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Abstract

Many matching problems involve some sort of combinatorial optimization in order to find
a solution that maximizes a non-convex global utility function. While in the most general
context an exhaustive search of the solution space may be necessary, often the structure
of the problem itself allows for some effective heuristics. For instance backtracking and
reactive search algorithms perform well in the subgraph isomorphism problem, where the
optimal solution offer a big attraction basin. Further, more constrained problems, such
as bipartite matching or tree isomorphism have been proven to be solvable in polynomial
time.

In this thesis we focus our attention on matching problems where some compatibility
function can be defined over sets of two or more matched pairs. Specifically, we pro-
pose a flexible approach that exploits game theory in order to evolve an initial population
of hypothesis to an evolutionary stable state where a smaller set of highly compatible
matches survived. The rationale of this approach is two-fold. In fact, from a theoreti-
cal point of view it can be shown that in many problem formulations evolutionary stable
states or Nash equilibria correspond to desirable configurations of the solution, such as
maximal isomorphisms or optimal image or surface alignment. Moreover efficient algo-
rithms exist to drive the evolutionary process and we will show with a very extensive set
of experiments that even simple dynamics are able to lead the population to the optimal
match. By applying our framework to different scenarios we will prove its effectiveness
both in pairwise matching and in higher order problems, where different adaptations are
proposed.

In addition to the described application to matching, the proposed approach can easily
be used to solve parameter estimation problems. In particular it can be adapted to perform
as a very robust inlier selector in all those problems where a level of compatibility with
respect to some parameter configuration can be calculated over sets of two or more data
points. The main difference between our approach and typical RANSAC-based solutions
is that we do not need to rely on consensus checks over random picked local hypothesis;
rather we are able to maintain a global consistency at every step of the evolution process,
thus allowing for a more predictable final configuration that does not require any hard
thresholding. We will show that this process is very robust and quite effective in a wide
range of applications.

With respect to the experimental validation of the technique, we applied it to sev-
eral different topics. We used it to match relational structures in an object retrieval and



tracking applications. Very good results have been obtained in point-pattern matching,
segmentation matching and affine parameter estimation in general. Finally two applica-
tions in 3D reconstruction have been explored: the search for optimal symmetries in point
clouds and the fine surface alignment of range images. The results obtained heretofore
show both a great flexibility and robustness of the framework and stimulate additional
work toward a further generalization of the approach and a widened application portfolio.



Sommario

Una fetta consistente dei problemi di matching richiede 1’utilizzo di tecniche di ottimiz-
zazione combinatoria per la ricerca di una soluzione che massimizzi globalmente una
qualche funzione non convessa. Benché nel caso piu generale possa essere necessaria
una ricerca esaustiva all’interno dello spazio delle soluzioni, spesso la stessa struttura del
problema permette 1’adozione di euristiche efficaci. Per esempio tecniche di backtracking
o di reactive search possono dare risultati soddisfacenti nel problema dell’isomorfismo
di sottografi, dove la soluzione ottimale presenta solitamente un bacino di attrazione di
grandi dimensioni. Inoltre problemi dotati di maggiori vincoli, come il matching bipar-
tito o I’isomorfismo di alberi, possono essere addirittura risolti in modo esatto in tempo
polinomiale.

In questa tesi la nostra attenzione ¢ rivolta alla classe di problemi di matching dove
qualche funzione di compatibilit e definibile su un insieme di due o pi coppie corrispon-
denti. Nello specifico proponiamo un approccio flessibile che sfrutta la teoria dei giochi
per permettere I’evoluzione di un’iniziale popolazione di ipotesi verso uno stato evolutiva-
mente stabile dove un ristretto insieme di corrispondenze altamente compatibili € riuscito
a sopravvivere. La motivazione che spinge ad adottare tale approccio ¢ duplice. Infatti da
un punto di vista teorico ¢ possibile dimostrare che in molte formulazioni di problemi gli
stati evolutivamente stabili o gli equilibri di Nash corrispondono a configurazioni desider-
abili della soluzione, quali ad esempio isomorfismi massimali o allineamenti ottimali di
superfici. Inoltre sono disponibili in letteratura molti algoritmi efficienti per guidare il
processo evolutivo e, come mostreremo con un’estensiva copertura sperimentale, persino
le dinamiche piu semplici permettono di condurre la popolazione iniziale verso un match
ottimale. Applicando il nostro framework a diverse tipologie di scenario mostreremo la
sua efficacia sia in contesti di matching pairwise, sia coinvolgendo compatibilita di ordine
superiore.

In aggiunta alle applicazioni al matching appena descritte, 1’approccio proposto pu6
essere facilmente adottato per risolvere problemi di stima di parametri. In particolare pué
essere utilizzato come robusto selezionatore di inlier in tutti quei problemi dove ¢ possi-
bile definire fra insiemi di due o pid punti dati un livello di compatibilitd relativo a qualche
configurazione di parametri. La differenza principale fra il nostro approccio e le tipiche
soluzioni basate su schemi di tipo RANSAC e che nel nostro caso non ci affidiamo a con-
trolli di consenso a posteriori a partire da ipotesi iniziali scelte casualmente, ma piuttosto
siamo in grado di mantenere una consistenza globale ad ogni passo del processo evolu-



tivo, permettendo cosi di raggiungere in maniera pid deterministica una configurazione
finale ottimale senza richiedere nessun tipo di soglia prefissata. Mostreremo che questo
processo € robusto ed efficace in un grande numero di applicazioni.

Relativamente alla validazione sperimentale la tecnica proposta ¢ stata applicata a
diversi ambiti. Ad esempio ’e stata utilizzata per il matching di strutture relazionali
nell’object retrieval e nel tracking. Ottimi risultati sono stati ottenuti nel point-pattern
matching, nella segmentazione e nella stima di trasformazioni affini in generale. Infine
abbiamo esplorato due applicazioni nel campo della ricostruzione 3D: la ricerca di sim-
metrie all’interno di nuvole di punti a I’allineamento fine di superfici provenienti da range
image. I risultati ottenuti fino a questo punto hannod mostrato una grande flessibilita e
robustezza del framework, incoraggiando ulteriore ricerca sulla sua generalizzazione ed
applicazione ad un piu vasto insieme di problemi.
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Preface

This thesis summarizes the work done during my post graduate studies with the intent to
offer to the reader a coherent and comprehensive coverage of the different topics. While
the main focus of my thesis became more and more apparent with the progress of my
research, many paths have been explored along the journey. Each one of them has been
useful under multiple points of view, giving to me the opportunity to study in deep new
problems, develop original ideas and compare them with colleagues and peers. The first
problem I tackled was the search for subgraph isomorphisms in attributed graphs. While
not solved directly with a game-theoretic approach I casted the problem in a clique search,
which gave me the first idea about modeling associations as items related by a level of
compatibility. This work resulted in a paper published in [10]. Afterwards I extended my
approach to the tracking of articulated object by matching their structural representation.
This technique lead to a collaboration with the University of Modena and Reggio Emilia
and to a publication in [8]]. The graph matching topic was further developed by defining
a novel type of association hypergraph used for parameter estimation published in [7]
and a consensus graph that can be used for finding symmetry planes in three-dimensional
point clouds [1]. This latter work was prompted by my growing interest in 3D data recon-
struction and analysis. In this field I introduced a novel and very effective coarse and fine
registration method [3]] and a fast compound phase coding technique [2]] developed during
the engineering of a full fledged structured light based 3D scanner. In addition a robust
inlier selection technique for bundle adjustment is presented in [5]. Finally, my work on
game-theoretic matching culminated in a more mature framework presented, along with
some interesting applications, in [6]]. This framework is indeed the natural meeting point
of most of the research threads I followed in the last three years, and as such represents
the logical starting point for this thesis.
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Introduction

At the very heart of a large number of model fitting and parameter estimation problems
a matching challenge lies. In fact, when trying to justify some observed output with re-
spect to input data points, two class of hurdles arise. The first and most apparent one is
about the model itself and its parameters. An appropriate mathematical description of the
phenomenon must be formulated and an optimization strategy must be chosen. Unfortu-
nately, even with a perfect model and an optimization technique, guaranteed to converge
to a global minimum, an often overlooked problem stands in the way to parameter esti-
mation. This problem is the elimination of the outliers and the correct matching between
data sets. In model-fitting problems linear and non-linear optimizations are widely used in
order to find a least square interpolation of the data. This technique is quite standard and
works very well when the measurements are subject to small noise. By converse, when
outliers are present they have significant influence since their distance from the model is
inherently magnified in the error computation (see Fig[[.I). Of course many outlier de-
tection techniques have been proposed in literature. Some approaches aim to the iterative
refinement of the fitted model by removing at each step data that exhibit a too large error,
others apply a transformation from the data to the parameters space and search for global
or local maxima. All of these technique have to deal with several quandaries, such as the
compromise between precision and recall or the choice of appropriate thresholds to match
the data point to the fitted model.

A A

Figure 1.1: Example of failing least squares fitting. Outliers lead to wrong fitting (second
image). Accurate inliers selection allows to find the ground truth model (third image).



8 1. Introduction

Another class of parameter estimation problems involves the matching between two
sets of data points with the goal of recognize a pattern or estimate an unknown transfor-
mation between them. Repeatable feature points can be used to find an object in clutter
or to estimate an affine transformation between a pair of images. In the latter case, the
presence of outlier can lead to inaccurate estimations or to completely wrong matches, de-
pending on the optimization technique chosen. For instance, RANSAC-based techniques
can easily fail when several correspondences configurations with high consensus exist, in
addition such methods are strongly dependent on the number of iteration allowed and the
threshold fixed for a valid vote (see Fig[1.2).

A A A
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- - -

Figure 1.2: Example of failing RANSAC-based matching. Outliers lead to a wrong match
that exhibits high consensus (second column) and thus to the estimation of the wrong
transformation. The correct matching has slightly higher consensus (third column).

In chapter 2 we will review most of the currently adopted techniques for solving
matching and inlier selection problems. For each technique strengths and weakness will
be highlighted. In the subsequent chapters a novel game-theoretic based approach will
be introduced and its theoretical properties and empirical effectiveness will be discussed.
Depending on the application context, comparisons with the most appropriate techniques
will be made.



Globally Coherent Matches by Population Evolution

The main idea developed throughout this thesis is quite simple. In general, when match-
ing two sets of item, both local and global consistency checks can be performed. A local
check is an unary function over the domain of the single matches. This can be, for in-
stance, a binary function that states if the match is allowed, or a positive real value that
express some degree of compatibility between the two mated points. By converse, global
checks are evaluated over the entire matched subset and usually represent some utility
function to maximize. Most matching techniques use local checks to obtain an initial set
of viable matches that will be used as a base for subsequent optimization. Our idea is to
operate an early global selection, by adding more-than-unary local checks and exploit-
ing the transitive nature of the concept of compatibility. We assume that two conditions
are satisfied in the tackled problem: that some measure of compatibility is defined over
sets of two or more matches and that some technique allows for a selection of a set of
matches with high mutual compatibility. The measure of compatibility depends on the
scenario. As we will show in the following chapters, different compatibility definitions
can be used to solve a wide range of problems. Also the selection of matches with high
mutual compatibility can be done with many approaches. We choose to explore the use
of game theory for this purpose. Specifically we model each possible match candidate as
a strategy in a non-cooperative game and assign to each pair of strategies a payoff that is
proportional to the measure of compatibility between such matches. The rationale of this
choice is that by letting an initial population of strategies evolve to a stable state we are
aiming to obtain a configuration of surviving strategies with an high mutual payoff and
thus globally coherent. The complete approach is discussed for the first time in Chap-
ter 3 with application to pattern matching and further expanded in Chapter 5 with some
applications to 3D reconstruction.

Higher-order Problems and Structural Matching

Our game-theoretic matching framework can be easily adapted to be used in applica-
tions where it is not possible or useful to define a compatibility functions between pairs
of matches. For instance we could use our approach to replace Hough Transform for
searching collinear cluster of points. Unfortunately, since any pair of points is collinear
in the plane, by defining a compatibility measure between two points we would end up
by selecting all the data point by means of transitive closure. This can be solved, for
instance, by using a compatibility measure defined over pairs of couple of points. A pos-
sible method could be to model couple of data points as strategies and assign to each
pair of strategies a compatibility proportional to collinearity of the lines defined by each
strategy. This approach allows to handle all the problems where is necessary to model
strategies with more of one data point. In general this is the case when we want to select
a set of inliers with respect to a property that can be defined over n points and verified
over at maximum 2n points. In this condition the transitive closure operated by the evolu-
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tionary dynamics performs very well. While this approach works (as it will be shown in
chapter 4), it has the drawback that the number of strategies grows polynomially with the
cardinality of the property, thus is not very useful for practical purposes when n is greater
than 2 or 3. These cases can be handled with a little different approach: strategies can still
be modeled to single data points and compatibilities alone can be calculated over sets of
strategies. Specifically, when we deal with a property that can be verified over £ points,
we can view strategies (and thus data points) as vertices in a k — hypergraph where each
subset of k vertices is connected by a hyper-edge if and only if the property is verified
by them. In this context our notion of set with high mutual compatibility corresponds to
a hyper-clique (i.e. a completely connected subgraph) of maximum cardinality. We will
show how to use some effective heuristics in order to search for such a set.

Finally, in some problems, we need to preserve some structure or relational con-
straints. This is the case, for instance, when matching attributed graphs built on images of
objects or articulated figures for matching or tracking purposes. In our framework struc-
ture can be enforced in several ways. One-to-one versus many-to-many constraints can
be encoded directly in the payoff matrix of the modeled strategies by assigning a value
of zero between strategies that share the same source or destination data point. More
sophisticated structural constraints can be encoded by means of an auxiliary association
graph that has edges connecting only pairs of strategies that preserve the desired structural
properties. Several problems where higher order relations and structural preservation are
needed will be covered in Chapter 4.

Matching applications in 3D reconstruction

Given the flexibility of out matching approach we decided to test it with some problems
in the field of 3D reconstruction. Specifically we used it to find symmetry planes in point
clouds and to match surfaces produced with a structured light 3D scanner. While many
techniques exist for symmetry plane estimation we proposed a novel approach that mod-
els potentially symmetric points as strategies and assigns to pairs of strategies a payoff
proportional to the compatibility of the respective symmetry planes. Comparisons with
other well known approaches show measurable improvements in accuracy.

Further we used our game theoretic matching to solve at one the coarse and fine range-
image alignment problems. Image based 3D scanners are only able to produce partial view
of an object, primarily because of the injective nature of the structured light source and
image sensors. In order to obtain a full reconstruction of the subject it is necessary to align
with high accuracy several of these partial views, commonly called range-images. This
is usually a two-step process: a coarse registration, based on high level features, is first
obtained; then a refinement in performed by iteratively match nearest compatible surface
points. The dichotomy between coarse and fine registration is justified by the need to
operate with low selectivity when, in absence of an initial estimation, spatial information
is useless to evaluate the compatibility between points. Since our approach allows for a
high selectivity level even when few information is carried by the features itself, it can
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be used to obtain an accurate fine registration without any previous motion estimation. In
addition, by contrast to iterative closest points techniques, is not affected at all by local
minima.

Finally, during our work in 3D reconstruction, we had the opportunity to build an
in-house scanning system and to experiment with a novel pattern strategy for fast and
unambiguous compound phase shift coding.
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Introduction




Matching, Parameter Estimation
and Inlier Selection

In this chapter we present an extensive review of relevant matching and inlier selection
techniques found in literature. While we try to offer a comprehensive view, we still keep
the main focus on approaches that have goals similar to the methods discussed in this
thesis. In particular we discuss all the techniques that will be used to evaluate the effec-
tiveness of our approach in the following chapters. Where possible, appropriate pointers
to specialized reviews are given.

2.1 Point Pattern Matching

Point pattern matching is a broadly used technique in data analysis. Specifically, in the
computer vision field, it is a valuable tool for image registration, object recognition and
matching of corresponding sets of object points in stereo vision. In fact, in most situa-
tions, it is not feasible or efficient to deal with the whole collection of pixel contained in a
raster image. It is indeed preferred to extract from images a reduced set of salient or dis-
tinctive features to increase the significance of the information considered and to decrease
the computation effort needed. This is also true for surfaces or solid object, where 3D in-
terest points can be detected instead of 2D image features, and in general point patterns
can always be obtained from any source of N-dimensional data. When searching for a
correspondence between two point patterns a point pattern matching (PPM) algorithm is
used. In general the goal of such technique is to find an optimal transformation such that
a distance measure for the alignment of the two point patterns under this transformation
is minimized. Roughly PPM problems can be categorized with respect to two character-
istics: the completeness of the two sets to be matched and the availability of a known
labelling for the data points. Complete matching requires that the two point patterns have
the same number of points and there exists a one-to-one correspondence mapping between
the two point sets. In incomplete matching, no such one-to-one correspondence map-
ping is constructed due to the missing and spurious points. Instead, incomplete matching
seeks for a mapping between subsets of the point patterns. Both complete and incomplete
matching can occur with or without the availability of point labels. When such a labelling
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exists, it can be used as an a priori information that is additional to the point coordinates.
Examples of such information are color, intensity, scale or any kind of data vector that is
associated to the points and is somewhat repeatable under several observations. Clearly,
incomplete matching is harder than complete matching and unlabeled matching is more
complex than labeled matching. In this thesis we will deal with incomplete point pattern
matching where labelling is sometimes available, but it is always used for reducing the
number of initial feasible mates rather than in the matching process itself.

Since in general PPM problems sets are incomplete and noise is present in both posi-
tion measurements and labels, a key problem to solve the matching (even in an exhaustive
way) is to define an appropriate distance measure between data points with respect to a
candidate transformation. Such a distance should take in account both the location error
between each corresponding points and the total number of pairs matched (since it is obvi-
ously advisable to encourage matches that involves many points). Two distance measures
are usually applied for these purposes. The first is the Agrawal’s heuristic dissimilarity
(AHD) measure[l1]. The AHD is based on the sum of the squared euclidean distances
between pairs of matched points, which is normalized by taking in account the ratio be-
tween the number of matching points and the minimum cardinality of the two matched
sets (in order to avoid small sets of correspondences). Another distance measure is the
Partial Hausdorff distance (PHD) proposed in [82]], where an efficient method to compute
the Hausdorff distance between two sets is introduced.

Since an exhaustive search in the parameter space with the goal of minimizing these
(or other) distance measures is not feasible, many heuristics and approximated approaches
have been proposed for various PPM problems.

Clustering methods calculate the transformation parameters for all combinations of
point pairs from both patterns and increase the merit of the corresponding cell in an ac-
cumulator matrix[51}, 169, 184, (172,81, [170]]. The clusters in the accumulator matrix are
then detected, the cluster with the maximum merit corresponds to the optimal parame-
ters. The clustering methods are computationally intensive due to the large number of
combinations of point pairs and the dimensionality of the parameter space. Their main
weakness is related to the need for a suitable quantization of the parameter space: in fact a
too coarse quantization can lead to poor precision, while a too fine one can incur in poorly
populated bins and thus to the inability to find a representative cluster.

Parameter decomposition methods divide the parameter estimation process into mul-
tiple phases. At the first phase, a selected parameter is estimated based on the domain
knowledge such as the geometric invariant constraints. Then, at each of the following
phases, one or more of the remaining parameters are estimated by referring to those pa-
rameters values previously determined, hence, the number of possible combinations be-
tween values of separate parameters is greatly reduced [72,[121]]. However, the inaccuracy
level of parameter estimation could be increased by propagation through various phases.

Relaxation methods iteratively update merit score of each point correspondence from
both patterns given the merit scores of the other interacting point correspondences. The
interacting point mappings are those that are mutually constrained for matching. The
algorithm converges when those merit values become consistent (or hardly changed) and
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the point mappings with the maximum merits are considered as the true transformation
point correspondence [132} 1120, [157].

Mount et al. [118]] proposed a geometric branch-and-bound search of the transforma-
tion space and used the point alignment information to bound the search. They specify
an approximation factor to guarantee the accuracy of the final match and use point align-
ments when a significant number of point correspondences can be inferred to accelerate
the search. The robustness of the algorithm has been demonstrated on registration of real
satellite images.

Carcassoni and Hancock [36] applied the spectral graph theory to compute the point
pattern correspondence. The global structural properties of the point pattern are ascribed
by the eigenvalues and eigenvectors of the proximity weighting matrix. The influence of
the contamination and drop-out in the point pattern is discounted via the EM algorithm so
the accuracy of the matching is increased.

The search space of point mappings between two patterns can also be explored by
genetic algorithms. The chromosomes encoding instances of point correspondences im-
prove their fitness during evolution by use of three genetic operators: selection, crossover,
and mutation. The fitness of the chromosome is defined as the inverse of the AHD func-
tion [[18]. Zhang et al. [188]] use the reference triplet points as the chromosome represen-
tation and thus significantly reduce the search space.

In [148]] simulated annealing technique is applied to the point pattern matching prob-
lems. The identification of point correspondences between two point sets is mathemati-
cally formulated as energy minimization. The matching error corresponding to the current
configuration of point correspondences is treated as the energy of that configuration. The
configuration is iteratively rearranged to reach thermal equilibrium at various temperature
levels and finally converges to an optimum as the system is frozen.

Finally, in [182], a particle swarm optimization algorithm is proposed. Following the
optimization technique proposed in [91], the set of transformation parameters is encoded
as a real-valued vector called particle. A swarm of particles are initiated at random and
fly through the transformation space for targeting the optimal transformation.

2.2 Graph Matching

The characterizing goal of each graph matching problem formulation is the preservation
of structural relations between corresponding nodes. Specifically, a match is considered
consistent only if two source nodes connected by an edge are assigned to a pair of adja-
cent destination points and vice versa. Of course, depending on the problem formulation,
the lack of consistency can be unacceptable or it can simply induce a penalty in the match
score. While some instances of the graph matching problem have been shown to be solv-
able in polynomial time (for instance Bipartite Matching), in general no exact algorithms
are available to tackle efficiently graph or subgraph matching. In fact all the commonly
used exact approaches adopt expensive deterministic search techniques, usually based on
backtracking [[166, [113} (99| [124]]. Polynomial convergence times are only achievable by
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applying heuristics to the problem, which in turn allow to obtain approximate solutions.
Given the importance of the graph matching problem and its variegation, many different
approaches have been proposed over the last decades. Of course each technique differs
from the others in term of conditions of applicability, expected convergence time and
quality of the solutions found.

In [66] Gold e Rangarajan propose a weighted graph matching algorithm that is based
on non-linear optimization. This method, named Graduated Assignment, exploits three
main features: the enforcement of bidirectional constraints in the assignments, obtained
by means of a softassign schema [122]], the ability to avoid local minima, thanks to grad-
uated non-convexity, and the use of sparsity to enhance convergence speed. We will
propose an novel method for weighted graph matching in Section .1]and our results will
be compared with those obtained with Graduated Assignment.

Many approaches found in literature are based on the application of probability theory
and stochastic techniques. The first attempts in this sense are found in [76, 95] where an
iterative approach based on probabilistic relaxation is used to match graphs with attributes
on edges that are subject to Gaussian noise. More recently this approach has been aug-
mented by using the Bayesian framework and it has been extended to deal with graphs
that exhibit also attributes on nodes [43, [175]. In [174] Williams makes a comparative
study of different deterministic discrete-space search strategies based on the Bayesian
consistence measure proposed in [[175]. In this study is also proposed the use of Tabu
search techniques [134, 165} 163, 64] for the graph matching problem. Finally the frame-
work has been extended further to adapt to the matching of relational structures based on
hierarchical models [[176]. All of these techniques are based on the iterative enhancement
of an initial guess, thus them are strongly dependent on the method used to select this
first estimate and on its quality. For this reason these approaches are only useful when
the specific formulation of the matching problem allows to easily to detect a reasonable
initial solutions, as they usually fail when starting from arbitrary points.

Another well known probabilistic approach is to adopt the EM (Expectation Maxi-
mization) algorithm, commonly used to make maximum likelihood estimation of param-
eters in probabilistic models. In literature we find several applications of this approach.
For instance in [52, 59] the EM technique is applied to two different graph matching
problem formulations. An algorithm that focuses on the matching of relational structures
without attributes is proposed in [106] and extended in [107]. In [92] Expectation Max-
imization is applied to the recognition of handwritten characters that are represented as
hierarchical graphs.

Other examples of techniques for the matching of simple or attributed graphs with
probabilistic approaches can be found in the field of face recognition in [79], of biometric
authentication (by means of probabilistic relaxation) in [54] e [110], and of the prediction
of the creation of disulfide bridges in protein folding [56].

In [167] Umeyama propose a weighted graph matching technique that avoids combi-
natorial optimization and tries to exploit an analytical approach. The problem is solved
efficiently by means of the spectral decomposition of the adjacency matrix, when dealing
with directed graphs, and of an Hermitian matrix derived from the adjacency matrix, in



2.3. RANSAC-based Techniques 17

the case of undirected graphs. The experimental validation of the technique shows that it
works well provided that the two graphs are similar enough. In addition, another limita-
tion of this approach is that it is inherently able to work only with square matrices, thus it
can only be used with graphs of the same size.

In [15] Almohamad introduces a graph matching approach based on linear optimiza-
tion. At first, the maximum weight match problem is casted into a quadratic optimization
problem. The latter is in turn reformulated as a linear optimization problem, which is then
solved with the simplex algorithm. Once an optimal solution for the linear optimization is
found, the solution is discretized by projecting its values in {0, 1} through the Hungarian
method, a well known combinatorial algorithm for the assignment problem proposed by
Kuhn [97]. The overall approach exhibits a polynomial complexity, but unfortunately its
order is quite high. In Factitis O(n°L) where n is the size of the graphs to be matched and
L the size of the linear optimization problem. The algorithm is experimentally validated
versus a technique based on symmetric polynomial transforms (SPT) [14] introduced by
the same author, and versus the spectral decomposition technique suggested by Umeyama.
In both cases the Almohamad approach is shown to found matches of higher weight.

2.3 RANSAC-based Techniques

The most widely used inlier selection technique is probably the Random Sample Consen-
sus (RANSACQC) [60]. RANSAC allow for a simultaneous estimation of the parameters of
a model and segregation of outliers from inliers. Its main advantage is the ability to be
robust with respect to a very large number of outliers. The general RANSAC framework
can be adapted in any scenario where a small subset of data can be used to estimate a
model which in turn can validate the remaining data. In fact the algorithm operate iter-
atively by randomly selecting a set of data points and fitting model parameters to them.
Subsequently all the remaining data points are evaluated with respect to the estimated
model and the number of points that are found to agree with it is calculated. The agree-
ment of a point with the model (i.e. its consensus) can be evaluated in different ways,
depending on the specific application. By repeating the selection and vote counting step
many times the model with most consensus emerge. For instance when using RANSAC
for line fitting, sets of 2 points are selected at random from the data and the number of
points with a distance from the fitted line under a defined threshold are counted. After
a predefined number of iterations the line which obtains the largest number of votes is
considered correct. Of course, once a proper set of inlier is selected, a refinement tech-
nique, such as least square optimization, can be used to enhance the solution. While this
technique works very well in general, it has at least three main drawbacks. The first is that
when the number of outliers increases many iterations are needed to find a proper model
candidate. This is specially true when the cardinality of the set needed for the estimation
of the model parameters is large, as the probability of finding only inliers decreases expo-
nentially with the cardinality of the set itself. The second drawback is that to evaluate the
consensus of the data with respect to the model a threshold is needed in most situations.
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This is unfortunate, as a too small threshold can lead to the impossibility to find a solution
with a large enough consensus, while a too high one can result in a too much permis-
sive selection. Finally it should be noted that, being an optimization technique based on
random selection, RANSAC does not give any guarantee of convergence. In order to en-
hance the speed of the basic RANSAC scheme several optimizations have been proposed.
We can classify such optimization int two categories: techniques that optimize the model
verification stage and approaches that avoid to use uniform sampling in the parameters
estimation step.

Matas and Chum [38] suggest a pre-evaluation step which attempts to filter out im-
mediately wrong hypotheses. This is done by performing model verification on a small
subset of data points: if this first test fails the evaluation stops and the hypothesis is dis-
carded. Experimental validation has shown that the optimal cardinality of the first-stage
verification set is 1. Of course this approach can lead to false negatives, nevertheless the
reduced overall verification time obtained allows for a global reduction of the convergence
time, despite the higher number of hypotheses to be tested.

The idea of early termination of bad model estimation was further extended by Capel
in [35]. Given a randomly selected subset of points, the number of inliers in this subset
follows a hyper-geometric distribution. Given the current best hypothesis with N inliers,
each new hypothesis is first partially evaluated against a subset of the data points and the
test is completed only if the probability of the total number of inlier to be more than N is
above a fixed threshold.

More recently, Matas and Chum described an optimal randomized model verification
strategy [[112, 46l based on Walds theory of sequential decision making. The evaluation
step is cast into an optimization problem which aims to decide whether a model is good or
bad, while simultaneously minimizing the number of verifications performed per model.

The second category of ransac optimizations try to exploit a priori information to
avoid to resort to the uniform sampling the input data set. The availability and the quality
of such a priori information of course depends on the specific application context. For
instance, correspondences between two or more images are obtained by the use of a lo-
cal matching algorithm. A similarity function is evaluated over a number of points, and
subsequently thresholded to obtain a set of tentative correspondences. Based on the as-
sumption that points with high similarity are more likely to be inliers than points with low
similarity, it may be possible to generate better hypotheses by sampling from a reduced
set of points with high similarity scores. This fact is exploited in PROSAC [45], where
the correspondences are ordered based on their similarity scores, and progressively larger
subsets of tentative correspondences are used to generate hypotheses.

A similar approach to PROSAC was proposed earlier by Tordoff and Murray in [[158]],
where the Maximum Likelihood Estimation Sample Consensus (MLESAC) algorithm
[159] was combined with non-uniform sampling of correspondences. MLESAC algo-
rithm is a generalization of RANSAC, which adopts the same sampling strategy but at-
tempts to maximize the likelihood of the solution, as opposed to the number of inliers.
While MLESAC assumes a uniform prior for the validity of a match, the guided-sampling
approach of [158]] uses the quality function of the feature matching algorithm to derive
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probabilities of match validity. These are then incorporated as priors in MLESAC.

One of the assumptions inherent in the standard termination criterion of RANSAC is
that a model computed from an uncontaminated sample is consistent with all inliers. In
practice, this is often not the case, particularly when the data points are noisy. Chum et al.
[47]] define a locally optimized RANSAC variant to deal with this issue. By observing that
a good model tends to find a significant fraction of the inliers, an inner RANSAC strategy
is devised where a constant number of hypotheses are generated using only the set of
inliers to the current best model. Since inner RANSAC operates on a set of inliers, it is
not essential that hypotheses are generated from minimal subsets. In addition to providing
a more robust fit, the inner RANSAC technique has the effect of improving the consensus
score more rapidly than standard RANSAC, which causes the termination criterion to be
met earlier.

2.4 Matching and Registration in 3D reconstruction

The registration of 3D surfaces coming from structured light scanners can be considered
a specialized matching problem. Since in this thesis this problem will be addressed by
means of our generalized game-theoretic matching framework, we provide here some
introductory references related to the state of the art about this topic. A more detailed
review will be presented in Chapter 5.

Surface registration is about finding an optimal alignment between two partially over-
lapping meshes capt