two branches types. This example shows another behavior of the
Manuzio interpreter. The second selection returns a value a = 2, b = 3 but it’s type
is a : Int. The static type environment masquerade the presence of the b field to the
user, so that that field is unaccessible. Every expression that tried to access it will
clash with the type-checker and will not be considered correct. This is an example
of how a statically typed language can refuse correct programs, while a dynamically
typed language would not have had such a problem. An exemplification of such be-
havior follows; trying to access the b field cause a semantic error from the interpreter.

1 l e t r e s u l t = i f ( f a l s e ) then {a=1} e l s e {a=2, b=3} end #=> nop :Command
2 #r e s u l t i s {a=2, b=3} : {a : In t }
3

4 r e s u l t . a #=> 2 : In t
5 r e s u l t . b #=> Errors : : SemanticError , b i s not a f i e l d o f {a : In t }
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5.5.14 Strings

The Manuzio programming language is aimed to work with text and textual objects,
so string handling is of fundamental importance. The Strings bundle defines a new
type, String, that represent a sequence of characters encoded in UTF-8. Each value
of that type is called a string and can be manipulated through a rich set of operators.
In this section we will introduce the new type and values and a collection of such
operators. The concat operator concatenates two strings, the times operator repeat
a string n times, the size of operator returns the number of characters in the string.
The slice operator, instead, is of central importance and allows the selection of
substrings. In Section 5.5.15 the regular expressions will be introduced and the
Strings bundle will be enriched with a pattern matching operator.

Types Environment Extension

The Strings bundle introduces a new type, String.

γ′ = γ ∪ String (5.31)

Constants Environment Extension

The String bundle introduces new constants called string literals. A string literal
is defined as “any sequence of zero or more characters enclosed in double quotes”.
From now on we denote with “s” a Manuzio string, while with ”s” its semantic
value. In the following definition a regular expression is used to denote the concept
of “any sequence of zero or more characters”.

∆′ = ∆ ∪ {“s′′ = “s′′ : String} ∀ s ∈ /. ∗ / (5.32)

Syntax

The String bundle adds the following expressions to the language.

e+ e (str-concat)

e ∗ e (str-times)

size of e (str-size)

e[e′..e′′] (str-slice)
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Static Semantics

Free Type Variables and Type Variables Substitution

Since the String type is not a type constructor it does not yield to any free type
variable.

FTV (String) = ∅ (str
(

ftv
stat

)
)

For the same reason, when a type variable substitution is invoked on the string
type, the results is again the string type, independently of the substitution.

String[Xi ← τ i∈1..n
i ] = String (str

(
subs
stat

)
)

Well Formedness

The integer type is always well formed.

γ, ε ` String (str
(

well
stat

)
)

Subtyping Relations

The String type is subtype only of itself.

γ, ε ` String <: String (str
(

sub
stat

)
)

Free Identifiers and Visibility Rules

Since none of the string operations defines new identifiers we omit such rules from
the list below. The result of such rules is always the empty set.

FV (e+ e′) = FV (e) ∪ FV (e′) (str-concat
(

ftv
stat

)
)

FV (e ∗ e′) = FV (e) ∪ FV (e′) (str-times
(

ftv
stat

)
)

FV (size of e) = FV (e) (str-size
(

ftv
stat

)
)

FV (e[e′..e′′]) = FV (e) ∪ FV (e′) ∪ FV (e′′) (str-slice
(

ftv
stat

)
)
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Type Checking Rules

The type-checking rules of string expressions are simple.

γ, ε ` e : String, e′ : String

γ, ε ` e+ e′ : String
(str-concat

(
exp
stat

)
)

γ, ε ` e : String, e′ : Int

γ, ε ` e ∗ e′ : String
(str-times

(
exp
stat

)
)

γ, ε ` e : String

γ, ε ` size of e : Int
(str-size

(
exp
stat

)
)

γ, ε ` e : String, e′ : Int, e′′ : Int

γ, ε ` e[e′..e′′] : String
(str-slice

(
exp
stat

)
)

Dynamic Semantics

Since the string data type is more complex then other type we already seen in
previous sections, like integers or booleans, its dynamic semantics will be slightly
more complicated. We assume to have the following semantic operators:

• strcat(s1, . . . , sn): performs the concatenation of two or more strings. The
results of such operation is a new string composed by all the characters of s1

followed by all the characters of s2, and so on.

• strlen(s): returns the number of characters composing the string s as a natural
number.

Given those semantic operators we can define the dynamic semantics of the
Strings bundle expressions as follows.

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e+ e′ ⇒ strcat(v, v′)
(str-concat

(
exp
dyn

)
)

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e ∗ e′ ⇒ strcat(v, v)v′ (str-times
(

exp
dyn

)
)

where by strcat(v, v)v′
we mean the iteration of the operation strcat(v, v) for v′

times. To iterate zero times yields to the empty string.

Γ,M ` e⇒ v

Γ,M ` size of e⇒ strlen(v)
(str-size

(
exp
dyn

)
)
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The slice operator has the classical substring semantics.

Γ,M ` e⇒ v, e′ ⇒ v′, e′′ ⇒ v′′

Γ,M ` e[e′..e′′]⇒ v[v′..v′′]
(str-slice

(
exp
dyn

)
)
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5.5.15 Regular Expressions

One of the most important feature needed in Manuzio is string manipulation. When
working with textual objects we will explore the logic structure of a text in a clean
and intuitive way but, sooner or later, we will have to extract the text of one or more
of such objects to read it, analyze it, or compare it with some other text. A regular
expression introduces in Manuzio a concise and flexible way to identify strings of
interest by comparing them with a pattern of characters. Regular expressions are
written in a formal language described in this section and are processed by the in-
terpreter when the match or extended match operator is called. Regular expressions
and their operators are bundled in the Regexp bundle.

Types Environment Extension

The Regexp bundle extends the type environment with a new type, Regexp that
represents a string written in the Manuzio regular expression’s formal language.

γ′ = γ ∪ {Regexp} (5.33)

Constants Environment Extension

A regular expression constant is denoted by a string of characters enclosed between
two $ symbols. Such characters can be any combination of valid regular expression’s
characters. Each of such constants have a semantic counterpart that will be used
by the underlying virtual machine to perform the matching.

∆′ = ∆ ∪ {$. ∗ $ = $. ∗ $ : Regexp} (5.34)

Here we use the notation .∗ to indicate a sequence of zero or more characters.

Regular Expressions in Manuzio

Describe the syntax and meaning of regular expressions here (similar to the ruby
ones, without modifiers).

Syntax

Manuzio supports two operators to deal with regular expressions. The simpler one
is the match operator, used to know if a string conforms to a regular expression
or not. The second one is more advanced and returns a record containing more
informations about the eventual matching. See Section 5.5.15 later in this section
for more information.
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e ∼ e′ (reg-match)

e o e′ (reg-ext)

Static Semantics

Free Type Variables and Type Variables Substitution

The regexp type does not yield to any free type variable. For the same reason,
substitutions of type identifiers have no effect on such type.

FV T (Regexp) = {} (reg
(

ftv
stat

)
)

Well Formedness

A regexp type is always well formed.

γ, ε ` Regexp (reg
(

well
stat

)
)

Subtyping Relations

The Regexp type is subtype only of itself.

γ, ε ` Regexp <: Regexp (reg
(

sub
stat

)
)

Free Identifiers and Visibility Rules

Since none of the regular expression operations defines new identifiers we omit such
rules from the list below. The result of such rules is always the empty set.

FV (e ∼ e′) = FV (e) ∪ FV (e′) (reg-match
(

fv
stat

)
)

FV (e o e′) = FV (e) ∪ FV (e′) (reg-ext
(

fv
stat

)
)
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Type Checking Rules

The match operator takes a string and a regular expression and returns a boolean.

γ, ε ` e : String, e′ : Regexp

γ, ε ` e ∼ e′ : Bool
(reg-match

(
exp
stat

)
)

The extended match operator instead returns a record type containing all the
information about the eventual match.

γ, ε ` e : String, e′ : Regexp

γ, ε ` e ∼ e′ : {match : Bool, n : Int, . . .}
(reg-ext

(
exp
stat

)
)

Dynamic Semantics

To specify the dynamic semantics of regular expressions we must assume a semantic
operation of pattern matching ξ. Such operation returns a boolean value of true if
a match exists, false if not.

Γ,M ` e⇒ v, e′ ⇒ v′, ξ(v, v′) = m

Γ,M ` e ∼ e′ = m.match
(reg-match

(
exp
dyn

)
)

Γ,M ` e⇒ v, e′ ⇒ v′, ξ(v, v′) = m

Γ,M ` e ∼ e′ = {match = m.match, n = m.n, . . .}
(reg-ext

(
exp
dyn

)
)
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5.5.16 Records

The Records bundle adds record support to the Manuzio language. A record, also
called tuple or struct, consists in an aggregation of zero or more values called the
record fields. Each field can be accessed through an identifier to which it is bound,
called label. A record type is a data type that describes such values. The definition
of a record type includes the data type and label of each field. In Manuzio records
are of particular importance. As we will see in the following sections they will be
used in the definition of both objects and textual objects.

Types Environment Extension

The Records bundle adds the Record type to the language. Such type is a type
constructor that takes in input zero or more labels and the same number of other
types. To denote a record type we enclose in curly brackets a list of identifiers, each
followed by a colon and its type. In Manuzio an empty record is a legal value and
it is denoted by just a couple of curly brackets. In the rest of the section we use
underlined curly brackets when they are not part of the syntax to avoid confusion
in the notation.

γ′ = γ ∪ { {id1 : τ1, . . . , idn : τn}, {} } ∀(τi ∈ γ, idi ∈ ι)i∈1...n (5.35)

Syntax

A record expression is composed by a couple of curly brackets that enclose a set
of zero or more field expressions. A field expression is an identifier, called label,
followed by and optional type (separated by a colon) and a value (separated by an
equal).

{id1 : τ1 = e1, . . . , idn : τn = en} (rec)

The basic record operation is the dot operation, used to access a specific record
field by its label. Moreover the Records bundle includes the extend and project
expressions on records. The former takes two records and merge their fields to
create a third one, while the latter takes a record and a subset of it’s fields and
returns a new record with only those selected fields.

e.id (rec-dot)

e extend e′ (rec-ext)

e project {id1 : τ1, . . . , idn : τn} (rec-proj)
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Static Semantics

Free Type Variables and Type Variables Substitution

A record type free type variables is the union of the free type variables of its fields
type.

FTV ({id1 : τ1, . . . , idn : τn}) = FTV (τ1) ∪ . . . ∪ FTV (τn) (rec
(

ftv
stat

)
)

Well Formedness

A record type is well formed when:

• the identifiers of its fields are valid;

• each identifier is unique;

• the types of its fields is well formed.

∀i ∈ (1..n) idi /∈ ({id1, . . . , idn} − {idi}), idi ∈ ι, τi
γ, ε ` {id1 : τ1, . . . , idn : τn}

(rec
(

well
stat

)
)

Subtyping Relations

A record R is subtype of another record T when the all the fields of T are also
present in S and their type is a subtype of the corresponding type in S.

γ, ε ` τ1 <: τ ′1, . . . , τn <: τ ′n
γ, ε ` {id1 : τ ′1, . . . , idn : τ ′n, idn+1 : τ ′n+1, . . . idm : τ ′m} <: {id1 : τ1, . . . , idn : τn}

(rec
(

sub
stat

)
)

Free Identifiers and Visibility Rules

FV ({id1[: τ1] = e1, . . . , idn[: τn] = en}) = FV (e1) ∪ . . . ∪ FV (en) (rec
(

fv
stat

)
)

FV (e.id) = FV (e) (rec-dot
(

fv
stat

)
)

FV (e extend e′) = FV (e) ∪ FV (e′) (rec-ext
(

fv
stat

)
)

FV (e project {id1 : τ1, . . . , idn : τn}) = FV (e) (rec-proj
(

fv
stat

)
)
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Type Checking Rules

The record dot expression type checking rule is straightforward, the resulting type
is the type of the corresponding identifier, if a field with that identifier exists.

γ, ε ` e : {id1 : τ1, . . . , idn : τn}, id ∈ idi∈1..n
i

γ, ε ` e.id : τi
(rec-dot

(
exp
stat

)
)

The extension operator type check correctly when both operands are records and
there no identifiers in common between them.

γ, ε ` e : {id1 : τ1, . . . , idn : τn},
e′ : {idn+1[: τn+1] = en+1, . . . , idm[: τm] = em},
idi /∈ {id1, . . . , idn} ∀ i ∈ (n+ 1)..m

γ, ε ` e extend e′ : {id1[: τ1] = e1, . . . , idm[: τm] = em}
(rec-ext

(
exp
stat

)
)

The projection operator between a record R and a record type T type checks
correctly if T is a record type where each field ft have a correspondent identifier fr

in R and τfr <: τft .

γ, ε ` e : {id1 : τ1, . . . , idn : τn},
∀ j ∈ (n+ 1) . . .m ∃i ∈ (1 . . . n) : idi = idj, τi <: τj

γ, ε ` e project {idn+1 : τn+1, . . . , idm : τm} : {idn+1 : τn+1, . . . , idm : τm}
(rec-proj

(
exp
stat

)
)

Dynamic Semantics

A record value is intended to represent a finite map from labels to values where
the labels are unique and the values can have different types. The empty record,
represented in Manuzio by a pair of curly brackets, is a valid value and its type is
the empty record type.

In our abstract semantic machine record values are represented by the classical
notion of tuple, denoted by a collection of labels and values enclosed in underlined
curly brackets. The empty record is represented by a pair of underlined curly brack-
ets.

Γ,M ` ei ⇒ vi∈1..n
i

Γ,M ` {id1 : τ1 = e1, . . . , idn : τn = en} ⇒ {id1 = v1, . . . , idn = vn}
(rec

(
exp
dyn

)
)

The dynamic semantics of dot operator is simple and consists in the evaluation
of its fields values.

Γ,M ` e⇒ {id1 = v1, . . . , idn = vn}, ∃i ∈ 1 . . . n : id = idi

Γ,M ` e.id⇒ vi

(rec-dot
(

exp
dyn

)
)
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The extension of a record is performed by constructing a new tuple that includes
the fields of both arguments’s tuples.

Γ,M ` e⇒ {id1 = v1, . . . , idn = vn},
e′ ⇒ {idn+1 = vn+1, . . . , idm = em}

Γ,M ` e extend e′ ⇒ {id1 = v1, . . . , idm = vm}
(rec-ext

(
exp
dyn

)
)

The projection is performed by constructing a new tuple from the argument’s
one with only the fields specified in the projection.

Γ,M ` e⇒ {id1 = v1, . . . , idn = vn},
∀ j ∈ (n+ 1) . . .m ∃i ∈ (1 . . . n) : idi = idj

Γ,M ` e project {idn+1 : τn+1, . . . , idm : τm} ⇒ {idn+1 = vn+1, . . . , idm = vm}
(rec-proj

(
exp
dym

)
)
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5.5.17 Sequences

A sequence is an homogeneous collection of values. The Sequence type, introduced
by the Sequences bundle, is a fundamental concept in Manuzio and in functional
programming in general, since such data structure works very well with recursive
algorithms. In Manuzio every sequence have a type, including the empty sequence.
For this reason, when denoting an empty sequence, a special syntax that require to
explicitly specify its type is required. A collection of operators can manipulate se-
quences by extracting the head or the tail of a sequence, concatenate two sequences,
or test for a sequence to have some properties such as containing a specific value.

Types Environment Extension

The Sequences bundle extends the types environment with the Sequence type. A
sequence type is a type constructor that takes another type as a parameter and
constructs a sequence of elements of that type.

γ′ = γ ∪ {[τ ]} ∀ τ ∈ γ (5.36)

Note that τ can be any type, even a sequence, so a sequence of sequences is legal,
as long as the well formedness rules are verified.

Syntax

A sequence constant can be denoted by a comma separated collection of one or more
values enclosed in square brackets. Note that, since we need to know the type of
such values, an empty sequence denoted by just a pair of square brackets is not a
legal constant since we can not infer the type of its elements. An expression called
emptyseq will be used to deal with such situation.

[e1, . . . , en] (seq)

The syntax of the sequence related expressions follows.

head e (seq-head)

tail e (seq-tail)

e cons e′ (seq-cons)

isempty e (seq-isempty)
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e append e′ (seq-append)

e intersect e′ (seq-intersect)

e union e′ (seq-union)

e difference e′ (seq-diff)

e isin e′ (seq-isin)

flatten e (seq-flat)

emptyseq of τ (seq-emptyseq)

collect |id| e from e′ (seq-collect)

Static Semantics

Free Type Variables and Type Variables Substitution

The free type variables of a sequence type are the free type variables of its elements
type.

FTV ([τ ]) = FTV (τ) (seq
(

ftv
stat

)
)

Well Formedness

Since all the values of a sequence must be homogeneous they all must have a com-
patible type. The type of the resulting sequence will be a sequence type which
elements have the type of the most general type among its values type.

γ, ε ` ei : τi ∀ i ∈ 1 . . . n

γ, ε ` τs = τ1, ∀i ∈ 2 . . . nτs =

{
τs if τi <: τs

τi if τs <: τi

γ, ε ` [e1, . . . , en] : [τs]
(seq

(
well
stat

)
)
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Subtyping Relations

A sequence S is subtype of another sequence S ′ if the elements type of S is subtype
of the elements type of S ′.

γ, ε ` τ <: τ ′

γ, ε ` [τ ] <: [τ ′]
(seq

(
sub
stat

)
)

Free Identifiers and Visibility Rules

Since none of the integer operations defines new identifiers we omit such rules from
the list below. The result of such rules is always the empty set.

FV (e op e′) = FV (e) ∪ FV (e′) (seq-infix
(

fv
stat

)
)

FV (op e) = FV (e) (seq-prefix
(

fv
stat

)
)

FV (emptyseqof τ) = ∅ (seq-emptyseq
(

fv
stat

)
)

FV ([e1, . . . , en]) =
⋃

i=1...n

FV (ei) (seq
(

fv
stat

)
)

Type Checking Rules

The typechecking rules for sequence expressions are straightforward, with the only
exception of the seq-collect expression. The type of this expression, often called
map in other languages, is the type of the expression e, evaluated in an environment
extended with the bound {id : τ}.

γ, ε ` e : [τ ]

γ, ε ` head e : τ
(seq-head

(
exp
stat

)
)

γ, ε ` e : [τ ]

γ, ε ` tail e : [τ ]
(seq-tail

(
exp
stat

)
)

γ, ε ` e : τ, e′ : [τ ]

γ, ε ` e cons e′ : [τ ]
(seq-cons

(
exp
stat

)
)

γ, ε ` e : [τ ]

γ, ε ` isempty e : Bool
(seq-isempty

(
exp
stat

)
)
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γ, ε ` e : [τ ], e′ : [τ ]

γ, ε ` e append e′ : [τ ]
(seq-append

(
exp
stat

)
)

γ, ε ` e : [τ ], e′ : [τ ]

γ, ε ` e intersect e′ : [τ ]
(seq-intersect

(
exp
stat

)
)

γ, ε ` e : [τ ], e′ : [τ ]

γ, ε ` e union e′ : [τ ]
(seq-union

(
exp
stat

)
)

γ, ε ` e : [τ ], e′ : [τ ]

γ, ε ` e difference e′ : [τ ]
(seq-diff

(
exp
stat

)
)

γ, ε ` e : τ, e′ : [τ ]

γ, ε ` e isin e′ : Bool
(seq-isin

(
exp
stat

)
)

γ, ε ` e : [[τ ]]

γ, ε ` flatten e : [τ ]
(seq-flat

(
exp
stat

)
)

emptyseq of τ : [τ ] (seq-emptyseq
(

exp
stat

)
)

γ, ε ` e′ : [τ ] γ, ε ∪ {id : τ} ` e : [τ ′]

γ, ε ` collect |id| e from e′ : τ ′
(seq-collect

(
exp
stat

)
)

Dynamic Semantics

We assume that the underlying virtual machine is equipped with the concept of
sequence and we denote a sequence semantic value with a set of values enclosed by
underlined square parenthesis.

Gamma,M ` ei ⇒ vi∈1..n
i

[e1, . . . , en]⇒ [v1, . . . , vn]
(seq

(
exp
dyn

)
)

The results of the dynamic evaluation of sequence expressions is usually a se-
mantic sequence value already introduced in ??. We assume to have the following
semantic operations on such values.

• first(s): returns the first value v1 of the sequence [v1, . . . , vn]. For instance
first([v1, v2]) = v1.
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• rest(s): returns a sequence created by removing the first element from the
given sequence s, so that, for instance, rest([v1, v2, v3]) = [v2, v3].

• size(s): returns the number of elements of the sequence as a numeric value.

• +(s, s’): concatenates two sequences.

• cons(v, s): insert v in s as the new first element.

• ∪(s, s’): performs the set union of two sequences.

• ∩(s, s’): performs the set intersection of two sequences.

• −(s, s’): performs the set difference of two sequences.

With these operations we can define the dynamic semantic of sequences. The
following expressions are intuitive, with the possible exception of the collect expres-
sion. Such expression, often called map in other programming languages, takes in
input an identifier id, an expression e and a sequence s. The elements of s are
iterated and the identifier id is bound to each of such elements. The value of e is
calculated in an environment extended with the new id for each of the sequence
elements. Those values are packed in a new sequence in the order in which they are
evaluated and returned as the result of the expression.

To deal with set operations, intersection, union, and difference, elements are
compared by value, so that two elements are equal if and only if their value is equal.

The flatten expression takes in input a sequence s of sequences si and returns a
sequence which elements are the elements of the elements of s in order of appearance.
Note that the elements of the si sequences are left untouched, so that, if they are
again a sequence, one or more other flattening can be necessary to obtain a flat
sequence, that is, the flatten operation is not recursive.

Γ,M ` e⇒ [v1, . . . , vn]

Γ,M ` head e⇒ v1

(seq-head
(

exp
dyn

)
)

Γ,M ` e⇒ [v1, v2, . . . , vn]

Γ,M ` tail e⇒ [v2, . . . , vn]
(seq-tail

(
exp
dyn

)
)

Γ,M ` e⇒ v1, e
′ ⇒ [v2, . . . , vn]

Γ,M ` e cons e′ ⇒ [v1, v2, . . . , vn]
(seq-cons

(
exp
dyn

)
)

Γ,M ` e⇒ v

Γ,M ` isempty e⇒

{
true if size(v) = 0

false else

(seq-isempty
(

exp
dyn

)
)
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Γ,M ` e⇒ [v1, . . . , vn], e′ ⇒ [v′1, . . . , v
′
n]

Γ,M ` e append e′ ⇒ [v1, . . . , vn, v′1, . . . , v
′
n]

(seq-append
(

exp
dyn

)
)

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e intersect e′ ⇒ v∩v′
(seq-intersect

(
exp
dyn

)
)

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e union e′ ⇒ v∪v′
(seq-union

(
exp
dyn

)
)

Γ,M ` e⇒ v, e′ ⇒ v′

Γ,M ` e difference e′ ⇒ v−v′
(seq-diff

(
exp
dyn

)
)

Γ,M ` e⇒ v, e′ ⇒ [v1, . . . , vn]

Γ,M ` e isin e′ ⇒

{
true v ∈ {v1, . . . , vn}
false else

(seq-isin
(

exp
dyn

)
)

Γ,M ` e⇒ [[v1
1, . . . , v

1
n1

], . . . , [vm
1 , . . . , v

m
nk

]]

Γ,M ` flatten e⇒ [v1
1, . . . , v

1
n1
, . . . , vm

1 , . . . , v
m
nk

]
(seq-flat

(
exp
dyn

)
)

emptyseq of τ ⇒ [] (seq-emptyseq
(

exp
dyn

)
)

Γ,M ` e′ ⇒ [v1, . . . , vn]

Γ ∪ {id = vi},M ` e⇒ vi ∀ i ∈ 1 . . . n

Γ,M ` collect |id| e from e′ ⇒ [vi] ∀ i ∈ 1 . . . n
(seq-collect

(
exp
dyn

)
)



5.5. Language Elements 139

5.5.18 Polymorphism

The Poly bundle, introduced in this section, extends Manuzio with the concept of
parametric polymorphism. With parametric polymorphism a portion of code, usu-
ally a function, can be applied to different data types that can be non-compatible.
In a statically, strongly typed language like Manuzio the type checking imposes each
value to have a type. Since functions are also values, without parametric polymor-
phism it would be impossible to write a trivial function like the identity function
without writing one function for each type of the language to which we plan to apply
it. For instance, the identity functions for integers and reals follows.

1 l e t i n t I d e n t i t y = fun ( x : Int ) : Int i s x
2 l e t r e a l I d e n t i t y = fun ( x : Real ) : Real i s x

By introducing the Poly bundle we will be able to write a generic identity func-
tion as:

1 l e t i d e n t i t y = polyfun [T] i s fun ( x :T) :T i s x

where T is a generic type. To use a parametric function we must first instantiate it
with one specific type. The results of such operation can be stored in a constant for
later use or used on the fly.

1 l e t i n t I d e n t i t y = @ident i ty [ Int ]
2 @int Ident i ty (2 ) #=> 2 : In t
3 @( @ident i ty [ Real ] ) ( 1 . 5 ) #=> 1 . 0 : Real

To be able to perform the instantiation of specific functions from generic ones we
need to substitute the formal type parameters with the actual ones by using the
FTV rules that each type of the language defines.

Types Environment Extension

To represent the concept of generic type a new type, called All, is introduced to
represent the type of a polymorphic function. Such type is composed by a function
of type τf and one or more type variables Xi and represents a type schema that can
be instantiated by substituting the type variables with actual types in the function
body.

γ′ = γ ∪ {All[X1, . . . , Xn]τf} (5.37)

Syntax

A polymorphic function is denoted by an expressions starting with the polyfun key-
word. Such definitions takes in input a set of type variables Xi and an expression
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e, that must type check as a function later, in which such type variables will be
substituted. The value of such expression is a polymorphic function type.

polyfun[X1, . . . , Xn] is e (poly-fun)

The only operation an user can carry on a polymorphic function is to instantiate
it with an opportune set of actual type parameters. This is done through the apply
operator denoted by the @ symbol.

@e[τ1, . . . , τn] (poly-app)

Static Semantics

Free Type Variables and Type Variables Substitution

When we compute the free type variables of a polymorphic type we compute the
f.t.v. of its body function type τf and we exclude the types given as a parameter.

FTV (All[X1, . . . , Xn]τf ) = FTV (τf )− {X1, . . . , Xn} (poly
(

ftv
stat

)
)

Substitutions in the function body τf occurs by applying the substitutions rules
introduced by each bundle.

(All[Xi, . . . , Xn]τf )[Xi ← τ i∈1..n
i ] = τf [Xi ← τ i∈1..n

i ] (poly
(

subs
stat

)
)

The substitution is carried out in two steps: the first will take care of avoiding
the substitution of bound type variables, while the second will prevent the capture
of free type variables.

1. In the first step we must check if any type variable to be substituted has the
same name as a formal type parameter. In this case the substitution must not
be carried out.

(All[Y j∈1...m
j ]τf )[Xi ← τ i∈1...n

i ] =

(All[Y j∈1...m
j ]τf )[Xi ← τ

{i∈1...n}−{k...l}
i ] =

if {Y1, . . . , Ym} ∩ {X1, . . . , Xn} = {Xk, . . . , Xl} (5.38)

2. The second step avoids the free type variables capture and we can distinguish
two cases. In the first one the names of the parameters Y1, . . . Yn and the
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names of the free variables τ1, . . . , τn are different and the substitution can be
defined as follows.

(All[Y j∈1...m
j ]τf )[Xi ← τ i∈1...n

i ] = τf [Xi ← τ i∈1..n
i ]

if {Y1, . . . , Ym} ∩ {∪i∈1...nFTV (τi) = {} (5.39)

In the second case instead at least one actual type variable with the same
name as a free type variable exists. Such variable must be renamed to avoid
its capture, and this is done by a function called newvar that returns a new
variable name that can be used to perform such substitution.

(All[Y j∈1...m
j ]τf )[Xi ← τ i∈1...n

i ] =

(All[Y j∈1...m
j ]τf )[Yk ← Z1, . . . , Yl ← Zr])[Xi ← τ i∈1...n

i ]

if {Y1, . . . , Ym} ∩ {∪i∈1...nFTV (τi) = {Yk, . . . Yl} (5.40)

where k and l are between 1 and m, the cardinality of {Yk, . . . Yl} is r and

∀i ∈ 1 . . . r : Zi = newvar() (5.41)

Well Formedness

A polymorphic type is well formed if it’s body is well formed, under the assumption
that each type parameter name is associated with a generic type. We will introduce
a new support type, called Generic just to denote such concept in the following
formula.

γ ∪ {Xi ← Generic}i∈1...n, ε ` τf : Fun(τ1, . . . , τn) : τn+1

γ, ε ` All[X i∈1...n
i ]τf

(poly
(

well
stat

)
)

Subtyping Relations

A polymorphic type τ is subtype of another type τ ′ if and only if τ ′ is a polymorphic
type and the type of body of τ is subtype of the type of the body of τ ′ under
the assumption that the type variables of τ ′ have been substituted with the type
variables of τ .

γ ∪ {Xi ← Generic}i∈1...n, ε ` τf <: τ ′f [Yi ← Xi]
i∈1...n

γ, ε ` All[X i∈1...n
i ]τf <: All[Y i∈1...n

i ]τ ′f
(poly

(
sub
stat

)
)
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Free Identifiers and Visibility Rules

In a polymorphic abstraction the free identifiers are the free identifiers of its body.

FV (polyfun[X1, · · ·xn]ise) = FV (e) (poly
(

fv
stat

)
)

When a polymorphic function is instanced, the free identifiers are the ones of
the polymorphic abstraction to be instantiated.

FV (@e[X1, . . . , Xn]) = FV (e) (poly-app
(

fv
stat

)
)

Type Checking Rules

Given all the previous rules the type checking rules for the instantiation of a poly-
morphic function are rather simple. If the expression e is a polymorphic function
then the instantiation of e with a set of types τi is a the type of the body of e where
the type variables have been substituted.

γ, ε ` e : All[X i∈1...n
i ]τ

γ, ε ` @e[τ1, . . . , τn] : τ [Xi ← τi]i∈1...n
(poly-app

(
exp
stat

)
)

Dynamic Semantics

The evaluation of a polymorphic function returns the value of that function’s body.

Γ,M ` e⇒ v

Γ,M ` polyfun[X1 . . . Xn]ise⇒ v
(poly

(
exp
dyn

)
)

The evaluation of a polymorphic function instantiation is the value of a function,
defined as follows.

Γ,M ` e⇒ v

Γ,M ` @e[τ1, . . . , τn]⇒ v
(poly-app

(
exp
dyn

)
)
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5.5.19 Objects

The Objects bundle extends the Manuzio programming language with a simple
form of objects. In Manuzio an object is a software entity with an identity, a state,
and a behavior. The state is a set of values called its instance variables, while the
behavior is a set of local functions, called methods. A method is a special kind of
function, syntactically denoted by the keyword meth, that uses instance variables
and eventually parameters to produce a result. The identity of an object is an
immutable property that makes the object different from any other object. Such
identity is set when the object is created and never changes, even if the values of
the object’s instance variables change. The result is that two objects with the same
values of instance variables and methods are still different. An object can receive a
set of messages, to which the object responds with the value computed by one of its
methods. The type of an object is also called its interface, and lists all the messages
that an object can respond to. The semantic value of an object is a tuple of instance
variables and methods. In Manuzio objects lack of encapsulation, mainly because
they are designed to be the foundation of textual objects, where such feature is not
essential.

Types Environment Extension

An object type is specified by the keyword OBJECT followed by the tuple of its
instance variables and methods.

γ′ = γ ∪ {OBJECT id1 : τ1, . . . , idn : τn end} (5.42)

Syntax

An object value is denoted by the object keyword followed by a list of instance
variables and methods terminated by the end keyword.

object idi = ei∈1..n
i , idj = meth(xk : τ k∈1..l

k ) : τj is ej∈1..m
j end (object)

The main object operator is the dot operator, used to access its properties (in-
stance variables and methods).

e.id (object-dot)

The objectextend operator, used to extend an object with new instance variables
and methods, is similar in syntax and logic to extend of records.

e objectextend {id1 : τ1 = e1, . . . , idn : τn = en} (object-ext)
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Static Semantics

Free Type Variables and Type Variables Substitution

The free type variables of an OBJECT type are defined as the union of the free type
variables of the types of its fields.

FTV (OBJECT id1 : τ1, . . . , idn : τn end) = FTV (τ1)∪. . .∪FTV (τn) (object
(

ftv
stat

)
)

In the same way, the substitutions that occur in an object type are treated as
substitutions in their fields.

(OBJECT id1 : τ1, . . . , idn : τn end)[Xi ← τi]
i∈1...n =

OBJECT id1 : τ1[Xi ← τi], . . . , idn : τn[Xi ← τi] endi∈1...n (object
(

sub
stat

)
)

Well Formedness

An object type is well formed when:

• the identifiers of its fields are valid;

• each identifier is unique;

• the types of its fields is well formed.

∀i ∈ (1..n) idi /∈ ({id1, . . . , idn} − {idi}), idi ∈ ι, τi
γ, ε ` OBJECT id1 : τ1, . . . , idn : τn end

(object
(

well
stat

)
)

Subtyping Relations

Two object types O and O′ are in a subtype relation if O has at least the same
number of fields as O′ and if, for each field of O′ with type τ ′ exists in O a field with
the same name and type τ that is subtype of τ ′.

γ, ε ` {id1 : τ1, . . . , idn : τn} <: {id′1 : τ ′1, . . . , id
′
m : τ ′m}

γ, ε ` OBJECT id1 : τ1, . . . , idn : τn end <: OBJECT id′1 : τ ′1, . . . , id
′
m : τ ′m end

(object
(

sub
stat

)
)
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Free Identifiers and Visibility Rules

The free identifiers of objects operators are computed as the free identifiers of their
relative records. The object-fv equation is needed to avoid the capture of the self
reference parameter identifier in the body of object’s methods. Unlike recursive
functions, where the self reference identifier was declared by users, in object its
name is fixed to self.

FV (object(er)) = FV (er)− {self} (object-fv)

FV (e.id) = FV (e) (object-dot
(

fv
stat

)
)

FV (e objectextend {id1 : τ1 = e1, . . . , idn : τn = en}) =
⋃

i∈1...n

FV (ei)∪FV (e)

(object-ext
(

fv
stat

)
)

Type Checking Rules

When computing the type of an object, the type of the self identifier is firstly
computed by constructing an object type T where we assume correct the return
type of methods as it is declared. With this assumption the methods bodies can
be typechecked correctly. If all the methods pass the check then the precomputed
object type T is considered correct and is returned as the type of the object.

γ, ε ` ei : τ i∈1...n
i , γ, (self : τo) ` ej : τ j∈n+1...m

j

γ, ε ` object idi = ei∈1...n
i , idj = meth(xk : τ k=1..l

k ) : τj is ej∈n+1...m
j end :

OBJECT idh : τh∈1..m
h end

(5.43)

When accessing a component with the dot notation the type of the expression
is the type of the selected component, if such component exists.

γ, ε ` e : OBJECT id1 : τ1, . . . , idn : τn end, id = idi∈1..n
i

γ, ε ` e.id : τi
(object-dot

(
exp
stat

)
)

The extension operator yields a new object with additional fields, redefinition of
existing fields is not allowed.

γ, ε ` e : OBJECT id1 : τ1, . . . , idn : τn end
γ, ε ` id′1 : tau′1, . . . , id

′
m : τ ′m, idi 6= id′j ∀ (i ∈ 1 . . . n, j ∈ 1 . . .m)

γ, ε ` e objectextend {id′1 : τ ′1, . . . , id
′
m : τ ′m}

: OBJECT id1 : τ1, . . . , idn : τn, id
′
1 : τ ′1, . . . , id

′
m : τ ′m end
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(object-ext
(

exp
stat

)
)

Dynamic Semantics

The value of an object is defined as:

λO.

[
xi∈1...n

i = vi,

x
j∈n+1...m=〈(Γ′∪(self=O)),ej〉
j

]
(5.44)

where each label xk is distinct. Object values are written in a way similar to the
lambda notation so that the object itself can be denoted when associated to the
self-reference identifier. For each method xj the closure Γ′ is constructed as:

Γ′ = {(zi = vi)
i∈1..j : zi ∈ FV (ej)− {self}} (5.45)

The evaluation of an object constant can thus be written as:

Γ,M ` ei ⇒ vi

object idi = ei∈1...n
i , idj = meth : τj is ej∈1...m

j end⇒ λO.

[
xi∈1...n

i = vi,

x
j∈n+1...m=〈(Γ′∪(self=O)),ej〉
j

]
(5.46)

The dot operator returns the value of the corresponding label. Such value can
be a closure if the label corresponds to a method.

Γ,M ` e⇒ λO.

[
xi∈1...n

i = vi,

x
j∈n+1...m=vj=〈(Γ′∪(self=O)),ej〉
j

]
∃kk∈1..m : id = xk

Γ,M ` e.id⇒ vk

(object-dot
(

exp
dyn

)
)

Object’s extensions are similar to the record’s extend operation.

Γ,M ` object ido
1 = vo

1, . . . , id
o
n = vo

n end

Γ,M ` e1 ⇒ v1, . . . , em ⇒ vm

Γ,M ` e objectextend {id1 = e1, . . . , idm = em} ⇒
object ido

1 = vo
1, . . . , id

o
n = vo

n, id1 = v1, . . . , idm = vm end

(object-ext
(

exp
dyn

)
)
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5.5.20 Textual Objects

The Textual Object bundle introduces the concept of textual objects as a special
kind of objects that are used to represent a portion of text taken from a special
repository called textual database. In this section the term “textual object” will be
used to indicate both single and repeated textual objects. When dealing with textual
objects, in fact, the goal of the language is to treat both single textual objects and
their repetitions in a transparent way, through the use of overloaded operators. We
will call these operators textual objects operators.

The Textual Object bundle exploit the functionalities of the Manuzio persis-
tence layer. An user can, through the use database (usedb) command, connect to
a textual database. When such command is launched with a parameter d the per-
sistence layer checks for the existence of the database d first, then, if the database
exists, performs the connection. By doing so all the textual object types specified
by the database model are loaded into the types environment and a special con-
stant collection is created in the values environment. This constant is always of
type Collection and its underlying text is the entire text. Such constant serves
as an entry point for the entire corpus, since by applying the hierarchy navigation
operators on it it will be possible to reference the whole set of the database’s textual
objects.

Textual objects types are, in general, not declare by users at runtime. Such types
are loaded into the environments during the database’s connection process. In this
way the textual objects types present in the language at a given time form always a
well-formed Manuzio model. Also, textual object type instances cannot be created
or deleted, they already exists as persistent values stored in the textual database. A
class of Manuzio programs, containing the special textual schema declaration block,
allow users to define textual object types and to use a set of textual object creation
expressions to write programs that parse an input text into a textual repository.
The syntax and semantics of these operators is not included in this section.

Textual objects can be annotated with the annotate operator. Annotations are
persistent and can be made both on single or repeated textual objects. The type
of an annotation is specified in the textual database’s model, so that they can be
treated as values of the Manuzio language directly with all the associated benefits,
such as typechecking consistency.
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Types Environment Extension

A textual object type is a tuple type structured as follows:

TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


(5.47)

in particular, the type of a single textual object that has no elements can be denoted
by:

TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : NULL


(5.48)

while the type of a repeated textual object that has no components and indexes can
be denoted by:

TO



kind : Int,
tc : Int,
i : NULL
c : NULL
a : {aj : τaj

}j∈1..m

e : [τe]


(5.49)

Persistence Model

To define textual objects semantics it is first needed to define the concept of textual
repository. A textual repository is an abstract entity that behave in a manner similar
to a memory, but is meant to store persistently textual object values.

Definition 24 A textual repository is a pair (f,R), were f is a text called the
fulltext, and R is a sequence of locations such that:

1. The pair (f, ∅) is a valid textual repository.

2. If (f,R) is a valid textual repository, l is a location index and t is a textual
object value then (f,R) ∪ {l = t} is a valid textual repository.



5.5. Language Elements 149

If l = t is an element of R we can write (l = t) ∈ R or R(l) = t. Each l is unique
in R, and the value of l is said to be the address of t and we can refer to t as tl.
The notation R(l)← t indicates that the object t gets stored in the location l.

Each location of R is identified by an address and can contain exactly one textual
object semantic value. The textual object semantic values set is partitioned in two
subsets, one composed of single textual object semantic values and the other one
composed of repeated textual object semantic values.

The textual repository has an associated procedure, h(t), that returns the address
of an empty cell where the textual object t must be stored. The h(t) procedure is
an hash function that, given the unique characteristics of an object t, returns the
textual repository location l for t. With unique characteristics we intend the pair
(tc, indexes) for single textual objects and the sequence [e1, . . . , en] for repeated
textual objects1. We assume, without loss of generality, that the function h is an
ideal hash function, so that it always returns a different location for each possible
textual object in the database. The value of h(t) is also called the address of t. From
the language point of view, a textual object value t is represented by the address
returned by h(t), that is used to access the textual repository. We will refer to the
textual object with address l as tl, or we can write R(l) = tl.

We assume that single textual objects are already present in the database, along
with repeated textual objects that posses annotations. When a new repeated textual
object’s value is returned, for instance as the result of a query, that value needs to
be stored in the repository. The h(t) procedures is invoked and the value of the
repeated textual object is stored in the returned address’s cell.2.

The textual objects values contained in the textual repository cells are tuples,
composed of the following fields:

• kind: the kind field serves as a discriminant between single and repeated
textual objects;

• typecode: an encoded representation of the object’s type;

• indexes: a sequence of pairs (start, offset) that represents chunks of the full
text;

• components: a record of n components which fields are all textual objects
addresses, in the form {c1 = l1, . . . , cn = ln};

1In fact, two single textual object values will be considered equals if and only if their textual
indexes and their type code are both equals, while two repeated textual objects are equals if they
have exactly the same set of elements.

2Storing repetitions in the database is needed to store their annotations. For efficiency reasons,
however, only the annotated and referenced repetitions are stored. When a textual database
connection is closed, the textual repository is purged of all the instances of repeated textual objects
that are not annotated. While this consideration seems to be inappropriate in an abstract context
such this, we decided, in this borderline case, to avoid too much abstractions in favor of an easier
implementation.
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• attributes: a record of p attributes in the form {a1 = v1, . . . , am = vm, am+1 =
meth(xi : τ i∈1..o

i ) : τm+1, . . . , ap = meth(xi : τ i∈1..o
i ) : τp};

• elements: a sequence of textual objects in the form [e1, . . . , ek];

When the kind field assumes the 0 value the tuple is considered to represent a single
textual object value, while when it assumes the 1 value it is considered to represent
a repeated textual object value. In the former case the elements field is set to a null
value, since single textual objects do not have elements. In the latter case, instead,
both the indexes and components fields are set to null. Our semantics for textual
objects is close to the one of objects presented in Section 5.5.19. For this reason
the semantics of methods will not be repeated here. It is sufficient to say that for
each method xk the closure Γ′ enclose both attributes and components of a textual
object, and is constructed as follows:

Γ′ = {(ci = li)
i∈1..n) ∪ (aj = vj)

j∈1..k : zi ∈ FV (ek)− {self}} (5.50)

A textual object’s semantic value will be denoted with:

λTO.


kind
typecode

[(s1, o1), . . . , (sn, on)]
{c1 = l1, . . . , cn = ln}
{a1 = v1, . . . , am = vm}
[e1, . . . , en]

 (5.51)

Textual object values are written in a way similar to the lambda notation so
that the object itself can be denoted when associated to the self-reference identifier
of its associated methods. An abbreviated version of the above formula can be used
to denote fields in a more concise way:

λTO.


kind
typecode
indexes
c
a
e

 (5.52)
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In particular, a single textual object is denoted by:

λTO.


0
typecode
indexes
c
a
nil

 (5.53)

while a repetition is denoted by:

λTO.


1
typecode
nil
nil
a
e

 (5.54)

When an operator returns a repeated textual object, for instance by aggregating
two or more single textual objects, the interpreter must perform a reverse look-up
in the textual repository to know if that object is already present at the relative
location. For instance, if the returned repeated textual object’s value is in the form:

t′ = λTO.


1
typecode
nil
nil
a
[e1, . . . , en]

 (5.55)

the object address l is computed by calling h(t′). This address is used to lookup the
textual repository. If R(l) = t then the repetition is already present in the textual
repository, possibly with some annotations a, and the value t is returned by the
operator instead of the unannotated t′. Else, if the cell at the address l is empty,
the value is not yet present and the location gets initialized with the value of t′ that
is also returned as result.

The fulltext f can be considered, without loss of generality, to be simply a
monolithic string that contains all the characters of the corpus in lexicographic
order. We can apply the slice operator to f so that f [i..j] means the substring of f
that starts from the i-nth character and ends on the j-nth character (included).

Syntax

Textual objects can not be created by the language users, to the Manuzio language,
at the current stage of development, lacks of expressions to perform such operations.
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The Textual Object bundle introduces a collection of high level operators to
deal with textual objects components and attributes. Most of those operators are
overloaded so that, from the interpreter point of view, both attributes and compo-
nents are handled in the same way. We felt that this transparency is helpful to the
user when dealing with literary analysis problems.

The most important operators of the bundle are the get and getall operators.
They are used to retrieve textual objects from the database by exploiting the com-
ponent relation.

get id of e (to-get[c—a][s—r])

The result type the get operator is the type of the attribute or component specified
in the textual object type interface. In the case of components the result type can
be either a textual object or a repeated textual object.

getall T of e (to-get[c—a][s—r])

The getall operator, instead, works on textual objects and is used to retrieve all the
components of a certain type T (direct or indirect) of a textual object. The getall
operator, instead, always returns a repeated textual object.

Both the get and the getall operators are overloaded. Each is present in four
different fashions to that is can work on components/attributes and on singe/re-
peated textual objects. The formula name will contain a c or an a to discriminate
the former and an s or a r for the former.

Another family of operators allow to access other, calculated, textual object
features, most importantly its underlying text, with the text of operator. As with
the get operator family, such operator is overloaded to be able to work both on
repetitions and on single textual objects. In the language other operators, like the
size of one to obtain the length of a textual object underlying text, are in fact
shortcuts to work directly with the object underlying text in a simpler way and thus
their semantics will be skipped.

text of e (to-textof[s—r])

Finally, the annotate .. set .. to operator takes in input a textual object o, a label
l and a value v and set the annotation l of o to v. In Manuzio all the annotations
of a textual object are always associated to a value. This value, however, can be
unknown, assuming the value nil of type NULL. Both single and repeated textual
objects can be annotated, and the annotation must be part of the textual object
type declaration to be valid.

annotate e set id to e′ (to-ann)
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The set of textual object operators, in this release of the language, is minimal.
It will be a future decision if it is better to expand this set directly of to relay on
libraries to obtain more complex functionalities.

Static Semantics

Free Type Variables and Type Variables Substitution

The set of free type variables of a textual object type is the union of the free type
variables of its fields. For brevity, in the following formula, we omit to add the fields
that has a basic type, and thus an empty set of free type variables.

FTV (TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


) = FTV ({ci : τi}i∈1..n)∪FTV ({aj : τaj

}j∈1..m)∪FTV ([τe])

(to
(

ftv
stat

)
)

Note that the formula is valid both for single and repeated textual objects, since
FTV (NULL) = ∅.

Well Formedness

A textual object type is well formed if and only if both its components and attributes
tuple types are well formed. Moreover, labels must be unique among those two types.
Moreover, to enforce the well-formedness of repeated textual objects, the sequence
of elements must have also a well-formed type.

γ, ε ` {ci : τi}i∈1..n, {aj : τaj
}j∈1..m, [τe]

∀i ∈ (c1 . . . cn ∪ a1 . . . an) : idi is unique

TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]



(to
(

well
stat

)
)
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Subtyping Relations

A textual object type T is a subtype of another textual object type T ′ if their
components, attributes, and elements types are in a subtype relation.

γ, ε ` {ci : τi}i∈1..n <: {c′i : τ ′i}i∈1..n′
,

{aj : τaj
}j∈1..m <: {a′j : τ ′a′

j
}j∈1..m′

,

[τe] <: [τ ′e]

TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


<: TO



kind′ : Int,
tc′ : Int,
i′ : [{s′ : Int, o′ : Int}]
c′ : {c′i : τ ′i}i∈1..n′

a′ : {a′j : τ ′a′
j
}j∈1..m′

e′ : [τ ′e]



(to
(

sub
stat

)
)

Free Identifiers and Visibility Rules

The rules to compute the free identifiers of textual objects related expressions are
straightforward.

FV (get id of e) = FV (e) (to-get[c—a][s—r]
(

fv
stat

)
)

FV (getall T of e) = FV (e) (to-getall[c—a][s—r]
(

fv
stat

)
)

FV (text of e) = FV (e) (to-text[s—r]
(

fv
stat

)
)

FV (annotate e set id to e′) = FV (e) ∪ FV (e′) (to-ann
(

fv
stat

)
)

Type Checking Rules

Type checking rules apply both to single and repeated textual objects. The get ..
of operator returns the type of a component or annotation when applied to a single
textual object.

γ, ε ` e : TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


,∃k : id = c

k∈(1..n)
k or id = a

k∈1..m)
k : T

γ, ε ` get id of e : T
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(to-get[c—a][s]
(

exp
stat

)
)

When applied to repetitions, instead, it returns the type of one of its annotations if
the given identifier is part of the annotations tuple.

γ, ε ` e : TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


,∃k : id = a

k∈1..m)
k : T

γ, ε ` get id of e : T
(to-get[a][r]

(
exp
stat

)
)

If the identifier is not an annotation, instead, the returned type is a repeated textual
object which type is taken from the argument element’s components, provided that
it exists.

γ, ε ` e : TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : NULL
a : {aj : τaj

}j∈1..m

e : [τ ]


, τ = TO′



kind′ : Int,
tc′ : Int,
i′ : [{s′ : Int, o′ : Int}]
c′ : {c′i : τ ′i}i∈1..n′

a′ : {a′j : τ ′aj
}j∈1..m′

e′ : NULL


∃k : id = c′k

k∈1..n

γ, ε ` get id of e : TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : NULL
a : {aj : τaj

}j∈1..m

e : [τk]


(to-get[c][r]

(
exp
stat

)
)

The getall operator, instead, always returns a, possibly empty, repeated textual
object of the specified type.
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γ, ε ` e : TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


γ, ε ` getall T of e : REP [T ]

(to-getall[c][s—r]
(

exp
stat

)
)

The text .. of operator, when applied to a textual object, returns a string.

γ, ε ` e : TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


γ, ε ` text of e : String

(to-text[s—r]
(

exp
stat

)
)

Finally, the annotate .. set .. to operator requires that the specified label is in effect
a label of the textual object associated with an annotation. Moreover, the type of
the specified expression must be compatible with the declare annotation’s type .

γε ` e : TO



kind : Int,
tc : Int,
i : [{s : Int, o : Int}]
c : {ci : τi}i∈1..n

a : {aj : τaj
}j∈1..m

e : [τe]


, e′ : τ, ∃jj∈1..m!id = aj, τ <: τj

γ, ε ` annotate e set id to e′ : Command

(to-ann[s—r]
(

exp
stat

)
)

Dynamic Semantics

With the previous definition of textual repository we can give the dynamic semantics
of textual objects. Differently from the previous sections, where operators families
(like the get operator) were grouped, in this section, for the sake of readability, each
different case of such operators will be described in its own formula. In the formula
names the following convention is used: after the name of the operator the letter “c”
indicates a component-related operator, while the letter “a” is used for operators
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that deals with attributes. The second letter of the code is either an “s” or an
“r”: in the first case the operator applies to single textual objects, in the second to
repeated textual objects. The equations to-texts

(
exp
dyn

)
and to-textr

(
exp
dyn

)
make use of

the strcat semantic operator described in Section 5.5.14 to perform a concatenation
of the object’s underlying text.

The to-getallr
(

exp
dyn

)
and to-getalls

(
exp
dyn

)
formulas make use of a new recursive

operator that, given a textual object and a type, returns all the object’s direct and
indirect components of that type. The formal definition of that operator can be
found in 5.56.

Γ,M,R ` e⇒ l,

R(l) = λTO.


0
typecode

[(s1, o1), . . . , (sn, on)]
{c1 = l1, . . . , cn = ln}
{a1 = v1, . . . , am = vm}
nil


Γ,M,R ` get ci of e⇒ li

(to-getcs
(

exp
dyn

)
)

Γ,M,R ` e⇒ l,

R(l) = λTO.


1
typecode
nil
nil
{a1 = v1, . . . , am = vm}
[e1, . . . , en]

 ,

t = λTO′.


1
typecode’
nil
nil
{}
[get ci of ei]

 ,
h(t) = l′

Γ,M,R ` get ci of e⇒

{
t �R(l′)← t, if R(l′) = nil

R(l′) else

(to-getcr
(

exp
dyn

)
)
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Γ,M,R ` e⇒ l, R(l) = λTO.


0
typecode

[(s1, o1), . . . , (sn, on)]
{c1 = l1, . . . , cn = ln}
{a1 = v1, . . . , am = vm}
nil


Γ,M,R ` get ai of e⇒ vi

(to-getas
(

exp
dyn

)
)

Γ,M,R ` e⇒ l, R(l) = λTO.


1
typecode
nil
nil
{a1 = v1, . . . , am = vm}
[e1, . . . , en]


Γ,M,R ` get ai of e⇒ vi

(to-getar
(

exp
dyn

)
)

Γ,M,R ` e⇒ l, R(l) = λTO.


0
typecode

[(s1, o1), . . . , (sn, on)]
{c1 = l1, . . . , cn = ln}
{a1 = v1, . . . , am = vm}
nil


Γ,M,R ` text of e⇒ strcat(fulltext[s0, o0], . . . , fulltext[sn, on])

(to-texts
(

exp
dyn

)
)

Γ,M,R ` e⇒ l, R(l) = λTO.


1
typecode
nil
nil
{a1 = v1, . . . , am = vm}
[e1, . . . , en]


Γ,M,R ` text of e⇒ strcat(text of ei)i∈1..n

(to-textr
(

exp
dyn

)
)

ρ(t, τ) =
n⋃

i=1


vi, if vi : τ

∅, if τi ∈ Unit

ρ(vi, τ) else

(5.56)

Γ,M,R ` e⇒ l, R(l) = tl
Γ,M,R ` getall τ of e⇒ h({1, tc, nil, α(t), {}, [ρ(tl, τ)]})

(to-getalls
(

exp
dyn

)
)
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Γ,M,R ` e⇒ l, R(l) = λTO.


1
typecode
nil
nil
{a1 = v1, . . . , am = vm}
[e1, . . . , en]


Γ,M,R ` getall τ of e⇒ h({1, tc, nil, nil, {}, [∪n

i=1(ρ(ei, τ)])})
(to-getallr

(
exp
dyn

)
)

Γ,M,R ` e⇒ l, R(l) = λTO.


kind
typecode

[(s1, o1), . . . , (sh, oh)]
{c1 = l1, . . . , cn = ln}
{a1 = v1, . . . , id = v, . . . , am = vm}
[e1, . . . , ek]

 , e
′ ⇒ v′

Γ, R,M ` annotate e set id to e′ ⇒ nop �R(l)← λTO.


kind
typecode

[(s1, o1), . . . , (sh, oh)]
{c1 = l1, . . . , cn = ln}
{a1 = v1, . . . , id = v′, . . . , am = vm}
[e1, . . . , ek]


(to-ann[s—r]

(
exp
dyn

)
)
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5.5.21 Query Like Operators

One of the main features of Manuzio is a set of operators with a syntax and semantics
similar to those of SQL-like query languages operators. While such operators are
generic and can work with any sequence of values, they are aimed to be the main way
to interact with textual objects present in the persistent repository. The syntax and
semantics of Manuzio’s query like operators have its roots in object oriented database
languages like the one presented in [Albano et al., 1985]. Query like operators are
constructed to work on sequences of records in the form [{id = v1}, . . . , {id = vn}].
The in operator is used to construct such sequences from both a normal sequence
[v1, . . . , vn] and a repeated textual object with vi as elements. The in operator is
thus overloaded to work on both types. The rest of the operators works on these
sequences regardless of their element’s type.

Syntax

The syntax of query like operators should be familiar to readers used to relational
databases. The in operators is used to construct sequence of records from sequence
of values. Other operators works on such sequences to produce their results. The
where operator is used to remove some sequence elements based on a conditional
expression. Each and some returns a truth value indicating whenever all or some of
the sequence elements conforms to some properties. The select operator performs
a mapping from sequences to expressions, while the groupby operator organize the
input sequence elements in sets basing the decision on one of the elements field value.
Finally the extend star and project star operators performs the record extension and
projection to all the elements of a sequence of records.

id in e (query-in)

e where e′ (query-where)

each e with e′ (query-each)

some e with e′ (query-some)

select e from e′ (query-select)

e extend∗ e′ (query-extend)

e project∗ {id1 : τ1, . . . , idn : τn} (query-project)

e groupby e′ (query-groupby)
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Static Semantics

Free Identifiers and Visibility Rules

The free identifiers of query operators are straightforward.

FV (id in e) = FV (e) (query-in
(

fv
stat

)
)

FV (e where e′) = FV (e) ∪ FV (e′) (query-where
(

fv
stat

)
)

FV (each e with e′) = FV (e) ∪ FV (e′) (query-each
(

fv
stat

)
)

FV (some e with e′) = FV (e) ∪ FV (e′) (query-some
(

fv
stat

)
)

FV (select e from e′) = FV (e) ∪ FV (e′) (query-select
(

fv
stat

)
)

FV (e extend∗ e′) = FV (e) ∪ FV (e′) (query-extend
(

fv
stat

)
)

FV (e project∗ {id1 : τ1, . . . , idn : τn}) = FV (e) (query-project
(

fv
stat

)
)

FV (e groupby e′) = FV (e) ∪ FV (e′) (query-groupby
(

fv
stat

)
)

Type Checking Rules

Most of the query operators works on sequences of records, built from sequences by
the in operator invocation. For brevity the following abbreviation, used to denote
the type of a record, holds for all the static rules in this section.

τr = {id1 : τ1, . . . , idn : τn} (5.57)

The in operator will be defined in both rules query-ins
(

exp
stat

)
and query-inr

(
exp
stat

)
respectively for its application on sequences and textual objects.

γ, ε ` e : [τ ]

γ, ε ` id in e : [{id : τ}]
(query-ins

(
exp
stat

)
)

γ, ε ` e : REP [τ ]

γ, ε ` id in e : [{id : τ}]
(query-inr

(
exp
stat

)
)

γ, ε ` e : [τr], e
′ : Bool

γ, ε ` e where e′ : [τr]
(query-where

(
exp
stat

)
)



162 5. The Manuzio Language Semantics

γ, ε ` e : [τr], e
′ : Bool

γ, ε ` e each e′ : Bool
(query-each

(
exp
stat

)
)

γ, ε ` e : [τr], e
′ : Bool

γ, ε ` e some e′ : Bool
(query-some

(
exp
stat

)
)

γ, ε ` e : [τr], γ ∪ {idi : τi}, ε ` e′ : τ ′ ∀ i ∈ 1 . . . n

γ, ε ` select e′ from e : [τ ′]
(query-select

(
exp
stat

)
)

Dynamic Semantics

As before the in operator will be presented in his two different implementations,
when it is applied to sequences in query-ins

(
exp
dyn

)
and when it is applied to repeated

textual objects in query-inr
(

exp
dyn

)
.

Γ,M ` e⇒ [v1, . . . , vn]

Γ,M ` id in e⇒ [{id = v1}, . . . , {id = vn}]
(query-ins

(
exp
dyn

)
)

Γ,M ` e⇒ l, R(l) = λTO.


1
typecode
nil
nil
{a1 = v1, . . . , am = vm}
[e1, . . . , en]


Γ,M ` id in e⇒ [{id = e1}, . . . , {id = en}]

(query-inr
(

exp
dyn

)
)

Γ,M ` e⇒ rep[v1, . . . , vn]

Γ,M ` id in e⇒ [{id = v1}, . . . , {id = vn}]
(query-in

(
exp
dyn

)
to

)

Γ,M ` e′ ⇒ bi, e⇒ [{id = v1}, . . . , {id = vn}]
Γ,M ` e where e′ ⇒ [{id = vk1}, . . . , {id = vkm}]∀ki

: bi = true

(query-where
(

exp
dyn

)
)

Γ,M ` e′ ⇒ bi, e⇒ [{id = v1}, . . . , {id = vn}]

Γ,M ` each e with e′ ⇒

{
true if bi = true ∀i ∈ 1 . . . n

false else

(query-each
(

exp
dyn

)
)
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Γ,M ` e′ ⇒ bi, e⇒ [{id = v1}, . . . , {id = vn}]

Γ,M ` some e with e′ ⇒

{
false if bi = false ∀i ∈ 1 . . . n

true else

(query-some
(

exp
dyn

)
)

Γ,M ` e′ ⇒ v′i, e⇒ [{id = v1}, . . . , {id = vn}]
Γ,M ` select e′ from e⇒ [v′1, . . . , v

′
n]

(query-select
(

exp
dyn

)
)

5.6 Conclusions

In this chapter the operational semantics of the Manuzio language has been given.
For most of the language elements, only a minimal set of operators have been defined
to maintain the specification short. In particular the sections about textual objects
and query-like operators gives a formal explanations of the most peculiar features of
Manuzio. In the next section an interpreter based on this specification is presented
and discussed.
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6
A Textual Database Prototype

“More computing sins are committed in the name of efficiency (without
necessarily achieving it) than for any other single reason - including blind
stupidity.” – William Allan Wulf

6.1 A General System Architecture

In this chapter the Manuzio system will be presented. The system allows users to
store text in a persistent way and to analyze it through the use of the Manuzio
language. While the development of a fully-featured system is beyond the scope of
this thesis, we defined a set of design guidelines for a complete environment with the
capabilities of dealing with users, annotations, queries, and corpus management.

1. The system should provide a way to store and to query textual corpora struc-
tured according to the Manuzio model. Since in the particular domain of
application corpora tend to be large, it is important that the persistence layer
is developed with an high regard for efficiency.

2. Each different corpus is contained in a textual database, which conforms to a
specific Manuzio model. To manage the textual model evolution, the Manuzio
language should have constructs to extend the model’s schema with new types,
to extend a type with new attributes and methods, both on single and repeated
textual objects. Moreover, it must be possible to add or modify annotations
on textual objects in a dynamic way.

3. The system should allow the access to concurrent users through an appropri-
ate set of permissions. For instance, different groups of users could work with
different sets of annotations on the same textual objects. The merge of differ-
ent sets of annotations and a form of annotation sharing should be possible to
allow collaborative analysis of texts.

4. The system should provide an user interface that allows users to express
queries, write annotations, share results, and so on, in a natural and easy way.
A graphical, user friendly, interface is planned for non-expert programmers
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to perform assisted queries whose results are visualized with a choice of dif-
ferent graphical formats and mediums. The Manuzio programming language,
instead, allows experienced users to express programs of arbitrary complexity
through a set of high level, domain specific constructs.

5. To exchange texts and annotations with other systems the XML standard for-
mat will be used through a set of tools which facilitates the mapping between
it and the Manuzio internal format. While XML has a set of already discussed
drawbacks, it is the established format for data interchange and can be suc-
cessfully used to export query results and portions of the corpus. In particular,
XML can be considered the privileged way to load the initial textual data into
the database, an operation which is done by a parsing process that can be
automatic, semi-automatic or manual, depending on the complexity of the
source data.

Collection of 
Textual Documents

User

Graphical User 
Interface

Domain 
Expert

Parsing Tools Manuzio Interpreter 
and Runtime System

Programmer Expert 
User

Manuzio Programs

Textual Schema 
Declarations

Textual Repository

Textual Schema

Textual Objects

Figure 6.1: The Manuzio System Prototype.

In Figure 6.1 the workflow of the Manuzio system is shown. To create and
interact with a textual repository the following steps must be observed:
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• The encoder analyze the input text, and defines the textual object types to
be used in the new textual repository. The definition of those types are then
written as a textual schema declaration in the Manuzio language.

• A programmer writes a set of recognizer functions that, given the input text
and the textual object types defined in the textual schema, identifies the in-
stances of these textual object types in the text and returns a sequence of
these objects. This set of functions is then used to create a parsing algorithm
that populate the textual repository with textual objects by calling the textual
objects creation primitives of the language.

• Different kind of users interact with the textual repository through either a
graphical user interface or directly by writing Manuzio programs. Textual
analysis programs written in Manuzio use a special command to connect to
the textual repository and retrieve the contained textual object types directly
from it. The data in the repository can then be queried by multiple users, and
their results can be annotated and shared.

In the development of the first Manuzio system prototype the focus has been
on the implementation of the language processor (the Manuzio interpreter) and the
textual repository. The schema definitions, the corpus parsing, and the user interface
aspects have been developed, instead, in a simpler way in order to have a working
prototype. The resulting prototype let us evaluate critical Manuzio constructs early
in its development and will influence future implementations.

The rest of the chapter is structured as follows: in Section 6.2 the Manuzio in-
terpreter general structure is presented, at first from an high-level point of view, an
then with a focus on its most relevant aspects. In Section 6.3, the possible imple-
mentation strategies for the persistent layer are discussed and the actual relational
implementation is given. In Section 6.4, the other system current implementation’s
components are discussed. In Section 6.5 a case of study regarding Shakespeare’s
plays is shown, and, finally, in Section 6.6, some considerations on lessons learned
from the implementation of the Manuzio language are given.

6.2 The Manuzio Interpreter

In this section the Manuzio interpreter implementation will be discusses. At first,
in Section 6.2.1 an high level overview of the whole interpreter will be given. Later,
the most important parts of the system will analyzed in more detail.

6.2.1 Interpreter Overview

The Manuzio interpreter is a software component that executes programs written
in the Manuzio language. The current implementation of the Manuzio interpreter
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has been written entirely in Ruby. Appendix A contains a brief introduction to the
Ruby programming language in order to help the reader through the rest of the
chapter examples and to introduce the object-oriented paradigm related terms that
will be used through the interpreter definition.

The interpreter performs a classical read-evaluate-print loop, composed by the
following steps:

• read an input sentence from the user;

• verify if the sentence is expressed in a valid Manuzio syntax;

• build an abstract syntax tree of the sentence;

• perform the type checking on the abstract syntax tree;

• if the types are correct, evaluate the sentence: the persistent layer and the
textual database participates in the evaluation of textual object expressions;

• return the resulting value to the user.

These steps are summarized in Figure 6.2. Each of these steps can generate errors
that must be cached and handled by the interpreter. The general behavior when an
error occurs is to stop the execution of the current program and present a meaningful
error report to the user in order to help her during the debug process.

Input Sentence

Value

Lexical Analysis Syntactic Analysis

Type CheckingEvaluation

abstract syntax tree

token pipe

Non-persistent 
Evaluation

Persistent 
Evaluation Textual db

Figure 6.2: The interpreter steps.
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The main task of the interpreter is the building and the evaluation of an Abstract
Syntax Tree (AST). In our interpreter implementation each node of such tree con-
tains an expression that represented by an object of an object-oriented, class based
language. Each object class defines its instances behavior through a set of methods.
The traditional procedures to type check and evaluate the language sentences are
replaced by those specific behavior of the abstract syntax tree nodes. Each object
is equipped with a type and a value methods, with the following signatures:

type : et→ (et, result)

value : ev → (ev, result)

each of those methods takes in input an environment and returns a new, possibly
modified, environment and a result. Since both are methods of an object, also the
object instance variables are accessible. The result of type checking is a language
type, while the result of evaluation is a language value. A language type is any type
contained in the types environment γ, while a language value is a value taken from
the constant environment Γ. Both language types and values are also represented,
in the interpreter, by objects.

Types

Language types are represented by objects. Each predefined type or type constructor
is represented by a different class. Predefined types, such as integers and booleans,
that does not require parameters have no instance variables, while type construc-
tors, like sequences or tuples, use instance variables to store their parameters. All
the objects corresponding to types are equipped with a set of methods to perform
different tasks required by the type checking algorithm. In particular each type has
methods to:

• check the well formedness of the type. Simple types, like integers, are al-
ways well formed, while complex types, like tuples, can be bad formed if, for
instance, have duplicate labels. This method is the implementation of the
well-formedness rules for types defined in Chapter 5 by the

(
well
stat

)
rules;

• check the subtype relation with another type. Each type defines its own sub-
typing rules through this method, as defined in Chapter 5 by the

(
sub
stat

)
rules.

For instance, integers are subtype only of themselves while tuples have a more
complex behavior;

• a method to display the type to the user. This method can be implemented
differently in different implementations, but in general it must return a string
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containing a human-readable representation of the type or an encoded version
of the type. For instance the integer types can be represented by the string
“Int”, or a tuple can be represented by an xml fragment that encodes its fields
name and type.

Since our language include parametric polymorphism it is needed, for each type
object, to include methods to:

• infer its free type variables, as defined by rule
(

ftv
stat

)
;

• to substitute type variables names with other names passed as parameters, as
specified by the rule

(
sub
stat

)
.

The methods describes so far can be seen as an interface of the type, since
all new types must implement, at least, these methods to work correctly with the
interpreter. In Figure 6.3 the interface is shown in an uml style graphical notation,
along with two example of conforming classes: the integer type, that does not have
any instance variable, and the functional abstraction type constructor, that store in
its instance variables information about its parameters and return type.

Type

isWellFormed? : bool
isSubtypeOf?(otherType) : bool
to_s : string
fv : [string]
substitute : Type

Integer Function

parameters : [Type]
returnType : Type

...

Figure 6.3: The type object interface and two examples of conforming objects, the
integer type and functional abstraction type.

Values

In the Manuzio interpreter language values are represented as objects. Each object
has one or more instance variables to store information about the represented value.
For instance the object corresponding to a record has information about the values
of its fields. All the classes corresponding to values conforms to a common interface
that defines method to:
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• check the equality of the value with another value passed as parameter. This
evaluation must be carried out on the actual value and not referring to the
object themselves.

• display the value in a meaningful way. As with types what is meaningful
depends on the actual implementation. The most basic form of textual inter-
preters will require a string that holds a human readable representation of the
value. The integer value of three could, for instance, be represented by the
string “3”.

In Figure 6.4 a fragment of the values hierarchy is shown with a graphical nota-
tion.

Value

equals? : bool
to_s : string

Integer

value : int
+ : int x int -> int
- : int x int -> int
* : int x int -> int
...

Function

closure : {body, env} ...

Figure 6.4: The value object interface and two examples of conforming objects, the
integer value and functional abstraction value.

In addition, according to the value’s type, other methods are defined to imple-
ment semantic operators on the values.

Environments and Memory

The Manuzio interpreter uses two environment: the first is the types environment
and is used to type check the language expressions, the second, the values envi-
ronment, is used to store the language identifier’s values. Both are implemented
as an object that incapsulates a modifiable sequence of pairs (identifier, type) (for
the types environment) or (identifier, value) (for the values environment). Both the
environments conforms to an interface that specify methods to:

• create an empty environment;
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• clone the existing environment. This method creates a deep copy of the whole
environment that can be passed as parameter to the typechecker or evaluator;

• add a new pair (identifier, type) (for types) or (identifier, value) (for values) to
the environment;

• fetch the value or type associated with a given identifier;

• test for the presence of given identifier in the environment.

The clone method is important since each expression is typechecked or evaluated
in a specific environment passed as a parameter to the expression object. Function
bodies, for instance, are evaluated following the static scoping technique, so that
the function closure contains a copy of the environment at the time of the function
definition. This snapshot will be later extended with actual parameters values so
that the current environment will be left untouched after the function call.

Since the Manuzio language can include the concept of variable, through the
Variable bundle presented in Section 5.5.7, a form of memory is needed. The
memory model of Manuzio is very simple. Each cell of memory is uniquely identified
by an address and each cell can contain any value of the language, no matter how
large. Differently from the environments, the memory is a global entity during
the execution of a program and cannot be cloned. In the Manuzio interpreter the
memory is a global object which has an interface that offers methods to initialize
the memory, to provide a new memory address for a variable, and to fetch or write
a value at a specific address.

Expressions

The Manuzio language is expression-based and each kind of expression is represented
by a class, whose instances represent specific expressions. For example, the if state-
ment have a correspondent class that can be instantiated with specific parameters
(a conditional expression, a then expression, and an else expression) to obtain an
object that represent the corresponding if expression. Classes that represent ex-
pressions are categorized in a hierarchy that follows the Manuzio language bundle
structure.

Expression objects can have one or more instance variables to hold subexpres-
sions. In the previous example, for instance, the if statement was composed of three
different subexpressions. An expression is thus a recursive structure, composed by
other expressions, that is isomorphic to the abstract syntax tree.

Each expression class conforms to an interface that specify three methods:

• a type method, that is called to perform the type checking;

• a value method, that is called to evaluate the expression value;
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• a method to display the expression to the user. As with previous display
method of types and values, this method depends on the actual implementation
of the interpreter, but we can assume, without loss of generality, that this
representation is simply a string.

Since the structure of expressions is recursive, their type checking, evaluation,
and display methods are also recursive. To type check an if expression, for instance,
the type method of all its three composing expressions must be called.

A special kind of expressions, called polymorphic expressions, is represented by a
class with two or more subclasses. Each subclass represents an expression that shares
its syntax with the expressions of the other subclasses, but differs for the type of
its parameters. This behavior is in fact a form of ad-hoc polymorphism. During the
type check a polymorphic expression has the task of identifying the expression that
fits with the operand types among its children. If no such expression exists an error
need to be signaled and the computation stops. If a match is found, however, the
evaluation step will be carried out with the value method of the selected child. The in
operator, for instance, works with the same syntax on both sequences and repeated
textual objects. The type checker will inspect the type of the in operand and instruct
the evaluator to use the right operator instance, in the case the operand’s type is a
sequence or a repetition, or returns a type error otherwise.

The interface of objects that represent expressions has, in addition, methods to
specify their free identifiers and their definition identifiers, respectively called fv and
dv. Each expression defines its own methods specified by the

(
fv
stat

)
and

(
dv

stat

)
rules.

In Figure 6.5 a fragment of the expressions hierarchy is shown. Round-corner
boxes represent actual classes, while ovals are instances of polymorphic classes. In
the figure, the Expression abstract class has three subclasses. Two are statements,
representing the conditional expressions and the parenthesis expressions. The third
class, the DotExpression is a polymorphic expression that specializes in the dot
expression for records and objects.

6.2.2 Lexical Analyzer

The lexical analysis is the first part of the interpretation process that is performed
by the lexer. Starting from a sequence of characters of the language alphabet, called
sentence, the lexer main function is to partition that sentence in a sequence of tokens.

In the Manuzio Interpreter a class named Token is used to represent tokens. Each
of its subclasses represents a specific type of tokens, like numbers, string literals,
identifiers, and so on. Each Token subclass has a regular expression and a symbolic
name as class variables. The regular expression is used to match the token with the
input string. Instances of one Token subclass are used to represent specific tokens.
Each one has a string that contains the characters of the alphabet that form the
token, together with information about its location in the source code.
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Expression

type : Type
value : Value
to_s : string
fv : [string]
dv : [string]

IfExpression

condition : Expression
then : Expression
else : Expression

ParExpression

body : Expression

DotExpression

RecordDotExpression

record : Record
identifier : Identifier

ObjectDotExpression

object : Object
identifier : Identifier

Figure 6.5: A fragment of the expressions class hierarchy.

The lexer works according to the code of algorithm 27. The input string is
compared with the regular expression taken from one of the Token class subclasses.
If a match with the head of the input is found then a token of that type has been
recognized and is added to the output. If there is no such a match, then the lexer
iterates over the rest of the tokens’s regular expressions until it is finished. If at any
time no match is found between the input and all the tokens, then a lexical error
occurred: the computation is stopped and a lexical error is signaled. The lexer has
also the task of cleaning its output of tokens, like blanks and comments, that must
be ignored by the subsequent parsing process.

This trial-and-error behavior is an important concept that will be one of the main
notions behind the Manuzio Interpreter extendibility feature. The lexer does not
need to know in advance which tokens exists in the language, it just retrieve a list
of them at execution time by asking to the main Token class a list of its subclasses1.
The result is that the lexer’s code does not need to be changed to accommodate
new tokens, only a new subclass of the Token class has to be implemented.

If the lexical analyzer does not encounter any error its result is a data structure
called token pipe. A token pipe is a sequence of tokens with an updateable index.
The pipe is a simple array-like object that will not be discussed here. It is sufficient
to say that it is equipped with methods to move the pointer (next), compare the
pointed token with another one (isa), and saving/restoring the pointer position

1The order of such list is the reverse of the definition order. This way newly defined tokens are
tested before old ones. This choice can be useful to overload part of the old tokens definition.
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Source Code 27 The lexer algorithm.

1 de f l ex
2 r e s u l t s = [ ]
3 whi le ( ! s e l f . eos ?)
4 s c a n r e s u l t = n i l
5 s c a n r e s u l t = Token . each do | token type |
6 s canned subs t r ing = s e l f . scan ( token type . regexp )
7 i f s canned subs t r ing
8 break token type . new( scanned subst r ing , @cur rent l ine ,
9 s e l f . pos )

10 end
11 end
12 r a i s e SyntaxError ( ”Cannot r e c o g n i z e any token from : #{ s e l f . cu r r ent } :
13 #{ s e l f . r e s t [ 0 . . 2 0 ] } ” ) u n l e s s s c a n r e s u l t
14 r e s u l t s << s c a n r e s u l t
15 end
16 TokenPipe . new( r e s u l t s . r e j e c t { | e | ( e . i s a ? TokenEmpty) | |
17 ( e . i s a ? TokenComment )} )
18 end
19 end

(save/restore).

6.2.3 Syntactic Analysis

When the lexical analysis terminates without errors the syntactic analyzer, also
called parser, is executed in order to process the lexer output. The parser purpose is
to check that the input sentence follows the language syntactic rules and to construct
an abstract syntax tree that represent that sentence. Since the main requirement of
the Manuzio parser is to be extensible and easy to understand, rather then efficient,
the technique used to implement it is similar to a recursive descent with backup
parsing[Aho et al., 1986].

The Manuzio parser is an object that is able to transform the lexer’s token se-
quence into an abstract syntax tree. The parser makes use of a set of components,
each one representing one particular expression of the language and with the knowl-
edge necessary to build that particular expression subtree. Similarly to the lexer,
the Manuzio parser has a trial-and-error behavior so that the main parser tries to
build the AST by asking all the parser’s subcomponents to do so until it gets a posi-
tive match from one of them or all of them are negative. In the first case the parser
result is the AST returned by the component, while in the second case the parser will
return an error to the user, since no components are able to parse the input token
sequence. The process of building the AST is recursive, since each expression can
be formed by subexpressions. The main parsing algorithm source code is shown in
Source Code 28.

This decentralization of the parsing algorithm has the effect of isolating each
production of the language grammar in a separate parsing component, thus in a
separate object. The main parser assume the role of an immutable director that
calls such components and collect their results in a sub-AST. While such isolation
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could hinder performances and could make hard to perform many classical compiler
optimizations, it makes, at the same time, the language parser modular, easy to
understand, extend, modify, and, in our opinion, elegant.

Source Code 28 The main parsing algorithm.

1 #Parse a l l the input tokens u n t i l a f u l l e xpre s s ion
2 #of the language i s parsed a f u l l e xpre s s ion i s :
3 #1) un t i l the end o f the pipe
4 #2) un t i l the separa tor token in found
5 de f pa r s eA l l ( pipe , s epa ra to r=SEPARATOR)
6

7 tmpExpression = n i l
8 stop = f a l s e
9 whi le ( ! stop )

10 stop = true
11 @expParsers . each do | par s e r |
12 break i f p ipe . isEmpty?
13 break i f ( p ipe . cur r ent == separa to r )
14 p a r s e r e s u l t s = par s e r . parse ( pipe , tmpExpression )
15 i f p a r s e r e s u l t s
16 tmpExpression = p a r s e r e s u l t s
17 stop = f a l s e
18 break
19 end
20 #I f the parser re turns a r e s u l t then something
21 #has been found , we save the r e s u l t s in the
22 #temporary parsed expres s ion and we r e s t a r t the
23 #pars ing process
24 end
25 end
26 #when no parser can cont inue the pars ing process , we
27 #return the so−far−found expres s ion
28 r e turn tmpExpression
29 end

Each parser component can represent of one of the following entities:

• one of the language types;

• one of the language expressions;

• a group of other parsing components;

In the Manuzio Interpreter each object that represent an expression or a type has
a parser component counterpart, so that, for instance, there is a ParseIfStatement

object to parse the if construct, a ParseIntType to parse the integer type, and so
on. Each of those components has a parse method that reads the tokens from the
pipe and checks if their sequence reflect the expression pattern. If so an AST of the
expression is returned, else a null value is returned to indicate that the pipe does
not contains that expression at his current position. In that case the token pipe
index position is restored before returning. The parse method of components takes
in input the token pipe and an expression. Such expression is the partial expression
that has been recognized so far. Some productions can or can not be valid depending
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on the existence of such partial expression (for instance infix operators requires a
right side expression to be valid).

The main parsing algorithm described so far is implemented by a parser method
called parseAll. Such method takes in input the pipe and a termination token. The
termination token is used as a sentence separator when more then one sentence is
inputted at the same time, and can be, for instance, a graphic token containing a
semicolon. Moreover, the parseAll method can be used with a different termination
token to stop the parsing at a certain keyword. For instance the if statement parse
the condition by calling the parseAll method with the THEN token as termination
token, so that the computation of the conditional expression stops when the “then”
keyword is found. To implement a simple form of operators precedence the parser
is also equipped with a parseSingle method. Such method apply only the first
successful production of the grammar and then returns the AST as result. By using
this method we can have a rudimental control on the shape of the resulting AST and
thus control two levels of precedence among operators.

Groups, instead, are simply an aggregation of components that shares some pe-
culiarities. Groups can contain sub-groups so that the parser components structure
can be modeled as a tree. Infix operators, for instance, are considered a group which
has, among its other components, subgroups to aggregate textual objects infix op-
erators, arithmetic operators, and so on. The partition of components in group is
not necessary to perform the parsing itself, but makes the resulting code more tidy,
clean, and elegant. The main parser can call both a parser component directly or
call a group of parsing components in exactly the same way.

A group behavior is similar to the one of the main parser: it calls the parse
method of all its elements in turn to perform the parsing of the input pipe, and
returns either a null value or the first valid AST it can build. We can see the structure
of the parser as a tree, where the root is the main parser, the internal nodes are
groups and the leaves are parsing components. By including or excluding parser
components from the list of components of the main parser we can add or remove
language elements without affecting other interpreter components. By grouping
components we can implement easily the modularization required by the Manuzio
language.

Keywords

One of the main idea behind conventional parsers is the one of keywords. A keyword
is a reserved symbol, or group of symbols, that is used by the parser to identify some
expressions, like the if keyword is used to identify the start of and if statement.
Keywords must be known by the parser not only to perform the parsing itself, but
also to prevent the user to use them as identifiers. Usually the set of a language
keywords is small and hard-coded into the compiler or interpreter code, but with
Manuzio, due to its extensibility features, it is not possible for the main parser
component to know all of them in advance. The solution is again to distribute the
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definition of keywords among the single parser components. Each parser component
has a method keywords that returns a list of the keywords it requires. For instance
the if expression parser component will require the keywords if, then, else, and end.
By including such statement in the language means that those words cannot be
used as identifiers anymore. Keywords of groups are the union of their components
keywords. Since the structure of the parsers is a tree, the retrieve of keyword is done
in a recursive way.

6.2.4 The read-evaluate-print cycle

After the abstract syntax tree of a program has been created, the interpreter per-
forms the type checking of such tree by calling the type method of the tree root.
If the check terminates correctly then the evaluation of the results is performed
by calling the value method on the tree root. The interpreter carries out a read-
evaluate-print to accept user input, evaluate the sentence, and display the results
to the user. Results can either be a value or an error message. The most important
part of such algorithm is show in Source Code 29.

Source Code 29 The main Interpreter cycle.

1 #perform i n i t i a l i z a t i o n s
2 loop do
3 begin
4 #read the user input l i n e
5 @pipe = Lex ica lAna lyzer : : Lexer . new( l i n e ) . l e x
6 e x p r e s s i o n s = Parser : : Parser . i n s t ance . parse ( @pipe )
7 r e turn n i l u n l e s s e x p r e s s i o n s
8 e x p r e s s i o n s . each do | exp |
9 type = exp . type ( @et )

10 value = exp . va lue (@ev)
11 puts ”#{exp} #=> #{value } : #{type}”
12 end
13 #On errors , p r i n t s what ’ s wrong and ask f o r another l i n e
14 r e s cue Errors : : SyntError , Errors : : TypeClashError ,
15 Errors : : SemanticError , Errors : : DbConnectError ,
16 Errors : : Nul lValueError => ex
17 puts ”#{ex . c l a s s } , #{ex . message}”
18 r e t r y
19 end
20 end

While the interpreter should be able to read the input line from various sources
and output the results in various formats, the current implementation is only able
to perform a command line interaction or to read a program from an external file.
Moreover, a set of commands that are not part of the Manuzio language are be
implemented in the interpreter to:

• saveenv: save the current environment state persistently;

• loadenv: restore the saved environments;
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• printenv: display the content of the environments;

• clear: clear the content of the environments;

• printmem: show the memory contents;

• help: display an help on interpreter commands;

• quit: quit the interpreter.

Such commands are useful for testing and debugging and are necessary in the testing
environment required by an in-development language.

Error handling

All the interpreter steps can generate errors that must be caught and presented to
the user in a meaningful way. Error handling is carried out through the raise of
exceptions during the various steps of sentence evaluation. Such exceptions can be
of different type and carry a string format message with them to provide useful
information about the error to the user, so that corrections are made easier. The
errors hierarchy and a brief description of their meaning is shown in Figure 6.6. Of
particular importance the semantic error and the type clash error are the most used
during debugging.

The Ruby’s exception mechanism has been proven a valid way of handling errors
without requiring any additional coding.

6.2.5 Conclusions

In this section we gave a set of informal guidelines for the development of an inter-
preter for the Manuzio language. The main goal is to build an highly modularized,
easily extensible interpreter to be used in the process of language development and
evaluation. For this reasons performances have not been considered a critical feature
at this stage. In the next section the persistent features of the Manuzio’s current
implementation will be discussed.

6.3 Persistent Data

6.3.1 Textual Objects Persistency

The Manuzio language has persistent capabilities to handle textual objects. While
other, more efficient, approaches could have been taken, to achieve a good tradeoff
between speed and quick prototyping a relational database has been used to store
persistent data. For an overview of other possible solutions see Section 6.6.
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error generated by the evaluator
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Figure 6.6: Error classes in Manuzio.
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In this implementation textual objects structure and values are stored in a re-
lational database. The Manuzio interpreter class that implements textual objects
values performs the mapping between the database and the language through SQL

queries. It is important to note that the language users have no perception of the
underlying relational implementation, nor of the use of SQL. The persistent layer en-
capsulate the underlying implementation so that the user can deal with textual ob-
jects in the most natural way and without leaving the Manuzio language paradigm.
Textual objects, like any other language value, are thus subject to typechecking, can
be used as fields for records, can be passed as function parameters, and so on.
The definition of the Manuzio persistent layer followed the classical database design
methodology: a conceptual schema for the Manuzio textual model has been designed
first to give an high-level representation of textual objects.

The core of the conceptual schema, shown in Figure 6.7, is the TextualObjects

object type. Such type represents the type of all textual objects, and is partitioned in
two subtypes to represent single textual objects and repeated textual objects. Single
textual objects participates in a component relation, described in Section 3.2, that is
represented by a ternary association between single textual objects, textual objects,
and a Components class that represent the label assigned to each component. In the
schema we represented this association by interpreting each of its instances as an
entity, called ComponentObjects, that has an 1 : n association with Components,
SingleTOs, and TextualObjects. The association has an attribute to specify the
relative number of a component textual object inside that specific component re-
lation. Moreover, Single textual objects are associated with one or more textual
chunks. A textual chunk is a pair of indexes in the form (index, offset). Such pairs
are used as inputs to query the FullText table and retrieve the underlying text of
objects, through the content procedure. Repeated textual objects, represented by
the RepeatedTOs class, have many single textual objects as elements.

Textual objects can have attributes, modeled by the AttributeValues class.
Each attribute have a type that specify its data type and the label the attribute is
denoted with. Each attribute value is associated with the Attributes class that
stores all the previous values of the attribute together with other information about
timestamps and users to form a sort of history of annotations on an object.

Each textual object has a type. Types, represented by the Types class, can
have subtypes and are specialized in single and plural types. Single types are the
types of single textual objects, while plural types are the types of repeated textual
objects. Each single type has components of different type, while each plural type
has elements of a certain type. Both can have attributes. The AttributeTypes

class, together with Types, can be used to extrapolate the schema of the textual
database.

Thanks to the persistent layer the user has the illusion that all textual ob-
jects, both single and repeated, are already instantiated when the connection to
the database is performed and all other textual objects can be reached through the
predefined constant collection. Under the hood, textual objects are stored in the
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Figure 6.7: The Manuzio conceptual schema.
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database and the language objects that represent textual objects holds only their
unique identifier as an instance variable. When an operator is applied to a textual
object value, it prepares and launches a query to the database and returns the re-
sult as a Manuzio value. For instance, if t is a textual object value, the command
text of t launches a database query to retrieve the underlying text of t. The re-

turned value will be a string, in the implementation’s language sense, that will be
packed in a Manuzio string value and returned as result.

In the current Manuzio Interpreter implementation textual object values are
equipped with the following methods:

• underling text(t): returns a Manuzio string value containing the underlying
text of the textual object at address t.

• components(t, label): returns all the direct components of the textual object
at address t that are labeled as the label parameter.

• all components(t, T): returns all the components of the textual object at
address t that are of type T , both directly and indirectly.

• attributes(t, label): returns the value of the attribute labeled as the passed
parameter for the textual object at address t.

• type(t): returns the type of the textual object at address t.

• parents(t): returns a list of the parents of the textual object ad address t.

• position(t): returns the position of the textual object at address t. The
position is computed following the objects lexicographic order, starting from
the beginning of the full text.

• position in type(t, T): returns the position of the textual object of address
t, following the lexicographic order, starting from the beginning of its parent
of type T .

All these methods are computed by issuing a query to the database. Note that,
while this set of methods is the minimal set that can be used to implement the
textual object values as required by the language specification in Section 5.5.20, a
more complex or numerous set of methods and queries can be used in order augment
performances.

6.3.2 Database Relational Schema

The database schema contains not only information about the textual objects in-
stances, but also about the Manuzio model being used, such as the names of the
types and their relationships. This way the database schema is fixed and does not
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Figure 6.8: The RManuzio database relational schema.
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need to be changed when the underlying model changes. The current relational
implementation of the database is shown in Figure 6.8.

The database schema can be partitioned in four regions. The upper one, colored
in red, contains the tables used to store textual object instances and the relation
between them. In the mid left region, colored in yellow, the full text and the relations
between text portions and textual objects are stored. The lower blue region contains
the tables where the attributes of textual objects are saved, along with information
about the users that made them. Finally, in the mid right, the green region contains
the textual object types and other information about the textual model are stored.

Textual Objects Region

The textual object region is centered on the TextualObjects table, that specializes
into single textual objects and repeated textual objects. Single textual objects
are stored directly in the database, one row for each textual object present in the
modeled text. Each single textual object is in relationship with one or more other
singles through the hasComponent relation.

Repeated textual objects, instead, are not stored directly into the database due
to their large cardinality. For this reason repetitions are, in general, created dy-
namically as an aggregation of single textual objects. The persistent storage of
repeated textual objects is needed when such objects are annotated, so that a re-
lationship with the annotations table can be created. From the language point of
view, however, this process is completely transparent and have no impact on the
user experience.

Textual Region

The textual region of the database contains the tables to store the full text and
the underlying text of textual objects. While in the model we represented the full
text as a big, monolithic string of characters, this solution does not works well in
an actual implementation. The full text is thus segmented in smaller chunks stored
in a separate table. Chunks are put in relationship with textual objects so that the
underlying text of a textual object is the union of all its chunks text.

Annotations Region

The annotations region stores information about the annotations made on textual
objects, the different users present in the database, and their relationships. Since
in the current implementation the multiuser aspect and the dynamic annotation
capabilities of the system are very limited, this region of the database is rather
simple. While a real system with dynamic annotations and concurrent users should
improve this part of the schema, in our single user static annotations prototype such
simplicity is enough.
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Since annotations can be of any Manuzio language type, a sort of encoding to
store them in a relational table is needed. In our prototype a binary field has been
used to store a string-encoded version of the stored value. Since the type of the
annotation is known from the model, the stored string can be unpacked into the
actual value without issues.

Model Region

The model region stores the names and the relationships of the textual types defined
by the database’s Manuzio model. Each type has a name and is in relation with other
types that are its components with a certain label. Types can also have attributes,
and each type is in relationship with its plural form. By navigating these tables
the Manuzio language can, when connected to a database, reconstruct the whole
Manuzio model used during the textual database creation, and know which types
are required along with their structure.

6.3.3 Textual Objects Operators in SQL

The textual object values operators given in Section 6.3 work on the relational
database by performing SQL queries. In this section the translation of these operators
is given in source codes from 30 to 37.

Source Code 30 The underlying text(t) SQL query for single textual objects.

1 SELECT f u l l t e x t (C. s ta r t , C. o f f s e t )
2 FROM SingleTOs as STO, ChunksSTOs as CT, Chunks as C
3 WHERE STO. id = CT. idSTO and
4 CT. idChunk = C. id and
5 STO. id = t

Source Code 31 The underlying text(t) SQL query for repeated textual objects.

1 SELECT f u l l t e x t [C. s t a r t . C. o f f s e t ]
2 FROM SingleTOs as STO, ChunksSTOs as CT, Chunks as C, RepeatedTOs as RTO,
3 RTOsSTOs as RTOSTO
4 WHERE STO. id = CT. idSTO and
5 CT. idChunk = C. id and
6 RTO. id = t and
7 RTO. id = RTOSTO. idRTO and
8 RTOSTO. idSTO = STO. id

In Section 4.3 the concept of query composition in relation to lazy evaluation has
been introduced. Without this technique the queries presented above are executed
by the interpreter as soon as the relative language operator is encountered. For
instance, the snippet, written in Manuzio, presented in Source Code 38 have poor
performances in absence of lazy evaluation.
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text of

getall

WORD collection

slice

[1..5]

Figure 6.9: An abstract syntax tree fragment where query composition can be per-
formed.
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Source Code 32 The components(t, label) SQL query.

1 SELECT TO. id
2 FROM SingleTOs as STO, ComponentObjects as CO, TextualObjects as TO,
3 Components as C
4 WHERE STO. id = CO. idSTO and
5 TO. id = CO. idTO and
6 CO. idComponent = C. id and
7 C. l a b e l = l a b e l and
8 STO. id = t

Source Code 33 The attribute(t, label) SQL query.

1 SELECT A. content
2 FROM TextualObjects as TO, Attr ibuteValues as AV, Annotations as A,
3 Attr ibuteTypes as AT
4 WHERE AV. idTO = TO. id and
5 AV. idAnnotat ion = A. id and
6 AT. id = AV. idAt t r i bu t e and
7 AT. l a b e l = l a b e l and
8 TO. id = t and
9 A. timestamp > t u t t i g l i a l t r i

In Figure 6.9 a simplified version of the code abstract syntax tree is shown. The
highlighted part corresponds to the query execution. The language thus execute
a query that returns the repeated textual objects of type words of the collection2

by executing the query 32, only to subsequently slice it to just the first five of its
elements with the repetition slice operator. Finally, the underlying text of such
elements is required for displaying, so that the query 31 must be executed.

With lazy evaluation and query composition better performances can be achieved.
When the language invokes a textual object operator the relative operator query do
not get executed. The returned value is something similar to a functional language
thunk, a non-evaluated value that represents a partial result of a computation. A
thunk can be viewed as a function that takes no parameters and returns a value,
in this case a repeated textual object, that gets executed only when such value
is needed. Depending on subsequent usage of this value the computation can be
carried on normally by executing the query, or the query itself can be modified to
change its behavior.

The first query of the previous example, for instance, is shown in Source Code 39.
With the query composition technique this query is prepared and stored in the
returned thunk, but it’s not executed right away. When the abstract syntax tree
evaluation process encounter the slice node, the thunk is still an unevaluated value.
A textual object thunk which value is needed can be:

• evaluated normally: if the thunk value is needed by a generic expression the
normal behavior is, like in functional languages, to execute the thunk and use
the resulting value;

2We assume here that the cardinality of such object elements is high.
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Source Code 34 The type(t) SQL query.

1 SELECT TOT. name
2 FROM TextualObjects as TO, TextualObjectTypes as TOT
3 WHERE TO. idType = TOT. id and
4 TO. id = t

Source Code 35 The parents(t) SQL query.

1 SELECT CONTAINER. id
2 FROM TextualObjects as COMPONENT, ComponentObjects as CO,
3 TextualObjects as CONTAINER
4 WHERE COMPONENT. id = t and
5 COMPONENT. id = CO. idTO and
6 CONTAINER. id = CO. idSTO

• combined with the current operator: in this case the interpreter alters the
query contained in the thunk to achieve the same results as the application of
the operator to the thunk results. The resulting query is usually more efficient.
The result of such combo is a new thunk containing the altered query.

For instance, in the previous example, the interpreter can alter the query to
add the slice operator be incorporated in the previous query by using the SQL

limit . . . offset operator, as shown in Source Code 40.
In the final step of the computation the text of operator is applied to a thunk,

so another combination can occur. The result is again a thunk that contains a
modified query, shown in Source Code 41, and which return type is String. When
the computation is ended the interpreter default behavior is to display the results
to the user. At this moment the value of the thunk is needed and the interpreter
has no other ways to modify the contained query, so it finally execute it and prints
the results.

It is important to note that special considerations are needed when dealing with
the textual object’s annotation operators. These operators, in fact, carry the side-
effect of changing the persistent value of an annotation in the textual repository in a
manner that is similar to the update of a variable in memory. While a system where
annotations are fixed, set when the textual database is created, can be viable for
applications of text retrieval and simple analysis, annotations play, in our opinion,
an important role. For this reasons, when dealing with lazy evaluation and query
composition, the annotations operators must be taken in consideration. One possible
solution, that will be inspected in future releases of Manuzio, could be the use of
sessions, so that all the updates to the persistent storage are held until at least one
unevaluated value is present. This behavior could be achieved, for instance, with
sessions in a relational database.

While limited to certain specific combination of operators, the lazy evaluation
and query composition technique can be used to achieve good performances on tasks
that are typical for the domain of application, without the user leaving the elegant
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Source Code 36 The position(t) SQL query.

1 SELECT STO. p o s i t i o n
2 FROM SingleTOs as STO
3 WHERE STO. id = t

Source Code 37 The position in type(t, T ) SQL query.

1 SELECT (COMPOMENT. p o s i t i o n − CO. p o s i t i o n o f f s e t )
2 FROM TextualObjectTypes as TOT, ComponentObjects as CO, SingleTOs as CONTAINER,
3 TextualObjects as COMPOMENT
4 WHERE COMPOMENT. id = t and
5 COMPOMENT. id = CO. idTO and
6 CONTAINER. id = CO. idSTO and
7 CONTAINER. idType = TOT. id and
8 TOT. name = T

programming language paradigm. The ideas behind query composition are, however,
still in course of development and the Manuzio prototype does not, at the time of
writing this document, include this experimental feature. We believe, however, that
this approach, if carefully trimmed, could be of great help in the development of a
more efficient Manuzio implementation.

6.4 Other Components

In this section the textual schema definitions, corpus parsing, and user interface
of the Manuzio system will be overviewed. Due to time constraints these three
components have been developed only in a simple way, so that the model and the
language could be tested before undergoing a long, complex, implementation process.
The discussion here will be brief, due to the fact that we just present the current
implementation. A more in-depth discussion on the possible future implementations
can be found in Section 5.6.

6.4.1 Textual Schema Definitions

Since the formal semantics of the Manuzio schema declarations is not completed yet,
no parser exists for that part of the language. In the current implementation the
textual object types to be inserted in a textual repository are encoded by hand in a
data structure that, passed to the textual repository, fills the type-related tables of
the underlying relational database.

In the current implementation of Manuzio the textual object types present in a
textual database are specified by a set of declarations written directly in the Manuzio
language. To perform this operation a new type constructor called TEXTUALOB-
JECT has been introduced to allow the specification of new textual object types
directly from the language. This type constructor takes in input a tuple of compo-
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Source Code 38 Underlying text of the first five words of the collection. This code
is unoptimized.

1 > usedb ” shakespeare ”
2 #=> nop : Command
3 > t ex t o f ( g e t a l l words o f c o l l e c t i o n ) [ 1 . . 5 ]
4 #=> ”Now f a i r Hippolyta our nupt i a l ” : S t r ing

Source Code 39 Example of a component query translation.

1 SELECT TO. id
2 FROM SingleTOs as STO, ComponentObjects as CO, TextualObjects as TO,
3 Components as C
4 WHERE STO. id = CO. idSTO and
5 TO. id = CO. idTO and
6 CO. idComponent = C. id and
7 C. l a b e l = ”words” and
8 STO. id = 0

nents, a tuple of attributes, the name of the associated repeated textual object type,
and a tuple of attributes for such repetition. Note that this trivial way of defining
schemas has been developed to have a working prototype to test the language ca-
pabilities in a controlled environment. In future implementations such types will
be parsed, instead, from declarations like the ones in Source Code 42, presented in
Section 6.5. In this way, schemas will be checked for consistency, so that the lattice-
like required structure is enforced, and a set of other constraints will be present to
allow to model special characteristics of the text3. It is matter of debate if this
data definition language and its constraints should be given in a simple, yet limited,
domain specific language, or rather through special declarations written directly in
the Manuzio language, as shown in the examples. The domain specific language
is simpler to use and read, but the constraint set must be limited. On the other
hand, the use of a full programming language allows the definition of constraints of
arbitrary complexity, but is also more difficult to use and to implement. A trade-off
between the two solutions is currently being researched on, and will be discussed in
Section 5.6.

6.4.2 Corpus Parsing

The corpus parsing process has the goal of instancing the textual database with the
textual objects recognized in the text. In the current implementation of Manuzio
this process has been done through an ad-hoc algorithm, different for each different
corpus. The process is trivial, input XML documents are parsed through the Ruby
programming language and the textual database is instanced with the recognized
textual objects. When dealing with concurrent hierarchies the process is more com-

3An Haiku, for instance, is a form of Japanese poetry, consisting of 17 moras (or on), in three
metrical phrases of 5, 7, and 5 moras respectively[Kobayashi and Lanoue, 1991].
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Source Code 40 Example of a component query combined with a slice operator.

1 SELECT TO. id
2 FROM SingleTOs as STO, ComponentObjects as CO, TextualObjects as TO,
3 Components as C
4 WHERE STO. id = CO. idSTO and
5 TO. id = CO. idTO and
6 CO. idComponent = C. id and
7 C. l a b e l = ”words” and
8 STO. id = 0
9 LIMIT 5 OFFSET 0

Source Code 41 Example of a component query combined with a slice operator
and a text of operator.

1 SELECT f u l l t e x t [C. s t a r t . C. o f f s e t ]
2 FROM SingleTOs as STO, ChunksSTOs as CT, Chunks as C, RepeatedTOs as RTO,
3 RTOsSTOs as RTOSTO
4 WHERE STO. id = CT. idSTO and
5 CT. idChunk = C. id and
6 RTO. id = RTOSTO. idRTO and
7 RTOSTO. idSTO = STO. id and
8 RTO. id IN (
9 SELECT f u l l t e x t [CH. s t a r t . CH. o f f s e t ]

10 FROM SingleTOs as STO, ComponentObjects as CO,
11 TextualObjects as TO, Components as C,
12 SingleTOs as ELEMENTS, RTOsSTOs as RTOSTO
13 ChunksSTOs as CT, Chunks as CH
14 WHERE TO. id = RTOSTO. idRTO and
15 RTOSTO. idSTO = ELEMENTS. idSTO and
16 ELEMENTS. id = CT. idSTO and
17 STO. id = CO. idSTO and
18 TO. id = CO. idTO and
19 CO. idComponent = C. id and
20 C. l a b e l = ”words” and
21 STO. id = 0
22 LIMIT 5 OFFSET 0 )

plicated. Either the input is already encoded to accommodate such parallelism, or
the parser will have to recognize itself non-encoded structures in some way. In fu-
ture implementations a set of parsers are planned to allow a semi-automatic parsing
of the most common encodings used in the humanistic field, like the TEI, standoff
markup, LMNL, and so on. Due to the wide range of encodings and interpretations
used by researchers, a fully automated process could be difficult to obtain, and each
different source encoding system will have to be handled individually.

6.4.3 User Interface

The current implementation user interface is simply a command line interface that
allows the user to interact with the Manuzio interpreter directly. Our goal is to
develop an interface that allows the construction of a predefined family of queries
through a graphical interface, like a classical form, but gives also, at the same time,
the possibility to interact with the textual database through the Manuzio language
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directly, so that non-predefined queries can be launched. The optimal ways to
present and annotate query results in a simple yet coherent way across different
models is still being researched on. A graphical web interface is currently being
developed for a specific textual database. The results of this experiment will be
used to develop a more general interface. Some considerations however, will be
given in Section 5.6.

6.5 A Case of Study - Shakespeare’s Plays

To show the potentiality of the Manuzio language in this section a small but realistic
example will be presented. In our scenario we want to create a textual repository
that store all of the Shakespeare’s plays and perform some subsequent analysis on
them. The source text we adopted, open source and freely available online, was a set
of XML documents, conforming to a simple DTD, one for each of the plays. The first
step to create a textual repository is to define which textual object types are present
and their relationships. The decision is usually made by an expert of the domain
of application that know which logical structures will be useful for the analysis and
how they are related to each other. In our example the structure is rather simple,
with only two parallel, unrelated structures to denote the metrical and prosodic
structure of each speech. A special kind of speech, the epilogue, can be present
and carries a title and subtitle as additional information. The Manuzio declarations
for such structures are reported in code 42, while a graphical representation of
them can be found in figure 6.10. These declarations are precessed by the Manuzio
interpreter to instantiate a new textual repository. In the current implementation
this means to create the appropriate tuples in the underlying relational database
where information about textual object types are stored.

A parsing program, written either in Manuzio or in a language of choice, uses a set
of recognizer functions to identify the textual objects of a certain type present in the
text and return a list of them. Such objects are inserted into the textual repository
through its primitive procedures for object creation. In the current example the
parser has been written in Ruby; the Manuzio language has not been used mainly
for the lack, at the time of writing, of an appropriate XML library. When the source
text parsing is completed the textual repository is ready to be used.

From the Manuzio language the usedb command can be issued to connect to a
textual repository. When the connection is made the textual object types present
in the repository are loaded into the current environments. This means that all
the types that has been declared during the creation of the textual repository are
available during the analysis. Moreover, the usedb command instantiate a special
variable collection that holds the singleton textual object of type COLLECTION
and is used as an entry point for the textual data.

In Source Code 43 a newly-started Manuzio interpreter connects to the textual
repository named shakespeare. As shown in the model, the textual object type
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Source Code 42 Declarations in the Manuzio language for a simple Shakespeare’s
textual repository.

1 d e c l a r e schema shakespeare
2 type WORD = t e x t u a l o b j e c t t y p e
3 a t t r i b u t e s stem : Fun ( ) : S t r ing i s get stem ( s e l f . u n d e r l y i n g t e x t )
4 p l u r a l WORDS
5 end
6

7 type LINE = t e x t u a l o b j e c t t y p e
8 components words : WORDS
9 a t t r i b u t e s meter : S t r ing

10 p l u r a l LINES
11 end
12

13 type SENTENCE = t e x t u a l o b j e c t t y p e
14 components words : WORDS
15 p l u r a l SENTENCES
16 p l u r a l a t t r i b u t e s comment : S t r ing
17 end
18

19 type SPEECH = t e x t u a l o b j e c t t y p e
20 components
21 s en t ence s : SENTENCES,
22 l i n e s : LINES
23 a t t r i b u t e s speaker : S t r ing
24 p l u r a l SPEECHES
25 p l u r a l a t t r i b u t e s s t a g e d i r e c t i o n s : S t r ing
26 end
27

28 type EPILOGUE = t e x t u a l o b j e c t t y p e
29 i n h e r i t s SPEECH
30 a t t r i b u t e s t i t l e : { t i t l e : Str ing , s u b t i t l e : S t r ing }
31 p l u r a l EPILOGUES
32 end
33

34 type SCENE = t e x t u a l o b j e c t t y p e
35 components speeches : SPEECHES
36 a t t r i b u t e s t i t l e : S t r ing
37 p l u r a l SCENES
38 end
39

40 type ACT = t e x t u a l o b j e c t t y p e
41 components s c ene s : SCENES
42 a t t r i b u t e s t i t l e : S t r ing
43 p l u r a l ACTS
44 end
45

46 type PLAY = t e x t u a l o b j e c t t y p e
47 components ac t s : ACTS
48 a t t r i b u t e s
49 author : { f i r s tname : Str ing , lastname : S t r ing } ,
50 t i t l e : Str ing ,
51 kind : S t r ing
52 p l u r a l PLAYS
53 end
54

55 type COLLECTION = t e x t u a l o b j e c t t y p e
56 components p lays : PLAYS
57 a t t r i b u t e s t i t l e : Str ing , notes : S t r ing
58 end
59 end
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Figure 6.10: The Shakespeare’s plays schema in graphical notation.
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COLLECTION has an attribute title of type String. We can use the get operator to
retrieve this attribute and check that the returned type is, in fact, a string value.

Source Code 43 Example 1: connection and retrieval of an attribute from a single
textual object.

1 usedb ” shakespeare ”
2 get t i t l e o f c o l l e c t i o n #=> ”Shakespeare ’ s p l ay s ” : S t r ing

In Source Code 44, instead, the get operator is used to retrieve other textual
objects that are direct components of the collection. In our example the collection
has only one component, a repeated textual object of type PLAYS called plays. We
can assign the retrieved object to a variable to use it in subsequent expressions. The
get operator can work also on repeated textual objects to retrieve the attributes of
their elements, acting as a mapping; in the code the titles of all plays are retrieved:
the result is a sequence of strings.

Source Code 44 Example 2: retrieval of components from a single textual object
and attributes from a repetition.

1 l e t p lays = get p lays o f c o l l e c t i o n
2 get t i t l e o f p lays
3 #=> [ ”The Tragedy o f Antony and Cleopatra ” ,
4 #=> ”Al l ’ s Well That Ends Well ” , . . . ] : [ S t r ing ]

The get operator can be applied to repetitions also to retrieve components: its
semantics is again similar to a mapping. In Source Code 45 the acts of all the
plays are retrieved. Note that, in this case, the result is not a sequence of repeated
textual objects as it would be in a real mapping, but an implicit flattening of the
results is performed so that the result is again a repeated textual object of type
ACTS. This expression’s results are, in fact, equivalent to the retrieval of all the acts
of the collection. Since ACT is not a component of COLLECTION, such task must
be performed by the getall operator, that takes in input a textual object t and a
textual object type T and returns all the textual objects of type T that are direct
or indirect components of t.

Source Code 45 Example 3: retrieval of components from a repetition.

1 get ac t s o f p lays
2 g e t a l l ACT of c o l l e c t i o n

The underlying text of a textual object can be retrieved with the text of operator.
The result is a string both when the operator is applied to single textual objects and
when it is applied to repeated textual objects. In the latter case an implicit flattening
of the results is performed; the underlying text of all the repetition’s elements are
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concatenated in a single string (with a predefined separator). An example of both
cases is presented in Source Code 46.

Source Code 46 Example 4: retrieval of underlying text from single and repeated
textual objects.

1 t ex t o f head p lays #=> ”Nay , but t h i s dotage o f our genera l ’ s . . .
2 #=> High order in t h i s g rea t so lemni ty .” : S t r ing
3 t ex t o f p lays #=> ”Nay , but t h i s dotage o f our genera l ’ s . . .
4 #=> We were d i s s eve r ’ d : h a s t i l y l ead away .” : S t r ing

More complex queries can be expressed through the query-like operators of
Manuzio. In Source Code 47, for instance, we show how to retrieve the title of
all plays by means of these operators. In Source Code 48, instead, we make use of
the where operator to reject all the plays that do not have the kind attribute set to
the vale “Tragedy”. The returned value is a sequence of strings that contains the
titles of all the Shakespeare’s tragedies.

Source Code 47 Example 5: retrieve the title of all plays.

1 s e l e c t t i t l e o f p
2 from p in get p lays o f c o l l e c t i o n

Source Code 48 Example 6: retrieve the title of all tragedies.

1 s e l e c t t i t l e o f p
2 from p in get p lays o f c o l l e c t i o n
3 where get kind o f p = ”Tragedy”

In Source Code 49 we return a repeated textual object composed by all the plays
that have at least one word with the underlying text equals to “king” by using the
some ... in operator. The same logic applied to the example in Source Code 50,
where we search the entire collection for sentences where all the words are very short.

Source Code 49 Example 7: retrieve the title of all the plays that contains the
word “king”.

1 s e l e c t t i t l e o f p
2 from p in get p lays o f c o l l e c t i o n
3 where some w in ( g e t a l l WORD of p) with text o f w = ” king ”

Source Code 50 Example 8: retrieve sentences composed by only short words.

1 l e t s h o r t s e n t = s e l e c t s
2 from s in g e t a l l SENTENCE of c o l l e c t i o n
3 where each w in ( g e t a l l WORD of s ) with s i z e o f w < 5
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Repeated textual objects can also have their own annotations, that are different
from the annotations on their elements. We can annotate every textual object, like
the sentences retrieved by the previous example, with the annotate ... set ... to
operator. In the example shown in Source Code 51, we then retrieve the annotation
with the get operator. Note that, since the SENTENCES type has an annotation
named comment, this annotation gets retrieved instead of collecting the annotations
of the elements.

Source Code 51 Example 9: annotation of a repetition and retrieval of annotations
on repetitions.

1 annotate s h o r t s e n t s e t comment to ” t h i s sounds funny ! ”
2 get comment o f s h o r t s e n t #=> ” t h i s sounds funny !” : S t r ing

Finally, in program Source Code 52 an example of textual analysis program is
shown. The first instruction stores in the constant play the play with title “A
Midsummer Night’s Dream”. Then all the speeches which contains at least a word
with stem “love” of that play are saved in loveSpeeches. The percentile of such
speeches in the whole play is computed and presented to the user. The last selection
iterates over the loveSpeeches repetition and returns a record with two fields, the
first containing the speaker as a string, the second containing the number n of
speeches with the stem “love” spoken by that speaker as in integer. Finally the top
ten results are presented to the user. The results are reported in Source Code 53.

Source Code 52 Example 10: compute the top ten characters by the number of
speeches spoken which contains the word stem “love”.

1 usedb ” shakespeare ” ;
2

3 l e t play =
4 p in ( get p lays o f c o l l e c t i o n )
5 where p . t i t l e = ”A Midsummer Night ’ s Dream” ;
6 l e t l oveSpeeches =
7 s in ( g e t a l l Speech o f play )
8 where some w in ( g e t a l l Word o f s ) with ( get stem o f w) = ” love ” ;
9 l e t r = ( s i z e o f loveSpeeches )/ ( s i z e o f g e t a l l Speech o f p) ∗ 100 ;

10

11 output ”There i s a ” + r + ”% of l ove speeches . ” ;
12 l e t l ov e spe e ch count by speake r =
13 s e l e c t { speaker = s . speaker , n=( s i z e o f s . p a r t i t i o n )}
14 from s in ( speeches groupby speaker )
15 order by n ;
16 output ”The top 10 love spekaer s are : ” ;
17 output l ove spe e ch count by speake r [ 1 . . 1 0 ] ;
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Source Code 53 Example 10 results.

1 There i s a 18.4% of l ove speeches .
2 The top 10 love speaker s are :
3 [{ speaker=”LYSANDER” , n=17} ,
4 { speaker=”OBERON” , n=13} ,
5 { speaker=”HERMIA” , n=12} ,
6 { speaker=”DEMETRIUS” , n=10} ,
7 { speaker=”TITANIA” , n=9} ,
8 { speaker=”HELENA” , n=9} ,
9 { speaker=”THESEUS” , n=6} ,

10 { speaker=” Thisbe ” , n=3} ,
11 { speaker=”PUCK” , n=3} ,
12 { speaker=”QUINCE” , n=3}]

6.6 Evaluation of the Language

In the development of Manuzio the modular design has been of great use to dy-
namically refine various features and operators of the language. The process of
implementing and using the language has, however, also put in evidence some short-
comings. The lessons learned from the implementation of the language are presented
in this section.

• Syntax: the language syntax can still be considered heavy, with little syn-
tactic sugar to aid the developers in their task. The main reasons behind this
drawback was the need to keep the language parser simple and concentrate
on other, more important, aspects like the language semantics. To make the
language more appealing to the eye, however, a more advanced parser could
accept a simpler syntax. Also, in the current implementation, the syntax of
operators has been given mostly by keywords like distance ... from ..., getall
... of ..., or parent ... of ...; this is in contrast with the choices made by most
general-purpose programming languages, where the majority of operators are
denoted by non-alphabetic symbols. We feel, however, that in the specific
domain of application our approach could be successful provided that some
refining work is done at syntax level.

• Standard Libraries: although the lack of standard libraries is not a real
deficiency of the language itself, a little more work is needed to define which
operators should be implemented as native and which are to be implemented
as library components. Good standard libraries have often been at the base
of a language success or failure, so we feel that Manuzio should feature a large
set of predefined functions on textual objects and strings, comprising, among
others, of specific textual functions such as phonetic algorithms, computation
of textual distances, and so on.

• Programming Paradigm: the choice of using a functional language has
been taken to exploit the mathematical elegance of such approach, as well as
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the idea that a literary text is a kind of data that requires few or no updates.
For this reason, the use of lazy evaluation and memoization can be useful to
augment performances in presence of persistently stored data. The importance
of dynamic annotations as a feature of primary importance, however, required
some additional efforts, since their presence introduces side-effects and breaks
the elegance of a pure functional approach. It is matter of debate if the next
version of the Manuzio language will still be a functional language or if a radical
departure from the functional programming paradigm should be taken.

• Potentiality of the Language: during our internal tests the language has
proven useful to solve many problems of literary analysis. The seamless in-
tegration between the programming language and the query language makes
easy for the developers to write textual analysis programs; without the need
of an external query language, the coding experience feels more natural and
smooth. The ability of the Manuzio type system to catch type errors early,
at compile time, is of great use in a persistent environment where retrieval
operations can be very time-demanding.

• Textual Objects Operators: in the current implementation the number of
textual objects operators has been kept to a minimum to test the language
features in a simple and controlled environment. During our tests, however,
the need of some other operators arose to simplify some recurrent tasks. The
dependent product operator, for instance, would be a useful addition to express
queries like “for all the lines with at least a word of 13 characters, return
a tuple containing that line and the corresponding word”. An example of
such behavior is given in Source Code 54 by the (sill unimplemented) times*
operator.

Source Code 54 Example of dependent product between the lines and the words
of a play p.

1 s e l e c t { l i n e = text o f l , word = text o f w}
2 from l in ( g e t a l l LINE o f p) t imes ∗ w in ( g e t a l l WORD of p)
3 where s i z e o f w = 13
4 #=> [{ l i n e = ” for , as i t i s a hear t b reak ing to see a handsome man” ,
5 # word = ” hear t b reak ing ”} ,
6 # . . . ,
7 # { l i n e = ”Te l l him thy enterta inment : look , thou say ” ,
8 # word = ”enterta inment ”} ]



Conclusions and Future Work

In this work we presented a model, a language, and a system to store and query
textual data.

The Manuzio model describes the features of textual corpora in a precise and
flexible way through the use of a formal language. Differently from others wide-
spread models, the Manuzio data model is in effect a directed acyclic graph where
multiple, concurrent textual structures can be represented effectively without recur-
ring to workarounds. The model is based on the idea that text can be seen as a
multiple hierarchy of objects; each object represents a recognizable portion of the
text with some logical meaning like a word, a paragraph, and so on. Each textual
object has a type that specify that object interface, and objects can be in a compo-
nent relation or their types can be in a subtype relation. By modeling a text like a
hierarchy of objects, we have been able to reuse some of the object-oriented concepts
successfully to define a complex model that is, at the same time, sound and easily
understandable.

We introduced the abstract concept of textual database as a persistent repository
of textual objects that represent a specific collection of texts. A Manuzio model is
specified through a set of definitions written in a formal language, each document
of a given textual database shares the same model. This is a debatable point: from
a certain point of view our model commits to the “fallacy of prescience” that afflict
also markup models[Liu and Smith, 2008]; we assume that the text has a structure
and that the encoder has a prior knowledge of that structure. Other models allow to
specify schemas where the structure is present but not enforced, so that relationships
between objects can be explored during the analysis process. This approach is a good
choice for some applications like, for instance, text criticism. Our choice to use a
somewhat more rigid model derives from the context where this model is born (the
analysis of texts with a precise and solid structure) and from the choice to have a
powerful programming language with static type checking as our query language.
Since, in our opinion, annotations are an important part of the research process on
corpora, Manuzio features a full set of types and type constructors that can be used
to define annotations on objects. From a language point of view, annotations are
just values of the language: they can be of any type allowed by the language, carry
complex, structured information, and are subject to type checking. Moreover, the
in-development Manuzio system is planned to allow different layers of annotations on
the same textual databases with a form of annotation sharing, history, and merging
to create a rich research and discussion environment.

The main result of the thesis is, in our opinion, the development of the Manuzio
language as a language to interact with and query textual repositories. The Manuzio
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language has been designed to be a functional, interpreted language with static type
checking. The language main goal is to be a full programming language, but have
a set of predefined, high level operators to allow users with limited programming
experience to use it as a query language for textual databases. To achieve this, it
has been developed as an interactive language, so that every step of computation
produces a partial result that the user can review, annotate, and so on. The static
type checking ensure that the operations performed are type consistent, catching
the majority of errors that the average Manuzio users commit before the actual
execution instructions. The Manuzio language has two peculiarities that make it
distinct from other, general-purpose, programming languages: the modular design
and the set of high-level operators to interact with persistent textual databases. The
modular design allows the language to be flexible: it is easy to remove or modify
functionalities from it as well as adding new ones. We found this design effective at
this stage of prototyping, since it allows to play with different language’s features
in an easy, natural way. We chose to follow this path also to be able to develop the
specific language characteristics in a free environment, without having to perform
hard decisions a priori.

Manuzio features a set of high-level operators to interact with textual databases.
While not a fully persistent language, Manuzio treats textual objects like persistent
values, that are transparently read and written into the textual database without
any additional effort from the user. Textual objects are, in fact, native values of
the language, so that they can be manipulated, passed as parameters, and are type
checked as any other value. We designed the language to be able to work with
persistent textual data without the user experiencing the paradigm mismatch that
is found, for instance, when performing SQL queries from traditional programming
languages. In the current prototype the support for persistence is limited: it is
possible to connect to only one database at the time and the disconnect command
is not implemented yet. In future implementations multiple, namespaced database
connections will be possible. The testing has proven, however, that the interaction
with textual objects is done in a natural way and that type checking, when applied to
textual objects, helps avoiding an elevated number of errors when writing commands.
A set of query-like operators are provided to help the user to express queries on
textual material4 in a familiar, SQL-like, way. Unlike SQL, however, each of the
query keyword in in fact a different operator that can be used singularly. In our tests
we found that, despite the somewhat rigid syntax typical of prototypal languages,
Manuzio is suitable to develop textual analysis programs, mostly due to the seamless
integration of the programming and query language. We are confident that a future
version of Manuzio, with a more elegant and clear syntax and superior performances,
will be a valuable tool in the field of humanities research.

The Manuzio language is meant to be used in a system where users can share an-
notations on texts. Time constraints, however, reduced the full system specification

4The query-like operators, however, work also on other data types.
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to a simple sketch. The language interpreter and the textual repository have been
fully developed, even if not optimally, while other aspects, like the creation of the
textual database and the graphical interface, have been assumed and implemented
only in a simple way to have a working prototype and test the feasibility of the
project. The Manuzio interpreter has been developed using the Ruby programming
language, a dynamically typed, object-oriented, interpreted language with a rich set
of libraries. Thanks to the fast-prototyping features of Ruby the implementation of
the interpreter has been pleasant and the resulting code is easy to understand and
modify. Efficiency considerations have been made during the implementation of the
Manuzio interpreter, but at the current state of work only a few basic optimizations
have been implemented. The goal of this thesis is not to have a fast, solid system
to use for complex textual analysis problems, but to develop a prototype that can
prove the effectiveness of our model and can be used, in a controlled environment,
to test the intuitiveness of the language query-like constructs.

The textual repository has been implemented using a relational technology.
Again, the choice has been made to exploit the well-established strengths of such
model, but a more efficient, ad-hoc solution could help performances. In particular,
it is important to note that even a medium-size corpus analyzed at word-level can
comprise millions of single textual objects. Repeated textual objects, which cardi-
nality is comparable to the power set of the single textual objects set, must also be
represented in some way to be able to be annotated. In our implementation, for
instance, such repetitions are stored in the database only if they are annotated.

The achievements reached in this work represent a base for the development of
a complete, efficient, system based on the Manuzio language. To reach such a goal,
however, a some additional work is needed. The major missing points of our current
implementation are listed below, with hints for solution, as future work that will
follow the redaction of this thesis.

• Formal specification and parser for the Manuzio language’s textual object dec-
larations. In the current implementation textual schemas are defined by decla-
rations in the Manuzio language, but the textual object types to be inserted in
the repository during the parsing process must be encoded by hand in a data
structure rather than be parsed directly from such declarations. The schema
structure should be also checked for consistency and the specification of con-
straints and methods written directly in the Manuzio programming language
should be possible.

• A new, efficient, implementation of the language interpreter and persistence
layer. A possible approach to improve both the performances and the accep-
tance of our approach could be to add the textual object operators and the per-
sistence layer to a wide-spread programming language by extending its inter-
preter. To reach such goal, the Scala programming language [Odersky et al., 2004]
seems to be the right choice of a functional, type-checked, and extensible lan-
guage based on the wide-spread Java architecture. Another possible approach
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could be to shift the textual object access primitives to stored procedures in
a relational database system, and access them from different programming
languages by developing a simple library for each of such languages. This ap-
proach is currently being tested with a prototype written with the PostgreSQL
relational database’s procedural languages [Douglas and Douglas, 2003] and
the Ruby programming language [Matsumoto and Ishituka, 2002]. A more ef-
ficient, ad-hoc, storage solution could also be researched to specifically store
textual objects.

• Design of a multi-user environment. In the current implementation concur-
rency have been taken into consideration, but the system is currently single-
user. The textual repository should provide primitives for concurrent access
to textual data so that multiple users can query the text and add annotations
to their results or share them.

• Design a series of semi-standard parsing algorithms. While existing digital
editions of literary text are encoded in many different, often non-standard,
ways, the design of algorithms to parse source texts encoded in XML (possibly
enriched with the workarounds to represent concurrent hierarchies), LMNL, or
other markup languages could make the process of parsing the source text
easier.

• Graphical representation of the results. Since the data model of Manuzio is
dynamic, different textual repositories can be constituted by different hierar-
chies, have a different unit type, and so on. Such freedom, however, means
also that a generalized graphical presentation of query results is not easy to
achieve. While ad-hoc, schema-dependent, solutions can be easily realized, a
more general approach could make easier to develop textual analysis programs
with a rich graphical user interface.



A
The Ruby Programming Language

Often people, especially computer engineers, focus on the machines. They
think, “By doing this, the machine will run faster. By doing this, the
machine will run more effectively. By doing this, the machine will some-
thing something something.” They are focusing on machines. But in fact
we need to focus on humans, on how humans care about doing program-
ming or operating the application of the machines. We are the masters.
They are the slaves. – Yukihiro Matsumoto

A.1 Introduction to Ruby

In this section the basics of the Ruby programming language are given in order to
allow the reader to fully understand the Manuzio interpreter code fragments shown
in Section 6.2.

Ruby is a recent programming language that blends parts of Perl, Smalltalk,
Eiffel, Ada, and Lisp to form a new language. The main goal of Ruby is to be “nat-
ural” rather then “simple”. Ruby is a general purpose programming language with
support for multiple programming paradigms, including functional, object-oriented,
imperative, and reflective. Ruby implement a dynamic type system and automatic
memory management, and it is considered, for this reasons, a good language to write
clean and short code fast.

In Ruby, everything is an object. Every bit of information and code can be given
their own properties and actions. Object-oriented programming calls properties by
the name instance variables and actions are known as methods. Rubys pure object-
oriented approach is most commonly demonstrated by the code fragment 55 which
applies an action to a number.

Source Code 55 In Ruby, everything is an object.

1 5 . t imes { pr in t ”Ruby i s good f o r f a s t prototyp ing ! ” }

In many languages, numbers and other primitive types are not objects. Ruby follows
the influence of the Smalltalk language by giving methods and instance variables to
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all of its types. This eases ones use of Ruby, since rules applying to objects apply
to all of Ruby.

Ruby type system follows a style o dynamic typing called duck typing. In duck
typing an object’s current set of methods and properties determines if that object
is valid in a particular context, rather then its name or its position in a hierarchy of
classes. With this technique the programmer is concerned with just those aspects of
an object that are actually used in the code, rather then with the type of the object
itself. Dynamic typing may result in runtime errors and is thus often considered an
error-prone technique that makes bugs difficult to locate in code. Dynamic typing,
however, allows a more dynamic programming environment, faster compiling, and
typically makes easier and effective the use of metaprogramming. A form of static
type checking for Ruby also exists [Furr et al., 2009].

While Ruby often uses very limited punctuation and usually prefers English
keywords, some punctuation is used to decorate Ruby. Ruby needs no variable
declarations. The type of a variable is inferred by its value and is dynamic, so it can
be changed by subsequent assignments. To denote the scope of variables, instead, a
simple naming convention is used:

• var is a local variable;

• @var is an instance variable;

• $var is a global variable.

These symbols enhance readability by allowing the programmer to easily identify
the roles of each variable. It also becomes optional to use the self keyword to denote
instance variables of an object.

Ruby is a flexible language, since it allows the programmers to freely alter any of
its parts. Every part of ruby can be removed or redefined, down to the most basic
types, thanks to its “everything is an object” philosophy.

Source Code 56 Example of class re-opening in Ruby.

1 c l a s s Numeric
2 de f p lus ( x )
3 s e l f .+(x )
4 end
5 end
6

7 y = 5 . p lus 6
8 # y i s now equa l to 11

For instance, in Source Code 56, the Numeric class is extended at runtime to include
a new way of computing the sum of two numbers. The example Source Code 56 also
shows other two important characteristics of the language: classes can be re-opened
at any time to be modified, and operators are only a syntactic sugar for object
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methods. This high degree of flexibility allows programmers to write code in a very
natural way, so that the creative process of designing the code is not hindered by
language technicalities.

Ruby objects support single inheritance only, but a sort of multiple inheritance
can be achieved through the use of mixins. A mixin is performed between a class and
a module (a collection of namespaced methods). When such operation is performed
the class receive all the module methods. For example, any class which implements
the each method can mixin the Enumerable module, which adds a set of methods
that use each for looping.

Source Code 57 Example of module inclusion in Ruby.

1 module Phonet icAlgor ithms
2 de f methaphone ( s )
3 . . .
4 end
5

6 de f double methaphone ( s )
7 . . .
8 end
9

10 de f soundex ( s )
11 . . .
12 end
13 end
14

15 c l a s s TextualObject
16 i n c l ude Phonet icAlgor ithms
17

18 de f metaphone
19 Phonet icAlgor ithms : : metaphone ( s e l f . t ex t )
20 end
21

22 . . .
23 end

The Source Code 57 shows how a set of phonetic algorithms can be grouped in a
module so that they can be easily added to a class representing textual objects in a
subsequent time.

Multiple inheritance is a powerful mechanism, but is also considered too complex
and sometimes restricting. Mixins, on the other hand, are a more natural way to
share common behaviors between classes. Modules can be also seen as a form of
interface. In the rest of the section we will refer to the interface of a class as to a
collection of methods, with signatures, that the class must posses to be valid. While
Ruby is an highly dynamic language that lacks a native concept of interface, other
techniques can be used to achieve a similar behavior [Tate, 2006].

Another feature that makes Ruby natural to use is the extensive use of blocks.
A programmer can attach a closure to any method, describing how that method
should act. The closure is called a block and has become one of the most popular
features for newcomers to Ruby from other imperative languages.
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Source Code 58 Example of Ruby blocks usage.

1 author webs i t e s =
2 [ ” Plautus ” , ” Seneca ” , ” Terence ” ] . map do | author |
3 ” http ://www. ” + author . downcase + ” . com”
4 end

In Source Code 58, the block is described inside the do ... end construct. The
map method applies the block to the provided list of authors, and an array of ideal
authors website addresses is returned.

The Ruby programming language has strong reflection capabilities that allow
the use of metaprogramming techniques. With this feature Ruby programs can alter
themselves at runtime, inspect objects types and interfaces, and so on. An important
characteristic of Ruby metaprogramming is the presence of hook methods. An hook
is a spacial method that gets called when a specific event occurs. For instance, the
inherited hook method is an empty class method that gets called whenever a class
is inherited by another class. Both classes are passed as parameters, and the user
can overload this method freely to create custom behaviors.

Source Code 59 Usage of reflection and hook methods in Ruby.

1 #A c l a s s i s a good f a t h e r i s i t remembers the name of i t s c h i l d r en in the
2 #@chi ldren array .
3 module GoodFather
4

5 #When the module i s inc luded in a c l a s s , add the f o l l ow i n g
6 #methods to the c l a s s
7 de f s e l f . inc luded ( k l a s s )
8 k l a s s . i n s t a n c e e v a l do
9 @chi ldren | |= [ ]

10

11 #When inher i t ed , add the new ch i l d to the ch i l d r en array , head i n s e r t
12 de f i n h e r i t e d ( c h i l d )
13 @chi ldren . i n s e r t (0 , c h i l d )
14 end
15

16 #i t e r a t e s through the ch i l d r en
17 de f each(&block )
18 @chi ldren . each { | c | y i e l d c}
19 end
20 end
21 end
22 end

For instance, the GoodFather module defined in Source Code 59 can be included
in any class to maintain a class variable with a list of all the classes that inherited
from that class.

This introduction to the Ruby programming language, while short and far from
complete, should be enough for readers with programming experienced to under-
stand the implementation code fragments shown in the next section. More in-
formation on Ruby can be found in [Flanagan and Matsumoto, 2008, Tate, 2006,
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Thomas and Hunt, 2000].
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Università di Pisa, Dipartimento di Informatica.

[Allen, 1991] Allen, J. (1991). Time and time again: The many ways to represent
time. International Journal of Intelligent Systems, 6(4):341–355.

[Alschuler, 1995] Alschuler, L. (1995). ABCD... SGML. International Thomson
Computer Press.

[Atkinsonf et al., 1990] Atkinsonf, M., Bailey, P., Chisholmt, K., Cockshottf, P.,
and Morrison, R. (1990). An approach to persistent programming. Readings in
Object-Oriented Database Systems.

[Barnard et al., 1988] Barnard, D., Hayter, R., Karababa, M., Logan, G., and Mc-
Fadden, J. (1988). SGML-based markup for literary texts: Two problems and
some solutions. Computers and the Humanities, 22(4):265–276.

[Berrie, 2000] Berrie, P. (2000). Just in time markup for electronic editions. New-
Worlds of Learning.



216 Bibliography

[Bradley and Short, 2005] Bradley, J. and Short, H. (2005). Texts into databases:
the evolving field of new-style prosopography. Literary and linguistic computing,
20:3.

[Bray et al., 2000] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
Yergeau, F. (2000). Extensible markup language (XML) 1.0. W3C recommenda-
tion, 6.

[Bruce, 2002] Bruce, K. (2002). Foundations of object-oriented languages: types and
semantics. The MIT Press.

[Bruno and Murisasco, 2006] Bruno, E. and Murisasco, E. (2006). Describing and
querying hierarchical xml structures defined over the same textual data. In Bul-
terman, D. C. A. and Brailsford, D. F., editors, ACM Symposium on Document
Engineering, pages 147–154. ACM.

[Burnard and Sperberg-McQueen, 2005] Burnard, L. and Sperberg-McQueen, C.
(2005). Il manuale tei lite. Introduzione alla codifica elettronica dei testi letterari.
Milano: Edizioni Sylvestre Bonnard.

[Buzzetti, 2002] Buzzetti, D. (2002). Digital representation and the text model.
pages 461–88.

[Cardelli and Wegner, 1985] Cardelli, L. and Wegner, P. (1985). On Understand-
ing types, Data Abstraction, and Polymorphism. ACM Computing Surveys,
17(4):471–522.

[Carletta et al., 2003] Carletta, J., Evert, S., Heid, U., Kilgour, J., Robertson, J.,
and Voormann, H. (2003). The NITE XML Toolkit: flexible annotation for multi-
modal language data. Behavior Research Methods, Instruments, and Computers,
35(3). Special issue on Measuring Behavior.

[Carlson, 1967] Carlson, G. (1967). Literary works in machine-readable form. Com-
puters and the Humanities, 1(3):75–102.

[Chamberlin, 2002] Chamberlin, D. (2002). XQuery: An XML query language. IBM
Systems Journal, 41(4):597–615.

[Connolly, 1997] Connolly, D. (1997). Xml: Principles, tools, and techniques. WWW
J, 2.

[Coombs et al., 1987a] Coombs, J. H., Renear, A. H., and DeRose, S. J. (1987a).
Markup systems and the future of scholarly text processing. Commun. ACM,
30(11):933–947.



Bibliography 217

[Coombs et al., 1987b] Coombs, J. H., Renear, A. H., and DeRose, S. J. (1987b).
Markup systems and the future of scholary text processing. Commun. ACM,
30(11):933–947.

[Deerwester et al., 1992] Deerwester, S. C., Waclena, K., and LaMar, M. (1992). A
textual object management system. In Belkin, N. J., Ingwersen, P., and Pejtersen,
A. M., editors, SIGIR, pages 126–139. ACM.

[DeRose et al., 1997] DeRose, S., Durand, D., Mylonas, E., and Renear, A. (1997).
What is text, really? ACM SIGDOC Asterisk Journal of Computer Documenta-
tion, 21(3):1–24.

[DeRose, 1997] DeRose, S. J. (1997). Further context for what is text, really. SIG-
DOC Asterisk J. Comput. Doc., 21(3):40–44.

[DeRose, 2004] DeRose, S. J. (2004). Markup overlap: A review and a horse. In
Extreme Markup Languages.

[DeStefani, 1999] DeStefani, A. (1999). Un interprete estendibile ad oggetti per lin-
guaggi funzionali polimorfici. Tesi di Laurea, Università di Venezia, Dipartimento
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