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Abstract

Many matching problems involve some sort of combinatorial optimization in order to find
a solution that maximizes a non-convex global utility function. While in the most general
context an exhaustive search of the solution space may be necessary, often the structure
of the problem itself allows for some effective heuristics. For instance backtracking and
reactive search algorithms perform well in the subgraph isomorphism problem, where the
optimal solution offer a big attraction basin. Further, more constrained problems, such
as bipartite matching or tree isomorphism have been proven to be solvable in polynomial
time.

In this thesis we focus our attention on matching problems where some compatibility
function can be defined over sets of two or more matched pairs. Specifically, we pro-
pose a flexible approach that exploits game theory in order to evolve an initial population
of hypothesis to an evolutionary stable state where a smaller set of highly compatible
matches survived. The rationale of this approach is two-fold. In fact, from a theoreti-
cal point of view it can be shown that in many problem formulations evolutionary stable
states or Nash equilibria correspond to desirable configurations of the solution, such as
maximal isomorphisms or optimal image or surface alignment. Moreover efficient algo-
rithms exist to drive the evolutionary process and we will show with a very extensive set
of experiments that even simple dynamics are able to lead the population to the optimal
match. By applying our framework to different scenarios we will prove its effectiveness
both in pairwise matching and in higher order problems, where different adaptations are
proposed.

In addition to the described application to matching, the proposed approach can easily
be used to solve parameter estimation problems. In particular it can be adapted to perform
as a very robust inlier selector in all those problems where a level of compatibility with
respect to some parameter configuration can be calculated over sets of two or more data
points. The main difference between our approach and typical RANSAC-based solutions
is that we do not need to rely on consensus checks over random picked local hypothesis;
rather we are able to maintain a global consistency at every step of the evolution process,
thus allowing for a more predictable final configuration that does not require any hard
thresholding. We will show that this process is very robust and quite effective in a wide
range of applications.

With respect to the experimental validation of the technique, we applied it to sev-
eral different topics. We used it to match relational structures in an object retrieval and



tracking applications. Very good results have been obtained in point-pattern matching,
segmentation matching and affine parameter estimation in general. Finally two applica-
tions in 3D reconstruction have been explored: the search for optimal symmetries in point
clouds and the fine surface alignment of range images. The results obtained heretofore
show both a great flexibility and robustness of the framework and stimulate additional
work toward a further generalization of the approach and a widened application portfolio.



Sommario

Una fetta consistente dei problemi di matching richiede l’utilizzo di tecniche di ottimiz-
zazione combinatoria per la ricerca di una soluzione che massimizzi globalmente una
qualche funzione non convessa. Benché nel caso piú generale possa essere necessaria
una ricerca esaustiva all’interno dello spazio delle soluzioni, spesso la stessa struttura del
problema permette l’adozione di euristiche efficaci. Per esempio tecniche di backtracking
o di reactive search possono dare risultati soddisfacenti nel problema dell’isomorfismo
di sottografi, dove la soluzione ottimale presenta solitamente un bacino di attrazione di
grandi dimensioni. Inoltre problemi dotati di maggiori vincoli, come il matching bipar-
tito o l’isomorfismo di alberi, possono essere addirittura risolti in modo esatto in tempo
polinomiale.

In questa tesi la nostra attenzione è rivolta alla classe di problemi di matching dove
qualche funzione di compatibilit e definibile su un insieme di due o pi coppie corrispon-
denti. Nello specifico proponiamo un approccio flessibile che sfrutta la teoria dei giochi
per permettere l’evoluzione di un’iniziale popolazione di ipotesi verso uno stato evolutiva-
mente stabile dove un ristretto insieme di corrispondenze altamente compatibili è riuscito
a sopravvivere. La motivazione che spinge ad adottare tale approccio è duplice. Infatti da
un punto di vista teorico è possibile dimostrare che in molte formulazioni di problemi gli
stati evolutivamente stabili o gli equilibri di Nash corrispondono a configurazioni desider-
abili della soluzione, quali ad esempio isomorfismi massimali o allineamenti ottimali di
superfici. Inoltre sono disponibili in letteratura molti algoritmi efficienti per guidare il
processo evolutivo e, come mostreremo con un’estensiva copertura sperimentale, persino
le dinamiche più semplici permettono di condurre la popolazione iniziale verso un match
ottimale. Applicando il nostro framework a diverse tipologie di scenario mostreremo la
sua efficacia sia in contesti di matching pairwise, sia coinvolgendo compatibilità di ordine
superiore.

In aggiunta alle applicazioni al matching appena descritte, l’approccio proposto puó
essere facilmente adottato per risolvere problemi di stima di parametri. In particolare puó
essere utilizzato come robusto selezionatore di inlier in tutti quei problemi dove è possi-
bile definire fra insiemi di due o piú punti dati un livello di compatibilitá relativo a qualche
configurazione di parametri. La differenza principale fra il nostro approccio e le tipiche
soluzioni basate su schemi di tipo RANSAC è che nel nostro caso non ci affidiamo a con-
trolli di consenso a posteriori a partire da ipotesi iniziali scelte casualmente, ma piuttosto
siamo in grado di mantenere una consistenza globale ad ogni passo del processo evolu-



tivo, permettendo cosı́ di raggiungere in maniera piú deterministica una configurazione
finale ottimale senza richiedere nessun tipo di soglia prefissata. Mostreremo che questo
processo é robusto ed efficace in un grande numero di applicazioni.

Relativamente alla validazione sperimentale la tecnica proposta è stata applicata a
diversi ambiti. Ad esempio ’e stata utilizzata per il matching di strutture relazionali
nell’object retrieval e nel tracking. Ottimi risultati sono stati ottenuti nel point-pattern
matching, nella segmentazione e nella stima di trasformazioni affini in generale. Infine
abbiamo esplorato due applicazioni nel campo della ricostruzione 3D: la ricerca di sim-
metrie all’interno di nuvole di punti a l’allineamento fine di superfici provenienti da range
image. I risultati ottenuti fino a questo punto hannod mostrato una grande flessibilità e
robustezza del framework, incoraggiando ulteriore ricerca sulla sua generalizzazione ed
applicazione ad un più vasto insieme di problemi.
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Preface

This thesis summarizes the work done during my post graduate studies with the intent to
offer to the reader a coherent and comprehensive coverage of the different topics. While
the main focus of my thesis became more and more apparent with the progress of my
research, many paths have been explored along the journey. Each one of them has been
useful under multiple points of view, giving to me the opportunity to study in deep new
problems, develop original ideas and compare them with colleagues and peers. The first
problem I tackled was the search for subgraph isomorphisms in attributed graphs. While
not solved directly with a game-theoretic approach I casted the problem in a clique search,
which gave me the first idea about modeling associations as items related by a level of
compatibility. This work resulted in a paper published in [10]. Afterwards I extended my
approach to the tracking of articulated object by matching their structural representation.
This technique lead to a collaboration with the University of Modena and Reggio Emilia
and to a publication in [8]. The graph matching topic was further developed by defining
a novel type of association hypergraph used for parameter estimation published in [7]
and a consensus graph that can be used for finding symmetry planes in three-dimensional
point clouds [1]. This latter work was prompted by my growing interest in 3D data recon-
struction and analysis. In this field I introduced a novel and very effective coarse and fine
registration method [3] and a fast compound phase coding technique [2] developed during
the engineering of a full fledged structured light based 3D scanner. In addition a robust
inlier selection technique for bundle adjustment is presented in [5]. Finally, my work on
game-theoretic matching culminated in a more mature framework presented, along with
some interesting applications, in [6]. This framework is indeed the natural meeting point
of most of the research threads I followed in the last three years, and as such represents
the logical starting point for this thesis.
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[2] ALBARELLI, A., RODOLÁ, E., BULÓ, S. R., AND TORSELLO, A. Fast 3d surface
reconstruction by unambiguous compound phase coding. In IEEE International
Workshop on 3D Digital Imaging and Modeling (3DIM2009) (2009).
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1
Introduction

At the very heart of a large number of model fitting and parameter estimation problems
a matching challenge lies. In fact, when trying to justify some observed output with re-
spect to input data points, two class of hurdles arise. The first and most apparent one is
about the model itself and its parameters. An appropriate mathematical description of the
phenomenon must be formulated and an optimization strategy must be chosen. Unfortu-
nately, even with a perfect model and an optimization technique, guaranteed to converge
to a global minimum, an often overlooked problem stands in the way to parameter esti-
mation. This problem is the elimination of the outliers and the correct matching between
data sets. In model-fitting problems linear and non-linear optimizations are widely used in
order to find a least square interpolation of the data. This technique is quite standard and
works very well when the measurements are subject to small noise. By converse, when
outliers are present they have significant influence since their distance from the model is
inherently magnified in the error computation (see Fig 1.1). Of course many outlier de-
tection techniques have been proposed in literature. Some approaches aim to the iterative
refinement of the fitted model by removing at each step data that exhibit a too large error,
others apply a transformation from the data to the parameters space and search for global
or local maxima. All of these technique have to deal with several quandaries, such as the
compromise between precision and recall or the choice of appropriate thresholds to match
the data point to the fitted model.

Figure 1.1: Example of failing least squares fitting. Outliers lead to wrong fitting (second
image). Accurate inliers selection allows to find the ground truth model (third image).
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Another class of parameter estimation problems involves the matching between two
sets of data points with the goal of recognize a pattern or estimate an unknown transfor-
mation between them. Repeatable feature points can be used to find an object in clutter
or to estimate an affine transformation between a pair of images. In the latter case, the
presence of outlier can lead to inaccurate estimations or to completely wrong matches, de-
pending on the optimization technique chosen. For instance, RANSAC-based techniques
can easily fail when several correspondences configurations with high consensus exist, in
addition such methods are strongly dependent on the number of iteration allowed and the
threshold fixed for a valid vote (see Fig 1.2).

Figure 1.2: Example of failing RANSAC-based matching. Outliers lead to a wrong match
that exhibits high consensus (second column) and thus to the estimation of the wrong
transformation. The correct matching has slightly higher consensus (third column).

In chapter 2 we will review most of the currently adopted techniques for solving
matching and inlier selection problems. For each technique strengths and weakness will
be highlighted. In the subsequent chapters a novel game-theoretic based approach will
be introduced and its theoretical properties and empirical effectiveness will be discussed.
Depending on the application context, comparisons with the most appropriate techniques
will be made.
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Globally Coherent Matches by Population Evolution

The main idea developed throughout this thesis is quite simple. In general, when match-
ing two sets of item, both local and global consistency checks can be performed. A local
check is an unary function over the domain of the single matches. This can be, for in-
stance, a binary function that states if the match is allowed, or a positive real value that
express some degree of compatibility between the two mated points. By converse, global
checks are evaluated over the entire matched subset and usually represent some utility
function to maximize. Most matching techniques use local checks to obtain an initial set
of viable matches that will be used as a base for subsequent optimization. Our idea is to
operate an early global selection, by adding more-than-unary local checks and exploit-
ing the transitive nature of the concept of compatibility. We assume that two conditions
are satisfied in the tackled problem: that some measure of compatibility is defined over
sets of two or more matches and that some technique allows for a selection of a set of
matches with high mutual compatibility. The measure of compatibility depends on the
scenario. As we will show in the following chapters, different compatibility definitions
can be used to solve a wide range of problems. Also the selection of matches with high
mutual compatibility can be done with many approaches. We choose to explore the use
of game theory for this purpose. Specifically we model each possible match candidate as
a strategy in a non-cooperative game and assign to each pair of strategies a payoff that is
proportional to the measure of compatibility between such matches. The rationale of this
choice is that by letting an initial population of strategies evolve to a stable state we are
aiming to obtain a configuration of surviving strategies with an high mutual payoff and
thus globally coherent. The complete approach is discussed for the first time in Chap-
ter 3 with application to pattern matching and further expanded in Chapter 5 with some
applications to 3D reconstruction.

Higher-order Problems and Structural Matching

Our game-theoretic matching framework can be easily adapted to be used in applica-
tions where it is not possible or useful to define a compatibility functions between pairs
of matches. For instance we could use our approach to replace Hough Transform for
searching collinear cluster of points. Unfortunately, since any pair of points is collinear
in the plane, by defining a compatibility measure between two points we would end up
by selecting all the data point by means of transitive closure. This can be solved, for
instance, by using a compatibility measure defined over pairs of couple of points. A pos-
sible method could be to model couple of data points as strategies and assign to each
pair of strategies a compatibility proportional to collinearity of the lines defined by each
strategy. This approach allows to handle all the problems where is necessary to model
strategies with more of one data point. In general this is the case when we want to select
a set of inliers with respect to a property that can be defined over n points and verified
over at maximum 2n points. In this condition the transitive closure operated by the evolu-
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tionary dynamics performs very well. While this approach works (as it will be shown in
chapter 4), it has the drawback that the number of strategies grows polynomially with the
cardinality of the property, thus is not very useful for practical purposes when n is greater
than 2 or 3. These cases can be handled with a little different approach: strategies can still
be modeled to single data points and compatibilities alone can be calculated over sets of
strategies. Specifically, when we deal with a property that can be verified over k points,
we can view strategies (and thus data points) as vertices in a k− hypergraph where each
subset of k vertices is connected by a hyper-edge if and only if the property is verified
by them. In this context our notion of set with high mutual compatibility corresponds to
a hyper-clique (i.e. a completely connected subgraph) of maximum cardinality. We will
show how to use some effective heuristics in order to search for such a set.

Finally, in some problems, we need to preserve some structure or relational con-
straints. This is the case, for instance, when matching attributed graphs built on images of
objects or articulated figures for matching or tracking purposes. In our framework struc-
ture can be enforced in several ways. One-to-one versus many-to-many constraints can
be encoded directly in the payoff matrix of the modeled strategies by assigning a value
of zero between strategies that share the same source or destination data point. More
sophisticated structural constraints can be encoded by means of an auxiliary association
graph that has edges connecting only pairs of strategies that preserve the desired structural
properties. Several problems where higher order relations and structural preservation are
needed will be covered in Chapter 4.

Matching applications in 3D reconstruction
Given the flexibility of out matching approach we decided to test it with some problems
in the field of 3D reconstruction. Specifically we used it to find symmetry planes in point
clouds and to match surfaces produced with a structured light 3D scanner. While many
techniques exist for symmetry plane estimation we proposed a novel approach that mod-
els potentially symmetric points as strategies and assigns to pairs of strategies a payoff
proportional to the compatibility of the respective symmetry planes. Comparisons with
other well known approaches show measurable improvements in accuracy.

Further we used our game theoretic matching to solve at one the coarse and fine range-
image alignment problems. Image based 3D scanners are only able to produce partial view
of an object, primarily because of the injective nature of the structured light source and
image sensors. In order to obtain a full reconstruction of the subject it is necessary to align
with high accuracy several of these partial views, commonly called range-images. This
is usually a two-step process: a coarse registration, based on high level features, is first
obtained; then a refinement in performed by iteratively match nearest compatible surface
points. The dichotomy between coarse and fine registration is justified by the need to
operate with low selectivity when, in absence of an initial estimation, spatial information
is useless to evaluate the compatibility between points. Since our approach allows for a
high selectivity level even when few information is carried by the features itself, it can
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be used to obtain an accurate fine registration without any previous motion estimation. In
addition, by contrast to iterative closest points techniques, is not affected at all by local
minima.

Finally, during our work in 3D reconstruction, we had the opportunity to build an
in-house scanning system and to experiment with a novel pattern strategy for fast and
unambiguous compound phase shift coding.



12 1. Introduction



2
Matching, Parameter Estimation

and Inlier Selection

In this chapter we present an extensive review of relevant matching and inlier selection
techniques found in literature. While we try to offer a comprehensive view, we still keep
the main focus on approaches that have goals similar to the methods discussed in this
thesis. In particular we discuss all the techniques that will be used to evaluate the effec-
tiveness of our approach in the following chapters. Where possible, appropriate pointers
to specialized reviews are given.

2.1 Point Pattern Matching

Point pattern matching is a broadly used technique in data analysis. Specifically, in the
computer vision field, it is a valuable tool for image registration, object recognition and
matching of corresponding sets of object points in stereo vision. In fact, in most situa-
tions, it is not feasible or efficient to deal with the whole collection of pixel contained in a
raster image. It is indeed preferred to extract from images a reduced set of salient or dis-
tinctive features to increase the significance of the information considered and to decrease
the computation effort needed. This is also true for surfaces or solid object, where 3D in-
terest points can be detected instead of 2D image features, and in general point patterns
can always be obtained from any source of N-dimensional data. When searching for a
correspondence between two point patterns a point pattern matching (PPM) algorithm is
used. In general the goal of such technique is to find an optimal transformation such that
a distance measure for the alignment of the two point patterns under this transformation
is minimized. Roughly PPM problems can be categorized with respect to two character-
istics: the completeness of the two sets to be matched and the availability of a known
labelling for the data points. Complete matching requires that the two point patterns have
the same number of points and there exists a one-to-one correspondence mapping between
the two point sets. In incomplete matching, no such one-to-one correspondence map-
ping is constructed due to the missing and spurious points. Instead, incomplete matching
seeks for a mapping between subsets of the point patterns. Both complete and incomplete
matching can occur with or without the availability of point labels. When such a labelling
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exists, it can be used as an a priori information that is additional to the point coordinates.
Examples of such information are color, intensity, scale or any kind of data vector that is
associated to the points and is somewhat repeatable under several observations. Clearly,
incomplete matching is harder than complete matching and unlabeled matching is more
complex than labeled matching. In this thesis we will deal with incomplete point pattern
matching where labelling is sometimes available, but it is always used for reducing the
number of initial feasible mates rather than in the matching process itself.

Since in general PPM problems sets are incomplete and noise is present in both posi-
tion measurements and labels, a key problem to solve the matching (even in an exhaustive
way) is to define an appropriate distance measure between data points with respect to a
candidate transformation. Such a distance should take in account both the location error
between each corresponding points and the total number of pairs matched (since it is obvi-
ously advisable to encourage matches that involves many points). Two distance measures
are usually applied for these purposes. The first is the Agrawal’s heuristic dissimilarity
(AHD) measure[11]. The AHD is based on the sum of the squared euclidean distances
between pairs of matched points, which is normalized by taking in account the ratio be-
tween the number of matching points and the minimum cardinality of the two matched
sets (in order to avoid small sets of correspondences). Another distance measure is the
Partial Hausdorff distance (PHD) proposed in [82], where an efficient method to compute
the Hausdorff distance between two sets is introduced.

Since an exhaustive search in the parameter space with the goal of minimizing these
(or other) distance measures is not feasible, many heuristics and approximated approaches
have been proposed for various PPM problems.

Clustering methods calculate the transformation parameters for all combinations of
point pairs from both patterns and increase the merit of the corresponding cell in an ac-
cumulator matrix[51, 169, 184, 172, 81, 170]. The clusters in the accumulator matrix are
then detected, the cluster with the maximum merit corresponds to the optimal parame-
ters. The clustering methods are computationally intensive due to the large number of
combinations of point pairs and the dimensionality of the parameter space. Their main
weakness is related to the need for a suitable quantization of the parameter space: in fact a
too coarse quantization can lead to poor precision, while a too fine one can incur in poorly
populated bins and thus to the inability to find a representative cluster.

Parameter decomposition methods divide the parameter estimation process into mul-
tiple phases. At the first phase, a selected parameter is estimated based on the domain
knowledge such as the geometric invariant constraints. Then, at each of the following
phases, one or more of the remaining parameters are estimated by referring to those pa-
rameters values previously determined, hence, the number of possible combinations be-
tween values of separate parameters is greatly reduced [72, 121]. However, the inaccuracy
level of parameter estimation could be increased by propagation through various phases.

Relaxation methods iteratively update merit score of each point correspondence from
both patterns given the merit scores of the other interacting point correspondences. The
interacting point mappings are those that are mutually constrained for matching. The
algorithm converges when those merit values become consistent (or hardly changed) and
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the point mappings with the maximum merits are considered as the true transformation
point correspondence [132, 120, 157].

Mount et al. [118] proposed a geometric branch-and-bound search of the transforma-
tion space and used the point alignment information to bound the search. They specify
an approximation factor to guarantee the accuracy of the final match and use point align-
ments when a significant number of point correspondences can be inferred to accelerate
the search. The robustness of the algorithm has been demonstrated on registration of real
satellite images.

Carcassoni and Hancock [36] applied the spectral graph theory to compute the point
pattern correspondence. The global structural properties of the point pattern are ascribed
by the eigenvalues and eigenvectors of the proximity weighting matrix. The influence of
the contamination and drop-out in the point pattern is discounted via the EM algorithm so
the accuracy of the matching is increased.

The search space of point mappings between two patterns can also be explored by
genetic algorithms. The chromosomes encoding instances of point correspondences im-
prove their fitness during evolution by use of three genetic operators: selection, crossover,
and mutation. The fitness of the chromosome is defined as the inverse of the AHD func-
tion [18]. Zhang et al. [188] use the reference triplet points as the chromosome represen-
tation and thus significantly reduce the search space.

In [148] simulated annealing technique is applied to the point pattern matching prob-
lems. The identification of point correspondences between two point sets is mathemati-
cally formulated as energy minimization. The matching error corresponding to the current
configuration of point correspondences is treated as the energy of that configuration. The
configuration is iteratively rearranged to reach thermal equilibrium at various temperature
levels and finally converges to an optimum as the system is frozen.

Finally, in [182], a particle swarm optimization algorithm is proposed. Following the
optimization technique proposed in [91], the set of transformation parameters is encoded
as a real-valued vector called particle. A swarm of particles are initiated at random and
fly through the transformation space for targeting the optimal transformation.

2.2 Graph Matching
The characterizing goal of each graph matching problem formulation is the preservation
of structural relations between corresponding nodes. Specifically, a match is considered
consistent only if two source nodes connected by an edge are assigned to a pair of adja-
cent destination points and vice versa. Of course, depending on the problem formulation,
the lack of consistency can be unacceptable or it can simply induce a penalty in the match
score. While some instances of the graph matching problem have been shown to be solv-
able in polynomial time (for instance Bipartite Matching), in general no exact algorithms
are available to tackle efficiently graph or subgraph matching. In fact all the commonly
used exact approaches adopt expensive deterministic search techniques, usually based on
backtracking [166, 113, 99, 124]. Polynomial convergence times are only achievable by
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applying heuristics to the problem, which in turn allow to obtain approximate solutions.
Given the importance of the graph matching problem and its variegation, many different
approaches have been proposed over the last decades. Of course each technique differs
from the others in term of conditions of applicability, expected convergence time and
quality of the solutions found.

In [66] Gold e Rangarajan propose a weighted graph matching algorithm that is based
on non-linear optimization. This method, named Graduated Assignment, exploits three
main features: the enforcement of bidirectional constraints in the assignments, obtained
by means of a softassign schema [122], the ability to avoid local minima, thanks to grad-
uated non-convexity, and the use of sparsity to enhance convergence speed. We will
propose an novel method for weighted graph matching in Section 4.1 and our results will
be compared with those obtained with Graduated Assignment.

Many approaches found in literature are based on the application of probability theory
and stochastic techniques. The first attempts in this sense are found in [76, 95] where an
iterative approach based on probabilistic relaxation is used to match graphs with attributes
on edges that are subject to Gaussian noise. More recently this approach has been aug-
mented by using the Bayesian framework and it has been extended to deal with graphs
that exhibit also attributes on nodes [43, 175]. In [174] Williams makes a comparative
study of different deterministic discrete-space search strategies based on the Bayesian
consistence measure proposed in [175]. In this study is also proposed the use of Tabu
search techniques [134, 65, 63, 64] for the graph matching problem. Finally the frame-
work has been extended further to adapt to the matching of relational structures based on
hierarchical models [176]. All of these techniques are based on the iterative enhancement
of an initial guess, thus them are strongly dependent on the method used to select this
first estimate and on its quality. For this reason these approaches are only useful when
the specific formulation of the matching problem allows to easily to detect a reasonable
initial solutions, as they usually fail when starting from arbitrary points.

Another well known probabilistic approach is to adopt the EM (Expectation Maxi-
mization) algorithm, commonly used to make maximum likelihood estimation of param-
eters in probabilistic models. In literature we find several applications of this approach.
For instance in [52, 59] the EM technique is applied to two different graph matching
problem formulations. An algorithm that focuses on the matching of relational structures
without attributes is proposed in [106] and extended in [107]. In [92] Expectation Max-
imization is applied to the recognition of handwritten characters that are represented as
hierarchical graphs.

Other examples of techniques for the matching of simple or attributed graphs with
probabilistic approaches can be found in the field of face recognition in [79], of biometric
authentication (by means of probabilistic relaxation) in [54] e [110], and of the prediction
of the creation of disulfide bridges in protein folding [56].

In [167] Umeyama propose a weighted graph matching technique that avoids combi-
natorial optimization and tries to exploit an analytical approach. The problem is solved
efficiently by means of the spectral decomposition of the adjacency matrix, when dealing
with directed graphs, and of an Hermitian matrix derived from the adjacency matrix, in
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the case of undirected graphs. The experimental validation of the technique shows that it
works well provided that the two graphs are similar enough. In addition, another limita-
tion of this approach is that it is inherently able to work only with square matrices, thus it
can only be used with graphs of the same size.

In [15] Almohamad introduces a graph matching approach based on linear optimiza-
tion. At first, the maximum weight match problem is casted into a quadratic optimization
problem. The latter is in turn reformulated as a linear optimization problem, which is then
solved with the simplex algorithm. Once an optimal solution for the linear optimization is
found, the solution is discretized by projecting its values in {0, 1} through the Hungarian
method, a well known combinatorial algorithm for the assignment problem proposed by
Kuhn [97]. The overall approach exhibits a polynomial complexity, but unfortunately its
order is quite high. In Fact it isO(n6L) where n is the size of the graphs to be matched and
L the size of the linear optimization problem. The algorithm is experimentally validated
versus a technique based on symmetric polynomial transforms (SPT) [14] introduced by
the same author, and versus the spectral decomposition technique suggested by Umeyama.
In both cases the Almohamad approach is shown to found matches of higher weight.

2.3 RANSAC-based Techniques
The most widely used inlier selection technique is probably the Random Sample Consen-
sus (RANSAC) [60]. RANSAC allow for a simultaneous estimation of the parameters of
a model and segregation of outliers from inliers. Its main advantage is the ability to be
robust with respect to a very large number of outliers. The general RANSAC framework
can be adapted in any scenario where a small subset of data can be used to estimate a
model which in turn can validate the remaining data. In fact the algorithm operate iter-
atively by randomly selecting a set of data points and fitting model parameters to them.
Subsequently all the remaining data points are evaluated with respect to the estimated
model and the number of points that are found to agree with it is calculated. The agree-
ment of a point with the model (i.e. its consensus) can be evaluated in different ways,
depending on the specific application. By repeating the selection and vote counting step
many times the model with most consensus emerge. For instance when using RANSAC
for line fitting, sets of 2 points are selected at random from the data and the number of
points with a distance from the fitted line under a defined threshold are counted. After
a predefined number of iterations the line which obtains the largest number of votes is
considered correct. Of course, once a proper set of inlier is selected, a refinement tech-
nique, such as least square optimization, can be used to enhance the solution. While this
technique works very well in general, it has at least three main drawbacks. The first is that
when the number of outliers increases many iterations are needed to find a proper model
candidate. This is specially true when the cardinality of the set needed for the estimation
of the model parameters is large, as the probability of finding only inliers decreases expo-
nentially with the cardinality of the set itself. The second drawback is that to evaluate the
consensus of the data with respect to the model a threshold is needed in most situations.
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This is unfortunate, as a too small threshold can lead to the impossibility to find a solution
with a large enough consensus, while a too high one can result in a too much permis-
sive selection. Finally it should be noted that, being an optimization technique based on
random selection, RANSAC does not give any guarantee of convergence. In order to en-
hance the speed of the basic RANSAC scheme several optimizations have been proposed.
We can classify such optimization int two categories: techniques that optimize the model
verification stage and approaches that avoid to use uniform sampling in the parameters
estimation step.

Matas and Chum [38] suggest a pre-evaluation step which attempts to filter out im-
mediately wrong hypotheses. This is done by performing model verification on a small
subset of data points: if this first test fails the evaluation stops and the hypothesis is dis-
carded. Experimental validation has shown that the optimal cardinality of the first-stage
verification set is 1. Of course this approach can lead to false negatives, nevertheless the
reduced overall verification time obtained allows for a global reduction of the convergence
time, despite the higher number of hypotheses to be tested.

The idea of early termination of bad model estimation was further extended by Capel
in [35]. Given a randomly selected subset of points, the number of inliers in this subset
follows a hyper-geometric distribution. Given the current best hypothesis with N inliers,
each new hypothesis is first partially evaluated against a subset of the data points and the
test is completed only if the probability of the total number of inlier to be more than N is
above a fixed threshold.

More recently, Matas and Chum described an optimal randomized model verification
strategy [112, 46] based on Walds theory of sequential decision making. The evaluation
step is cast into an optimization problem which aims to decide whether a model is good or
bad, while simultaneously minimizing the number of verifications performed per model.

The second category of ransac optimizations try to exploit a priori information to
avoid to resort to the uniform sampling the input data set. The availability and the quality
of such a priori information of course depends on the specific application context. For
instance, correspondences between two or more images are obtained by the use of a lo-
cal matching algorithm. A similarity function is evaluated over a number of points, and
subsequently thresholded to obtain a set of tentative correspondences. Based on the as-
sumption that points with high similarity are more likely to be inliers than points with low
similarity, it may be possible to generate better hypotheses by sampling from a reduced
set of points with high similarity scores. This fact is exploited in PROSAC [45], where
the correspondences are ordered based on their similarity scores, and progressively larger
subsets of tentative correspondences are used to generate hypotheses.

A similar approach to PROSAC was proposed earlier by Tordoff and Murray in [158],
where the Maximum Likelihood Estimation Sample Consensus (MLESAC) algorithm
[159] was combined with non-uniform sampling of correspondences. MLESAC algo-
rithm is a generalization of RANSAC, which adopts the same sampling strategy but at-
tempts to maximize the likelihood of the solution, as opposed to the number of inliers.
While MLESAC assumes a uniform prior for the validity of a match, the guided-sampling
approach of [158] uses the quality function of the feature matching algorithm to derive
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probabilities of match validity. These are then incorporated as priors in MLESAC.
One of the assumptions inherent in the standard termination criterion of RANSAC is

that a model computed from an uncontaminated sample is consistent with all inliers. In
practice, this is often not the case, particularly when the data points are noisy. Chum et al.
[47] define a locally optimized RANSAC variant to deal with this issue. By observing that
a good model tends to find a significant fraction of the inliers, an inner RANSAC strategy
is devised where a constant number of hypotheses are generated using only the set of
inliers to the current best model. Since inner RANSAC operates on a set of inliers, it is
not essential that hypotheses are generated from minimal subsets. In addition to providing
a more robust fit, the inner RANSAC technique has the effect of improving the consensus
score more rapidly than standard RANSAC, which causes the termination criterion to be
met earlier.

2.4 Matching and Registration in 3D reconstruction
The registration of 3D surfaces coming from structured light scanners can be considered
a specialized matching problem. Since in this thesis this problem will be addressed by
means of our generalized game-theoretic matching framework, we provide here some
introductory references related to the state of the art about this topic. A more detailed
review will be presented in Chapter 5.

Surface registration is about finding an optimal alignment between two partially over-
lapping meshes captured with a 3D scanner or obtained with image based stereo recon-
struction systems. In literature two different field of research are currently active: namely
coarse and fine registration techniques. Fine registration algorithms exploit an initial
guess in order to constrain the search area for compatible mates and minimize the risk
of selecting outliers. By converse, coarse techniques usually adopt a mating strategy
based on the similarity between surface-point descriptors.

Most fine alignment methods are modifications to the original ICP proposed by Zhang
[189] and Besl and McKay [26]. These variants generally differ in the strategies used to
sample points from the surfaces, reject incompatible pairs, or measure error. In general,
the precision and convergence speed of these techniques is very sensitive to the fine-tuning
of the model parameters. In order to overcome these limitations some variants avoid hard
culling by assigning a probability to each candidate pair by mean of evolutionary tech-
niques [101] or Expectation Maximization [70]. Other fine registration methods include
the well-known method by Chen [41] and signed distance fields matching [111].

Coarse registration techniques can be roughly classified in methods that exploit some
global property of the surface, such as PCA [48] or Algebraic Surface Model [156], and
methods that use some 3D feature descriptor to find plausible candidates pairs over the
model and data surfaces. Global techniques are generally very sensitive to occlusion.
Feature-based approaches are more precise and can align surfaces that exhibit only partial
overlap. Nevertheless, the unavoidable localization error of the feature points prevents
them from obtaining accuracies on par with fine registration methods. Among the most
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successful descriptors are Point Signatures [44] and Spin Images [89]. A completely
different coarse registration approach is the RANSAC-based DARCES [39], which is
based on the random extraction of sets of mates from the surfaces and their validation
based on the accuracy of the estimated transformation. A recent and extensive review of
all the different methods can be found in [138].

2.5 Structured Light Reconstruction
The very last chapter of this thesis is devoted to the study of a novel pattern coding strategy
for trinagulation based on structured light. The main challenge for this kind of surface re-
construction techniques is the assignment of correspondences between features observed
by two or more different points of view. Those correspondences can be obtained in sev-
eral ways, ranging from feature extraction to the placements of artificial markers in the
scene. Our attention is towards techniques that exploit the projection of some known
pattern overt the objects to be acquired.

Among these, time-multiplexing strategies such as n-ary and Gray codes, as well as
hybrid approaches, are by far the most utilized [88]. These techniques generate unique
codes along each scanline, but at the same time are limited by their low resolution due to
the inherently discrete nature of the coding. Phase shifting methods, on the other hand,
yield higher resolutions since they are based on the projection of periodic patterns with a
given spatial period. Each projected pattern is obtained by spatially shifting the preceding
one of a fraction of the period, and then captured by one or more cameras. The images
are then elaborated and the phase information at each pixel determined by means of M-
step relationships [153]. A major drawback is that, in its basic formulation, phase shifted
structured light renders only relative phase values and thus it is ambiguous. However,
when both an extended measuring range and a high resolution are required, a combined
approach proves to be very powerful. The integration of Gray code and phase shift brings
together the advantages of both, providing disambiguation and high resolution, but the
number of patterns to be projected increases considerably, and each strategy introduces a
source of error [100].

Other high resolution shape measurement systems include optical profilometers. Non-
contact phase profilometry techniques relate each surface point to three coordinates in a
frame having the z axis orthogonal to a reference plane, which then represents the refer-
ence for the measured height [147, 178]. In classical phase measurement profilometry,
gratings or sinusoidal patterns are projected and shifted first onto the plane and then over
the object to be measured. Phase information from the deformed fringe pattern is then
extracted by means of various techniques. Other, more effective profilometry techniques
include the well-known Fourier Transform method [154] and other interesting derivatives
[183, 73]. Fourier-based profilometry can require as few as one or two frames for depth
estimation, which makes real-time reconstruction possible. Nevertheless, in profilometric
methods phase variation caused by height modulation must be limited: ambiguity of the
phase limits the measurement range, allowing for gauging of smooth-shaped objects only.
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Moreover, noise from camera, distortion of lens, difficulties of calibration, aliasing and
imperfectness of the projecting unit influence the precision of most of these techniques
[40, 149].
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3
Matching as a Non-Cooperative

Game

In this chapter we offer a game-theoretic perspective for the all-pervasive matching prob-
lem in computer vision. Specifically, we formulate the matching problem as a (popu-
lation) non-cooperative game where the potential associations between the items to be
matched correspond to (pure) strategies, while payoffs reflect the degree of compatibility
between competing hypotheses. Within this formulation, the solutions of the matching
problem correspond to evolutionary stable states (ESS’s), a robust population-based gen-
eralization of the notion of a Nash equilibrium. In order to find ESS’s of our matching
game, we propose using a novel, fast evolutionary game dynamics motivated by Dar-
winian selection processes, which let the pure strategies play against each other until
an equilibrium is reached. A distinguishing feature of the proposed framework is that
it allows one to naturally deal with general many-to-many matching problems even in
the presence of asymmetric compatibilities. The potential of the proposed approach is
demonstrated via two sets of image matching experiments, both of which show that our
results outperform those obtained using well-known domain-specific algorithms.

3.1 Game-theoretic matching

The problem of finding correspondences within a set of elements, or features, is central
to any recognition task where the object to be recognized is naturally divided into several
parts. In this contexts graph-based representations have been used with considerable suc-
cess do to their ability to capture concisely the relational arrangement of object primitives,
in a manner which can be invariant to changes in object viewpoint.

However, applications in which estimating a set of correspondences is a central task
toward the solution range from object recognition, to 3D registration, to feature tracking,
to stereo reconstruction [102, 27, 93]. Several matching algorithms have been proposed
in the literature. Some can just be classified as ad hoc solutions to specific problems, but
the vast majority cast the problem into an energy minimization framework and extract
approximate optimizers of an objective function within a set of feasible correspondences.

In general, the overall goal is to maximize the global or local coherence of the matched
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pairs with respect to some compatibility. For example, when the problem is cast into a
graph-matching approach, we can maximize the total similarity of matched nodes [21,
125], while when dealing with point-pattern matching under rigid or affine transfor-
mations we can maximize the coherence with respect to a global fitting transforma-
tion [102, 108]. Further, the globality constraint to the transformation function can be
relaxed by applying it only to feature points that are close to one another, allowing for
transformations that are only locally affine [114].

In most cases the objective function can be written as a monotonic transformation of
the sum of pairwise interactions between matching hypotheses. This can be either the
similarity between matched features, as in the graph-matching case [55, 168, 15], or due
to the similarity between the underlying transformations, as for the point-pattern matching
case. In the latter case the matching approach is dual to several robust parameter estima-
tion algorithms such as RANSAC or general voting algorithms. See for example [13],
where a pairwise coherence measure and a matching approach is proposed to estimate
symmetries in 3D objects.

Further, quite often the set of feasible correspondences can be defined using only
unary and binary relations. For instance, it is possible to guarantee a global one-to-one
match and structural coherence using the association graph technique described by Bar-
row and Burstall [21]. Also adjacency and hierarchical constraints can be enforced on
a local pairwise basis, as shown by the many techniques that cast the matching prob-
lem to an equivalent clique search in an auxiliary association graph [125, 128, 162, 160].
Formulations that satisfy these conditions range from bipartite matching, to subgraph iso-
morphism, to quadratic assignment, to edit-distance, and include a dual form of parameter
estimation approaches such as Hough transform and RANSAC.

In the following, we present a game-theoretic approach to correspondence estimation
derived from a clustering approach presented in [164]. The proposed approach is quite
general since it can be applied to any formulation where both the objective function and
the feasible set can be defined in terms of unary and pairwise interactions.

The main idea is to model the set of possible correspondences as a set of game strate-
gies.

Specifically, we formulate the matching problem as a non-cooperative game where
the potential associations between the items to be matched correspond to strategies, while
payoffs reflect the degree of compatibility between competing hypotheses. Within this
formulation, the solutions of the matching problem correspond to evolutionary stable
states (ESS’s), a robust population-based generalization of the notion of a Nash equilib-
rium. A distinguishing feature of the proposed framework is that it allows one to naturally
deal with general many-to-many matching problems even in the presence of asymmetric
compatibilities.

We will show that by expressing compatibilities between associations as payoffs be-
tween strategies we are able to model a class of utility functions where global maximums
corresponds to stable states with maximal average payoff. Moreover, by setting a zero
payoff between two associations we are able to enforce hard constraints on the match
itself. Intuitively this approach allows to search for matches that not only enforces the
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constraints posed, but also are made up of associations with a high level of pairwise com-
patibility.

In addition the percentage of population related to each strategy when in an evolution-
ary stable state could give an important insight about the degree of participation of each
association to the match. In section 3.1.3 we suggest an optimization technique that can
be used in order to find stable states in an efficient way. Finally, in section 3.2 we evaluate
the effectiveness of our approach by applying it to two rather different pattern matching
scenarios and by comparing the results achieved with respect to those obtained by other
domain-specific techniques.

Before going into the details of the proposed framework we need to introduce some
notations and definitions that will be used throughout. Let O1 and O2 be the two sets of
features that we want to match, we define the set of feasible associations A ⊆ O1 × O2

the set of relations between O1 and O2 that satisfy the unary constraints. Hence, each
feasible association represents a possible matching hypothesis. We assume that we can
compute a set of pairwise compatibilities C : A×A→ IR+ that measure the support that
one association gives to the other. Here, the self compatibilities, i.e., the compatibilities
that an association gives to itself, are assumed to be zero.

In this formulation, a submatch (or simply a match) is intuitively a set of associations,
which satisfies the pairwise feasibility constraints, and two additional criteria: high inter-
nal compatibility, i.e. the associations belonging to the match are mutually highly com-
patible, and low external compatibility, i.e. associations outside the match are scarcely
compatible with those inside. This definition of match allows us to abstract from the
specific problem, since domain-specific information is confined to the definition of the
compatibility function. Further, we are able to deal with many-to-many, one-to-many,
many-to-one and one-to-one relations in an uniform way, as we do not impose restriction
on the way the associations are selected, but incorporate the constraints with the compat-
ibilities.

3.1.1 Matching as a non-cooperative game
Following [164], we define a matching game. Assume that we have two sets of objects
O1 and O2, and a compatibility function C. Two players with complete knowledge of
the setup play by simultaneously selecting an association. After both have shown their
choices, each player receives a payoff, monetary or otherwise, proportional to the compat-
ibility of the selected association with respect to the association chosen by the opponent.
Clearly , it is in each player’s interest to pick an association, which is strongly supported
by the association that the adversary is likely to choose and, assuming no prior knowledge
of the inclination of the adversary, the best strategy for a player becomes the selection of
associations belonging to strongly supported match.

Let O = {1, . . . , n} be the enumeration of the set of associations A, where n = |A|.
Here, O is the set of pure strategies (in the language of game-theory) available to the
players and C = (cij) is an n× n payoff (or utility) matrix [173], where cij is the payoff
that a player gains when playing the strategy i against an opponent playing strategy j.
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A mixed strategy is a probability distribution x = (x1, x2, . . . , xn)T over the avail-
able strategies in O. Mixed strategies clearly lie in the standard simplex ∆ of the n-
dimensional Euclidean space, which is defined as

∆ =

{
x ∈ Rn :

n∑
i=1

xi = 1 and xi ≥ 0, i = 1, . . . , n

}
.

The support of a mixed strategy x ∈ ∆, denoted by σ(x), defines the set of elements
with non-zero probability: σ(x) = {i ∈ O : xi > 0}. The expected payoff that a player
obtains by playing the pure strategy i against an opponent playing a mixed strategy x is
(Cx)i =

∑
j cijxj . Hence, the expected payoff received by adopting a mixed strategy y

is yTCx. The best replies against a mixed strategy x is the set of mixed strategies defined
as β(x) = {y ∈ ∆ : yTCx = maxz zTCx}. x. It can be shown that, if y is in β(x),
then each strategy in σ(y) is in Ω(x). A mixed strategy x is a Nash equilibrium if it is
a best reply to itself, i.e. ∀y ∈ ∆, yTCx ≤ xTCx. This implies that for all i ∈ σ(x),
(Cx)i = xTCx, hence the payoff of every strategy in the support of x is constant , while
all strategies outside the support of x earn a payoff that is less than or equal xTCx.

Within our matching setting, Nash equilibria are good candidates for a match, as they
satisfy both the internal and external compatibility criteria. In fact, any association i ∈
σ(x) of a Nash equilibrium x receives from x the same expected payoff (Cx)i = xTCx,
while associations not in σ(x) receive a lower or equal support from associations of the
match. Note, however, that external criteria are not strict: there could exist associations
not in σ(x) that earn a payoff equal to xTCx like associations in the group, which may
lead to a non isolated Nash equilibrium and, thus, an ambiguous match. Therefore, here
we undertake an evolutionary game-theoretic analysis of the possible strategies available
to each player.

Evolutionary game theory considers an idealized scenario wherein pairs of individuals
are repeatedly drawn from a large population to play a two-player symmetric game. Each
player is not supposed to behave rationally or have a complete knowledge of the details of
the game, but he acts according to a pre-programmed pure strategy and a selection process
allows “fit” individuals (i.e., those selecting strategies with high support) to thrive, while
driving “unfit” ones to extinction. In our setup, we expect the individuals pre-programmed
to select associations within a match to survive the selective pressure.

A strategy x is said to be an Evolutionary Stable Strategy (ESS) if it is a Nash
equilibrium and for each best reply y to x, i.e. such that yTCx = xTCx, we have
xTCy > yTCy. Intuitively, ESS’s are strategies such that any small deviation from
them will lead to an inferior payoff.

3.1.2 Enforcing hard constraints

A main characteristic of the proposed approach is that associations pairs that have zero
compatibility cannot be in the same selected submatch. this means that pairwise con-
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straints can be enforced by forcing to zero the compatibility between associations that do
not satisfy the constraints.

Theorem 1. Consider a matching-game with compatibilities C = (cij). If x ∈ ∆ is an
ESS then cij > 0 for all i, j ∈ σ(x).

Proof. Assume cij ≤ 0 for distinct i, j ∈ σ(x), and let y = δ(ei − ej) + x, where
0 < δ ≤ xj and ek is a vector with entry k equal to one and all other entries equal to zero.
Note that y is a best reply to x, in fact

yTCx = δ(ei − ej)
TCx + xTCx = xTCx ,

where (ei − ej)
TCx = 0 by the Nash condition on x. However,

(x− y)TCy = −δ(ei − ej)
TC [x + δ(ei − ej)]

= −δ2(ei − ej)
TC(ei − ej)

= −δ2(cii + cjj − 2cij) = 2δ2cij ≤ 0 ,

which contradicts the evolutionary stability of x.

Theorem 1 shows that if we set a non positive compatibility between two associations,
then there exists no match containing them. This provides a way for expressing hard
constraints in our matching framework. For instance this ability can be used to avoid one-
to-many, many-to-one and many-to-many correspondences in the final match. Further,
it can be exploited to model problems where other kind of pairwise constraints have to
be enforced. One classical example could be the Stable Marriage Problem [75, 74], that
we can tackle by assigning zero payoff to the pairs of marriages that break the stability
condition. This way we are guaranteed that each ESS corresponds to a stable marriage.
Moreover, it is easy to see that if we assign to each pair of feasible strategies a payoff
of one, all the complete stable matches (that are guaranteed to exist [75]) correspond
to ESS’s that exhibit the same maximum average payoff. Finally, by choosing different
payoff functions, we can model other instance of the problem.

3.1.3 Computing ESS’s
In order to extract ESS’s we make use of a new population game dynamics [32, 33], which
is motivated by the analogy with infection and immunization processes within a popula-
tion of ”players”. The selection mechanism governing this dynamics iteratively performs
an infection step, which consists of spreading (or suppressing) the most successful (un-
successful) strategies in the population. The infection phase is then protracted as long as
the selected ”infective” strategy performs better (or worse, if not extinct) than the average
population’s payoff. Let τ+ = {i ∈ O : (Cx)i > xTCx}, τ− = {i ∈ O : (Cx)i <
xTCx} and

M(x) ∈ arg max
{

(Cx)i − xTCx : i ∈ τ+(x)
}
∪{

−(Cx)i + xTCx : i ∈ τ−(x) ∩ σ(x)
}
.
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Then, the dynamics are governed by

x(t+1) = δ̃S(x(t))(x
(t))[S(x(t))− x(t)] + x(t) , (3.1)

where

S(x) =


ei i =M(x) ∈ τ+(xx)
xi
xi−1

(ei − x) + x i =M(x) ∈ τ−(x) ∩ σ(x)

x otherwise

and

δ̃y(x) =

{
min

[
1, (x−y)TAx

(y−x)TA(y−x)

]
(y − x)TA(y − x) < 0

1 otherwise.

This evolution process exhibits a number of nice properties: first the asymptotically
stable points for the dynamics are the ESS’s. Second, it is computationally very efficient,
as each iteration has linear time complexity.

3.2 Experimental results
In order to evaluate both the generality and the effectiveness of the proposed approach
we performed two sets of experiments. In the first set of experiments we match the seg-
mentations of images with similar subjects. In this context the intrinsic instability of the
extracted segments requires a more relaxed coherence constraint, moreover the presence
of under- and over-segmentation requires the matches to be many-to-many. In the second
set we use our game-theoretic framework to match point-patterns extracted from images
after affine transformation. Here we expect the features to be stable and preserved after
the transformation. However, the approach must be robust against the appearance of out-
liers. For this particular application we are requiring strict one-to-one correspondences
and a tight global coherence between matched points, but given the presence of a clear
ground truth, a more quantitative analysis is performed. All the experiments where run
on a standard PC with a 2GHz processor.

3.2.1 Segmentation Matching
The first set of experiments assesses the effectiveness of the approach on an object recog-
nition task. Here, we match similar objects from the Caltech-256 database [71], which
exhibits large variations in illumination, scale and viewpoint. In this context invariant
feature points cannot be exploited as they are not robust with respect to changes in the
appearance of objects belonging to the same semantic category. Thus we employed more
robust, but less repeatable features: We segmented the images using the algorithm pre-
sented in [58] and matched the corresponding segments, in a process similar to [78].

Starting from relatively unstable segmentations, we selected candidate matches com-
puting the normalized cross-correlation of each segment pair, and we selected the top 10
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Figure 3.1: Region matching: the first four columns show the original images and the
extracted segments, while columns five to eight show the resulting matches. The first
two rows show the result of enforcing one-to-one correspondence, the third row show the
result of enforcing chirality (handedness) of the matching segments, while the last three
rows show the effect of changes in the selectivity parameter α.
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local maxima as possible matching candidates. In order to account for chiral segments,
we also computed the normalized cross-correlation against the mirror image of each seg-
ment. To measure the support that each match obtains from other matches we computed
the payoff matrix C = (cij) as follows: Given the normalized cross correlation values
vi and vj at the local maxima associated to candidate matches i and j respectively, and
the displacement vectors ti, ti between each template and the corresponding matching
segment, we defined the coherence between candidates as cij = vivje

α|ti−tj|. Here α is a
selectivity parameter that affects the decay of the coherence and thus the selectivity of the
match to be found.

In addition to the continuous parameter α we also enforced two hard constraints:
namely the one-to-one relationship in the matches and the chirality constraint, which
forces the matches to have the same handedness. The first constraint is obtained by set-
ting to 0 the coherence of any pair of candidates where either the source segment or the
destination segment coincide, while the second is similarly enforced by setting to 0 the
coherence of pair of candidates in which one segment maps to a mirrored segment while
the other maps to a straight one.

Figure 3.1 shows the results on a few selected shapes for which the categorization
performance presented in [71] was around the middle in the rank order. For each row
the first two columns show the test images, while the third and fourth column show the
extracted segments, while the fifth, sixth, seventh and eight columns show the matches
obtained together with the values of the parameter α used and the resulting average payoff
pi.

The first two rows show the effect of enforcing the one-to-one constraint versus allow-
ing a full many-to-many match. Here the fifth and sixth column show the results with a
full many-to-many match, while the seventh and eight column show the effect of enforc-
ing the one-to-one match. Note how in the first row the second beer is over-segmented
due to a writing on the glass. By enforcing a one-to-one correspondence only part of the
region is selected, while allowing many-to-many matches all the segments are mapped to
the equivalent segment on the other image. Further, in the binoculars example, the part on
the right is segmented differently on the two images and all the corresponding segments
on the first image are mapped to the segments on the second thus giving a full many-to-
many match. On the other hand, enforcing a one-to-one correspondence we are not able
to match the top part of the optics.

The third row shows the effect of the chirality constraint. Here the fifth and sixth
columns show the best match obtained using the mirrored segments, while the seventh
and eight columns show the result obtained eliminating the mirror candidates. Note that
in the latter case only the symmetric part of the shape is matched.

The last three rows show the effect of increasing the selectivity parameter α. Note
that increasing alpha forces the approach to select matches that are more geometrically
coherent, even when this results in fewer segments matched and a lower average payoff.
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Figure 3.2: Point pattern matching: the first two columns show the original images,
the third and fourth columns show the extracted features, and the fourth and fifth show
the alignment error using the transforms estimated using ransac (fifth) and our approach
(sixth).

3.2.2 Point-Pattern Matching

In this set of experiments our goal is to test the ability of the proposed framework to match
corresponding features points between two instances of the same image with modified
scale and orientation. The features points are extracted from each image with the widely
used SIFT algorithm [102]. SIFT features are known to be highly repeatable under a large
class of affine transformations and are very resilient to splitting or joining. Under these
conditions we need a very selective matcher which enforces a common global transforma-
tion to all the matched features. In [102] Lowe gauges the coherence of the transformation
using ransac. This, however, requires a global threshold for the consensus, which limits
the precision of the estimation.

The experiments where performed on the Aloi database [62]. For each run we selected
20 images and randomly deformed them with an affine transformation with a scale varia-
tion between 0.5 and 2 and a rotation between 0.5 and 2.0 radians. We extracted the SIFT
features from the original and transformed image and picked as candidate associations all
the pairs with sufficiently similar descriptors.

Each candidate association represents a single transformation and supports only asso-
ciations with similar transformations. To measure the support between two associations,
we project the first point of one association with the transformation of the other associa-
tion. Then we measure the distance between the transformed point and the corresponding
point in the first association. We repeat the operation reversing the role of the two asso-
ciations obtaining the two distances d1 and d2. The support is, then, e−max(d1,d2). Once
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Figure 3.3: Point pattern matching: Error in the estimation of translation, scale and rota-
tion as we increase the variations in scale and orientation.

the best match is extracted, we have two alternatives to compute the final transformation:
the first is an unweighted approach where we compute a simple average of the transfor-
mation parameters related to the associations in the match. The second approach weighs
the transformation parameters with the proportion of the population playing the related
strategy at equilibrium.

We compare our approach with ransac, where we determine the associations to agree
within tolerance if max(d1, d2) < 5 pixels. The value of 5 pixels was experimentally
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Figure 3.4: Sensitivity to noise: Frobenius norm of the difference between exact and
estimated transformation errors under an increasing amount of Gaussian noise.

determined to be the one which gave the best results. Note that this threshold on the error
limits the accuracy of ransac, while our approach, being parameter-less, does not suffer
from this drawback.

Figure 3.2 shows the original images (first two columns), the extracted features (third
and fourth column), and the transformation error obtained using the two approaches (last
two columns). The error is the difference between the original image transformed with
the estimated transformation and the second image. The fifth column shows the error
obtained using the transformation estimated with ransac, while the sixth column shows the
difference using the transformation estimated using the weighted version of our approach.
As it can be seen our approach estimates the transformation with higher accuracy than
ransac. So much so that the difference images are almost completely black. This is
mainly due to the lack of a lower bound on the precision of the transformation, which for
ransac is enforced by the consensus threshold.

Figure 3.3 plots the error in the estimation of translation, scale and rotation as we
increase the variations in scale and orientation. The average and standard deviations are
computed over 140 images. As it can be seen, the weighted and unweighted versions
of our approach have similar performance, with the weighted version exhibiting slightly
lower error. On the other hand ransac show errors an order of magnitude larger in all
conditions.

In an attempt to quantify the sensitivity of the approach to noise, we added an increas-
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Figure 3.5: Scatter plot of feature points versus computation time (msecs).

ing amount of Gaussian noise to the rotated and scaled images before we computed the
SIFT features. This introduces an increasing number of outliers as well as missing feature
points. Figure 3.5 plots the Frobenius norm of the difference between the ground truth
and the estimated transformation matrices as the standard deviation of the Gaussian noise
increases. For each noise level we selected 20 images and randomly deformed them with
an affine transformation with a scale variation between 0.5 and 2 and a rotation between
0.5 and 2.0 radians. From the plot we can see that our approach maintains a much lower
error as compared to ransac even at high noise levels. Further, we can see that, while the
rate with which the error increases with noise is similar for ransac and the unweighted
version of our approach, the weighted version appears to provide much lower error even
with a high level of noise.

Figure 3.5 shows a scatter plot of number of feature-points versus runtime for our
approach (green) versus ransac (red). As it can be seen, ransac is slightly faster, with
a geometric average over all runs of 314 msecs. While our approach has a geometric
average of 762 msecs, both method having a relative deviation (over all the experiments)
of approximately 450%. Further, the scatter plot confirms the finding of a factor 2.4
slowdown with our approach, arguably providing a favorable accuracy/performance ratio.
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3.3 Concluding Remarks
In this chapter we presented a game-theoretic approach for the all-pervasive matching
problem in computer vision when both the objective of the match and the feasible set
can be defined based on pairwise interactions. We formulated the matching problem as a
non-cooperative game between matching hypotheses, while payoffs reflect the degree of
compatibility between associations. Within this formulation, the solutions of the matching
problem correspond to evolutionary stable states (ESS’s), a robust population-based gen-
eralization of the notion of a Nash equilibrium. A distinguishing feature of the proposed
framework is that it allows one to deal uniformly with many-to-many, many-to-one and
one-to-one matching approaches as well as robust estimation of a parametrized match-
ing transformation. The potential of the proposed approach has demonstrated via two
sets of image matching experiments, both of which show that our approach outperforms
well-known algorithms at the state of the art.



36 3. Matching as a Non-Cooperative Game



4
Modeling Higher-Order Problems

In this chapter we present three adaptation of our framework to situations where it be-
comes necessary to deal with compatibilities defined between more than two items and to
preserve some structural relationship between matched pairs. Specifically we will show
how to match attributed graphs by using an attributed association graph and searching for
a maximum weight clique in it in section 4.1. In section 4.2 we will track articulated ob-
jects by defining a special association graph that enforces structure preservation. Finally,
in section 4.3, we will offer an alternative view of higher order matching by modeling
compatibilities between sets of matches as hyper-edges in a hyper-graph.

4.1 Encoding Higher-Orderness with Weighted Graphs
The matching of relational structures is a problem that pervades computer vision and pat-
tern recognition research. A classic approach is to reduce the matching problem into one
of search of a maximum clique in an auxiliary structure: the association graph. The ap-
proach has been extended to incorporate vertex-attributes by reducing it to a weighted
clique problem, but the extension to edge-attributed graphs has proven elusive. However,
in vision problems, quite often the most relevant information is carried by edges. For
example, when the graph abstracts scene layout, the edges can represent the relative po-
sition of the detected features, which abstracts the geometry of the scene in a way that
is invariant to rotations and translations. In this section, we provide a generalization of
the association graph framework capable of dealing with attributes on both vertices and
edges. Experiments are presented which demonstrate the effectiveness of the proposed
approach.

4.1.1 Matching with graphs

Graph-based representations have long been used with considerable success in com-
puter vision and pattern recognition in the abstraction and recognition of objects and
scene structure. Concrete examples include the use of shock graphs to represent shape-
skeletons [94, 145, 141], the use of trees to represent articulated objects [83, 187] and
the use of Delaunay graph to represent the distribution of features in a scene [175]. The
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attractive feature of structural representations is that they concisely capture the relational
arrangement of object primitives, in a manner which can be invariant to changes in object
viewpoint. Using this framework we can transform a recognition problem into a relational
matching problem.

The problem of how to measure the similarity or distance of pictorial information us-
ing graph abstractions has been a widely researched topic of over twenty years. Early
work on the topic includes Barrow and Burstall’s idea [21] of locating matches by search-
ing for maximum common subgraphs and Shapiro and Haralick’s idea [143] of locating
the isomorphism that minimizes the weight of unmapped nodes. A common approach
transforms the combinatorial problem into a continuous optimization problem and then
uses the wide range of available optimization algorithms available to find an approxi-
mate solution. In [43] Kittler, Christmas, and Petrou use relaxation labelling to label
nodes in the data graph with the corresponding node in the model graph and use graph
connectivity to combine evidence. Relaxation labelling, however, does not guarantee a
one-to-one correspondence between nodes. In order to guarantee a one-to-one assign-
ment, Gold and Ragaranjan [66] introduced the “graduated assignment” method. This is
an evidence combining model that guarantees two way constraints. Evidence combining
methods like relaxation labelling and graduated assignment give a very interesting frame-
work to iteratively improve on our initial estimate, but they are critically dependent on a
good consistency model and a reliable initialization.

Another classic approach pioneered by Ambler et al. [16] is to reduce the matching
problem into one of search of a maximum clique in an auxiliary structure: the association
graph. This graph is defined over a vertex-set that is the Cartesian product of the vertex-
sets of the original structures, and the edges represent the compatibility of two maps
between the original graphs. Optimal matches between the two structures are then in a
one-to-one relationship with maximum cliques on the association graph. By re-casting the
search for the maximum common subgraph as a max clique problem [21], we can tap into
a diverse array of powerful heuristics and theoretical results available for solving the max
clique problem. An important development in that direction is reported by Pelillo [125]
who, using the Motzkin-Straus theorem [54] transforms the max clique problem into a
continuous quadratic programming problem, and shows how relaxation labelling can be
used to find an approximate solution.

By adding a weight to the vertices of the association graph, the similarity between
vertices can be taken into account. This allows us to match vertex-attributed graphs by
searching for cliques of maximum weight [127]. However, in vision problems, quite often
the most relevant information is carried by edges. For example, when the graph abstracts
scene layout, the edges can represent the relative position of the detected features, which
abstracts the geometry of the scene in a way that is invariant to rotations and translations.
Furthermore, any deformation of the scene will induce changes in the relative distances
of the features, leaving the actual features mostly unchanged. Examples of such repre-
sentations include the use of Delaunay graphs for scene registration [175] and the use of
skeletons for shape recognition [141]. In these structural representations it is the edge
that takes center stage, and, hence, it is essential for a matching algorithm to deal with
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edge and vertex attributes in a uniform and well founded way. To this end we propose to
extend the association graph framework to deal with edge associations directly, without
having to infer them from vertex associations. This way edge similarity information can
be incorporated into the matching process.

A drawback of this approach is that the size of the association graph increases with the
product of the number of edges in the two graphs, making the space and time requirements
of the Motzkin-Straus formulation too demanding. For this reason we opted for the use
of Reactive local search (RLS) [23], a search-based clique heuristic which can find a
candidate solution quickly and then refine it as requested. This characteristic, which is
common to most search-based heuristics, makes the approach usable for range queries
and any-time queries in a structural database, i.e, queries where only an upper bound on
the actual distance is required and interactive queries that can be stopped as soon as the
user is satisfied with the results. However, the size requirement still limits us to sparse
graphs. Fortunately, most scene abstractions use planar graph and, hence, are sparse.

4.1.2 Edge Association Graph
Let G = (V,E) be an undirected graph with vertex set V and edge set E ⊂ V 2, any
time there is an arc between nodes u, v ∈ V we say that the nodes are adjacent and we
write u ∼ v. If G = (V,E) is a directed graph, with the notation u  v we indicate that
there is an edge from node u ∈ V to node v ∈ V ; furthermore, we call a self loop an arc
from one node to itself. Let G1 = (V1, E1) and G2 = (V2, E2) be two directed graphs, a
subgraph isomorphism f between G1 and G2 is a partial injective function from V1 to V2

that respects the adjacency of the two graph, i.e.,

∀u, v ∈ dom(f), u v ⇔ f(u) f(v) ,

where dom(f) is the subset of V1 where f is defined.
Let G1 = (V1, E1) and G2 = (V2, E2) be two directed graphs without self loops, we

define the set of correspondences between edges Ve = E1 × E2. As each vertex can be
bijectively mapped to a self loop, we can extend Ve to include vertex-correspondences by
defining a generalized edge association set Va = Ve∪ V̂1× V̂2, where V̂ = {(v, v)|v ∈ V }
is the space of self loops. This way we guarantee uniformity in notation, since every
entity, be it an edge or a vertex, is represented by a (possibly equal) pair of vertices.

Any subset S ⊆ Va represent a relation between edges and vertices in G1 and edges
and vertices in G2. We define a map φ : P(Va) → P(V1 × V2) from edge-relations to
vertex-relation as follows:

φ(X) = {(v1, v2) ∈ V1 × V2 |
∃u1 ∈ V1, u2 ∈ V2 , ((v1, u1), (v2, u2)) ∈ X ∨ ((u1, v1), (u2, v2)) ∈ X} (4.1)

φ is not invertible, as it is not injective, but it has a right partial inverse φ−1 : P(V1×V2)→
P(Va) defined as follows:

φ−1(Y ) = {((u1, v1), (u2, v2)) ∈ Va |(u1, u2) ∈ Y ∧ (v1, v2) ∈ Y } (4.2)



40 4. Modeling Higher-Order Problems
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u1 z1 u2

v2 w2

z2

Figure 4.1: Two edge associations are compatible if they induce a subgraph isomorphism.

It is easy to show that Y = φ(φ−1(Y )) and X ⊆ φ−1(φ(X)). The last condition im-
plies that for each vertex-relation there is a maximal edge-association that contains all the
edge-associations inducing the same vertex-relations. Our goal is to find a set of edge
associations that induce through φ a subgraph isomorphism between G1 and G2.

Let ea1 = ((u1, v1), (u2, v2)) ∈ Va and ea2 = ((w1, z1), (w2, z2)) ∈ Va be two
edge-associations, ea1 and ea2 are said to be compatible if and only if φ({ea1, ea2}) is
a subgraph isomorphism between G1 and G2, that is if the relation mapping u1 to u2,
v1 to v2, w1 to w2, and z1 to z2 is a partial injective function that respects the adjacency
conditions between the subgraphs of G1 and G2 obtained restricting them to the vertices
{u1, v1, w1, z1} and {u2, v2, w2, z2} respectively. More formally, the edge-associations
((u1, v1), (u2, v2)) ∈ Va and ((w1, z1), (w2, z2)) ∈ Va are compatible if they satisfy the
following relations:

u1 = w1⇔u2 = w2 , (map1)
v1 = z1⇔v2 = z2 , (map2)
u1 = z1⇔u2 = z2 , (map3)
v1 = w1⇔v2 = w2 ; (map4)

and
u1  w1 ⇔ u2  w2 ∧w1  u1 ⇔ w2  u2 , (iso1)
v1  w1 ⇔ v2  w2 ∧w1  v1 ⇔ w2  v2 , (iso2)
u1  z1 ⇔ u2  z2 ∧ z1  u1 ⇔ z2  u2 , (iso3)
v1  z1 ⇔ v2  z2 ∧ z1  v1 ⇔ z2  v2 , (iso4)

v1  u1⇔v2  u2 , (iso5)
z1  w1⇔z2  w2 . (iso6)



4.1. Encoding Higher-Orderness with Weighted Graphs 41

The first four relations guarantee that φ induces a partial injective map, while the last
six guarantee that the map induces a subgraph isomorphism. Note that the existence of
the edge-associations already guarantees that u1  v1, u2  v2, w1  z1, and w2  z2,
hence the lack of symmetry in the last two isomorphism conditions. Furthermore, the
missing map conditions u1 = v1 ⇔ u2 = v2 and u1 = v1 ⇔ u2 = v2 are enforced by the
way Va is constructed.

Given the notion of compatibility between edge association, we define the edge-
association graph as the undirected graph Ga = (Va, Ea) where two edge associations
are adjacent if and only if they are compatible.

Proposition 1. Let X ⊆ Va, then X is a clique of Ga if and only if φ(X) is a subgraph
isomorphism between G1 and G2.

Sketch of proof. Let S ⊆ Va such that S is not a clique, then there must be two
edge-associations ea1, ea2 ∈ S such that φ({ea1, ea2}) is not a subgraph isomorphism.
This implies that φ(S) is not a subgraph isomorphism and hence, by contrappositive, that
the fact that φ(X) is a subgraph isomorphism implies that X is a clique of Ga. Con-
versely, Let S ⊆ Va such that φ(S) is not a subgraph isomorphism, then there must be
two distinct vertex relations (u1, w2) and (v1, w2) that either prevent the relation from
being a partial injective function, i.e., u1 = w1 or u2 = w2, or that do not respect the
adjacency relations. Since φ(S) is induced by S, the two vertex relation must be induced
by some edge relations, i.e., there must exist v1, z1 ∈ V1 and v2, z2 ∈ V2 such that either
((u1, v1), (u2, v2)) ∈ S or ((v1, u1), (v2, u2)) ∈ S, and either ((w1, z1), (w2, z2)) ∈ S or
((z1, w1), (z2, w2)) ∈ S, but it can be easily shown that any of these conditions must break
one of the compatibility relations.

Theorem 2. If X ⊆ Va is a maximal clique of Ga, then φ(X) is a maximal subgraph
isomorphism between G1 and G2. Conversely, If f is a maximal subgraph isomorphism
between G1 and G2, then φ−1(f) is a maximal clique of Ga.

Proof. Assume that φ(X) is not maximal, but that the relation (u1, u2) can be added,
then we can add to X the edge relation between the self loops (u1, u1) and (u2, u2),
hence X cannot be maximal. Conversely, assume that we can add the edge-association
((u1, v1), (u2, v2)) to φ−1(f) then either (u1, u2) or (v1, v2) must not be in f or else
((u1, v1), (u2, v2)) would be in φ−1(f). Hence, g = f ∪ {(u1, u2), (v1, v2)} is a subgraph
isomorphism and f ⊂ g, hence f is not maximal.

This result provides us with a strong relation between maximal cliques in the edge-
association graph and maximal subgraph isomorphism, note however that the relation is
not a bijection, since there might be non-maximal cliques inducing a maximal isomor-
phism; however, these must be subsets of a maximal clique inducing the same isomor-
phism.
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4.1.3 Weighted isomorphism

Let ωe : E1 × E2 → R+ be a similarity function between two edges in G1 and G2 and
ωv : V1 × V2 → R+ a similarity function between two vertices in G1 and G2, we define
the weight of an isomorphism f as

Ω(f) =
∑

(u1, v1) ∈ E1
u1, v1 ∈
dom(f)

ωe((u1, v1), (f(u1), f(v1))) +
∑

u1∈dom(f)

ωv(u1, f(u1)) , (4.3)

Similarly, we define a weight on a vertex ((u1, v1), (u2, v2)) ∈ Va as

ω((u1, v1), (u2, v2)) =

{
ωv(u1, u2) if u1 = v1 ,

ωe((u1, v1), (u2, v2)) otherwise.
(4.4)

With these weights, we can define a weighted association graph Ga = (Va, Ea, ω). The
weight of a subset of vertices X ⊆ Va is:

Ω(X) =
∑

((u1,v1),(u2,v2))∈X

ω((u1, v1), (u2, v2)) . (4.5)

We can now prove the following:

Proposition 2. If f is a subgraph isomorphism betweenG1 andG2, then Ω(f) = Ω(φ−1(f)).
Conversely, if X ⊆ Va is a maximal clique of Ga, then Ω(X) = Ω(φ(X)).

Proof. If f is an isomorphism, for each (u1, v1) ∈ E1, u1, v1 ∈ dom(f) we have
((u1, v1), (f(u1), f(u2))) ∈ φ−1(f), and for each u1 ∈ dom(f) we have
((u1, u1), (f(u1), f(u1))) ∈ φ−1(f). Hence each element in the sum in (4.3) will be
present in one and only one node of φ−1(f), which implies that Ω(f) = Ω(φ−1(f)). The
second part derives from the fact that if X is maximal, then X = φ−1(φ(X)).

Finally, we obtain:

Theorem 3. X ⊆ Va is a maximum weight clique of Ga if and only if φ(X) is a maximum
weight isomorphism between G1 and G2. Furthermore, Ω(X) = Ω(φ(X)).

Proof. This derives directly from Theorem 1 and Proposition 2.
This result allows us to cast the search for the maximum weight subgraph isomor-

phism between vertex- and edge-attributed graphs into an instance of the weighted clique
problem in the edge-association graph.
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Figure 4.2: Comparison with Graduated Assignment on synthetic p-random graphs

4.1.4 Experimental Results

In order to asses the usefulness of our matching approach in recognition tasks using graph-
based representations, we performed a set of experiments with synthetic as well as real-
world data.

In our first set of experiments we compare matches obtained through the proposed ap-
proach with matches obtained with Graduated Assignment (GA) [66] on random graphs.
For each experiment we randomly generate graph with 25 nodes and 5% and 10% densi-
ties. Vertices and edges where given real-valued attributes uniformly distributed between
0 and 1 and the similarity between two such attributes was an exponential decay of the
absolute difference of the values. Each graph was perturbed by adding Gaussian noise to
the attributes and by randomly removing nodes. Figure 4.2 compares the performance of
the proposed approach with the results obtained by GA as both the amount of structural
and of attribute noise is increased. The plot shows the ratio of the weight of the match ob-
tained by the two algorithms over the weight of the ground-truth correspondences. Here
the proposed approach clearly outperforms GA.

Next we tried to characterize the time versus performance behavior of the algorithm.
To do this we generated 100 random graphs of size 25 and density 10% and ran our
algorithm on them sampling at various times the best match found. To measure the overall
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Figure 4.3: Quality of match found by early stop

quality of the match we used a metric proposed in [163]:

d(G1, G2) = 1− Ω(f)

|G1|+ |G2| − Ω(f)
. (4.6)

In Figure 4.3 we report the error of the best solution at time t relative to the best obtained
letting the search algorithm run for 15 minutes. The experiments were run on PC clocked
at 1.6 Ghz. From these results we see that in just 1 second the match is within 2.5% of
the optimum.

We were also interested in assessing the performance of our algorithm with real-world
classification problems. To this end we used a collection of 45 images from the ALOI[62]
database, showing 9 objects from different viewpoints. Starting from feature-points ex-
tracted using the Harris corner detector [77], we generated attributed graphs in two differ-
ent ways: The Delaunay triangulation of the points and a 5-neighbor graph, in which each
vertex is connected to 5 the nearest vertices. In both cases the distances between points
where used as attributes for the edges. The number of extracted vertices ranged from a
minimum of 22 to a maximum of 36 and the resulting density was similar to those used
in the synthetic experiments. Figures 4.5 and 4.6 show the 6 best matches for several test
images as well as the corresponding value of the metric (4.6).

From the Figures we can see that the approach almost always selects similar images
top matches, although, due to the instability of the representations with respect to changes
in viewpoints, the algorithm was often presented with graphs with significant structural
deformation.
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Figure 4.4: Effect of occlusions on distance

Finally we tested the robustness of our approach with respect to random occlusions
on the images. To this aim we generated random occlusions ranging from 5% to 50%
of the total area and ran our algorithm matching the original the graphs generated from
the original image with those obtained from the occluded images. The results of this set
of experiments is summarized in Figure 4.4. Here we can see that the distances from
the original graph increases smoothly with the amount of occlusion, assigning reasonably
small distances to images with small to moderate occlusion.

4.1.5 Concluding Remarks

In this section we presented a extension of the association graph framework which deals
with edge associations directly, without having to infer them from vertex associations.
This way edge similarity information can be incorporated into the matching process al-
lowing the framework to deal with vertex- and edge-attributed graphs in an uniform way.
The experimental results showed that the approach is robust to structural and geometric
noise, and capable of dealing with several relational abstractions of scene in a robust way.
However, the scaling behavior of the association graph rendered the space requirements of
our implementation very demanding. This severely limited the approach in dealing only
with sparse graphs. Note, however, that holding the full edge-association graph explicitly
in memory is not necessary. Future work include the reformulation as an implicit search
on the edge-association space to make the approach usable with larger graphs.
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0.0 0.287 0.649 0.714 0.764 0.775

0.0 0.696 0.794 0.802 0.810 0.817

0.0 0.660 0.691 0.698 0.722 0.732

0.0 0.411 0.485 0.577 0.650 0.733

0.0 0.260 0.471 0.556 0.668 0.693

0.0 0.571 0.688 0.722 0.722 0.727

0.0 0.150 0.234 0.325 0.468 0.632

0.0 0.511 0.652 0.655 0.697 0.708

0.0 0.109 0.184 0.251 0.682 0.729

Figure 4.5: Retrieval with Delaunay graphs
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Figure 4.6: Retrieval with 5-neighbor graphs
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4.2 Exploiting Structure to Match Articulated Objects
Object tracking with freely moving cameras is an open issue, since background infor-
mation cannot be exploited for foreground segmentation, and plain feature tracking is
not robust enough for target tracking, due to occlusions, distractors and object deforma-
tions. In order to deal with such challenging conditions a traditional approach, based on
Camshift-like color-based features, is augmented by introducing a structural model of the
object to be tracked incorporating previous knowledge about the spatial relations between
the parts. Hence, an attributed graph is built on top of the features extracted from each
frame and a graph matching technique based on Dominant Set clustering is used to find
the optimal match with the model. Pixel-wise and object-wise comparison with other
tracking techniques with respect to manually-obtained ground truth are presented.

4.2.1 Object Tracking and Matching
In recent years, object tracking has been recognized by the scientific community as a
fundamental task in several applications of video analysis. Tracking rigid objects in sim-
ple, uncluttered scenes acquired from static cameras is an almost solved problem [181].
Conversely, in complex scenarios where objects camouflage with the background, have
severe shape variations and are strongly occluded, tracking can be really challenging. In
addition, when either the background is not fixed or the camera is moving, no statistical
or geometrical model can be exploited to segment the foreground objects and predictive
models (such as Kalman filters) are ineffective.

In point tracking, objects are usually represented by single or multiple points and the
correspondences between two consecutive frames is established by either deterministic
[171] or statistical methods [20] to provide tracking without object segmentation. An
alternative is to represent the data using kernel primitives such as rectangles or ellipses.
These kernel methods can be used to estimate a density-based appearance model of the
object [49]. Other approaches encompass silhouette tracking, estimating the object con-
tour evolution by means of state-space models [85] or variational methods [22].

These proposals are robust and efficient when the object can be represented by a sin-
gle feature, such as the color histogram, but in the case of complex articulated objects
represented by parts which are often partially or completely overlapped they are likely
to fail. To deal with such challenging scenarios structural information expressing spatial
constraint among features might be used. This is the case of the pictorial structures of [57]
that have been proposed for object recognition and has been further developed for people
tracking by [131]. Similarly [84, 150] are based on inference in a graphical model and
can be applied again to people tracking [146]. All these approaches tend to be specifically
focused on the articulated structure of the human body or human face (whereas our frame-
work tackles generic-shape object tracking), and rely on Bayesian probabilistic frame-
works; on the other hand tracking can be brought to a problem of graph matching through
a graph based representation based on Region Adjacency Graph (RAG), where vertices
represent image regions and edges encode adjacency. This is the case of [67, 50, 17, 69].
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A notable exception is [86] where RAGs are tracked by fitting independent Kalman filters
to both regions and adjacency relations. [140] uses graphs and Kalman filter for insects
tracking.

Structural methods based on point features are less used than region-based ones. This
is due primarily to the fact that it is more difficult to define relations between point fea-
tures. In [155] SIFT features are extracted from the tracked object and a nearest-neighbor
graph is built on top of them. Relaxation labelling is used for matching and the object
graph itself is updated by removing disappearing features and adding new ones. In [29]
the features tracked are the linear borders of geometric objects and edges connect parallel
or perpendicular borders.

The definition of the structural model can be inferred from the image data. This ap-
proach is very general but might suffer from the instability of the model inference, both in
terms of detection of regions/features and with respect to the invariance of the relational
structure to be tracked. In addition an inferred model is inherently unable to capture de-
tailed information about the intrinsic articulation and deformability of non-rigid objects.
By contrast, our approach requires an a priori structural model of the target object (not
necessarily bound to the human body figure), that is then enriched with attributes extracted
from real data. This way we are able to search for a match that not only maximizes the
coherence between attributes, but that also accounts for the coherence of the structural
relations in a way invariant to variations in scale, rotations and translations, and even
blurring due to camera motions; the search for the best coherent match with the provided
model is made through Dominant Set extraction.

4.2.2 Overview of the Framework
Fig. 4.7 shows the conceptual scheme of our framework. An initial Graph-Based Model
Definition provides the framework with both a model of the features to be tracked and
a structural representation of their spatial arrangement. In this work color features are
used, but different or more descriptive features (e.g. textures, edges) can be exploited.
Moreover, an initial image can be used as reference for the extraction of the feature model
(as in our current implementation), the structural model or both (Fig. 4.8a). Each new
frame It is provided to the Feature Cluster Extraction component (Sect. 4.2.3) that applies
the feature model and produces the mask of the probability of each feature class onto the
current image (called back-projection [30]). Each back-projection is then clustered using
meanshift and, for each cluster, attributes are extracted. Most of the extracted feature
clusters represent erroneous detections of the tracked object feature (see Figs. 4.8b-f) and
the correct candidates must be extracted using global consistency information.

A labelling function maps each feature cluster on the originating model feature. Each
pair of clusters whose features are rigidly joined together in the structural model, are
connected by edges to form the labelled graph Gt (Sect. 4.2.4). Then an edge weighted
association graph GAt is created between the structural model G0 and the labelled graph
Gt (Sect. 4.2.4) and each edge is weighted according to a global coherence measure
(Sect. 4.2.4) in such a way that each maximal edge weight clique in GAt corresponds to
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Figure 4.7: Scheme of the proposed framework.

a maximal coherence subgraph isomorphism and vice versa. Finally the Dominant Set
framework is used to search for the maximum coherence Matcht (Sect. 4.2.4, Fig. 4.8g).

4.2.3 Extraction of Feature Clusters

For each feature of the model, the Feature Cluster Extraction component extracts all the
possible clusters of features which might represent a part of the tracked object according
to the feature model. In our work, the Feature Cluster Extraction operates on simple
color features using a modification of the Camshift algorithm [30], but different cluster
extraction algorithms can be used.

The standard Camshift tracking algorithm uses a model of the object, consisting of
a color histogram, and requires a region of interest to initialize the search. For each
input image a probability mask of the model is produced, evaluating each pixel according
to the color histogram as if it were a pdf. The resulting value is then scaled on 256
gray levels, producing the so called back-projection. Then, iteratively alternating the
meanshift gradient ascend algorithm and a size-adaptation of the region of interest, the
region estimate converges to encompass the extracted features and then provides the initial
location for the next frame.

For the extraction of the feature clusters, the Camshift is modified as follows. First,
the object to be tracked is modeled with multiple color histograms, corresponding to
different areas of the objects (e.g. Fig. 4.8a); therefore, for each input image, multiple
back-projections (BPt) are obtained (Figs. 4.8b-f) and the cluster extraction proceeds
independently for each BPt. Second, the back-projections are obtained on the following
color space:

(h, s, v) =

{ (⌊
H
16

⌋
,
⌊
S
16

⌋
,maxV

)
if S > τS ∧ V > τV(

0, 0,
⌊
V
16

⌋)
otherwise (4.7)
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Figure 4.8: Framework steps example: (a) model to track, (b-f) feature back-projections
and clusters, (g) best coherence match

The addition of value and saturation components to the standard Camshift color space
allows us to deal better with low-saturation (considering only the V component) and pro-
vides an enriched color description. Third, our approach scatters particles over the BPt
from which to start the cluster extraction, producing therefore several clusters. The parti-
cles are spatially scattered over theBPt with Gaussian or uniform distribution, depending
on the object tracking status at the previous frame.

For each cluster Ci
t of the set Ct, the set of attributes

Ait = (D (Ci
t) ,M (Ci

t) , P (Ci
t) , R (Ci

t)) are computed, where D is the density, M the
mass, P = (x, y) the coordinates of the cluster’s centroid and R the area:

M
(
Ci
t

)
=
∑
p∈Cit

BPt (p) ;R
(
Ci
t

)
=
∥∥{p ∈ Ci

t

}∥∥
D
(
Ci
t

)
= M

(
Ci
t

)
/R
(
Ci
t

)
(4.8)

4.2.4 Tracking using relational information
Regardless of the robustness of the extraction step several factors could lead to a wrong
assignment between clusters. In fact, distractors, noise, deformation or pose and illumi-
nation changes can easily lower the coherence between correct correspondences or make
unrelated features more similar. For this reason any approach that is based only on the
similarity between features is inherently sensitive to noise. To overcome this limitation we
add contextual information, thus casting the feature matching into a more robust subgraph
matching problem.

From feature clusters to labelled graphs

In order to obtain a graph from a set of feature clusters we exploit the previous knowledge
about the physical structure of the object. To this end, we define a structural model where
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each part of the object is associated to a feature class which is known to be rigidly joined
to some other parts, but can move freely from the rest. This is the case with any articulated
object, while totally-rigid objects can be modeled by joining all the parts.

A structural model of an object is a connected graph Gm = (P, S) where P is the set
of distinct parts we want to use to represent the object and S ⊆ P ×P are their structural
relations, where (pa, pb) ∈ S iff pa and pb are joined in the object. This model embeds our
previous knowledge about the structure of the object to be tracked in terms of its parts. In
Fig. 4.9 some examples of structural models are presented.

Figure 4.9: Example of structural models and labelled graphs. The model is subject to
deformation (a) and also to scaling and occlusion (b); in (c) it comprises two totally-rigid
submodels partially occluding each other

Given a structural model Gm = (P, S), a set of features clusters C assigned to |P |
classes by a surjective labelling function l : C → P and their attributes A, we define
the labelled graph as the |P |-partite graph G = (C,E,A, l) where C is the vertex set,
E = {(u, v) ∈ C × C|(l(u), l(v)) ∈ S} the edge set, A the vertex attributes and l the
vertex labelling function. In this graph each edge represents a structural relation between
a pair of feature clusters. The automatic extraction of feature cluster candidates from
a frame It yields a graph with many nodes and edges. The supervised selection of the
ground truth from a reference frame will result in a simpler graph with just one cluster
for each part of the object to be tracked: we call this graph the model graph. Our goal
is to find within each labelled graph extracted from a frame It the subgraph which is the
most coherent with the model graph we are tracking. In other words we are looking for a
maximum coherence subgraph isomorphism.

Given labelled graphs G1 = (C1, E1, A1, l1) and G2 = (C2, E2, A2, l2) a labelled iso-
morphism between them is a relation M ⊆ C1×C2 such that for each (u1, u2), (v1, v2) ∈
M the following properties hold:

l1(u1) = l2(u2) and l1(v1) = l2(v2) (4.9)
u1 = v1 ⇔ u2 = v2 (4.10)

The first condition ensures that M does not map feature cluster of incompatible classes.
The second condition forces M to be a partial injective function. It is easy to see that
any labelled isomorphism is a special case of subgraph isomorphism which enforces label
consistency.
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We still need to define a measure of the global coherence of a labelled isomorphism
M . In our context limiting the measure to a similarity between vertex attributes would
be not enough, as this way we would be unable to take into account structural relations
among vertices. Unfortunately, even measuring coherence between edges would not be
general enough, as it would not be possible to account for invariants that depends on more
than one edge, such as length ratios or angle differences. For this reason we defined a
coherence measure between pairs of edge matches as this allows us to deal with variations
in scale and articulation throughout the video sequence. To this end we define the set of
edge matches as:

e(M) = {((u1, v1), (u2, v2)) ∈ E1 × E2|
(u1, u2) ∈M ∧ (v1, v2) ∈M} (4.11)

and let ω : (E1 × E2) × (E1 × E2) → R+ be a measure of coherence between pairs of
edges matches, then the total weight of M is defined as:

Ω(M) =
∑

a∈e(M)

∑
b∈e(M)\{a}

ω(a, b) . (4.12)

From graph matching to clique search

In order to search for a match of maximum compatibility between two labelled graphs we
choose a two-step approach which first casts the matching problem into a clique search
problem and then solves it using continuous optimization.

Given labelled graphs G1 = (C1, E1, A1, l1) and G2 = (C2, E2, A2, l2) and a function
ω : (E1×E2)× (E1×E2)→ R+ that measures the coherence between pairs of edge as-
sociations, we define an association graph between them as an edge weighted graphGa =
(V a,Ea, ω) where V a = E1×E2,Ea ⊂ V a×V awith (((u1, v1), (u2, v2)), ((w1, z1), (w2, z2))) ∈
Ea iff:

l1(u1) = l2(u2), l1(v1) = l2(v2),

l1(w1) = l2(w2) and l1(z1) = l2(z2) (4.13)
u1 = w1 ⇔ u2 = w2, v1 = z1 ⇔ v2 = z2 (4.14)

With this definition we are able to show some useful connections between labelled
isomorphisms and complete subgraphs (cliques) in this association graph.

To this end, note that each X ⊆ Va represents a relation between edges in E1 and
E2. In order to obtain a relation between vertices in V1 and V2 we define a natural map
v : P(Va)→ P(V1 × V2) as:

v(X) = {(u1, u2) ∈ V1 × V2|
((u1, v1), (u2, v2)) ∈ X ∨ ((v1, u1), (v2, u2)) ∈ X} (4.15)
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Figure 4.10: Labelled isomorphism between two labelled graphs and the clique associated
to it in the edge weighted association graph.

That is, a match between vertices is induced by X if they are mapped by any edge
match in X . It is easy to see that v is not injective, nevertheless it has a proper right
partial inverse, namely the function e(M) defined by (4.11).

We now formulate the following lemmas:

Lemma 1. Given labelled graphs G1, G2 and their association graph Ga, X ⊆ Va is a
clique iff v(X) is a labelled isomorphism between G1 and G2.

Proof. We will prove both the implications by contrapposition. First we will prove that if
X is not a clique then v(X) is not a labelled isomorphism:

Suppose that X is not a clique. This means that it contains at least a pair of vertices
((u1, v1), (u2, v2)) ∈ X and ((w1, z1), (w2, z2)) ∈ X that do not satisfy either (4.13) or
(4.14). Those vertices induce associations (u1, u2), (v1, v2), (w1, w2) and (z1, z2) in v(X).
Suppose that (4.13) is not satisfied, this means that some label correspondence is not sat-
isfied. For instance, this happens if l(u1) 6= l(u2), thus in this case (4.9) is not satisfied
by the induced association (u1, u2). The same happens if l(v1) 6= l(v2), l(w1) 6= l(w2)
or l(z1) 6= l(z2). Suppose that (4.14) is not satisfied, this means that some injection con-
dition is not satisfied. For instance, this happens if u1 = w1 and u2 6= w2, this in this
case (4.10) is not satisfied by the induced associations (u1, u2) and (w1, w2). The same
happens for the others conditions. In both cases v(X) is not a label isomorphism, which
proves our claim.

Now we will prove that if v(X) is not a labelled isomorphism between G1 and G2

then X is not a clique:

Suppose that v(X) is not a label isomorphism between G1 and G2. This means that it
contains a pair of associations (u1, u2) ∈ v(X) and (w1, w2) ∈ v(X) that do not satisfy
either (4.9) or (4.10). For such matches to be in v(X) it means (by Def. 4.15) that either
((u1, v1), (u2, v2)) ∈ X or ((v1, u1), (v2, u2)) ∈ X for some v1 ∈ V1 and v2 ∈ V2 and that
either ((w1, z1), (w2, z2)) ∈ X or ((w1, z1), (w2, z2)) ∈ X for some z1 ∈ V1 and z2 ∈ V2.
Suppose that (4.9) is not satisfied because l(u1) 6= l(u2) and that ((u1, v1), (u2, v2)) ∈ X ,
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in this case neither (4.13) is satisfied and ((u1, v1), (u2, v2)) is not adjacent to any other
vertex in Ga, thus X is not a clique in Ga. Other cases that do not satisfy (4.9) are similar.
Similar observations show that if (4.10) is not satisfied a pair of vertices not connected by
an edge exist in X . In both cases X is not a clique in Ga, which proves our claim.

Lemma 2. IfX ⊆ Va is a maximal clique inGa, then v(X) is a maximal labelled isomor-
phism between G1 and G2. Conversely, if M is a maximal labelled isomorphism between
G1 and G2 then e(M) is a maximal clique in Ga.

Proof. We will prove both the implications by contrapposition. First we will prove that if
v(X) is not a labelled isomorphism then X is not a maximal clique:

Suppose that v(X) is a labelled isomorphism between G1 and G2 but it is not maxi-
mal. This means that the association (u1, u2) can be added to v(X) without invalidating
the conditions (4.9) or (4.10). We know from the definition of structural model that the
model is connected and from the definition of labelled graph that for each part in the
model at least one vertex in G1 and G2 is associated to the corresponding label by l. This
guarantees that at least (u1, v1) ∈ E1, (u2, v2) ∈ E2 or (v1, u1) ∈ E1, (v2, u2) ∈ E2 for
some v1 and v2 with l(v1) = l(v2). We know form Lemma 1 that X is a clique in Ga. In
addition, in either cases the associations between those edges can be added to X without
invalidating (4.13), as the labelling correspondence for u1,u2 is guaranteed and v1, v2 can
be chosen of the same class. Also (4.14) will not be invalidated by the new associations,
as if v1 is not yet in X any compatible v2 will not invalidate it, otherwise the already
present v2 can be chosen. This shows that X is not maximal, which prove our claim.

Now we will prove that if e(M) is not a maximal clique then M is not a maximal
labelled isomorphism.

Suppose that e(M) is a clique in Ga but it is not maximal. Since e(M) contains all the
edge associations between correspondent vertices in M if a new edge association can be
added to it without invalidating (4.13) and (4.14), then it induces new vertices associations
in M that do not invalidate (4.9) and (4.10). Thus M is not maximal, which prove our
claim.

From the previous lemmas and the definition of the weight of a labelled isomorphism
M , derives the following:

Theorem 4. Given two feature graphs G1 and G2, each maximal(maximum) weight la-
belled isomorphism M between them induces a maximal(maximum) edge weight clique
in Ga(G1, G2) and vice versa.

Proof. Lemma 2 proves the maximality correspondence. In addition, the definition of
e(M) states that the weight of the label isomorphism M is exactly the sum of the weights
assigned to the edges of e(M) by the similarity function ω. Thus, for each maximal(maximum)
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labelled isomorphism M a maximal(maximum) edge weight clique e(M) of exactly the
same weight exists. In addition, it is easy to see that if X is maximal then X = e(v(X)),
thus for each maximal(maximum) edge weight clique X in Ga a maximal(maximum)
labelled isomorphism v(X) of exactly the same weight exists.

Fig. 4.10 shows an example of a labelled isomorphism and the correspondent clique
in a labelled association graph.

An effective heuristic for the weighted clique problem

Theorem 4 casts our tracking problem into a search for a maximal edge weighted clique
in a novel type of association graph. In order to perform this search we use the Dominant
Set framework [123]. Given an edge weighted graph G = (V,E, ω), a subset of vertices
S ⊆ V and two vertices i ∈ S and j /∈ S, the following function measures the coherence
between nodes j and i, with respect to the average coherence between node i and its
neighbors in S:

φS(i, j) = ω(ij)− 1

|S|
∑
k∈S

ω(ik) (4.16)

While overall weighted coherence between i and all the nodes in S is defined as:

wS(i) =

{
1 if |S| = 1∑

j∈S\{i} φS\{i}(i, j)wS\{i}(j) otherwise
(4.17)

Intuitively, wS(i) will be high if i is highly coherent with vertices in S. Given this measure
S ⊆ V is said to be dominant if the following conditions hold:

wS(i) > 0,∀i ∈ S and wS∪{i}(i) < 0, ∀i /∈ S (4.18)

The conditions above correspond to the two main properties of a cluster: namely inter-
nal homogeneity and external inhomogeneity. In the literature this framework has been
associated to clustering, nevertheless its use as an heuristic for the edge weighted clique
problem is justified by the fact that, when applied to unweighted graphs, the notion of a
dominant set is equivalent to the notion of a clique. Hence, a dominant set can be seen
as a generalization of cliques to graphs with weighted edges. Moreover there is another
compelling reason to prefer dominant sets over traditional techniques of clique search: in
fact their clustering property allows us to discard automatically nodes that are less coher-
ent with respect to the others. This is the case when a part of the model is missing or
occluded. For instance in Fig. 4.11 the face is out of the frame border, but candidates for
it are generated anyway by the back projection: in this situation an exact graph match-
ing would wrongly include in the result also the best of those candidates (green ellipse),
whereas dominant sets leave it out as its coherence is very low with respect to the other
parts in the result (red ellipses). It is worth noting that this selection does not require the
user to choose a threshold as it is implicit in the cluster properties.
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Pavan and Pelillo [123] have shown that dominant sets correspond to local maxi-
mizer over the standard simplex of the quadratic function f(x) = xtAx where A is the
weighted adjacency matrix of the graph (thus Aij = ω(i, j)). These maximizers can be
found by exploiting the convergence properties of the payoff monotonic replicator dy-
namic xi(t+ 1) = xi(t)(Ax(t))i/(x(t)tAx(t)) which is guaranteed to converge to a local
maximum when the association graph is undirected and, thus, the matrix A is symmetric
[126]. At convergence the value of the function f is a measure of the coherence of the
extracted set. This property is used to detect the absence of the object from the scene and
suspend the tracking. Finally, as the local maximizer found by the replicator dynamic is
not guaranteed to be the global maximum, we used an enumeration strategy similar to the
one presented in [135].

Figure 4.11: Example of the failing of an exact graph matching

Coherence Computation

Given the association graph Gat,0 between Gt and G0, our goal is to assign to each of
its edges (((ut, vt), (u0, v0)), ((wt, zt), (w0, z0))) ∈ Eat,0 a weight in the interval [0, 1]
which reflects the coherence between the two connected edge associations (see Fig. 4.10).
This measure ω : Eat,0 → [0, 1] is the sum of several components, each referring to a
specific property of the tracked object that should be consistent along the video sequence.
Since different and independent properties are considered, the mis-detection of any of
them (for example, due to occlusion or deformation) does not compromise the overall
coherence evaluation. In the present work we define three properties that are expected to
be consistent along the video sequence: color and structure w.r.t. the initial model, and
spatial similarity w.r.t. the previous frame.

Color-based consistency measured through cluster density ωd and mass ωm: let us
define the normalized density and the normalized mass respectively as:

ND (ut) =
D (ut)

max
∀vt∈Ct | l(ut)=l(vt)

D (vt)
(4.19)

NM (ut) =
M (ut)

max
∀vt∈Ct | l(ut)=l(vt)

M (vt)
(4.20)

then:
ωd = 4

√
ND (ut) ·ND (vt) ·ND (wt) ·ND (zt) (4.21)

ωm = 4
√
NM (ut) ·NM (vt) ·NM (wt) ·NM (zt) (4.22)
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The clusters are defined over the back-projection that measures the color similarity of the
image It compared to a color feature of the model: therefore the higher the density of
a cluster, the higher its color similarity to the model. The densities of the four clusters
are multiplied and not summed up in order to reinforce the overall Eat,0 color similarity.
Since small clusters might show very high ωd, the ωm component reinforces only theEat,0
that have strong masses.

Structure consistency measured through cluster sizes and inter-cluster distances ωsd:
this component reinforces the Eat,0 that shows structural similarity with the model, i.e.
cluster size variations which are supported by consistent inter-cluster distance variations.
Fig. 4.12 depicts three different cases. (a) is a typical structure size reduction (for ex-
ample, due to camera zoom out) that maintains consistency between area and distance
variations. On the other hand, (b) and (c) depict a structure deformation that is penalized
by ωsd: in both cases the distance variation between top and middle clusters is not sup-
ported by a similar variation in the size of the cluster; ωsd is formalized introducing the
linear area ratio and the distance ratio respectively as:

lar : Ct × C0 → [0,∞) , lar (ut, u0) =

√
R (ut)

R (u0)

dr : Et × E0 → [0,∞) , dr ((ut, vt) , (u0, v0)) =

∣∣∣P (ut)P (vt)
∣∣∣∣∣∣P (u0)P (v0)
∣∣∣

Structure consistency of Eat,0 is obtained when lar measures are similar to the re-
spective dr measures, i.e. their ratio is close to 1; the consistency measure can then be
obtained modeling the deviation with a Gaussian. To evenly stretch the ratio codomain
from [0,∞) to (−∞,∞), it is appropriate to compute the logarithm. Therefore, ωsd is
defined as follows:

ωsd =e
−(Q(u)−∆(u,v))2

2σ2 · e
−(Q(v)−∆(u,v))2

2σ2 ·

· e
−(Q(w)−∆(w,z))2

2σ2 · e
−(Q(z)−∆(w,z))2

2σ2 (4.23)

where Q (a) = log (lar (at, a0)) and ∆ (b, c) = log (dr ((bt, ct) , (b0, c0))). In analogy to
what is done with ωd and ωm, the four contributes of ωsd are multiplied together and not
summed up.

Structure consistency measured through cluster relative orientations ωa : this compo-
nent favors the maintenance of angular consistency of the Eat,0. Fig. 4.12 depicts two
cases: regardless of the overall rotation of one graph compared to the other, (d) maintains
the consistency of reciprocal angles of the segments, while (e) does not and is therefore
penalized by ωa. Let ϑ ((ut, vt) , (u0, v0)) = arccos P (ut)P (vt)×P (u0)P (v0)

‖P (ut)P (vt)‖·‖P (u0)P (v0)‖ as the angle

between the two segments connecting the centroids of the clusters, the value ωa is defined
as:
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Figure 4.12: Structure consistency measure with ωsd (a, b, c) and ωa (d, e), and spatial
similarity measure with ωo (f, g) and ωr (h, i). For the only sake of clarity and without
loss of generality, the G0 and Matcht−1 are made of only three nodes.

ωa =
exp {m · cos [ϑ ((ut, vt) , (u0, v0))− ϑ ((wt, zt) , (w0, z0))]}

exp {m}
(4.24)

This resembles the Von Mises distribution [109], that is often used to model angular dis-
tributions.
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Spatial similarity with the object at previous frame measured through overlap ωo and
rotation ωr: let us consider the graphMatcht−1, which represents the tracked object at the
previous frame, and the projection of its attributes over the graph G0; the similarity com-
ponents ωo and ωr favor the edges in Eat,0 that respectively maximize the area of overlap
and minimize the overall graph rotations with respect to Matcht−1. In case Matcht−1 is
partial/missing, these components will provide the contribution for the detected portion
of the object only. Fig. 4.12 (f,g,h,i) depicts some explanatory examples. By defining
Ov (ut, ut−1) = 2·R(ut∩ut−1)

R(ut)+R(ut−1)
, we have:

ωo = 4
√
Ov (ut, ut−1)Ov (vt, vt−1)Ov (wt, wt−1)Ov (zt, zt−1) (4.25)

ωr is defined to favor the minimization of the rotation of each single segment:

ωr =
exp {m · cos [ϑ ((ut, vt) , (ut−1, vt−1))]}

exp {m}
·

· exp {m · cos [ϑ ((wt, zt) , (wt−1, zt−1))]}
exp {m}

(4.26)

4.2.5 Experimental Results
To demonstrate the advantage that the proposed graph based tracking (GB from now)
offers with respect to existing techniques, we selected two tracking algorithms to compare
with: Camshift (CS from now) and a particle filtering tracking based on color features (PF
from now) similar to that proposed in [119]. For the sake of a fair comparison all three
approaches are applied to the same color space (4.7).

In contrast to our approach, CS and PF do not correlate the results on the different
feature models, that is, they do not exploit structure model. Therefore, we issue several
independent instances of the algorithm on each single feature of the same object model
used for the GB. They work well in standard conditions, but for the intrinsic limitation due
to the lack of a structure model, they are likely to fail in challenging conditions, especially
in the case of occlusions.

Our test bed consists of 3 videos and in one of them (Video 3) the tracking is applied
twice, on two different target objects1. Table 4.1 summarizes the main characteristics of
the benchmark videos.

In order to evaluate the performance of the approaches, we manually extracted the
ground truth with the help of the VIPER-GT tool 2, consisting of several oriented bound-
ing boxes, each containing a single part of the object to be tracked. Given the ground truth
and the output of the tracking algorithms, it is possible to automatically compute the per-
formance based on a set of metrics. Specifically, using the VIPER-PE tool 2, we obtained
true positives, false negatives, false positives and, from them, recall and precision; these
measures were extracted both at object and pixel level.

1Downloaded by AVSS 2007 dataset: ftp://motinas.elec.qmul.ac.uk/pub/multi face
2http://viper-toolkit.sourceforge.net/
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Video 1 Video 2 Video 3 - a and b
Generic info Outdoor, Outdoor, Indoor, static

moving cam, moving cam, cam, 3 occluding
1 person 2 persons people

Model F,T,P, F,T,P F,T, F,T,
LA,RA H,P LA,RA

Challenges Severe scale Scene cuts, severe
vars and total obj. disapp, occlusions,
rotations, scale vars, several

camouflaging rotations, color
background camouflaging bkg distractors

Table 4.1: Benchmark (F=face, T=torso, H=hands, P=pants, LA,RA= left/right arm).

The pixel-wise evaluation is shown in Fig. 4.2.5. In this case, we directly plot the
frame-by-frame F-measure defined as an aggregation of recall R and precision P : F =
2·R·P
R+P

. Pixel-wise recall and precision aggregate together the pixel measures performed
separately on each single model class. F = 1 could reveal either a perfect matching
(never happened in our tests), or the correct tracking suspension when the whole object is
absent from the scene. Conversely, F = 0 reveals either a total failure or the detection of
an object when this is not present.

Table 4.2 reports the summary of the pixel-wise and object-wise performance on the
benchmark videos. Differently from the pixel-wise evaluation that merges together the
pixel evaluations of all the tracked model classes, the object-wise evaluation gives a fairer
evaluation on the tracking of the single classes, regardless of their pixel areas (e.g. it
equally weights the tracking of a small part like a hand as the tracking of a bigger part
like a torso). Since video 1 does not contain severe occlusions, scene cuts or object
disappearances, the structural model in our approach does not significantly increase the
performance compared to CS or PF, with exception of frames 199 and 231, when the face
exits from the view: in fact, our approach correctly suspends the face tracking to resume it
when the face reappears, whereas the other approaches fail. On the other hand, the sharp
scene cuts (frames 156 and 231) and the full object disappearance (frame 156) of video 2
make the performance of CS and PF drop severely. Our approach instead is not affected
at all, suspending the tracking when necessary and resuming it as soon as the structure of
the model is found again.

Conversely, Video 3 is a static camera sequence but the persons occlude each other
several times and the scene is full of color distractors (e.g. the several skin-colored regions
of faces and arms, the two blue jeans, the dark t-shirt of the person on the right and the
dark cupboard on the back wall). In such conditions the use of a structural model is
determinant to have a successful tracking. As can be seen in sequence 3-a, our approach
takes a few frames to resume the tracking since it needs to locate the structure first.
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Figure 4.13: Pixel-level measure of performance. On top of each graph, a time line
represents the different challenges on the tracking. The legend is on the top of the figure.



4.2. Exploiting Structure to Match Articulated Objects 63

0 5

0,6

0,7

0,8

0,9

1

as
ur
e

Overall F‐measure over Video 3‐a

0

0,1

0,2

0,3

0,4

0,5

3 9 15 21 27 33 39 45 51 57 63 69 75 81 87 93 99 10
5

11
1

11
7

12
3

12
9

13
5

14
1

14
7

15
3

15
9

16
5

17
1

17
7

18
3

18
9

19
5

20
1

20
7

21
3

21
9

22
5

23
1

23
7

24
3

24
9

25
5

26
1

26
7

27
3

27
9

28
5

F‐
m
ea

Frame number

CAMSHIFT

PART. FILT.

Our approach

0 5

0,6

0,7

0,8

0,9

1

as
ur
e

Overall F‐measure over Video 3‐b

0

0,1

0,2

0,3

0,4

0,5

51 57 63 69 75 81 87 93 99 10
5

11
1

11
7

12
3

12
9

13
5

14
1

14
7

15
3

15
9

16
5

17
1

17
7

18
3

18
9

19
5

20
1

20
7

21
3

21
9

22
5

23
1

23
7

24
3

24
9

25
5

26
1

26
7

27
3

27
9

28
5

29
1

29
7

30
3

30
9

31
5

32
1

32
7

33
3

33
9

34
5

35
1

F‐
m
ea

Frame number

CAMSHIFT

PART. FILT.

Our approach

Figure 4.14: Pixel-level measure of performance. On top of each graph, a time line
represents the different challenges on the tracking. The legend is on the top of the figure.
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Object level Recall Precision F-measure
CS PF GB CS PF GB CS PF GB

Video 1 96,72% 96,41% 99,24% 87,66% 74,52% 95,31% 91,97% 84,07% 97,24%
Video 2 92,83% 95,99% 100,00% 66,86% 89,00% 97,20% 77,73% 92,36% 98,58%
Video 3-a 30,25% 72,46% 97,87% 12,94% 69,89% 89,58% 18,13% 71,15% 93,54%
Video 3-b 88,59% 86,28% 98,13% 91,55% 79,39% 87,65% 90,05% 82,69% 92,59%
Pixel level Recall Precision F-measure

CS PF GB CS PF GB CS PF GB
Video 1 84,54% 66,92% 85,71% 52,77% 49,80% 62,14% 64,09% 55,41% 71,16%
Video 2 53,20% 49,42% 84,87% 36,85% 64,64% 76,20% 43,34% 55,50% 79,78%
Video 3-a 7,93% 30,68% 65,26% 4,76% 36,93% 53,42% 5,67% 32,07% 57,67%
Video 3-b 65,06% 44,20% 71,95% 69,67% 74,30% 63,65% 64,66% 52,74% 66,90%

Table 4.2: Summary of the performance.

4.2.6 Concluding Remarks

The proposed joint feature-structure approach to object tracking in freely moving cam-
era scenarios has shown interesting and promising results. In particular the experimental
results show that the use of the structural approach give robustness to the tracking in the
presence of severe occlusions and distractors. The coherence measure, used for weighting
the association graph, is also used as a metric for the reliability of the tracking, allowing
it to be suspended in case the object is not found in the scene. Moreover, the exclusion of
low-coherence nodes from the extracted dominant set allows to reject false positive detec-
tions, often due to distractors. It is worth noting that the use of color features presented
in this work is not a limitation, since the framework is flexible and open to be extended to
different types of features. In fact, in future work we aim to include texture and edge fea-
tures as well. Regarding the graph matching step, other search heuristics can be plugged
into the framework in substitution of dominant sets. An extensive evaluation of the re-
sults obtained using different algorithms could be useful to choose the best performing
technique in a general scenario. It should be noted that the current implementation of the
dominant sets does not fit a real-time tracking as their extraction time for a single frame
can span from one to several seconds, whereas discrete matching techniques could be
much faster.

4.3 Using Hypergraphs to enforce Higher-Order Constraints

A problem commonly encountered in Computer Vision is the recovery of the transfor-
mation parameters between two affinely distorted images. In this section, we propose a
novel feature-based approach that casts the matching problem to the search of a maximum
clique over an auxiliary hypergraph. We also introduce a continuous-based characteriza-
tion of cliques in hypergraphs that allows us to handle the hard combinatorial problem
using tools from the continuous domain. Finally, we present experimental result and
comparisons with a state-of-the-art algorithm.
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4.3.1 Features and Parameter Estimation

The estimation of the transformation parameters between two affinely distorted images
is a problem that is commonly encountered in many areas of Computer Vision. We can
distinguish mainly two type of approaches: image-based and feature-based. The image-
based approaches try to find a transformation that maximizes the overlap between the two
images, usually by analyzing them in the frequency domain [25, 90, 105]. Conversely,
feature-based approaches are characterized by two phases: Initially a set of features is ex-
tracted from each image and they are then matched to estimate the affine transformation
[68, 102, 180, 179]. In the literature, we find several feature detectors [116] and descrip-
tors [115] that can be employed for the first phase. Among them the most widely used is
the Scale-Invariant Feature Transform (SIFT) [102]. After the two sets of features have
been extracted, a correspondence between them is established, and assuming that their co-
ordinates are related by a parametric transformation, the system of equations defined by
them is solved in the least square error sense to derive the transformation parameters. Un-
fortunately, the set of features found by real world detectors are not perfectly conserved
under affine transformation, and also descriptors can lead to false matching candidates.
Thereby, there is the need of filtering out wrong transformations and generally this process
is accomplished by means of a generalized Hough transform, where the model parameters
are quantized into bins, and each extracted correspondence between features votes for the
best transformation.

The method presented in this section falls in the class of feature-based approaches and
focuses particularly on the solution of the second phase. A drawback of using a clustering
mechanism to isolate the best affine transformation, is that the number of clusters is un-
known a priori and a quantization of the parameter space can lead to imprecise solutions
if the bins are too large, and to the dispersion of votes if they are too small. The solution
that we propose overcomes these problems by casting the feature matching problem for
the extraction of the affine transformation into a clique problem over an auxiliary hyper-
graph where the vertices correspond to feature associations and hyperedges correspond to
groups of four associations that agree, within a desired tolerance, to the same affine trans-
formation. In this way a maximum clique represents the largest group of features that
agree on the same transformation. Since the maximum clique problem on hypergraphs
is a relatively unexplored topic, a contribution is also to provide a continuous-based ap-
proach for it.

4.3.2 A Hypergraph Consistency Model

Before going into the details of the proposed approach, we need to introduce some nota-
tions and definitions regarding hypergraphs. Let A be a set and n a positive integer, with(
A
n

)
we denote the set of subsets of A of cardinality n. A k-uniform hypergraph, or sim-

ply a k-graph, is a pair G = (V,E), where V = {1, . . . , n} is a finite set of vertices and
E ⊆

(
V
k

)
is a set of hyperedges. Note that the concept of k-uniform hypergraph general-

izes that of undirected graphs, in fact graphs are in a one-to-one relation with 2-graphs.
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Figure 4.15: Example of auxiliary 4-graph for affine parameter estimation

The complement of a k-graph G is given by Ḡ = (V, Ē) where Ē =
(
V
k

)
\ E. A subset

of vertices C ⊆ V is called a clique of G if
(
C
k

)
⊆ E. A clique is said to be maximal

if it is not contained in any other clique, while it is called maximum if it has maximum
cardinality. We denote with Kkn a complete k-graph with n vertices.

Given two sets of Euclidean features F1 and F2 extracted from the images, we build an
auxiliary 4-graph G = (V,E) where vertices are associations from F1×F2 and edges are
groups of four correspondences that agree on the same affine transformation up to a given
tolerance. In this way, a set of image features that agree, up to the specified tolerance,
to the same affine transformation, form a clique of G. Thereby the problem of finding a
robust set of correspondences that can be used to estimate the transformation is reduced
to the problem of finding a clique on the auxiliary 4-graph with maximum cardinality.
The method adopted to decide whether a set of four correspondences e agrees on a single
affine transformation can be defined in many ways. Our solution consists in computing for
every association (x,y) ∈ e the affine transformation (A,b) obtained from the remaining
3 associations and calculating the transformation error on x given by ‖Ax + b− y‖2. If
the 4 distances are all below the desired threshold ε, then the hyperedge e is added to G.
Note that by using this method to select edges, the user defined tolerance parameter ε is
expressed in image units (e.g., pixels), which is arguably more intuitive than the parameter
quantization scheme used in the generalized Hough transforms.

In order to obtain the set of feature correspondences from which to estimate the affine
transformation we need to find the maximum clique in the auxiliary hypergraph G. How-
ever, in general a large maximal clique is enough. Clearly, due to the way in which G was
constructed, the associations in the clique will all agree on the found affine transformation
within an error of ε pixels, allowing for a very robust estimation of the parameters.

In Figure 4.15 we show a simplified auxiliary 4-graph generated from a very small set
of SIFT features extracted from the two affinely distorted images. Each vertex represents
a correspondence between features in the two images, i.e., node A1 represents a match
between feature A of the first fish and feature 1 of the second. Note that, while correspon-
dences B2, D4, F6, and H8 agree on the same transformation, the best group of coherent
matches is represented by the set A1, C3,D4,E5, and H8.
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4.3.3 Finding cliques in k-graphs

In 1965, Motzkin and Straus introduced a continuous characterization of cliques in graphs
[117]. This result was generalized to hypergraphs in [34], where it is shown that maximal
cliques of a k-graph G are in one-to-one correspondence with the local solutions of the
following program:

min
x∈∆

LḠ(x) +
1

k(k − 1)

n∑
i=1

xki (4.27)

where ∆ = {x ∈ Rn :
∑n

i=1 xi = 1, x ≥ 0} is the standard simplex andLḠ(x) =
∑

e∈Ē
∏

i∈e xi
is the Lagrangian of Ḡ. More precisely, x is a local/global solution of (4.27) if and only
if it is the characteristic vector of a maximal/maximum clique C of G, i.e. xi = |C|−1 for
all i ∈ C and 0 elsewhere.

This result permits to cast clique problems on k-graphs in a continuous optimization
setting. To solve Program 4.27 we turn it into an equivalent maximization of a homoge-
neous polynomial P with nonnegative coefficients over the standard simplex, where

P (x) =
1

k(k − 1)

( n∑
i=1

xi

)k

−
n∑
i=1

xki

− LḠ(x).

The function is then maximized using the discrete dynamics xj ← αxj∂jP (x), which, by
means of the Baum-Eagon theorem [24], can be shown to be a growth transformation for
P in ∆. Here, ∂j denotes partial derivative with respect to xj and α is the normalizing
constant that projects x on ∆. By unfolding the partial derivative, we obtain

xj ← αxj

[
1− xk−1

j

k − 1
− ∂jLḠ(x)

]
. (4.28)

Since in our experiments |E| � |Ē|, the computation of ∂jLḠ(x) is expensive, how-
ever, we can express this partial derivative in terms of G using the fact that ∂jLḠ(x) =
∂jLKkn(x)− ∂jLG(x). Restricting our attention to 4-graphs, we have

∂jLK4
n
(x) =

(1− xj)3

6
− 1− xj

2

n∑
i=1
i 6=j

x2
i −

1

3

n∑
i=1
i 6=j

x3
i .

Since the stable stationary points of the discrete dynamics (4.28) are in one-to-one
correspondence with characteristic vectors of maximal cliques of G, they can be used as
heuristic for the maximum clique problem on k-graphs, giving an approach with complex-
ityO(m(|V |+ |E|)) wherem is the average number of iteration required by the dynamics
for convergence.
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4.3.4 Experimental results

In order to assess the precision improvement of our approach over current techniques, we
compared our algorithm with the Hough transform approach proposed by Lowe in [102]
for clustering pose votes. The experiments were conducted on the fishes database used in
[90].

Since Lowe’s method is more robust with deformations that preserve the aspect ra-
tio, we evaluated the approaches on both aspect ratio preserving as well as aspect ratio
deforming transformations. We run the algorithms on 20 randomly selected images un-
der affine transformations at varying scales, rotations, aspect ratios and translations. We
used the SIFT algorithm to extract features both from the original as well as the deformed
images. The set of feasible associations, and hence, the vertex set of the auxiliary hy-
pergraph, was generated by keeping the 100 best associations ranked according to their
Euclidean distance in the feature space. For Lowe’s algorithm we used the modified ver-
sion of the best-bin-first algorithm as suggested in his paper.

We performed tests on transformations with scaling factors varying from 0.5 to 2, ro-
tation angles from 0.5 to 3 radians, aspect ratios from 0.8 to 1.3 and random translations.
Further, to assess the effect of the tolerance ε on our approach, we iterated the set of
experiments with values of ε varying from 1 to 5 pixels. The quality of the affine trans-
formations were evaluated by calculating the χ2 distance between the true parameters and
the estimated ones.

In Figures 4.16 the performance of the two approaches are compared. Figures 4.16(a)
and 4.16(b) refer to aspect ratio preserving experiments, and plot the average error at
varying scale and rotation respectively. These were calculated averaging over all the
values of the other aspect preserving parameters and all the images. Conversely, Figure
4.16(c) presents the error at varying aspect ratio, averaging this time over all parameters
and images. The performance of our approach is roughly one order of magnitude better
than that obtained using the Hough transform. This is mainly because our hypergraph-
based formulation does not need to define bins, or to select good initial matches, as it is
able to capture the largest set of coherent associations in a more accurate way.

In Figure 4.17 we show how the performance of our approach varies with respect to
the parameter ε. We can see that the algorithm is robust with respect to this parameter, in
fact the accuracy obtained by using a tolerance of 3, 4 or 5 pixels does not change much
and even with very relaxed constraints it is able to find highly coherent cliques. By the
converse, setting very small values of ε is not only unnecessary, but also counterproduc-
tive: By setting a transformation constraint of 2 pixels the algorithm begins to reduce the
number of hyperedges in G, yielding smaller cliques and, thus a less reliable estimation
of the transformation parameters.

To illustrate how the differences in the χ2 measure impact the estimation of the affine
transformation, we show some examples in Table 4.3. Each row presents a different ex-
ample, the first column shows the original fish, the second displays the target fish (black)
and the original fish distorted with the transformation estimated using Lowe’s approach
(yellow). Finally, the last column shows the target fish (black) and the original fish dis-



4.3. Using Hypergraphs to enforce Higher-Order Constraints 69

0.001

0.01

0.1

1

10

100

0.5 0.75 1 1.25 1.5 1.75 2

χ
2

Hypergraph
Hough Transform

(a) Scale

0.001

0.01

0.1

1

10

100

0.5 1 1.5 2 2.5 3

Hypergraph
Hough Transform

(b) Rotation

0.001

0.01

0.1

1

10

100

0.8 0.9 1 1.1 1.2 1.3

Hypergraph
Hough Transform

(c) Aspect Ratio

Figure 4.16: Performace of the algorithms



70 4. Modeling Higher-Order Problems

0.001
0.01
0.1

1
10

100

1 2 3 4 5

χ
2

Figure 4.17: Sensitivity to ε

torted with the transformation estimated using our approach (yellow). From the images
we can see that the estimation obtained by our method is indistinguishable from the tar-
get image, while the performances obtained using the Hough transform deviates from the
target images significantly. Note that in the last two rows the same fish was transformed
using respectively an aspect-ratio invariant transformation and an affine transformation
that modified the aspect-ratio. As mentioned before, the solution proposed by Lowe is
less robust with the latter transformation and, in fact, the error in the estimation of the last
transformation is fairly high, while our approach performs very well in both cases.

4.3.5 Concluding Remarks
In this section we presented a new feature-based approach for the estimation of the trans-
formation parameters between affinely distorted images. This is done by casting the prob-
lem to the search for a maximum clique in an auxiliary hypergraph, and then turning this
into a continuous optimization problem over the standard simplex. Finally, we compared
our approach with a state-of-the-art algorithm on a database of affinely distorted fish im-
ages. The tests show that our approach outperforms the competition in terms of precision
of the estimation.
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Original Hough transform Hypergraphs

Table 4.3: Some example results.
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5
Applications to 3D Surface

Processing

In this chapter we explore the applications of our framework in the field of the processing
of 3D data coming from structured light scanners. Specifically, in section 5.1 we present
a novel technique for simultaneous coarse and fine surface registration. In section 5.2 an
inlier selection scheme based on a special purpose association graph is adopted in order
to find the best symmetry plane in a point cloud. Finally section 5.3 is dedicated to a
novel phase shift pattern strategy that allows to obtain an unambiguous pixel coding with
a minimal number of structured light projections.

5.1 Fine Surface Registration without Initial Motion Es-
timation

Surface registration is a fundamental step in the reconstruction of three-dimensional ob-
jects. This is typically a two step process where an initial coarse motion estimation is
followed by a refinement. Most coarse registration algorithms exploit some local point
descriptor that is intrinsic to the shape and does not depend on the relative position of
the surfaces. By contrast, refinement techniques iteratively minimize a distance function
measured between pairs of selected neighboring points and are thus strongly dependent
on initial alignment. In this section we propose a novel technique that allows to obtain a
fine surface registration in a single step, without the need of an initial motion estimation.
The main idea of our approach is to cast the selection of correspondences between points
on the surfaces in a game-theoretic framework, where a natural selection process allows
mating points that satisfy a mutual rigidity constraint to thrive, eliminating all the other
correspondences. This process yields a very robust inlier selection scheme that does not
depend on any particular technique for selecting the initial strategies as it relies only on the
global geometric compatibility between correspondences. The practical effectiveness of
the proposed approach is confirmed by an extensive set of experiments and comparisons
with state-of-the-art techniques.
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5.1.1 Coarse and Fine Registration Techniques

The distinction between coarse and fine surface registration techniques is mainly related to
the different strategies adopted to find pairs of mating points to be used for the estimation
of the rigid transformation. Almost invariably, fine registration algorithms exploit an
initial guess in order to constrain the search area for compatible mates and minimize
the risk of selecting outliers. On the other hand, coarse techniques, which cannot rely
on any motion estimation, must adopt a mating strategy based on the similarity between
surface-point descriptors or resort to random selection schemes. The tension between
the precision required for fine alignment versus the recall needed for an initial motion
estimation stands as the main hurdle to the unification of such approaches.

The large majority of currently used fine alignment methods are modifications to the
original ICP proposed by Zhang [189] and Besl and McKay [26]. These variants generally
differ in the strategies used to sample points from the surfaces, reject incompatible pairs,
or measure error. In general, the precision and convergence speed of these techniques
is highly data-dependent and very sensitive to the fine-tuning of the model parameters.
Several approaches that combine these variants have been proposed in the literature in
order to overcome these limitations (see [136] for a comparative review). Some recent
variants avoid hard culling by assigning a probability to each candidate pair by mean
of evolutionary techniques [101] or Expectation Maximization [70]. ICP variants, being
iterative algorithms based on local, step-by-step decisions, are very susceptible to the
presence of local minima. Other fine registration methods include the well-known method
by Chen [41] and signed distance fields matching [111].

Coarse registration techniques can be roughly classified in methods that exploit some
global property of the surface, such as PCA [48] or Algebraic Surface Model [156], and
methods that use some 3D feature descriptor to find plausible candidates pairs over the
model and data surfaces. Global techniques are generally very sensitive to occlusion.
Feature-based approaches are more precise and can align surfaces that exhibit only partial
overlap. Nevertheless, the unavoidable localization error of the feature points prevents
them from obtaining accuracies on par with fine registration methods. Among the most
successful descriptors are Point Signatures [44] and Spin Images [89]. A completely
different coarse registration approach is the RANSAC-based DARCES [39], which is
based on the random extraction of sets of mates from the surfaces and their validation
based on the accuracy of the estimated transformation. A recent and extensive review of
all the different methods can be found in [138].

Regardless of the criteria used to obtain pairs of mating points, the subsequent step
in surface registration is to search for the rigid transformation that minimizes the squared
distance between them. Since many mature techniques are available to do this (for in-
stance [80]), Our effort is toward the matching step itself: specifically by proposing a
novel game-theoretic approach that is able to deal equally well with both coarse and fine
registration scenarios.
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5.1.2 Game-Theoretic Surface Registration

We are looking for a robust set of inliers for correspondence selection from which we can
estimate the rigid transformation. Most of the currently adopted matching schemes oper-
ate on a local level, and global information comes only as an afterthought by checking the
quality of the candidate matches with respect to the registration error obtained. The ap-
proach we are proposing, on the other hand, brings global information into the matching
process by favoring sets of point-associations that are mutually compatible with a single
rigid transformation. Fundamental to our approach is the fact that requiring the compat-
ibility to a single transformation is equivalent to requiring that there exists a compatible
transformation for each pair of mates. Following [161, 12], we model the mating process
in a game-theoretic framework, where two players extracted from a large population se-
lect a pair of corresponding points from two surfaces to be registered with one another.
The player then receives a payoff from the other players proportional to how compatible
his pairings are with respect to the other player’s choice, where the compatibility derives
from the existence of a common rigid transformation. More explicitly, if there exists a
rigid transformation that moves both his point and the other player’s point close to the
corresponding mates, then both players receive a high payoff, otherwise the payoff will
be low. Clearly, it is in each player’s interest to pick correspondences that are compatible
with the mates the other players are likely to choose. In general, as the game is repeated,
players will adapt their behavior to prefer matings that yield larger payoffs, driving all
inconsistent hypotheses to extinction, and settling for an equilibrium where the pool of
mates from which the players are still actively selecting their associations forms a cohe-
sive set with high mutual support. Within this formulation, the solutions of the matching
problem correspond to evolutionary stable states (ESS’s), a robust population-based gen-
eralization of the notion of a Nash equilibrium.

In a sense, this mating process can be seen as a contextual voting system, where each
time the game is repeated the previous selections of the other players affect the future
vote of each player in an attempt to reach consensus. This way the evolving context
brings global information into the selection process.

5.1.3 Non-cooperative Games

Originated in the early 40’s, Game Theory was an attempt to formalize a system character-
ized by the actions of entities with competing objectives, which is thus hard to characterize
with a single objective function [173]. According to this view, the emphasis shifts from
the search of a local optimum to the definition of equilibria between opposing forces. In
this setting multiple players have at their disposal a set of strategies and their goal is to
maximize a payoff that depends also on the strategies adopted by other players. Evolu-
tionary game theory originated in the early 70’s as an attempt to apply the principles and
tools of game theory to biological contexts.

Evolutionary game theory considers an idealized scenario where pairs of individuals



76 5. Applications to 3D Surface Processing

a1

a2

b1

b2

c1

c2

Figure 5.1: Example of mating strategies

are repeatedly drawn at random from a large population to play a two-player game. In
contrast to traditional game-theoretic models, players are not supposed to behave ratio-
nally, but rather they act according to a pre-programmed behavior, or mixed strategy. It is
supposed that some selection process operates over time on the distribution of behaviors
favoring players that receive higher payoffs.

More formally, let O = {1, · · · , n} be the set of available strategies (pure strategies
in the language of game theory) and, C = (cij) be a matrix specifying the payoff that
an individual playing strategy i receives against someone playing strategy j. A mixed
strategy is a probability distribution x = (x1, . . . , xn)T over the available strategies O.
Clearly, mixed strategies are constrained to lie in the n-dimensional standard simplex

∆n =

{
x ∈ IRn : xi ≥ 0 for all i ∈ 1 . . . n,

n∑
i=1

xi = 1

}
.

The support of a mixed strategy x ∈ ∆, denoted by σ(x), is defined as the set of ele-
ments chosen with non-zero probability: σ(x) = {i ∈ O | xi > 0}. The expected payoff
received by a player choosing element i when playing against a player adopting a mixed
strategy x is (Cx)i =

∑
j cijxj , hence the expected payoff received by adopting the mixed

strategy y against x is yTCx. The best replies against mixed strategy x is the set of mixed
strategies

β(x) = {y ∈ ∆ | yTCx = max
z

(zTCx)} .

A strategy x is said to be a Nash equilibrium if it is the best reply to itself, i.e., ∀y ∈
∆, xTCx ≥ yTCx . This implies that ∀i ∈ σ(x) we have (Cx)i = xTCx; that is, the
payoff of every strategy in the support of x is constant.

A strategy x is said to be an evolutionary stable strategy (ESS) if it is a Nash equilib-
rium and

∀y ∈ ∆ xTCx = yTCx⇒ xTCy > yTCy . (5.1)

This condition guarantees that any deviation from the stable strategies does not pay.
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5.1.4 Mating Strategies and Payoffs
Central to this framework is the definition of a mating game, which implies the definition
of the strategies available to the players and of the payoffs related to these strategies.
Given a set of model points M and a set of data points D we call a mating strategy any
pair (a1, a2) with a1 ∈ M and a2 ∈ D. We call the set of all the mating strategies S.
In principle, all the model and data points could be used to build the mating strategies
set, thus giving S = M × D. In practice, however, we adopt some heuristics that allow
us to obtain good alignments with a much smaller set. Once S has been selected, our
goal becomes to extract from it the largest subset that includes only correctly matched
points: that is, strategies that associate a point in the model surface with the same point
in the data surface. To enforce this we assign to each pair of mating strategies a payoff
that is inversely proportional to a measure of violation of the rigidity constraint. This
violation can be expressed in several ways, but since all the rigid transformations preserve
Euclidean distances, we choose this property to express the coherence between mating
strategies.

Definition 1. Given a function π : S × S → R+, we call it a rigidity-enforcing payoff
function if for any ((a1, a2), (b1, b2)) and ((c1, c2), (d1, d2)) ∈ S × S we have that ||a1 −
b1|− |a2− b2|| > ||c1−d1|− |c2−d2|| implies π((a1, a2), (b1, b2)) < π((c1, c2), (d1, d2)).
In addition, if π((a1, a2), (b1, b2)) = π((b1, b2), (a1, a2)), π is said to be symmetric.

A rigidity-enforcing payoff function is a function that is monotonically decreasing
with the absolute difference of the Euclidean distances between respectively the model
and data points of the mating strategies compared. In other words, given two mating
strategies, their payoff should be high if the distance between the model points is equal to
the distance between the data points and it should decrease as the difference between such
distances increases. In the example of Figure 5.1 mating strategies (a1, a2) and (b1, b2)
are coherent with respect to the rigidity constraint, whereas (b1, b2) and (c1, c2) are not,
thus it is expected that π((a1, a2), (b1, b2)) > π((b1, b2), (c1, c2)).

Further, if we want mating to be one-to-one, we must put an additional constraint on
the payoffs, namely that mates sharing a point are incompatible.

Definition 2. A rigidity-enforcing payoff function π is said to be one-to-one if a1 = b1 or
a2 = b2 implies π((a1, a2), (b1, b2)) = 0.

Given a set of mating strategies S and an enumeration O = {1, ..., |S|} over it, a
mating game is a non-cooperative game where the population is defined as a vector x ∈
∆|S| and the payoff matrix C = (cij) is defined as cij = π(si, sj), where si, sj ∈ S
are enumerated by O and π is a symmetric one-to-one rigidity-enforcing payoff function.
Intuitively, xi accounts for the percentage of the population that plays the i-th mating
strategy. By using a symmetric one-to-one payoff function in a mating game we are
guaranteed that ESS’s will not include mates sharing either model or data nodes. In
fact, given a non-negative payoff function, a stable state cannot have in its support a
pairs of strategies with payoff 0 [12]. Moreover, a mating game exhibits some additional
interesting properties.
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Figure 5.2: An example of the evolutionary process. Four points are sampled from
the two surfaces and a total of six mating strategies are selected as initial hypotheses.
The matrix Π shows the compatibilities between pairs of mating strategies according
to a one-to-one rigidity-enforcing payoff function. Each mating strategy got zero pay-
off with itself and with strategies that share the same source or destination point (i.e.,
π((b1, b2), (c1, b2)) = 0). Strategies that are coherent with respect to rigid transformation
exhibit high payoff values (i.e., π((a1, a2), (b1, b2)) = 1 and π((a1, a2), (d1, d2)) = 0.9)),
while less compatible pairs get lower scores (i.e., π((a1, a2), (c1, c2)) = 0.1). Initially (at
T=0) the population is set to the barycenter of the simplex and slightly perturbed. After
just one iteration, (c1, b2) and (c1, c2) have lost a significant amount of support, while
(d1, c2) and (d1, d2) are still played by a sizable amount of population. After ten itera-
tions (T=10) (d1, d2) has finally prevailed over (d1, c2) (note that the two are mutually
exclusive). Note that in the final population ((a1, a2), (b1, b2)) have a higher support than
(d1, d2) since they are a little more coherent with respect to rigidity.

Theorem 5. Given a set of model points M , a set of data points D = TM that are exact
rigid transformations of the points in M , and a set of mating strategies S ⊆M ×D with
(m,Tm) ∈ S for all m ∈M , and a mating game over them with a payoff function π, the
vector x̂ ∈ ∆|S| defined as

x̂i =

{
1/|M | if si = (m,Tm) for some m ∈M ;

0 otherwise,

is an ESS and obtains the global maximum average payoff.

Sketch of proof. Let Ŝ ⊆ S be the set of mates that match a point to its copy, clearly for all
s, q ∈ Ŝ, s 6= q we have π(s, q) = 1, while for s ∈ Ŝ and q ∈ S \ Ŝ, we have π(s, q) < 1.
For all s ∈ Ŝ we have that π(x̂, x̂) = |M |−1

|M | while, since π is one-to-one, for any q ∈ S \ Ŝ
there must be at least one sq ∈ Ŝ with π(q, sq) = 0, thus π(q, x̂) < |M |−1

|M | , thus x̂ is a
Nash equilibrium. Further, since the inequality is strict, it is an ESS. Finally, x̂ is a global
maximizer of π since |M |−1

|M | is the maximum value that a one-to-one normalized payoff
function over |M | points can attain.

This theorem states that when matching a surface with a rigidly transformed copy of
itself the optimal solution (i.e., the population configuration that selects all the mating
strategies assigning each point to its copy) is the stable state of maximum payoff. Since
well established algorithms to evolve a population to such a state exist, this provides us
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with an effective mating approach. Clearly, aligning a surface to an identical copy is not
very useful in practical scenarios, where occlusion and measurement noise come into play.
While the quality of the solution in presence of noise will be assessed experimentally, we
can give some theoretical results regarding occlusions.

Theorem 6. LetM be a set of points withMa ⊆M andD = TMb a rigid transformation
of Mb ⊆M such that |Ma∩Mb| ≥ 3, and S ⊆Ma×D be a set of mating strategies over
Ma and D with (m,Tm) ∈ S for all m ∈Ma ∩Mb. Further, assume that the points that
are not in the overlap, that is the points inEa = Ma\(Ma∩Mb) andEb = Mb\(Ma∩Mb),
are sufficiently far away such that for every s ∈ S, s = (m,Tm) with m ∈Ma ∩Mb and
every q ∈ S, q = (ma, Tmb) with ma ∈ Ea and mb ∈ Eb, we have π(q, s) < |Ma∩Mb|−1

|Ma∩Mb|
,

then, the vector x̂ ∈ ∆|S| defined as

x̂i =

{
1/|M | if si = (m,Tm) for some m ∈Ma ∩Mb ;

0 otherwise,

is an ESS.

Sketch of proof. We have π(x̂, x̂) = |Ma∩Mb|−1
|Ma∩Mb|

. Let q ∈ S be a strategy not in the support

of x̂, then, either it maps a point in Ma or Mb, thus receiving payoff π(q, x̂) < |Ma∩Mb|−1
|Ma∩Mb|

because of the one-to-one condition, or it maps a point in Ea to a point in Eb, receiving,
by hypothesis, a payoff π(q, x̂) < |Ma∩Mb|−1

|Ma∩Mb|
. Hence, x̂ is an ESS.

The result of theorem 6 is slightly weaker than theorem 5, as the face of the simplex
corresponding to the “correct” overlap, while being an evolutionary stable state, is not
guaranteed to obtain the overall highest average payoff. This is not a limitation of the
framework as this weakening is actually due to the very nature of the alignment problem
itself. The inability to guarantee the maximality of the average payoff is due to the fact that
the original object (M ) could contain large areas outside the overlapping subset that are
perfectly identical. Further, objects that are able to slide (for instance a plane or a sphere)
could allow to move between different mixed strategies without penalty. These situations
cannot be addressed by any algorithm without relying on supplementary information.
However, in practice, they are quite unlikely extreme cases. In the experimental section
we will show that our approach can effectively register even quasi-planar surfaces.

5.1.5 Building the Mating Strategies Set
From a theoretical point of view the total number of mating strategies in a registration
problem is |M ×D|, which can be very large even with medium-sized surfaces. In prac-
tice it is possible to apply several heuristics to select a lower number of candidates while
still achieving good alignment results. Since the proposed approach is very selective it is
not necessary to use all the model points: even a highly aggressive subsampling does not
affect the registration quality, provided that some points in the overlapping region between
model and data are retained. In fact, our approach does not try to find a good registra-
tion by means of a vote counting validation; instead it takes quite the opposite route, by



80 5. Applications to 3D Surface Processing

self-validating the selected mixed strategy exploiting its internal coherence. Once the
model points have been subsampled, the mating strategies set could be created by pairing
each one of them with all the data points. Again, while this approach would work, it is
somewhat wasteful since most of the mating strategies could be dropped on the basis of
some local property of the surface surrounding the model and data point. For instance, the
mean or Gaussian curvatures can be compared or some surface feature can be calculated
in order to select only meaningful pairs. In the experimental section we will suggest an
effective selection strategy.

Once a proper set of mates has been chosen, a payoff function is needed. In principle,
any proper one-to-one symmetric rigidity-enforcing payoff function could be used to cap-
ture the coherence between pairs of mating strategies. From a practical point of view it
is often advisable to use bounded functions, usually in the interval ]0, 1]. Very good can-
didates are negative exponentiations of the difference between the distances of the model
and data points or the ratio between the min and the max distance. In general, the steeper
is the function, the more selective is the choice of the inlier mating strategies.

5.1.6 Evolving to an Optimal Solution

The search for a stable state is performed by simulating the evolution of a natural selection
process. Under very loose conditions, any dynamics that respect the payoffs is guaranteed
to converge to Nash equilibria [173] and (hopefully) to ESS’s; for this reason, the choice
of an actual selection process is not crucial and can be driven mostly by considerations
of efficiency and simplicity. We chose to use the replicator dynamics, a well-known
formalization of the selection process governed by the following equation

xi(t+ 1) = xi(t)
(Cx(t))i

x(t)tCx(t)
(5.2)

where xi is the i-th element of the population and C the payoff matrix. A simple but
complete example of the evolution process is shown in Figure 5.2.

Once the population has reached a local maximum, all the non-extincted mating strate-
gies can be used to calculate the rigid transformation between data and model surfaces.
A clear advantage of our approach is that in the final mixed strategy each pair of points
is weighted proportionally to its degree of participation in the equilibrium (see Figure
5.2). This is similar in spirit to the concept of compatibility between mates adopted by
a number of fine registration algorithms, yet it does not depend at all on supplementary
information such as surface normals or texture color. This compatibility can be used to
weigh each pair when calculating the best surface alignment by using a weighted least
squares fitting technique [80].
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Figure 5.3: Comparison of coarse registration techniques using real range data.

5.1.7 Experimental Results

Since the proposed technique can be used independently for coarse and fine registration
we evaluated its performance with respect to state-of-the-art algorithms of both fields.
All the experiments have been executed on two sets of data: range images obtained from
real-world scanners and synthetically-generated surfaces. For the first set of experiments
we selected models from publicly available databases; specifically the Bunny [165], the
Armadillo [96] and the Dragon [53] from the Stanford 3D scanning repository. To fur-
ther assess the shortcomings of the various approaches, we used three synthetic surfaces
representative of as many classes of objects: a wave surface, a fractal landscape and an
incised plane (see Figure 5.4).

In all the experiments the set of mating strategies was obtained using the same se-
lection technique. We used the MeshDOG [186] 3D feature detector to find interesting
points in both the model and the data range images. A descriptor was associated to each
point of interest; after considering both the MeshHOG and the Spin Image descriptors,
we preferred the latter as we found it to be more distinctive. Then a set of candidate
source points was subsampled from the model and for each source point we created 5
mating strategies by connecting it to the 5 points with the most compatible descriptors.
The rigidity-enforcing payoff function chosen was

π((a1, b1), (a2, b2)) =
min(|a1 − a2|, |b1 − b2|)
max(|a1 − a2|, |b1 − b2|)

(5.3)

where a1, a2, b1 and b2 are respectively the two model (source) and data (destination)
points in the compared mating strategies.
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Figure 5.4: Comparison of coarse registration techniques using synthetic objects.

5.1.8 Coarse Registration
We compared our method with two widely used coarse registration methods: RANSAC-
based DARCES [39] and Spin Images [89]. DARCES has been implemented according
to the original paper, while we used the Spin Images variant suggested in [37] to obtain a
higher accuracy. In Figure 5.3 we show the results obtained using the set of surfaces from
the Stanford repository. Each test was made under different conditions of noise, occlusion
and subsampling and was run for a total of 12 times over the set of range images. For
each set of experiments we plot the RMS error and the estimation errors of the translation
vector and rotation angle. In order to obtain a ground truth for precise error measurement
we generated the data points by adding Gaussian noise, and random occlusion and motion
to the model points. The surfaces used for these experiments were obtained from laser
scans of objects of the size of hundreds of millimeters with a resolution of about one tenth
of millimeter.

The first row of Figure 5.3 plots the sensitivity to Gaussian noise exhibited by the
different techniques. The noise level is expressed as the ratio between the standard devi-
ation of the noise and the average edge length. While DARCES is not very sensitive to
noise, it delivers by far the worst overall results. By contrast, Spin Images give fairly good
results at low noise levels, but their performance worsens quickly as noise is increased.
The proposed approach, on the other hand, exhibits errors that are consistently an order
of magnitude below Spin Images. In the second row of plots we show the effect of oc-
clusion. This set of experiments was performed with a constant level of Gaussian noise
with standard deviation equal to 12% of the average edge length. The results show that
the tested techniques are substantially insensitive to occlusions, our technique constantly
outperforming the other approaches. Finally, the third row shows the effect of subsam-
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pling. Our game-theoretical registration method outperforms the other approaches. Note
that the Spin Images based technique was never able to find a correct transformation when
provided with less than 300 samples.

Figure 5.4 plots the alignment results on the three synthetic surfaces. Each set of ex-
periments was conducted over a single type of surface (displayed at the beginning of the
row) with 12 runs for each technique and noise level. Since these objects are synthetic,
errors on translation are expressed in edge units. The “wave” test object (first row) offers
a regular surface with few outstanding features and high redundancy of the pattern; in this

Figure 5.5: Examples of surface registration obtained respectively with RANSAC-based
DARCES (first column), Spin Images (second column), and our game-theoretic registra-
tion technique (third column)
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scenario the Spin Images technique is affected by the inability to discern among a large
amount of similar descriptors, thus it performs poorly at all noise levels. Conversely, the
geometric-based consensus exploited by our registration approach allows for a more pre-
cise selection and thus a more accurate registration. The “fractal landscape” test object
(second row) is an irregular surface that allows to produce very distinctive feature descrip-
tors. In fact with low levels of noise both Spin Images and our technique perform very
well, albeit as noise increases we achieve better results. Finally, the “incised plane” object
(third row) is a big flat domain with a small cross just half an edge deep. This represents
a very difficult target for most registration techniques, since very few and faint features
are available, while a large planar surface dominates the landscape. Despite the lack of
good detectable points, our technique is able to register the surface as long as noise is
minimal. With higher noise levels the bumped cross fades and becomes almost indistin-
guishable from the plane itself. Note that DARCES achieves mediocre results under all
tested conditions.

5.1.9 Fine Registration
The performance of our approach with respect to fine registration has been studied in a
separate batch of experiments. The goal of this test is two-fold: we want to evaluate our
quality as a complete alignment tool and, at the same time, find the breaking point for
traditional fine registration techniques. The method we used for comparison is a best-
of-breed ICP variant, similar to the one proposed in [165]. Point selection is based on
Normal Space Sampling [136], and point-surface normal shooting is adopted for finding
correspondences; distant mates or candidates with back-facing normals are rejected. To
minimize the influence of incorrect normal estimates, matings established on the bound-
ary of the mesh are also removed. The resulting pairings are weighted with a coefficient
based on compatibility of normals, and finally a 5%-trimming is used. Each test was
performed by applying a random rotation and translation to different range images se-
lected from the Stanford 3D scanning repository. Additionally, each range image was
perturbed with a constant level of Gaussian noise with standard deviation equal to 12%
of the average edge length. We completed 100 independent tests and for each of them we
measured the initial RMS error between the ground-truth corresponding points and the
resulting error after performing a full round of ICP (ICP) and a single run of our regis-
tration method (GTR). In addition we applied a step of ICP to the registration obtained
with our method (GTR + ICP) in order to assess how much the solution extracted using
our approach was further refinable. A scatter plot of the obtained errors before and after
registration is shown in Figure 5.6. We observe that ICP reaches its breaking point quite
early; in fact with an initial error above the threshold of about 20mm it is unable to find
a correct registration. By contrast GTR is able to obtain excellent alignment regardless of
the initial motion perturbation. Finally, applying ICP to GTR decreases the RMS only by
a very small amount.

While we did not carry out any formal benchmark of the execution time required by
our technique, we always observed a very fast convergence of the replicator dynamics,
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Figure 5.6: Comparison of fine registration accuracies (the green dashed line represents
y=x). Graph best viewed in color.

even with several thousands of mating strategies. In the worst scenarios our unoptimized
C++ implementation of the framework required less than 2 seconds (on a typical desktop
PC) to evolve a population to a stable state.

5.1.10 Concluding Remarks

In this section we introduced a novel game-theoretic technique that solves both the coarse
and fine surface registration problems at once. Our approach has several advantages over
the state-of-the-art: it does not require any kind of initial motion estimation, as it does not
rely on spatial relationships between model and data points, it does not need any threshold
as it produces a continuous compatibility weight on the selected point matches that can
be used directly for alignment estimation, and, differently from most inlier selection tech-
niques, it is not affected by a high number of outliers since it operates an explicit search
for good inliers rather than using random selection or vote counting for validation. From
a theoretical point of view, a sound correspondence between optimal alignments and evo-
lutionary equilibria has been presented and a wide range of experiments validated both
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the robustness of the approach with respect to noise and its performance in comparison
with other well-known techniques.

5.2 Consensus Graph for Symmetry Plane Estimation
Finding the most relevant symmetry planes for an object is a key step in many computer
vision and object recognition tasks. In fact such information can be effectively used as a
starting point for object segmentation, noise reduction, alignment and recognition. Some
of these applications are strongly affected by the accuracy of symmetry planes estimation,
thus the use of a technique that is both accurate and robust to noise is critical. In this
section we introduce a new weighted association graph which relates the main symmetry
planes of 3D objects to large sets of tightly coupled vertices. This technique allows us
to cast symmetry detection to a classical pairwise clustering problem, which we solve
using the very effective Dominant Sets framework. The improvement of our approach
over other well known techniques is shown with several tests over both synthetic data and
sampled point clouds.

5.2.1 Introduction
Among all the features that can be extracted from a 2D image or 3D object symmetry is
one of the most important. For instance symmetry axes can be used to set a canonical
orientation, which in turn can be useful for matching different objects, computing partial
registration of surfaces or simply to offer a comparable point of view in visual application.
Other applications exploit symmetries as a descriptor for searching in large databases or
as a starting point for locating other features. In addition partial local symmetries can be
very effective as a cue in segmentation. Finally, due to its abundance in both natural and
crafted object, symmetries play an important role in visual perception and Gestalt theory.
Because of this wide range of applications, symmetry estimation has been a popular re-
search field for long time. Most seminal papers appeared in the eighties and were focused
on perfect symmetries, mainly because this kind of analysis required less computational
power. Atallah[19] and Wolter[177] solved the problem very efficiently by casting it into
substring matching. Some more recent approaches use orientation histograms[151], sin-
gular value decomposition[142], extended Gaussian image[152] and generalized complex
moments[144]. Also principal component analysis[104] can be used with good results
when dealing with strongly symmetric objects. All these approaches rely on the existence
of a perfect plane of symmetry, thus they are very sensitive to noise and cannot be applied
to objects where partial or local symmetries are present.

In order to deal with partial or imperfect symmetries some measures of the distance be-
tween a given object and the nearest perfectly symmetric shape have been proposed[185,
98]. Such a measure could be used to search in the full plane space for the solution that
minimizes the error, however since it can be applied to just one plane at a time it would
not be an efficient solution.
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A more practical approach, that has been proved effective in a wide range of contexts,
is to use some kind of transform. That is a mapping from a function defined over the
space of the object data to a function defined over the space of the feasible solutions,
where local and global maximum are usually associated to local and global solutions of
the problem itself. The most well known transform in computer vision is the Hough
transform, which maps points on a plane to the space of parametrized straight lines. Over
the last decade several symmetry transform have been proposed[133, 42, 28, 61, 103].
Recently the Planar-Reflective Symmetry Transform (PRST) has been presented in[129,
130] and extended in[137]. This is a transform that maps the points of three dimensional
objects to a real-valued function in the three dimensional space of parametric planes. As
for any transform technique in practical implementations it is computed in a discrete form:
that is, the function is evaluated only on a large set of randomly selected points and the
results are used to vote for the best solutions in a discrete set of bin that are uniformly
distributed over the space of planes. This approach leads to coarse errors, due to the
discrete size of the bins. However a continuous refinement technique is proposed that
greatly enhances the solution by searching for a more accurate symmetry plane inside the
winning bin by using an error minimization technique inspired by the Iterative Closest
Point algorithm[26].

We propose a novel approach which casts the problem to the search for pairwise clus-
ters in a newly defined weighted association graph that we named Symmetry Consensus
Graph. In such a graph each vertex is associated to a candidate symmetry plane and the
similarity between vertices expresses the consensus between planes. This way each large
cluster in the graph captures a set of highly similar plane candidates and leaves out all the
unwanted outliers, according to the high internal homogeneity and external inhomogene-
ity properties of clusters. In section 5.2.2 we define the Symmetry Consensus Graph in
both a binary and a weighted form. In section 5.2.5 we suggest a very effective framework
in order to find large cluster in a Consensus Graph. Finally, in sections 5.2.6 and 5.2.7 we
compare our approach with PCA and the very accurate PRST technique.

5.2.2 The Symmetry Consensus Graph
Given a large set of 3D points describing an object our goal is to find the largest subsets
that share a common symmetry plane. The most widely used approach is to select a large
number of point pairs and thus collect votes for the plane between them in an appropriate
parameters space. As for any other voting technique, concrete implementations of this
approach need to choose a quantization of the parameters space into discrete bins. In
many scenarios the choice of the size of the bins can be very critical as a too coarse
quantization can lead to a poor precision in the estimation of the symmetry, while a too
fine one could suffer of vote dispersion due to the dimensionality curse. In [130] the
authors suggest to adopt a quite coarse parameters space quantization ad thus apply a
continuous refinement step in order to minimize the local symmetry error among points
that voted for the winning bin. This step enhances the quality of the solution found, but
still is quite sensible to the presence of local outliers in the rather large winning bin. In



88 5. Applications to 3D Surface Processing

a

b

c

g

f

e

d

bc

ef

ag

bf

cecddf

ae af ac

bd

be

bf

ab

de

cf

cg

de

ad

dg

fg

eg

Figure 5.7: A very simple object with perfect partial symmetries (left) and its Binary
Symmetry Consensus Graph (right). Only pairs of vertices that share the same symmetry
plane are connected by an edge. For practical reasons only a part of the graph is shown.

order to obtain the best results an optimal bin size should be used, that is a quantization
that allows to collect just the most relevant votes, leaving out local outliers. Unfortunately
it is very hard to know in advance which size to use as it depends on many factors such as
noise and quality of the symmetry. By contrast, the main idea which underpin our method
is to avoid the quantization by using a more global approach able to weight all the voting
point pairs at once.

5.2.3 Binary Symmetry Consensus Graph
In this section we focus our attention on objects that, although not being symmetric as
a whole, contain one or more subset of points that are perfectly specular by a plane.
Obviously this scenario is not very realistic from a practical point of view, nevertheless
it permits us to define an useful structure that we will expand in section 5.2.4 to be more
suitable for real world applications:

Definition 3. Given a set of points in space P = {p1, p2 . . . pn}, their Binary Symme-
try Consensus Graph (BSCG) is the undirected graph GB = (VB, EB) where VB =
{(pa, pb) ∈ P |a < b} is the set of pairs of points in P and where ((pa, pb), (pc, pd)) ∈ EB
if and only if the plane between pa and pb is exactly the same plane between pc and pd.

Each vertex in such a graph represents a pair of points in the original object and is
attributed with the plane that separates such points in a symmetric way. The key property
of this graph is that two vertices are connected if and only if they share the same plane.
As this is an equivalence relation the transitive property holds and it is easy to see that
each set of vertices that share the same symmetry plane with each other forms a complete
subgraph (clique). By building the BSCG over a set of points we can thus cast the search
for the most relevant symmetry planes into the search for the largest cliques over the
Consensus Graph. Although this is known to be a NP-complete problem many powerful
heuristics have been suggested for it.

In figure 5.7 we illustrate a simple example of a BSCG. On the left an object with two
partial perfect symmetry planes is shown. On the right the BSCG is built over all the pairs
of point of the object. Only two cliques are found in the BSCG, respectively between pairs



5.2. Consensus Graph for Symmetry Plane Estimation 89

a

b

c

g

f

e

d

bc

ef

ag

bf

cecddf

ae af ac

bd

be

bf

ab

de

cf

cg

de

ad

dg

fg

eg

Figure 5.8: A very simple object without perfect symmetries (left) and its Weighted Sym-
metry Consensus Graph (right). The weight of the edges is proportional to their thickness.
For practical reasons negligible edges are not drawn and only a part of the graph is shown.

ag, bf, ce, which are symmetric with respect to the vertical axis, and between pairs bc, ef ,
which are symmetric with respect to the horizontal axis. All other pairs do not share their
symmetry plane with any other pair in the graph, thus all of them are singleton.

5.2.4 Weighted Symmetry Consensus Graph
The assumptions taken in section 5.2.3 are very strict in practical scenarios. In fact noise,
numerical errors and not perfect symmetries in the object itself can all make very difficult
for many pairs of points to share exactly the same symmetry plane. One possible solution
to this problem could be the use of a threshold in order to state that two plane are equals.
Unfortunately this approach introduces two more hurdles: the first is the correct choice
for such threshold, which is not different from the choice of the correct bin size, the
other is that this way the transitive property would be no more valid, thus breaking the
correspondence between cliques in the Consensus Graph and symmetries.

Our proposal is to extend the BSCG presented in 5.2.3 to a weighted graph where each
edge is weighted according to the similarity between the planes associated to the vertices
connected:

Definition 4. Given a set of points in space P = {p1, p2 . . . pn}, their Weighted Symmetry
Consensus Graph (WSCG) is the edge weighted undirected graph GW = (VW , EW , ω)
where VW = {(pa, pb) ∈ P |a < b} is the set of pairs of points in P , EW = VW × VW is
the set of edges and ω : EW → R+ is a weight function that assigns to each edge a positive
real value ω((pa, pb), (pc, pd)) proportional to the similarity between the symmetry plane
of pa, pb and the symmetry plane of pc, pd.

From a topological point of view a WSCG is by construction a complete graph, so
it would not be interesting to search for cliques in it as we made for the BSCG. Instead
we are interested in finding large sets of vertices that are all associated to very similar
symmetry planes. In other words, since the edges reflect the similarity between planes
we are interested in finding sets of vertices that present a high pairwise similarity among
them and a low pairwise similarity with respect to vertices external to the set itself. These
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two properties (high internal similarity and low external similarity) are commonly used
to define the notion of a cluster, which indeed generalizes to the weighted graphs context
the notion of clique in binary graphs.

In figure 5.8 we illustrate a simple example of a WSCG. The object shown is a slightly
perturbed version of the one shown in figure 5.7. In this case there are no subset of points
that exhibit a perfect symmetry, nevertheless the separation plane between a, g is very
similar to the one between b, f , which in turn is just a little less similar to the ones between
c, d and c, e, and so on (note that only the edges with relevant weight are drawn). The two
largest clusters correspond to the two most relevant symmetry planes in the model. It
is worth noting than a cluster could assign to the same point in the model two or more
different specular points, as in the case of point cwhich is symmetric to both e and d. This
many-to-many property of the assignment is critical when dealing with data coming from
sampling, where artifacts and random noise make very unlikely a direct correspondence
between each point and its specular instance, even in the presence of perfect symmetry in
the sampled object.

5.2.5 Dominant Sets Cluster Extraction
In section 5.2.4 we show how the problem of finding optimal symmetry planes can be
casted into the search for large clusters in a set of vertices over which we defined a pair-
wise similarity measure ω. In order to perform this search we propose to use the Dominant
Set framework [123] which is a very effective pairwise clustering technique.

Given an edge weighted undirected graph G = (V,E, ω), a subset of vertices S ⊆ V
and two vertices i ∈ S and j /∈ S the following function measures the coherence between
nodes j and i, with respect to the average coherence between node i and its neighbors in
S

φS(i, j) = ω(ij)− 1

|S|
∑
k∈S

ω(ik) (5.4)

And overall weighted coherence between i and other nodes in S is defined as:

wS(i) =


1 if |S| = 1∑
j∈S\{i}

φS\{i}(i, j)wS\{i}(j) otherwise (5.5)

Intuitively, wS(i) will be high if i is highly coherent with vertices in S. Given this
measure S ⊆ V is said to be dominant if

∑
i∈T wT (i) > 0 for any nonempty T ⊆ S and

the following conditions hold:

wS(i) > 0,∀i ∈ S (5.6)
wS∪{i}(i) < 0,∀i /∈ S (5.7)
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The conditions above correspond to the two main properties of a cluster: namely
internal homogeneity and external inhomogeneity, which are exactly the properties that
we expect to hold for the sets we are searching for.

Another compelling reason to use the Dominant Set framework is that, despite the
complexity of their recursive definition, they are very easy to find in practice: in fact a
single set (corresponding to a symmetry plane) can be found in polynomial time and a
convenient technique exists in order to enumerate all the Dominant Sets in a graph.

Pavan and Pelillo [123] have shown that dominant sets correspond to local maximizer
over the standard simplex (i.e. the sets of vectors with components that sum up to 1) of
the quadratic function

f(x) = xtAx (5.8)

where A is the weighted adjacency matrix of the graph (thus Aij = ω(i, j)).
These maximums can be found by exploiting the convergence properties of the payoff

monotonic replicator dynamic

xi(t+ 1) = xi(t)
(Ax(t))i
x(t)tAx(t)

(5.9)

which is guaranteed to converge to a local maximum when the association graph is
undirected and, thus, the matrix A is symmetric[126]. At convergence the value of the
function f is a measure of the global coherence of the extracted set, which in turn express
the strength of the symmetry found.

Since an object could express more than a single symmetry plane it would be useful
to be able to enumerate at least the most relevant Dominant Sets present in the graph. In
addition, although replicator dynamics are guaranteed to converge it does not need to stop
on the largest Dominant Set, thus by enumerating them we could choose always the most
relevant ones. To obtain such enumeration we used the technique proposed in [135].

5.2.6 Experimental Results
In order to show the effectiveness of the proposed approach we performed both qualitative
tests on a database of real world objects and quantitative validation over a larger set of
synthetic data generated under different conditions of noise and occlusion. In both cases
our technique has been compared with the PRST[129] algorithm which we implemented
with 64 bins for each dimension of the space of planes parametrization and with ISP
refinement. As an optimization meant to keep the size of the Symmetry Consensus Graph
reasonable we filtered the vertex set VW by sampling a fixed number of random vertices.

The qualitative tests have been made against a database of about 40 3D scans of sun-
glasses models acquired as point clouds with a structured light scanner. Each model
counts between 10.000 and 20.000 points which have been sampled with a metric error
which is guarantee to be less than 10 micrometers. Our goal is to find for each model
the main symmetry plane, that is, in this context, the plane that split each sunglasses pair
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Figure 5.9: Qualitative results on 3D scans. In the first row the symmetry plane obtained
with PCA is shown from different angles and details. The second row contains the results
of PRST and the third the results of WSCG.

in two specular halves. Despite the high quality of the sampling process it is difficult
to obtain an accurate result because of slight differences in the two halves of the model,
incomplete sampling and parts of the object that are not fixed and can move during the
sample process (for instance nose pads). These hurdles strongly limit the use of traditional
global techniques, such as PCA, and the presence of non perfect symmetry can easily lead
to some slight imprecision also in more refined methods, such as PRST.

In figure 5.9 we show the performance of these latter methods in comparison to
WSCG. The central blue plane is the symmetry plane found, the two lateral yellow planes
are added reference planes that are parallel and equidistant to it. The rows in the figure
show respectively the plane obtained with PCA, PRST and WSCG. The plane found by
PCA is clearly skewed because of the asymmetric sampling of the object during range
scanning. The result obtained by the PRST algorithm is far better than PCA, as expected,
while WSCG gives another improvement over it.

Qualitative results offer a visual hint about the kind of improvement obtained with the
WSCG technique, but as PRST is in itself very accurate this enhancement could appear
minimal. In order to give a more quantitative insight we performed a set of experiments
with synthetic data which allowed us to compare the symmetry planes obtained with re-
spect to an accurate ground truth plane. We generated a random distribution of 2000
points within a range of 400 millimeters perfectly symmetric with respect to a known
plane. To evaluate the performance of WSCG in different conditions we added Gaussian
random noise along all three axes with a value of the parameter σ ranging from 0.1 to
1 millimeters. Then we repeated the experiments by setting σ = 0.5 and simulating oc-
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Figure 5.10: Accuracy of PRST and WSCG with different level of noise and occlusion

clusion with the deletion of a growing percentage of random points from one side of the
symmetry plane. Each experimental condition has been tested with 20 independent runs.
In each run the two algorithms are applied and the distance between the obtained princi-
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pal symmetry plane and the ground truth is measured. While several symmetry measures
have been proposed [185, 98], we are not really interested in knowing how much the
found symmetry diverge from a perfect one, as we already know that our data are noisy:
rather we are interested in a plane distance measure. Each plane has been parametrized
by the vector P perpendicular to it and the distance between two planes is measured as
the norm of the difference between their respective associated vectors P1 and P2:

d =‖ P1 − P2 ‖ (5.10)

It must be noted that this simple measure mixes up translational and rotational er-
rors, which is reasonable in this context because errors are always very small for both
PRST and WSCG. The measure of equation 5.10 is also used to define the function ω that
weights the edges of the WSCG in definition 5.2.4. If Pab is the vector perpendicular to
the separation plane between points pa, pb and Pcd the one associated to the plane between
pc, pd then we measure the similarity between vertices (pa, pb) and (pc, pd) of the WSCG
as:

ω((pa, pb), (pc, pd)) = e−‖Pab−Pcd‖ (5.11)

In figure 5.10(a) the performance of WSCG is shown for several levels of Gaussian
noise added to the test points and in figure 5.10(b) the robustness with respect to occlusion
is shown for different percentages of sample points removal. The comparison with PRST
shows that both techniques offer comparable very good performance and that WSCG is
more accurate on average. In particular WSCG seems to be more tolerant to occlusion,
which is expected as PRST relies on a voting algorithm. In figure 5.11(a) we show the
convergence time of the WSCG algorithm with respect to the number of vertices that are
kept in the Consensus Graph. Each test has been performed 20 times with Gaussian noise
of parameter σ = 0.5 and an occlusion of 50% and has been executed on a 2Ghz Athlon
CPU. These result show that by keeping the number of sampled points low, WSCG can
be executed in less than a second. This optimization does not imply a lower quality in the
symmetry plane estimation, in fact figure 5.11(b) shows that the error becomes very small
when keeping as few as 300 vertices.

5.2.7 Concluding Remarks

The Weighted Symmetry Consensus Graph is a new approach to planar symmetry detec-
tion that exploits pairwise clustering to find a solution that is maximally consistent from
a global perspective. The main features of WSCG are that it does not require any quan-
tization of the solutions space and it is adaptive with respect to outliers. Experimental
validation shows that this approach gives better results than another state-of-the-art al-
gorithm. Finally WSCG is quite general as the compatibility measure needs not to be
related to planar symmetry. In fact future work will aim to extend the approach to radial
symmetry and other features that can be estimated by exploiting a global consensus.
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Figure 5.11: Running time and accuracy of WSCG with respect to the number of points
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5.3 Unambiguous Compound Phase Coding for Surface
Reconstruction

Phase shift methods have proven to be very robust and accurate for photometric 3D re-
construction. One problem of these approaches is the existence of ambiguities arising
from the periodicity of the fringe patterns. While several techniques for disambiguation
exist, all of them require the projection of a significant number of additional patterns. For
instance, a global Gray coding sequence or several supplemental sinusoidal patterns of
different periods are commonly used to complement the basic phase shift technique. We
propose a new pattern strategy to reduce the total number of patterns projected by encod-
ing multiple phases into a single sequence. This is obtained by mixing multiple equal-
amplitude sinusoidal signals, which can be efficiently computed using inverse Fourier
transformation. The initial phase for each fringe is then recovered independently through
Fourier analysis and the unique projected coordinate is computed from the phase vectors
using the disambiguation approach based on multiple periods fringes proposed by Lilien-
blum and Michaelis[100]. With respect to competing approaches, our method is simpler
and requires fewer structured light patterns, thus reducing the measurement time, while
retaining high level of accuracy.

5.3.1 Structured Light Coding Strategies

The main challenge for any triangulation-based surface reconstruction technique is the as-
signment of reliable correspondences between features observed by two or more different
points of view. Given the central role of this problem, many and diverse strategies have
been proposed in literature over the past few decades [139]. When a sparse surface re-
construction is adequate, correspondences can be searched and tracked among repeatable
features readily present in the scene, such as corners or edges. Unfortunately, in general it
is not possible to guarantee that the same features are extracted from each image, or that
the feature density is sufficient. Hence, complementary techniques, usually based on pho-
tometric correlation, are used to obtain an approximate reconstruction of the scene depth
map. Structured light systems overcome these limitations as they do not rely on natural
features, but instead use projected patterns of light in order to find correspondences that
are usually as dense as the pixels of each image [87]. Among these, time-multiplexing
strategies such as n-ary and Gray codes, as well as hybrid approaches, are by far the most
utilized [88].

Simple binary coding assigns to every pixel a codeword retrieved from the digitized
sequence over time of projected black and white stripes; binary coding methods require
log2(t) pattern images to generate t code strings. Robustness of binary codes is improved
by using Gray codes, where adjacent codes differ only in one bit. Both the techniques
generate unique codes along each scanline, but at the same time are limited by their low
resolution due to the inherently discrete nature of the coding. Also, the large number
of projected patterns does not result in an increased accuracy. Generally, this class of
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measurements proves to be ineffective with objects having different reflective properties
(such as slick metal parts or low reflective regions), thus they must rely on the assumption
of uniform albedo [88].

Phase shifting methods, on the other hand, yield higher resolutions since they are
based on the projection of periodic patterns with a given spatial period. Each projected
pattern is obtained by spatially shifting the preceding one of a fraction of the period,
and then captured by one or more cameras. The images are then elaborated and the
phase information at each pixel determined by means of M-step relationships [153]. Since
the phase is distributed continuously within its period, phase shifting techniques provide
subpixel accuracy and achieve high measurement spatial resolution. Furthermore, the
intensity change at each pixel for subsequent patterns is relative to the underlying color
and reflectance, which makes phase shift locally insensitive to texture variance to a certain
degree. A major drawback is that, in its basic formulation, phase shifted structured light
renders only relative phase values and thus it is ambiguous. However, when both an
extended measuring range and a high resolution are required, a combined approach proves
to be very powerful. The integration of Gray code and phase shift brings together the
advantages of both, providing disambiguation and high resolution, but the number of
patterns to be projected increases considerably, and each strategy introduces a source of
error [100].

Other high resolution shape measurement systems include optical profilometers. Non-
contact phase profilometry techniques relate each surface point to three coordinates in a
frame having the z axis orthogonal to a reference plane, which then represents the refer-
ence for the measured height [147, 178]. In classical phase measurement profilometry,
gratings or sinusoidal patterns are projected and shifted first onto the plane and then over
the object to be measured. Phase information from the deformed fringe pattern is then
extracted by means of various techniques. Other, more effective profilometry techniques
include the well-known Fourier Transform method [154] and other interesting derivatives
[183, 73]. Fourier-based profilometry can require as few as one or two frames for depth
estimation, which makes real-time reconstruction possible. Nevertheless, in profilometric
methods phase variation caused by height modulation must be limited: ambiguity of the
phase limits the measurement range, allowing for gauging of smooth-shaped objects only.
Moreover, noise from camera, distortion of lens, difficulties of calibration, aliasing and
imperfectness of the projecting unit influence the precision of most of these techniques
[40, 149].

Recently, some number theory based methods have been proposed for disambiguation
[190, 100]. In [100] the authors relate absolute, unambiguous phase values to projector
coordinates ξ ∈ R, and define ξ(u, v) to be the projector coordinate at pixel (u, v). Then
several phase shift sequences, each with a different local period λi, are projected onto
the object to be measured. A phase image is obtained for each sequence through the
computation of periodic phase values φi(ξ) ∈ [0, 1) at every pixel. In addition, the fringes
of a pattern are assigned sequential natural numbers ηi(ξ) ∈ N, which represent a simple
counting of the fringes from left to right. A projector coordinate can then be directly
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obtained, for all i = 1, 2, ..., n, from a fringe number and a phase value:

ξ = (ηi(ξ) + φi(ξ))λi . (5.12)

Since the only available values during measurement are λ and φ, it is clear that the
system of equations becomes ambiguous as the same value of ξ can be obtained for dif-
ferent values of ηi. This happens when two different projector coordinates yield the same
phase values for all i. Therefore, the authors follow a number-theoretic approach and
identify a general condition for generating unambiguous pattern sequences, by defining
a maximum projector coordinate ξmax up to which ambiguity can be excluded. Such a
coordinate is defined as the least common multiple of relatively prime periods λi, and
clearly for practical advantage it must entirely cover the projector range. An efficient
method is given to calculate the fringe numbers from the ambiguous phase values at each
pixel, given the local period lengths. This method takes advantage of a simple relation-
ship between phase values and fringe numbers. Given any pair of pattern sequences, the
following equivalence holds for each image pixel:

λiφi(u, v)− λjφj(u, v) = λjηj(u, v)− λiηi(u, v) . (5.13)

This makes it possible to construct a theoretical phase difference vector beforehand, and
then use it to retrieve the fringe numbers when real phase measurements become available.
In addition to providing an efficient way to obtain the fringe numbers, this method allows
to assign each point a reliability value related to the deviation between measured and
expected values. The use of theoretical phase difference vectors makes for a powerful test,
which allows to identify erroneous or weak measurements (such as mixed phase values)
caused, for instance, by sharp edges, involuntary object movements and light reflections.
Once the unknown fringe numbers are calculated, projector coordinates can be easily
retrieved for each pattern sequence with equation 5.12. The independent measurements
can then be averaged to obtain a unique and absolute phase value at every pixel in an
efficient way, leading to an increase in accuracy of the measurements.

The big advantages of the multi-period method is its relative simplicity and high effi-
ciency. The phase-coded images can be directly employed in general stereo reconstruction
systems, ensuring high quality and density of the code. Specifically, the lack of surface
points is mainly due to occlusions and camera disparity, and measurement errors are very
low thanks to the averaging and validation procedures implicit to the approach, that ex-
clude a large percentage of errors and outliers before the actual surface reconstruction
takes place. The main drawback lies in the fact that, typically, three or more pattern se-
quences are needed to entirely cover the projector range (typical values are 800 or 1024
projector pixels). This requires the projection of as many as three times more patterns
than required with classical phase shifting.

In the next section we introduce a novel coding strategy that retains the big advan-
tages offered by the multi-period method, but it requires a significantly lower number of
structured light patterns while achieving comparable levels of accuracy.
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5.3.2 Compound Phase Coding
The main idea behind the Compound Phase Coding strategy is to project several fringe
patterns in a single spatio-temporal pattern. This is obtained by encoding the phases of the
fringe vector as phases of a Fourier term at different frequencies. Each fringe is character-
ized by a different period and all of them are relatively prime. This way, once recovered
the single initial phase shift for each fringe, we are able to build an unambiguous code
with a numerical technique similar to the one suggested in [100].

Let λ1, . . . , λk be k periods and let ξ be the projector coordinate at some pixel. If
the periods are coprime and the projector coordinates do not exceed

∏k
j=1 λj , then we

have a unique phase code for ξ [100]. Namely, this code is given by the vector φ =(
φ1 . . . φk

)
∈ [0, 1)k, where φj = (ξ mod λj)/λj .

Our aim is to map φ into a signal sequence of gray-scale values that can then be
measured by the cameras to obtain the unique code of each fringe. We take the hint from
phase shift methods that phase encodings are more robust than amplitude codings, but
extend multi-period coding by decoupling the phase used to encode the message from
the frequency of the sinusoidal signal used to transport it. This is done by projecting the
sum of equal-amplitude sinusoidal signals at frequencies 1

k+1
, 2
k+1

, . . . , k
k+1

, where k is
the number of periods necessary to encode the coordinate xi, and by encoding the phase
parameters as the phases of the corresponding sinusoidal signal.

Given a phase code φ ∈ [0, 1)k, we create a (k + 1)-dimensional complex vector
x ∈ Ck+1, where

xj =

{
0 , if j = 0 ,

e−2πiφj , if 1 ≤ j ≤ k .

Here, i =
√
−1. Note that given xj for any 1 ≤ j ≤ k, we can compute the phase φj as

φj = frac(1 +
1

2π
arg(=(xj),<(xj))) , (5.14)



100 5. Applications to 3D Surface Processing

2K+2 Images

Camera

DFT

phase images
from 1 to K unambiguous coded image

Coding

illuminated objects

Figure 5.13: A total of 2K+2 images of illuminated objects are captured and single phase
values are calculated for each composed fringe signal. Those values are subsequently used
to get an unambiguous coding. Note that the intensity profile of each projected pattern is
not sinusoidal.

for any value of s, where frac(·) is the fractional part of the argument, and =(z), <(z) are
the imaginary and real parts of z ∈ C, respectively.

Each complex number xj represents the amplitude and phase of a sinusoidal com-
ponent with frequency j

k+1
cycles per sample. Hence we can reconstruct the intensity

sequence of that coordinate by computing the Inverse Discrete Fourier Transform of x,
obtaining the vector y ∈ Ck+1, where

yn =
1

k + 1

k∑
j=0

xje
2πi j

k+1
n , n = 0, . . . , k ,

.
We can then project separately the real and imaginary part of this vector as two time

sequences obtaining a single set of 2(k + 1) patterns to be projected to uniquely encode
the xi projector coordinate (see Figure 5.12).

Hence, given y ∈ Ck+1, we transform it into a real vector z ∈ R2(k+1), where z2j−1 =
<(yj) and z2j = =(yj) for 1 ≤ j ≤ k+ 1. Afterwards we scale and shift each component
of z in order to bound them within [0, 255], obtaining the sequence of gray-scale values
to project in correspondence to ξ. Note that by applying a shift we affect the information
at frequency 0, while by scaling, we modify the amplitudes of all frequencies, without
influencing the phase values.

The acquisition process introduces an additional linear deformation on z, which de-
pends on the physical properties of the object being scanned. Again this does not affect
the phases.

Let z ∈ R2(k+1) be the acquired gray-scale values and let y ∈ Ck+1 be its representa-
tion into a complex vector. Then, the net effect of the projector scaling and the change in
the reflectivity properties of the surface is a translation and scale of the observations, i.e.
the relation between the intended signal y and the observed signal y is

y = δ + sy

for some real values δ and s. The phase code is finally recovered from y by computing
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the Discrete Fourier Transform, namely

xj =
k+1∑
n=0

yne
−2πi n

k+1
j ,

and by applying (5.14) to the result x ∈ Ck+1, obtaining φ (see Figure 5.13).
This process allows to recover the phase code for each projector coordinate by taking

only 2(k + 1) measurements, where k is the number of signal periods. Nevertheless, one
can also force a larger number of samples in order to increase accuracy, by appending null
components to x. More precisely, by appending M null components, we need 2(M +k+
1) measurements in order to recall the phase code φ.

It should be noted that a drawback of this approach is that encoding multiple signals
in a single pattern reduces the effective projector intensity range available to encode each
phase, increasing the effects of the discretization error. However, experiments show that
the error introduced by this is limited.

5.3.3 Experimental results
In order to validate the proposed technique we need to compare its accuracy to the results
obtained with a state of the art phase shift technique. To this extent we choose to compare
our measurements with those given by the Multi-Period Phase Shift proposed in [100].
The reasons for this choice are two-fold: Multi-Period Phase Shift is very accurate, as it
uses information for each fringe projected in order to reduce the average error; in addi-
tion, once the phase vector from the composite signal is obtained, measurement quality
is directly comparable as both techniques share the same numerical disambiguation step.
In the following sections we will show both quantitative results, by evaluating the mea-
surement error over a planar target, and qualitative results, by showing relative average
distances between the measurements obtained by the two techniques with generic objects
and by comparing the corresponding estimated quality.

Experimental setup

All the following experiments have been run on a test rig for structured light techniques
that has been internally developed in our lab (figure 5.14). The rig is made up of a mo-
torized plate for object positioning, four cameras and an illumination source mounted
on a motorized liftable platform. Specifically the cameras are equipped with a 1/2 inch
CMOS sensor which offers a full 1280x1024 resolution. The cameras are monochrome,
thus no Bayer filters are placed over the sensor. While four cameras are available, in this
experiment set we use only one pair of cameras to reconstruct the surfaces. Thus the sys-
tem falls into the category of two calibrated cameras and one uncalibrated light source.
The illumination source is a 800x600 color DLP projector which we use to project the
monochromatic patterns. The system is controlled by a standard PC housed into the base
of the rig. This PC is a 2.8 GHz AMD quad core system with 2 Gigabytes of ram.
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Intrinsic and extrinsic parameters of the cameras have been obtained through a stan-
dard calibration procedure using a planar checkerboard and OpenCV[31] calibration soft-
ware. It must be noted that our system is not a full fledged production scanner, thus it
does not guarantee extreme accuracy or resolution: in fact we estimate its precision in
about 30µm. This level of accuracy is adequate with respect to our experiments, as we
are not interested in showing the absolute precision of our setup, but rather the relative
performance of the coding schemes, showing that the proposed approach can be used as
an effective replacement for slower approaches without suffering from a significant loss
in accuracy.

Planar target measurements

In this first set of experiments we measured the surface of a 200 by 200 mm squared piece
of float glass which we previously sprayed with a very thin layer of acrylic paint. We
made several sets of measurements with both the Compound Phase Coding technique and
the Multi-Period Phase Shift technique. Since the exact pose of the test object is unknown
and the surface cannot be perfectly flat, we approximated the ground truth with the best

Figure 5.14: The general purpose structured light scanner used.
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Figure 5.15: Accuracy comparison between the Compound Phase Coding method and the
Multi-Period Phase Shift technique. In figure 5.15(a) we used periods of 7, 11 and 13
pixels (30 patterns for Multi-Period Phase Shift), and in figure 5.15(b) we used periods
of length 9, 11 and 13 (34 patterns for Multi-Period Phase Shift). Note that the Multi-
Period technique appears as a flat continuous red line and its standard deviation as dashed
red lines. Vertical bars are standard deviations in the measurement of the error for the
compound technique.

fitting plane (in the least squares sense) with respect to the measured points of the object.
This way we estimate the expected measurement error of each technique as the average
of the absolute value of the distance from the fitting plane of each measured point. We
had a wide range of choices regarding the number of different signals to project and their
periods. We chose to execute the test with two configurations: 3 signals of periods re-
spectively 7, 11 and 13 pixels and other 3 signals of periods 9, 11 and 13 pixels. Since
our projector has an horizontal resolution of 800 pixels both configurations allow to ob-
tain a globally unambiguous coding of the object. Given those signal configurations, we
projected respectively 30 and 34 patterns for testing the Multi-Period Phase Shift tech-
nique. Since we always used 3 signals, the Compound Phase Shift technique strictly
requires only 8 patterns to be projected: nevertheless we repeated the measurement with
a growing number of additional patterns in order to study the effect of the supplemen-
tary information on the final accuracy. Finally, each experimental measure was repeated
for a total of 10 times. In figure 5.15 we compare the performance of the proposed ap-
proach against the baseline multi-period approach. Accuracy of the multi-phase approach
is slightly better in 5.15(b), probably due to the higher number of patterns projected (34
instead of 30). The blue line shows the trend of the average error of the proposed Com-
pound Phase Coding technique as the number of projected pattern is increased. It should
be noted that even with the minimal number of projected patterns the accuracy is quite
good: in fact, on average our distances from the fitting plane are only about three mi-
crometers higher than those obtained using the Multi-Period technique, which requires
almost four times as many patterns. Moreover, by projecting additional patterns, the qual-



104 5. Applications to 3D Surface Processing

Cube and Disc Cone and Spheres Toy House

Technique Multi Cmp8 Cmp16 Multi Cmp8 Cmp16 Multi Cmp8 Cmp16

Points 109347 108306 109034 46749 46263 46505 37457 36880 37133
Avg dev. 0.025 0.089 0.063 0.030 0.085 0.067 0.036 0.088 0.068
Avg dist. - 32.00 25.09 - 21.15 16.19 - 23.26 20.87

Figure 5.16: Comparison between reconstructions obtained with the Multi-Period Phase
Shift and the Compound Phase Coding on several test objects. Compound Phase Coding
has been tested using both 8 and 16 samples. Multi-Period Phase Shift has been tested
with 34 samples in order to obtain the best quality. Distances are in microns and objects
are 5 to 10 cm wide.

ity of the measurements can be further enhanced: for instance, by doubling the number of
projected patterns the distance from the Multi-Period approach is approximately halved.
Finally, as we expected, using the same number of patterns projected by the Multi-Period
technique, the two approaches yield equivalent performances. Of course, the whole point
of the proposed technique is to reduce the number of projected patterns. In this sense, our
approach allows to control the time/precision trade-off, obtaining good reconstructions
even with just 8 patterns.

Generic objects measurements

In this set of experiments we measured the surface of several generic scenes built with
simple wooden objects in a volume of about 200 mm of diameter in each direction. The
set of objects was selected to maximize the range of surface orientations and conditions.
Again we compared our results with those obtained by the Multi-Period approach: in
this case we take the Multi-Period results as a direct comparison, as no ground-truth or
knowledge of the surface of the objects (which are hand-made) is available. Compound
Phase Coding was tested both with 8 and 16 projected patterns. Since we projected signals
with periods of respectively 9, 11 and 13 pixels Multi-Period Phase Shift was tested with
34 samples. For each experiment we evaluated three quantities, namely:

• The number of points acquired. That is the number of surface points that pass
both the consistency and the quality check. The first verifies that the phase vector
is consistent with the code assigned to the point, the latter ensures that the phase
difference vector contains only integer values (as expected with respect to constraint
5.13). Specifically, for these experiments we rejected points associated to phase
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Figure 5.17: A surface reconstruction example complete with deviation assessment. In the
first column, the object as viewed by the left and right camera. In the second column, the
deviance maps of Multi-Period Phase Shift (top) and Compound Phase Coding (bottom).
In the last columns, two respective close-ups of the reconstructed surfaces.

difference vectors where at least one entry deviates from the nearest integer by
more than 0.2;

• The average deviation. That is the average distance from each entry in the phase
difference vector and the nearest integer. Since each element of the phase difference
vector should be integer a lower value suggests a higher quality in the measurement
obtained. This parameter has been calculated over all the points obtained, even
those filtered by the consistency and quality checks;

• The average distance. That is the average of the absolute distances between points
obtained by the Multi-Period and Compound techniques. Note that this measure
is possible because we implemented both algorithms in a way that allowed us to
produce depth maps that are exactly overlapped along the x and y axis and differ
only for the depth values assigned along the z axis.

In Figure 5.16 we report the values of those three quantities in different scenes. In gen-
eral, the number of points acquired by the Compound Phase Coding with only 8 patterns
is slightly smaller than the number of valid points given by the Multi-Period technique.
This distance, while small, is almost completely eliminated when using 16 patterns. The
average deviation resulting by applying our technique is always slightly higher, neverthe-
less it should be remarked that those values are all quite small: in fact, for any practical
purpose a deviation smaller than 0.1 can always be associated with a valid measured point.
Finally, the average distances between the two techniques also assess the suitability of our
technique as a fast replacement for traditional Multi-Period: in fact, the results obtained
are generally compatible with the measurement error estimated in the experiments done
in section 5.3.3, a result that should be expected since both techniques are subject to mea-
surement errors. It should also be noted that the higher average distance obtained with the
scene “Cube and Disc” is probably due to the presence of sharp edges and of two large
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surfaces at a grazing angle with both the cameras and the light source. Conversely, the
higher smoothness offered by the scene “Cone and Spheres” allows for a more precise
reconstruction.

In Figure 5.17 we show a more qualitative example of the difference in accuracy
of reconstruction between our method and a complete Multi-Period phase shift. In this
experiment we used the less accurate instance of Compound Phase Coding, thus only 8
patterns were projected. In the first column we reproduced the scene viewed from the left
and right camera. In the second column we calculated a map of the maximum deviation
from integer values of the phase difference vectors of the Multi-period method (top) and
the Compound method (bottom). In these maps we used the standard Matlab color scale,
thus a full blue pixel indicates a low deviation and a bright red pixel a maximum deviation
(in this case 0.5). Uncoded pixels are represented in dark red. Both techniques exhibit a
fairly low deviation, with high values mainly on the borders, which is due to the camera
integration of the projected signal and the background on boundary pixels. The other high
deviation area on the side of the cube is probably due to inter-reflection between the two
objects.

The last two columns show a close-up of the surfaces reconstructed with both meth-
ods. In general the surface reconstructed with the Compound technique is a bit more
noisy, but the overall level of detail is maintained, even with details at a relatively high
frequency being clearly visible on both reconstructions: for instance, in the close-up of
the disc object (third column) a very small bulge is visible in both the reconstructions in
proximity of the lower rim of the hemisphere.

Finally, in Figure 5.18, we compare the reconstructed phases obtained after the appli-
cation of the Discrete Fourier Transform to the captured structured light images before
and after the coding step. As in the previous experiments we choose periods of 9, 10
and 13 pixels and we projected 34 patterns for the Multi-Period method and 8 pattern
for our approach. In the first column we show respectively the complete coding for the
Multi-Period (top) and for the Compound (middle) methods. In order to highlight the dif-
ferences between the two codings, we show in the third line of this column the difference
image between them: as expected they are almost identical and the only slight differences
are found in boundary regions, where the measurements are less precise.

In the other two columns we show the phase related to two different signals calculated
by the two techniques (we show only two signals for space reasons). For the purpose of a
simple comparison between them, we plotted a magnified graph of the small red lines in
the phase images. In those graphs the red line represents the phase extracted by the Multi-
Period method and the blue line the phase extracted by our technique. It can be seen that
the values obtained are very similar, and that they diverge by a very small amount only in
proximity of critical areas such as the interface between the disc and the hemisphere.
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Figure 5.18: A comparison of the coding and of the phase values extracted by our tech-
nique and by Multi-Period phase shift. In the first column we show the final codings and
their difference. In the other columns we display the respective phase images for two
reconstructed signals. The two magnified plots in the last row correspond to the small red
segment. Note that the obtained phases are very similar even in the proximity of critical
areas.

5.3.4 Concluding Remarks
In this section we have proposed a novel compound phase coding technique that is able
to perform a complete and accurate surface reconstruction requiring the projection of as
few as 8 patterns. This is obtained by encoding multiple phase information in a single
pattern sequence as phases of sinusoidal signals at integer frequencies, thus encoding and
decoding the compound signal using standard Fourier analysis. The comparison with
another well known technique assesses the ability of the approach to obtain accurate re-
construction even with very few patterns. In addition, the time/quality trade-off can be
easily controlled by adding more patterns. In fact, we show that measurement error de-
creases consistently by adding more information, to the point that our method reaches the
performance of other state-of-the-art approaches when feeded with a comparable quan-
tity of data. Finally, while a comparison with commercially available scanners is out of
the scope of this research, we can observe that we obtain an average deviation from the
surface of about 30-40 microns, which is on par with the precision offered by high end
commercial scanners.
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6
Conclusions

In this thesis, we introduce a novel game-theoretic based framework for matching and
inlier selection. We tested its effectiveness over a wide selection of applicative domains.
For each scenario we propose a special crafted adaptation that allows for a better handling
of domain-specific features. To this extent, the general framework is extended in each
addressed context with appropriate theoretic and experimental validation.

Contributions and novelty of the work

In Chapter 3 we introduce the basic framework and test its performance in solving match-
ing problems by comparing its results with those obtained by standard RANSAC-based
inlier selection techniques. Specifically we define the concept of matching game and
the modeling of matching candidates as pure strategies. We show how to enforce hard
constraints and thus how to adapt the framework to handle both one-to-one and one-to-
many matching. Finally we suggest the use of evolutionary dynamics to evolve an initial
population of strategies toward an evolutionary stable state. In Chapter 4 we offer two
different approaches for matching data sets where high order properties need to be en-
forced by each group of three or more matched items. Specifically we introduce the use
of high order attributed graphs to solve this type of problems. To this extent, a maximal
weight subgraph isomorphism is searched in a special crafted association graph by using
first a reactive local search scheme (in section 4.1) and evolutionary game dynamics (in
section 4.2). Both approaches exceed the state of the art in their respective field of applica-
tion. Further we propose an complementary view of the problem, by using an association
hypergraph between single matches rather than build a standard association graph with
higher order tuples as nodes. This latter approach is slightly more scalable with respect
to the order of the enforced property and offers a comparable level of performance. In
Chapter 5 we propose two applications to 3D reconstruction. In the first section we show
how to use our game-theoretic approach for coarse and fine surface registration without
requiring any form of initial motion estimation. Here we define a very detailed matching
technique which is based on sound theoretical properties. In addition the experimental
validation shows very good results: in particular we always obtain the correct registra-
tion without falling in local minima and the quality of the alignment itself is comparable
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with that obtained by state-of-the art iterative registration techniques. In section 5.2 we
show how to use the proposed approach to find symmetry planes in point clouds. Here
we introduce an association graph-based problem formulation which in turn uses evolu-
tionary techniques in order to search for the best solution. Experimental results shows a
higher precision with respect to other commonly used techniques. Finally, in section 5.3
we propose a novel coding technique for structured light 3D reconstruction. While not
game-theoretic related, we obtained this interesting result as a by-product of our research
on 3D structured light scanning technologies. We believed relevant to include it in this
thesis as it is integral with the whole research path followed.

Strengths and weaknesses
Our approach exhibits three main advantages over most inlier selection techniques. The
first advantage is the ability to exploit a global coherence model on the basis of local
compatibilities expressed between small sets of two or few more matching candidates.
This is the main feature that distinguishes our approach from the current literature. In
fact, this allows to leverage on the transitive closure of the property over all the sets and to
guarantee its enforcement among all the members of the final configuration. Furthermore,
the approach offers a high level of flexibility: by choosing different payoff function it is
possible to attack very different problems, in addition it is easy to switch between one-to-
one and many-to-many matching approaches. The second advantage is the ability to deal
effectively with feature descriptors that show poor distinctiveness. This is quite evident
in the image and surface matching applications, where correct matches are detected with
high precision, even in the presence of several feasible candidates for each match. The
third advantage is that our technique does not require to fix any threshold. We think
that the thresholding is the main hurdle with most of other approaches: in fact it is very
difficult to select an appropriate value in advance and without knowledge of the correct
solution. By contrast, our technique reacts appropriately to different conditions of the
data by auto adapting in virtue of a sort of automatic thresholding driven by the global
average payoff of the currently active population.

During our work we found two main drawbacks in the proposed technique. The first
is of course the fact that it is not able to model all of the matching problems. In fact we
are only able to attack problems where a global property is verifiable over a subset of two
or more matches. While this is not the whole set of scenarios, this is the case for most
parameter estimation problems, as well as structural constrained problems. The second
drawback is related to the computational and spatial complexity of the framework. Since
each match candidate is modeled as a strategy, the size of the payoff matrix between
strategies grows with the square of the match candidates. In typical problems match
candidates can easily be in the order of thousands, leading to data sizes in the order of
several millions of payoffs. This can be a drawback both computationally (since most
dynamics need to perform several iteration of matrix-vector multiplications) and spatially
(since payoff matrices can grow up to several hundreds of megabytes). Fortunately this
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drawback is strongly moderated by the use of infection/immunization dynamics, which
allows for both faster convergence and for off-line storage of the data, since only one
column of the payoff matrix is needed at a given step.

Since the proposed technique is very customizable and applications to several differ-
ent topics are presented in this thesis, a direct comparison with other non-structural algo-
rithms is not possible in a generic fashion. Nevertheless we compared each application-
specific adaptation of the framework to structural and non-structural state-of-the art do-
main specific solutions. In all the comparisons our framework has allowed to obtain better
results and in many scenarios requiring a comparable amount of computing time.

Future work
We intend to further develop our approach in several ways. First of all we feel the need for
a better formalization of the framework itself, in particular by generalizing it in a coherent
fashion that is able to express all the domain-specific adaptation explored in this thesis.
Moreover we are very encouraged by the result obtained in the field of 3D reconstruction.
Specifically we think that our work on surface registration could be significantly improved
by the definition of novel feature detectors and descriptors able to exploit the strengths
of our framework. Specifically we are already working on a class of robust detectors that
are able to select repeatable and distinctive surface locations. Those detectors will be
combined with a novel type of relaxed descriptors that are not very distinctive by itself
(i.e. they exhibit low precision) but are highly repeatable (i.e. they allow for a high
recall). This is the ideal situation for our framework, since we are not disturbed by a
high number of outliers, providing that a minimum number of correct matches are in the
candidate set. In addition we think that also camera calibration could benefit from our
approach, in particular regarding automatic calibration from motion sequences. We are
already working on a robust inlier selection method for improved bundle adjustment.
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