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Chapitre 1

Introduction (Version française)

Les modèles mathématiques sont des outils très puissants pour l’étude du fonction-
nement de l’économie et, plus généralement, des interactions sociales. Puisque chaque
société est composée d’un ensemble d’individus, la compréhension des mécanismes à la
base des choix des agents est fondamentale.

Quand nous nous intéressons aux décisions faites par des agents économiques deux
aspects sont particulièrement importants et doivent être pris en considération, le temps
et le risque (ou, de façon plus générale, l’incertitude).

La plupart de nos choix ont des conséquences temporelles. Considérons par exemple
un agent, avec une dotation initiale d’un certain bien de consommation, qui vit dans une
économie de deux périodes. Il doit décider comment répartir sa consommation. Le plus
souvent, on fait l’hypothèse qu’il préfère consommer davantage dans la première période
que dans la deuxième. Ce comportement est connu sous le nom d’impatience. Si l’on
considère un modèle avec N périodes, alors on peut représenter le flux des revenus (ou
des biens de consommation) comme un vecteur dans RN . À partir de l’article fondateur
de Samuelson [1937], le modèle d’utilité escomptée a été le paradigme pour représenter
l’impatience. Dans ce modèle, un flux inter-temporel (x0, x1, . . . , xN) est évalué par la
fonction d’utilité :

U(x0, x1, . . . , xN) =
N∑
n=0

δnu(xn).

La fonction u : R → R est une fonction d’utilité instantanée qui représente les préfé-
rences de l’agent. Pour chaque période, n = 1, . . . N , δn, avec δ ∈ (0, 1), est un facteur
d’actualisation qui indique que le décideur accorde une importance moindre aux périodes
éloignées dans le temps. Ce modèle est sans doute celui qui a connu le plus grand succès
dans le contexte du choix inter-temporel grâce à sa simplicité et son élégance. Pour-
tant, comme nous le montrerons plus tard, il n’est pas complètement satisfaisant car, par
exemple, il ne permet pas de faire la distinction entre différents concepts d’impatience
définis directement à partir des préférences du décideur (notamment il ne permet pas
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de différentier l’aversion au délai et la myopie 1). Dans les Chapitre 3 et le Chapitre 4,
nous nous intéressons à ce problème, dans un contexte plus général avec une infinité de
périodes.

Un deuxième aspect fondamental qu’on rencontre dans tout type de décision est le
risque. Comme pour le temps, le risque est une notion très importante en économie
car, quand les agents doivent faire des choix, ils ne font pas face à des environnements
déterministes. Imaginons une personne qui veut investir de l’argent en bourse : les actifs
ressemblent à des loteries dont on ne peut pas déterminer la valeur future avec précision.
La première et sans doute la plus importante contribution à cette littérature est celle
de von Neumann and Morgenstern [1947], qui ont axiomatisé le modèle d’utilité espérée
(EU).

Soit C un ensemble de prix et soit P0(C) l’ensemble des probabilités simples sur C
(c’est à dire les probabilités qui sont différentes de 0 seulement pour un nombre fini de
c ∈ C). Alors, sous des axiomes très intuitifs, il existe une fonction u : C → R telle que
les préférences sur P0(C) peuvent être représentées par la fonctionnelle :

U(P ) =
∑
C

P (c)u(c)

pour tout P ∈ P0(C). Dans le Chapitre 5, nous utilisons une version “target-based" de
ce modèle, développée par Castagnoli and LiCalzi [1996], dans le cadre de la négociation
coopérative.

1.1 Choix inter-temporel

Les deux chapitres après l’introduction traitent de la théorie du choix inter-temporel.
Plus précisément, nous analysons d’un point de vue mathématique le comportement des
agents ayant des préférences pour une consommation immédiate. Ce type de préférences
“impatientes" joue un rôle clé dans le cadre de l’économie théorique et cela dès la fin du
19ème siècle, comme on peut le constater dans la citation de Böhm-Bawerk [1891] :

“Present goods are, as a rule, worth more than future goods of like kind and
number. This proposition is the kernel and center of the interest theory which
I have to present.” 2

Plus dans le détail, nous nous appuyons sur des modèles introduits en économie par les
travaux pionniers de Koopmans [1960] et Diamond [1965]. Comme eux, nous considérons
un agent doté d’une relation de préférence, notée %, sur l’ensemble des suites réelles et
bornées (noté l∞), interprétées comme des flux infinis de biens de consommation. Nous
étudions les règles qu’il faut imposer à ses préférences afin qu’il montre de l’impatience.

1. Ces concepts sont définis plus loin.
2. Voir Böhm-Bawerk [1891], p. 237.
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Autrement dit, nous voulons savoir sous quelles conditions un décideur, auquel deux
quantités de bien de consommation seraient proposées à deux périodes distinctes, choisisse
toujours celle plus proche du présent.

Depuis Samuelson [1937], le paradigme pour décrire un agent économique avec un
comportement impatient a été le modèle d’utilité escomptée, où l’agent est muni d’une
fonction d’utilité du type

U(x0, x1, . . . ) =
∑
t

β(t)u(xt). (1.1)

Dans ce modèle, l’attitude d’un agent vis à vis du futur est résumée par le facteur d’es-
compte β : N → (0, 1], qui est une fonction strictement décroissante. Puisque l’agent
accorde des poids décroissant avec le temps, il est impatient au sens de Samuelson.

De la même manière que le modèle Bayésien et le modèle d’espérance d’utilité de
Savage [1954] sont les points de référence dans la théorie de la décision dans l’incertain
(voir Gilboa and Marinacci [2013]), le modèle de Samuelson est (quasiment) le seul modèle
utilisé dans la théorie du choix inter-temporel. Dans le Chapitre 3 et le Chapitre 4, nous
dérogeons à l’usage de cette approche classique. Le Chapitre 3 est ainsi centré sur des
formes fonctionnelles qui sont utilisées dans le cadre de l’ambiguïté. Le Chapitre 4 suit
une approche topologique.

La contribution principale du premier chapitre réside dans la définition de deux
concepts qui représentent des préférences impatientes.

La première notion, qu’on appelle aversion au délai sur le long-terme, exprime l’idée
suivante. Imaginons qu’un agent faisant face à un certain flux de paiements soit invité à
choisir entre deux paiements supplémentaires qui seront versés à deux dates différentes.
Imaginons aussi que le paiement versé à la date la plus proche soit également le plus faible.
Alors cet agent est averse au délai sur le long-terme s’il préfère toujours le paiement plus
faible (mais versé plus tôt) dès que le paiement plus important est versé trop loin dans
le futur.

La deuxième notion, qu’on appelle aversion au délai sur le court-terme, représente
une idée très intuitive. Un décideur est averse au délai sur le court-terme si, à chaque fois
qu’on lui demande de choisir entre deux paiements égaux versés à deux dates consécutives,
il choisit toujours le paiement le plus proche temporellement.

Nous supposons ensuite que la relation de préférence % du décideur peut être repré-
sentée numériquement par trois modèles très répandus dans la littérature sur l’ambiguïté :
le modèle d’utilité espérée (EU), le modèle d’utilité espérée à la Choquet (CEU) et le mo-
dèle d’utilité espérée MaxMin (MMEU). Ces modèles ont été introduits dans le contexte
du choix dans l’incertain par les travaux de Schmeidler [1986], Schmeidler [1989] et Gil-
boa and Schmeidler [1989]. Leur usage pour décrire l’impatience n’est pas standard en
économie et représente une des contributions principales du chapitre. Il se trouve en effet
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que les modèles EU, CEU et MMEU sont des alternatives très puissantes et flexibles au
modèle standard d’utilité escomptée.

Nous caractérisons l’aversion au délai sur le long-terme dans ces trois modèles consi-
dérés, et nous montrons que c’est un type d’impatience assez faible. Elle ne dépend que
des poids que le décideur donne aux périodes de temps, ou aux sous-ensembles des pé-
riodes. Il est intéressant de remarquer que l’on peut faire un parallèle entre cette notion
et la théorie qui étudie l’impossibilité d’avoir des préférences qui sont en même temps
parétienne (au sens strict) et anonymes (les préférences sont anonymes si elles traitent
de manière égalitaire toute période de temps).

L’aversion au délai sur le court-terme se trouve être très intéressante pour plusieurs
raisons. Premièrement, contrairement à l’aversion au délai sur le long-terme, nous mon-
trons qu’il n’est pas possible de séparer les préférences du décideur et son évaluation du
temps. L’aversion au délai sur le court-terme demande des propriétés sur les probabilités
(ou la capacité) et sur l’utilité (marginale). Deuxièmement, un agent averse au délai sur
le court-terme doit donner des poids décroissants dans le temps. Troisièmement, cette no-
tion est la contrepartie comportementale de la définition d’impatience donnée par Fisher
[1930]. En effet, nous prouvons que, dans le modèle EU, un individu est averse au délai
sur le court-terme si et seulement si son taux marginal de substitution inter-temporelle
est toujours plus grand que 1. Enfin, nous définissons le concept de dominance temporelle
et nous montrons qu’il est équivalent à l’aversion au délai sur le court-terme. La domi-
nance temporelle, liée à l’article de Foster and Mitra [2003] sur la dominance des flux
de paiements, est une notion désirable qui rappelle la notion de dominance stochastique
dans l’incertain.

Dans le Chapitre 4, nous approfondissons l’étude du concept d’aversion au délai sur le
long-terme suivant une approche différente : au lieu de faire l’hypothèse que les préférences
sont représentées numériquement (comme au Chapitre 3), nous utilisons un point de vue
topologique.

L’espace l∞ des suites réelles bornées, qui représente l’ensemble des flux infinis de
revenus (ou de biens de consommation), est un espace de dimension infinie. Dans ce type
d’espace, le choix de la topologie a des conséquences sur le comportement des agents.
Ainsi, il ne faudra pas choisir une topologie que pour ses propriétés mathématiques.
Mas-Colell and Zame [1991] écrivent :

“It should be stressed that the choice of the topology can only be dictated by
economic, rather than mathematical, considerations.”

Le concept économique qui sous-tend les topologies étudiées dans le Chapitre 4 est
précisément celui de l’aversion au délai sur le long-terme. Nous définissons deux espaces
de Hausdorff localement convexes qui “escomptent” le futur d’une manière cohérente avec
l’aversion au délai. Enfin, à la fin du chapitre, nous montrons que l’aversion au délai sur
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le long-terme est compatible avec la notion d’une plus grande aversion au délai de Benoît
and Ok [2007] (qui ont inspiré notre définition).

D’abord, nous comparons ces topologies avec d’autres qui ont la propriété de repré-
senter des préférences impatientes ou patientes. Schématiquement, nous trouvons qu’un
décideur averse au délai sur le long-terme se situe “entre” un agent myope et un agent
patient. Ensuite, nous nous intéressons à l’espace dual de l∞ (qui est interprété comme
l’espace des prix en économie). Le résultat le plus intéressant dit que le dual est égal
à l’espace ba, c’est à dire l’espace des charges (autrement appelées mesures simplement
additives) bornées.

Nos résultats ont des implications sur la théorie de l’équilibre général en dimension
infinie, et sur les travaux qui considèrent une bulle spéculative comme la partie patholo-
gique (non sigma-additive) d’une charge (voir Gilles and LeRoy [1992]). La comparaison
des différentes topologies nous aide à clarifier un résultat de Araujo [1985]. Nous prouvons
que, même si les agents sont impatients, il peut y avoir des économies où il n’y a pas
d’équilibre. L’étude de l’espace dual implique que, si un équilibre existe, il est possible
d’avoir des bulles spéculatives malgré l’impatience (au sens de l’aversion au délai).

Dans le reste de la Section 1.1 nous donnons les principaux résultats mathématiques
des Chapitre 3 et 4.

1.1.1 Sur l’aversion au délai

Dans cette section nous illustrons les résultats principaux du Chapitre 3.
Nous étudions une relation de préférence d’un décideur sur l’ensemble l∞+ = {x :=

(xn)n∈N|xn ≥ 0∀n et supn xn < +∞} des suites réelles, positives et bornées. Les éléments
de l∞+ sont notés x,y, etc. et sont interprétés, comme des flux infinis de revenu ou de biens
de consommation. L’ensemble des naturels N représentera le temps.

Dans ce chapitre, la relation de préférence % du décideur est représentée par :
– Le modèle d’utilité espérée (EU) : U(x) = EP [u(x)].
– Le modèle d’utilité espérée à la Choquet (CEU) : U(x) =

∫
u(x) dv.

– Le modèle d’utilité espérée MaxMin (MMEU) : U(x) = minP∈C EP [u(x)].
– Le modèle d’utilité escomptée : U(x) =

∑+∞
t=0 β(t)u(xt).

En généralisant la notion des poids que le décideur donne au temps, les modèles EU,
CEU et MMEU généralisent ainsi le modèle d’utilité escomptée. Pour plus d’informations
le lecteur pourra se référer à la Section 3.2.

Aversion au délai sur le long-terme

Dans cette section nous nous intéressons à l’étude de l’aversion au délai sur le long-
terme. La définition mathématique est la suivante.
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Définition 1.1.1. Soit % une relation de préférence sur l∞+ . On dit que % est averse au
délai sur le long-terme si pour 0 < a ≤ b, n0 ∈ N et x ∈ l∞+ , ∃N := N(x, n0, a, b) > n0

tel que ∀n ≥ N ,

(xn0 + a,x−n0) � (xn + b,x−n).

La Définition 1.1.1 dit qu’un décideur est averse au délai sur le long-terme si, faisant
face à deux paiements, a > 0 fait à la période n0 et b ≥ a fait à la période n, il choisit
toujours le paiement plus immédiat, même si plus faible, chaque fois que l’autre est trop
loin dans le futur.

Nous caractérisons ensuite l’aversion au délai sur le long-terme dans les trois modèles
définis auparavant.

Proposition 1.1.1. Soit % une relation de préférence représentée par le modèle CEU.
Alors (i)⇔ (ii) :
(i) % est averse au délai sur le long-terme ;
(ii) ∀A ∈ 2N v(A ∪ {n})→n v(A) et ∀A ∈ 2N, ∀t /∈ A v(A ∪ {t}) > v(A).

Proposition 1.1.2. Soit % une relation de préférence représentée par le modèle MMEU.
Alors (i)⇔ (ii) :
(i) % est averse au délai sur le long-terme ;
(ii) ∀P ∈ C, ∀n ∈ N, P ({n}) > 0.

Corollaire 1.1.1. Soit % une relation de préférence représentée par le modèle EU. Alors
(i)⇔ (ii) :
(i) % est averse au délai sur le long-terme ;
(ii) P ({n}) > 0∀n ∈ N.

Les trois caractérisations, qui dépendent seulement des poids que le décideur donne
aux périodes de temps, sont liées à la monotonie stricte des préférences 3. Cette relation
est présentée dans le résultat ci-dessous.

Proposition 1.1.3. Soit % une relation de préférence représentée soit par le modèle
MMEU soit par le modèle EU. Alors (i)⇔ (ii) :
(i) % est averse au délai sur le long-terme ;
(ii) % est strictement monotone.

Soit % une relation de préférence représentée par le modèle CEU. Alors (i)⇒ (ii) :
(i) % est averse au délai sur le long-terme ;
(ii) % est strictement monotone.

3. On dit q’une rélation de préférence sur l∞ est monotone si xk ≥ yk pour tout k ∈ N implique x % y et
strictement monotone si xk ≥ yk pour tout k ∈ N et x 6= y implique x � y.
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La Proposition 1.1.3 peut être utilisée pour clarifier un résultat de Basu and Mitra
[2003], où les auteurs étudient l’impossibilité d’être strictement parétien et de traiter
également toute génération. Considérons la définition suivante.

Définition 1.1.2. (Basu and Mitra [2003]) Une relation de préférence % est anonyme
si pour tous x,y ∈ l∞+ tels qu’il existe i, j ∈ N tels que xi = yj et xj = yi et tels que pour
k ∈ N \ {i, j}, xk = yk, alors x ∼ y.

Le résultat principal de Basu and Mitra [2003] dit qu’il n’y a pas de représentation
numérique pour une relation de préférence qui est en même temps anonyme et strictement
monotone. L’intuition derrière ce résultat n’est pas facile à saisir. La Proposition 1.1.3,
surtout la partie qui concerne le modèle EU, peut nous guider dans l’interprétation.
Dans le modèle EU, la monotonie stricte et l’aversion au délai sur le long-terme sont
équivalentes. Il est facile de voir que cette dernière notion est incompatible avec celle de
la Définition 1.1.2. Donc, dans le cas spécifique du modèle EU, l’impossibilité est évidente.

Enfin, nous montrons que l’utilisation des modèles EU, CEU et MMEU permet de dif-
férencier l’aversion au délai sur le long-terme d’autres types de préférences qui montrent
une prédisposition pour une consommation immédiate. Les deux concepts que nous consi-
dérons sont celui de la myopie faible (qu’on appellera ici myopie) (voir Brown and Lewis
[1981]) et celui de l’impatience au sens de Chateauneuf and Ventura [2013].

Définition 1.1.3. (Brown and Lewis [1981]) On dit qu’une relation de préférence
% est myope si ∀x,y ∈ l∞+ tels que x � y et ∀ε > 0, ∃n0(x,y, ε) := n0 ∈ N tel que
n ≥ n0 ⇒ x � y + ε1[n,+∞).

Définition 1.1.4. (Chateauneuf and Ventura [2013]) On dit qu’une relation de
préférence % est impatiente si ∀x ∈ l∞+ , ∀A > 0, ∃N(x, A) := N ∈ N tel que n ≥ N ⇒
(x + A)1[0,n] � x.

Il n’est pas difficile de montrer que le modèle d’utilité escomptée est équivalent au
modèle EU avec une probabilité sigma-additive (voir Section 3.2). Dans ce cas, les Pro-
positions 3.2 et 3.4 de Chateauneuf and Ventura [2013] montrent que la myopie et l’im-
patience ne peuvent pas être distinguées. Par contre, nous prouvons qu’il est possible de
construire des préférences qui sont averses au délai sur le long-terme, sans être ni myopes
ni impatientes. Nous le faisons dans l’exemple qui suit.

Exemple 1.1.1. Considérons une relation de préférence % représentée par le modèle EU
avec une probabilité simplement additive définie sur l’algèbre A des ensembles finis et
cofinis par : P ({n}) =

(
1
3

)n+1 ∀n ∈ N, P (N) = 1 et

P (A) =


∑

n∈A P ({n}) si A est fini

1−
∑

n∈Ac P ({n}) si A est cofini.
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Il est alors possible de prolonger la probabilité P à une probabilité Q définie sur l’ensemble
des parties de N, noté 2N, tel que Q|A = P . On peut remarquer que Q n’est pas sigma-
additive car

1 = Q(N) = Q(∪n{n}) 6=
∞∑
n=0

Q({n}) =
∞∑
n=0

(
1

3

)n+1

=
1

2
.

Un décideur EU avec une telle probabilité est averse au délai sur le long-terme par le
Corollaire 1.1.1. Pourtant, il est possible de montrer qu’il n’est ni myope ni impatient.
On peut ainsi avoir des préférences qui sont averses au délai sur le long-terme mais qui
n’exhibent ni myopie ni impatience, deux notions beaucoup plus fortes.

Aversion au délai sur le court-terme

Dans cette section nous nous intéressons à l’étude des préférences qui sont averses au
délai sur le court-terme. Nous commençons avec une définition mathématique.

Définition 1.1.5. Soit % une relation de préférence sur l∞+ . On dit que % est averse au
délai sur le court-terme si pour tout a > 0, k ∈ N et x ∈ l∞+ , on a

(xk + a,x−k) % (xk+1 + a,x−(k+1)).

La Définition 1.1.5 dit qu’un décideur est averse au délai sur le court-terme si, chaque
fois qu’il fait face à deux paiements faits à deux dates successives, il choisit toujours celui
le plus proche du présent.

Nous avons réussi à donner des caractérisations complètes pour les modèles EU et
CEU, mais pas pour le modèle MMEU. Pour ce dernier, nous avons prouvé deux carac-
térisations partielles.

Les résultats dans cette section sont valables sous l’hypothèse que la fonction d’utilité
u(·) est C1 et telle que u′(x) > 0, ∀x ∈ R+.

Proposition 1.1.4. Soit % une relation de préférence représentée par le modèle CEU.
Alors (i)⇔ (ii) :
(i) % est averse au délai sur le court-terme ;
(ii) Les trois conditions ci-dessous sont vérifiées :

1. ∀A ∈ 2N, ∀n ∈ N t.q. n, n+ 1 /∈ A, v(A ∪ {n}) ≥ v(A ∪ {n+ 1}) ;

2. ∀x, y ∈ R+ t.q. x > y ∀n ∈ N, ∀A,B ∈ 2N t.q. A ⊂ B, n ∈ B, n /∈ A, n+ 1 /∈ B,

u′(x)(v(A ∪ {n})− v(A)) ≥ u′(y)(v(B ∪ {n+ 1})− v(B))

3. ∀x, y ∈ R+ t.q. y > x ∀n ∈ N, ∀A,B ∈ 2N t.q. B ⊂ A, n+1 ∈ A, n /∈ A, n+1 /∈ B,

u′(x)(v(A ∪ {n})− v(A)) ≥ u′(y)(v(B ∪ {n+ 1})− v(B))
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Corollaire 1.1.2. Soit % une relation de préférence représentée par le modèle EU. Alors
(i)⇔ (ii) :
(i) % est averse au délai sur le court-terme ;
(ii) ∀x, y ∈ R+, ∀n ∈ N, u′(x)P ({n}) ≥ u′(y)P ({n+ 1}).

Proposition 1.1.5. Soit % une relation de préférence représentée par le modèle MMEU.
Alors (i)⇒ (ii) :
(i) ∀P ∈ C, ∀n ∈ N and ∀x, y ∈ R+, u′(x)P ({n}) ≥ u′(y)P ({n+ 1}) ;
(ii) % est averse au délai sur le court-terme.

Proposition 1.1.6. Soit % une relation de préférence représentée par le modèle MMEU.
Alors (i)⇒ (ii) :
(i) % est averse au délai sur le court-terme ;
(ii) ∀P ∈ C, ∀n ∈ N, P ({n}) ≥ P ({n+ 1}).

On peut remarquer que, tandis que l’aversion au délai sur le long-terme ne s’appuyait
que sur des propriétés de poids attachés au temps, l’aversion au délai sur le court-terme
demande des propriétés sus les poids et sur l’utilité. Dans ce qui suit nous nous concen-
trons sur le modèle EU, pour lequel l’interprétation est plus pointue.

En premier lieu, il est intéressant de noter qu’un décideur averse au délai sur le court-
terme doit escompter le futur, dans le sens qu’il doit donner des poids décroissants.
Cela résulte immédiatement du Corollaire 1.1.2. En deuxième lieu, on remarque que la
caractérisation implique des limitations considérables sur la fonction d’utilité instantanée.
En particulier, l’utilité ne peut pas satisfaire les conditions d’Inada et celles du Corollaire
1.1.2 en même temps. En troisième lieu, l’aversion au délai sur le court-terme se trouve
être la contrepartie comportementale de la définition d’impatience de Fisher [1930]. En
arrangeant les termes du Corollaire 1.1.2, on trouve que ∀x, y ∈ R+ et ∀n ∈ N :

P ({n})
P ({n+ 1})

u′(x)

u′(y)
≥ 1. (1.2)

Si l’on considère x comme le revenu de la période n et y comme le revenu de la période
n+ 1 alors l’expression (1.2) nous dit qu’un agent est averse au délai sur le court-terme si
et seulement si il a un taux marginal de substitution inter-temporel toujours plus grand
que 1. Cela est exactement la condition de Fisher.

Nous terminons cette section en faisant le lien entre l’aversion au délai sur le court-
terme et la notion de dominance temporelle.

Définition 1.1.6. Soit x,y ∈ l∞+ . On dit que x domine temporellement y, noté x %T y,
si
∑k

i=0 xi ≥
∑k

i=0 yi ∀k ∈ N.

Donc, un flux de revenu x domine un flux y si pour tout k ∈ N la somme partielle des
k premiers éléments de x est plus grande que la somme partielle des k premiers éléments
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de y. La Définition 1.1.6 généralise la condition (3b), p. 474 de Foster and Mitra [2003].
Le lecteur pourra trouver dans leur papier une discussion sur la relation entre dominance
temporelle et dominance stochastique.

Proposition 1.1.7. Soit % une relation de préférence monotone et transitive sur l∞+ ,
continue par rapport à la convergence croissante. Alors (i)⇔ (ii) :
(i) % est averse au délai sur le court-terme ;
(ii) x %T y⇒ x % y.

Sous certaines hypothèses de monotonie et continuité 4, la notion d’aversion au délai
sur le court-terme est équivalente au fait que, chaque fois que x domine temporellement
y, l’agent choisit x. En dimension finie, si x domine temporellement y, alors x a une
valeur actuelle plus élevée que y pour tout taux d’intérêt. Il semble donc évident qu’un
décideur préfère x par rapport à y. Donc, l’équivalence entre dominance temporelle et
aversion au délai sur le court-terme donne encore plus de force à ce dernier concept.

1.1.2 Une approche topologique de l’aversion au délai

Dans cette section nous illustrons les résultats principaux du Chapitre 4. Dans ce
chapitre, nous étudions l’aversion au délai sur le long-terme en utilisant une approche
topologique. Au lieu de faire l’hypothèse que les préférences peuvent être représentées
par quelque fonctionnelle, nous définissons des topologies qui “escomptent” le futur d’une
façon compatible avec l’aversion au délai sur le long-terme et nous étudions leurs proprié-
tés.

Le cadre dans lequel nous travaillons dans ce chapitre est le même que celui du Cha-
pitre 3 avec une seule différence. Au lieu de considérer l’espace l∞+ , nous nous intéressons
à tout l’ensemble l∞. Les quantités négatives sont interprétées comme des dettes d’argent
ou de biens de consommation.

Comme nous l’avons dit plus en haut, nous voulons étudier l’aversion au délai sur le
long-terme définie dans la Définition 1.1.1. Pour simplifier la notation, nous dirons, plus
simplement, aversion au délai.

Étant donnée une topologie T sur l’espace l∞, il est possible de définir la notion de
continuité des préférences. Nous dirons ainsi qu’une relation de préférence % sur l∞ est
T -continue si les sous-ensembles {x ∈ l∞|x � y} et {x ∈ l∞|y � x} sont T -ouverts pour
tout y. Dans cette section introductive, nous présentons seulement les résultats pour les
espaces séparés localement convexes avec une base monotone 5

Le but principal du Chapitre 4 est de trouver une topologie qui “escompte” le futur
d’une façon cohérente avec l’aversion au délai. Une fois cette topologie définie, nous répon-
dons aux deux questions suivantes. Premièrement, peut-on comparer cette topologie avec

4. Pour plus d’informations sur ces hypothèse le lecteur peut se référer à le Section 3.4.2.
5. Pour plus de détails sur ces espaces, voir le Section 4.2
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celles qui sont habituellement utilisées dans l’espace l∞ (surtout, la topologie de Mackey
et la topologie uniforme) ? Deuxièmement, peut-on caractériser le dual topologique ?

Nous nous limitons aux préférences strictement monotones 6. La monotonie stricte
nous place dans le bon cadre pour deux raisons. Premièrement, parce que c’est le même
cadre de Benoît and Ok [2007], qui ont inspiré la définition d’aversion au délai. Deuxiè-
mement, parce que si une préférence est averse au délai, alors monotonie et monotonie
stricte sont équivalentes.

On définit ce que signifie pour une topologie d’être averse au délai.

Définition 1.1.7. Une topologie T sur l∞ est averse au délai si toute préférence stricte-
ment monotone et continue par rapport à T est averse au délai.

Les deux résultats que nous donnons maintenant sont le point de départ pour définir
la topologie que nous étudions par la suite. On note 1n la suite 1n := (0, . . . , 0︸ ︷︷ ︸

n−1

, 1, 0, . . . )

et 0 la suite (0, 0, . . . ).

Proposition 1.1.8. Toute topologie localement convexe T pour laquelle on a 1n
T−→n 0

est une topologie averse au délai.

Proposition 1.1.9. Soit T une topologie localement convexe. Si toute préférence continue
par rapport à T est averse au délai, alors 1n

T−→n 0.

Malheureusement les Propositions 1.1.8 et 1.1.9 ne donnent pas une caractérisation
complète des topologies averses au délai. Néanmoins, elles soulignent que la caractéristique
fondamentale qu’il faut prendre en considération est la convergence 1n

T−→n 0.
Ces préliminaires mis en place, nous pouvons maintenant définir la topologie à laquelle

nous nous intéressons.

Définition 1.1.8. On note T monDA la topologie la plus fine de Hausdorff avec une base

monotone pour laquelle on a 1n
T mon
DA−−−→n 0.

L’idée économique qui est à la base de la Définition 1.1.8 est très simple. Considérons
un agent qui fait face à un flux qui lui donne une unité de bien à la période n et zéro à
toute autre période. Si ses préférences sont continues par rapport à T monDA , alors en reculant
ce paiement dans le futur, ce flux sera arbitrairement proche de la suite (0, 0, . . . ). On
peut remarquer que la topologie uniforme, notée T∞, n’a pas cette propriété. En effet,
‖1n‖ = supk |1n(k)| = 1 pour toute période de temps n. Dans ce sens, nous dirons que
la topologie uniforme est une topologie apte à décrire un comportement patient (et pas
impatient) de l’individu.

Il est facile de montrer que T monDA est une topologie averse au délai dans le sens de la
Définition 1.1.7. De plus, il est possible de prouver que cette topologie existe.

6. Voir le renvoi 3, page 14
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Comparaisons avec d’autres topologies sur l∞ et espace dual

La topologie dont on muni l’espace l∞ dans la plupart des cas est la topologie uniforme,
T∞, définie par la norme ‖x‖ = supk |xk|. On a vu plus haut que cette topologie convient
si l’on veut étudier des préférences patientes. Peut on comparer les espaces T monDA et T∞ ?
Si oui, quelle est la relation entre ces deux topologies ?

Par ailleurs, en économie mathématique il est connu que la continuité des préférences
par rapport à la topologie de Mackey mène à l’impatience des décideurs. Cette topologie
est particulièrement importante pour son usage extensif dans la théorie de l’équilibre
général en dimension infinie. Brown and Lewis [1981] ont montré que des préférences
continues par rapport à la topologie de Mackey sont impatientes dans le sens précis
décrit ci-dessous.

Définition 1.1.9. (Brown and Lewis [1981]) Soit % une relation de préférence sur
l∞. On dit que % est fortement myope si ∀x,y ∈ l∞ tels que x � y et ∀z ∈ l∞,
∃n1(x,y, z) := n1 ∈ N tel que n ≥ n1 ⇒ x � y + z1[n,+∞).

Une fois donnée la définition de myopie forte, il est possible de définir la topologie
fortement myope TSM .

Définition 1.1.10. (Brown and Lewis [1981]) La topologie de Hausdorff localement
convexe TSM sur l∞ est la topologie la plus fine pour que toute préférence (pas forcement
monotone) continue par rapport à TSM soit fortement myope.

Brown and Lewis [1981] ont montré que la topologie TSM est équivalente à la to-
pologie de Mackey. Donc, au lieu de comparer T monDA avec la topologie de Mackey, nous
travaillerons avec TSM .

Dans le résultat suivant, nous comparons la topologie T monDA avec la topologie TSM , qui
escompte le futur, et la topologie T∞, qui ne l’escompte pas.

Proposition 1.1.10. TSM ⊂ T monDA ⊂ T∞

La Proposition 1.1.10 montre formellement que l’aversion au délai est une notion plus
faible que la myopie forte. En effet, puisque la continuité des préférences est définie en
terme d’ouverts, et puisque TSM ⊂ T monDA signifie que tout ouvert de TSM est aussi un
ouvert pour T monDA , il est plus facile pour un décideur d’être averse au délai plutôt que
fortement myope. D’un point de vue intuitif, la Proposition 1.1.10 peut être interprétée
en disant qu’un décideur averse au délai, est “entre” un décideur qui est fortement myope
et un autre qui est patient. Néanmoins, il faut faire attention à ne pas trop s’appuyer sur
cette interprétation car dans le Chapitre 4 nous n’avons pas défini la notion de patience
à partir d’une relation de préférence.

L’inclusion T monDA ⊂ T∞, a des implication importantes pour ce qui concerne le dual
topologique de l∞ associé avec T monDA . En économie théorique, l’espace dual a un rôle
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clé car il est l’espace des prix, voir Mas-Colell and Zame [1991]. Le corollaire qui suit
découle facilement de la Proposition 1.1.10. Nous rappelons que l’espace ba est l’espace
des charges bornées sur 2N.

Corollaire 1.1.3. l1 ⊂ (l∞, T monDA )∗ ⊆ ba.

Peut-on donner une caractérisation complète de l’espace dual (l∞, T monDA )∗ ? La réponse
est oui et est donnée dans la Proposition 1.1.11.

Proposition 1.1.11. (l∞, T monDA )∗ = ba

D’un point de vue mathématique, ce résultat est très intéressant car il donne une
nouvelle caractérisation de l’espace ba. Dans la section prochaine, nous discutons les
implications économiques de ces résultats.

Équilibre général et bulles

Les Propositions 1.1.10 et 1.1.11 sont particulièrement intéressantes pour ce qui concerne
la théorie de l’équilibre général et celle qui étudie les bulles.

– Sur l’équilibre général. La Proposition 1.1.10 peut être considérée comme un perfec-
tionnement d’un résultat de Araujo [1985]. Dans ce papier, l’auteur montre que, si
les préférences des agents sont continues par rapport à une topologie T telle que l’on
n’a pas T ⊆ TSM , alors il existe des économies sans équilibre. Araujo conclut donc
que l’impatience est une caractéristique nécessaire si l’on veut avoir un équilibre. La
Proposition 1.1.10 clarifie cette interprétation. En effet, si un décideur a une relation
de préférence continue par rapport à TDA, alors il est clair qu’il montre de l’impa-
tience. Pourtant, l’équilibre pourrait ne pas exister. Donc on peut conclure que le
besoin d’impatience évoqué par Araujo [1985] est en réalité un besoin d’un type
d’impatience assez fort. Des décideurs seulement averses au délai ne garantiraient
pas l’existence d’équilibres.

– Sur les bulles. Comme nous l’avons déjà dit, les prix peuvent être identifiés avec des
éléments de l’espace dual. Si cet espace est ba, alors en appliquant le théorème de
Yoshida–Hewitt il est possible de décomposer le prix comme la somme d’une partie
sigma-additive et d’une partie pure. Gilles and LeRoy [1992] définissent une bulle
comme étant la partie pure d’une charge. Dans ce papier ils argumentent qu’on ne
peut pas avoir de bulles si les décideurs sont impatients (voir [Gilles and LeRoy,
1992, p. 332]). La Proposition 1.1.11 fournit un contre-exemple à cette affirmation.
En effet, puisque nous montrons que l’espace dual (l∞, T monDA ) est ba, cela implique
qu’on peut avoir une partie de bulle dans les prix. Comme pour le cas de l’équilibre
général, l’intuition est que les décideurs doivent être assez impatients pour éviter
les bulles.
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1.2 Sur la théorie de la négociation

Le dernier chapitre de cette thèse porte sur la théorie de la négociation coopérative
introduite par l’article fondateur de Nash [1950]. Cette section présente brièvement cette
théorie et explique comment nous avons contribué à la littérature.

Dans le cadre original introduit par Nash, un jeu de négociation entre deux personnes
se compose d’une paire (S, d) où S ⊆ R2 est un ensemble compact, convexe et d un point
dans S. Les éléments de S sont interprétés comme des paires d’utilités de von Neumann-
Morgenstern (NM). Le point d est appelé le point de désaccord. Il se définit comme un
vecteur d’utilités que chaque joueur peut imposer unilatéralement, si un accord n’est
pas trouvé. Cette définition est une abstraction d’une situation réelle dans laquelle les
négociateurs feraient face à des alternatives possibles. Prenons l’exemple suivant.

Exemple 1.2.1. Considérons une situation dans laquelle il y a deux agents (dotés de deux
fonctions d’utilité de NM) qui doivent se partager 1$. L’ensemble des partages possibles
est l’ensemble des vecteurs X := {(x, 1− x)|0 ≤ x ≤ 1} (en supposant qu’il n’y a pas de
gaspillage du dollar). Supposons de plus que, en cas de désaccord, ils obtiennent 0$. Le
modèle de Nash ne considère pas l’ensemble des partages réalisables et prend comme point
de départ un ensemble S ⊇ {(u1(x), u2(1 − x))|0 ≤ x ≤ 1} et le point de désaccord d =

(u1(0), u2(0)). Chaque paire d’utilités représente le niveau de satisfaction des négociateurs
associé à une certaine division.

On se demande maintenant : comment les joueurs doivent partager l’utilité ? Ou mieux,
quel point en S devraient-ils choisir ?

L’approche de Nash est axiomatique. Il définit une solution comme étant une fonction
f : (S, d)→ R2 qui associe à chaque paire (S, d) un résultat dans S. Nash [1950] considère
ensuite les quatre propriétés ci-dessous.

– Pareto Optimalité : ∀y ∈ S, y � f(S, d) ;
– Invariance : Soit A : R2 → R2 une transformation affine d’utilité, c’est à dire
A(x1, x2) = (A1(x1), A2(x2)) où Ai(x) a la forme αix+ βi avec αi > 0, βi ∈ R, alors
f(A(S), A(d)) = A(f(S, d)) ;

– Symétrie : Si d1 = d2, et (x, y) ∈ S implique (y, x) ∈ S, alors f1(S, d) = f2(S, d) ;
– Indépendance des Alternatives Non Pertinentes : Si T ⊆ S et f(S, d) ∈ T
alors f(S, d) = f(T, d).

L’Optimalité de Pareto dit que la solution doit être un vecteur d’utilités qui est dans
la frontière de Pareto de S. Puisque une fonction d’utilité NM est unique par rapport aux
transformations affines positives, l’Invariance dit que la solution doit être indépendante
de toute renormalisation affine positive du problème. L’axiome de Symétrie impose un
partage égal chaque fois que l’ensemble de négociation et le point de désaccord sont
symétriques. Enfin, l’Indépendance des Alternatives Non Pertinente dit qu’une solution
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ne devrait pas changer lorsque les alternatives “non pertinentes” sont éliminées d’un jeu.
Pour des explications plus détaillées sur ces axiomes voir Osborne and Rubinstein [1990].

Sous ces hypothèses, Nash [1950] montre que l’unique solution est :

f(S, d) = arg maxs∈S,s≥d(s1 − d1)(s2 − d2).

Cette solution sélectionne la paire d’utilités qui maximise le produit des gains des joueurs
à partir du point de désaccord.

La simplicité et la robustesse de cette solution ont favorisé à la fois ses nombreuses
applications et son importance théorique. Pourtant, la solution Nash n’a pas une inter-
prétation intuitive. Par exemple, Rubinstein et al. [1992] écrivent :

“the solution lacks a straightforward interpretation since the meaning of the
product of two von Neumann–Morgenstern utility numbers is unclear.”

Nash [1950] n’a pas été le seul à axiomatiser une solution. De nombreux auteurs ont
adopté le cadre de négociation décrit ci-dessus et ont proposé différentes axiomatisations
et solutions. Les plus notables sont la solution Kalai-Smorodinsky, voir Kalai and Smoro-
dinsky [1975], la solution égalitaire, voir Kalai [1977b] et la solution utilitariste relative,
d’abord examiné par Arrow [1963]. Beaucoup d’autres solutions sont présentes dans la
littérature. Pour plus d’informations sur ce sujet, voir par exemple Thomson et al. [1994].
Une question naturelle est donc la suivante : quelle solution est la meilleure ?

Les deux contributions principales du Chapitre 5 sont :
– Nous fournissons une interprétation unifiée pour les trois plus importantes solutions
en négociation coopérative.

– Nous offrons une justification pour la solution de Nash.
Notre modèle fait l’hypothèse qu’il y a deux joueurs engagés dans un processus de

négociation et un médiateur. Le rôle du médiateur est de conseiller les négociateurs sur
la meilleure alternative possible dans un ensemble X donné. L’objectif du médiateur est
de les mettre d’accord sur une solution.

Chaque joueur a des préférences ordinales %i sur X, i = 1, 2. Le processus de négo-
ciation est target-based : le joueur i accepte x ∈ X si et seulement si x %i ti, où ti ∈ X
est son seuil minimal d’acceptation. Nous disons que ti est le target (cible) du joueur i.

Le médiateur ne connait pas avec précision les caractéristiques des joueurs. Plus pré-
cisément, nous faison l’hypothèse qu’il connait les préférences %i i = 1, 2, mais qu’il est
incertain au sujet de la cible ti de chaque joueur. Cette incertitude sur ti est représentée
par une variable aléatoire Ti et sa fonction de répartition Fi ; c’est à dire que le médiateur
est en mesure d’évaluer :

P (i accepte x) = P (x %i Ti) = Fi(x).

Sous ces hypothèses, nous proposons une caractérisation comportementale pour une
classe assez générale des solutions. Si le médiateur utilise une solution dans cette classe,
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il proposera aux joueurs une alternative qui maximise la probabilité de trouver un ac-
cord. Un tel cadre nous permet de caractériser quelques solutions majeures comme des
cas particuliers. La seule caractéristique qui les sépare est la nature de la dépendance
stochastique entre les cibles des négociateurs.

En particulier, notre approche probabiliste suggère une interprétation simple pour le
produit de deux utilités von Neumann Morgenstern préconisé par la solution de Nash. Ceci
est révélé comme le produit de deux probabilités, et correspond à une hypothèse implicite
d’indépendance stochastique entre les cibles des négociateurs. Enfin, nous montrons qu’un
affaiblissement de cette dernière hypothèse génère d’autres alternatives bien connues,
mais moins fréquemment utilisées, à savoir la solution égalitaire et une forme de solution
utilitariste.

1.2.1 Solutions target-based pour la négociation à la Nash

Nous présentons ici les résultats du Chapitre 5 plus en détail.
Nous définissons un problème de négociation comme un sous-ensemble compact B de

[0, 1]2. Chaque point p = (p1, p2) en B correspond à une paire de probabilités. Le nombre
pi représente la probabilité que le joueur i accepte une alternative possible x proposée
par le médiateur. Plus formellement, étant donné un ensemble X d’alternatives possibles,
nous associons tout x ∈ X à un point (p1, p2) dans le carré unitaire grâce à la fonction
x→ (F1(x), F2(x)) (où F1 et F2 sont les fonctions de répartition définies précédemment).
Nous supposons donc que B = (F1(X), F2(X)) et nous prenons B comme point de départ.
Une solution est une fonction qui pour tout problème B fournit (au moins) un point dans
B.

Nous considérons les préférences du médiateur sur l’ensemble des loteries sur les paires
des probabilités d’acceptation. Nous dérivons ensuite une caractérisation comportemen-
tale de ses préférences telle qu’il évalue chaque alternative par la probabilité jointe d’ac-
ceptation des deux joueurs.

Les axiomes et le théorème de représentation

Nous considérons [0, 1]2 comme un espace de mixture pour l’opération ⊕, que nous
interprétons de manière standard : αp ⊕ (1 − α)q est une loterie qui donne p en [0, 1]2

avec probabilité α et q en [0, 1]2 avec probabilité 1− α, voir Herstein and Milnor [1953].
Au même temps, [0, 1]2 est considéré comme un treillis sous l’ordre partiel standard
= de R2. Nous utilisons les notations p ∨ q = (max(p1, q1),max(p2, q2)) et p ∧ q =

(min(p1, q1),min(p2, q2)).
Nous faisons les hypothèses suivantes sur les préférences % du médiateur sur l’espace

de mixture/treillis [0, 1]2.
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A.1 (Régularité) % est un préordre total, continu et indépendant par rapport aux
mixtures.

Sur l’interprétation et les implications de A.1, on renvoie le lecteur au Théorème 8.4
de Fishburn [1970]. Il est intéressant de remarquer que dans [Nash, 1950, p. 157] une
hypothèse équivalente à A.1 découle du fait que les joueurs suivent le modèle d’utilité
espérée.

A.2 (Non-trivialité) (1, 1) � (0, 0).

Cet axiome exclut le cas trivial où le médiateur est indifférent entre une proposition
qui est sûrement acceptée et une autre qui est sûrement refusé par les deux négociateurs.

A.3 (Indifférence sur le désaccord) pour tous p, q dans [0, 1], (p, 0) ∼ (0, q).

A.5 s’inspire de l’axiome DI dans Border and Segal [1997], où les auteurs étudient
une relation de préférence sur des solutions. Dans le cadre de Nash, l’axiome DI énonce
qu’une alternative qui donne à l’un des joueurs la même utilité qu’il obtiendrait au point
de désaccord est aussi bonne que le point de désaccord lui-même. Dans notre cadre
probabiliste, cet axiome exprime l’idée que si un joueur refuse une proposition, c’est
comme si les deux refusaient. Une proposition est acceptée si et seulement si les deux
négociateurs y consentent.

A.4 (Consistance pour la probabilité individuelle) pour tout p dans [0, 1],

p(1, 1)⊕ (1− p)(0, 1) ∼ (p, 1) et p(1, 1)⊕ (1− p)(1, 0) ∼ (1, p).

Supposons que le médiateur sait de manière certaine qu’un joueur va accepter. Alors,
il est indifférent entre une loterie qui voit le deuxième joueur sûrement accepter avec
probabilité p et sûrement refuser avec probabilité (1− p), ou un vecteur où le deuxième
joueur accepte avec une probabilité p.

A.5 (Complémentarité faible) pour tous p,q dans [0, 1]2,

(1/2) (p ∨ q)⊕ (1/2) (p ∧ q) % (1/2)p⊕ (1/2)q

A.5 découle de l’axiome S dans Francetich [2013]. Il dit qu’un loterie qui donne avec
probabilité 0.5 p, et probabilité 0.5 q, est faiblement inférieure à une loterie avec les
mêmes probabilités sur les extrêmes (par rapport à l’ordre = introduit plus haut). En
gros, l’axiome dit que les probabilités d’acceptation sont faiblement complémentaires.

Il est possible de montrer que, sous A.1, les axiomes A.2–A.5 sont logiquement indé-
pendants.

Le résultat principal du chapitre est donné ci-dessous.

Théorème 1.2.1. Une relation de préférence % satisfait A.1–A.5 si et seulement si il
existe une copule unique C : [0, 1]2 → [0, 1] qui représente %.
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Une copule est une application qui décrit la structure de dépendance d’une variable
aléatoire bidimensionnelle en fonction de ses marginales. Ce résultat clé dérive d’un théo-
rème de Sklar [1959]. L’interprétation du Théorème 1.2.1 est que, sous A.1–5, le médiateur
classe les alternatives par leur probabilité d’acceptation, selon son opinion subjective sur
la structure de dépendance des cibles des joueurs. Plus simplement : le médiateur maxi-
mise la probabilité que les deux parties acceptent sa proposition.

Les solutions principales

La solution de Nash surgit dès que l’on suppose que les probabilités d’acceptation des
individus sont indépendantes. Puisque c’est une hypothèse assez naturelle, la solution de
Nash apparaît comme la plus proéminente. Considérons l’axiome suivant.

A.7 (Indifférence par rapport aux diminutions proportionnelles) pour tous α, p, q in [0, 1],
(αp, q) ∼ (p, αq) 7.

Cela indique que le médiateur est indifférent au fait que la même réduction propor-
tionnelle sur la probabilité d’acceptation soit appliquée à un joueur ou à l’autre.

Théorème 1.2.2. Une relation de préférence % satisfait A.1–A2, A4–A.5∗, et A.7 (A.5∗

est la version stricte de A.5) si et seulement si elle est représentée par la copule Π(p, q) =

p · q.

Sous A.7, le médiateur juge que les probabilités d’acceptation des joueurs sont sto-
chastiquement indépendantes et donc il choisit de leur proposer une alternative x telle
que

max
x∈X

P (x %1 T1, x %2 T2) = max
(p1,p2)∈B

p1 · p2

et on retrouve la solution de Nash.
Dans le modèle original (basé sur les utilités), la solution égalitaire de Kalai [1977b],

recommande le point maximal auquel les gains d’utilité du point de désaccord sont égaux
pour les deux joueurs. Plus simplement, si (S, d) est un jeu de négociation, la solution
égalitaire recommande le vecteur dans S qui maximise le min {(u1 − d1), (u2 − d2)} pour
(u1, u2) dans S et ui ≥ di pour i = 1, 2. Dans notre cadre probabiliste, considérons
l’hypothèse suivante.

A.8 (Indifférence pour le min) pour tous p, q en [0, 1], (p, p ∧ q) ∼ (p ∧ q, q).

Cet axiome dit que le médiateur est indifférent entre deux paires des probabilités
d’acceptation s’ils ont le même minimum.

7. L’axiome A.6, qui n’est pas présenté dans cette section introductive est un axiome de symétrie. Le lecteur
intéressé peur voir la Section 5.3.
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Théorème 1.2.3. Une relation de préférence % satisfait A.1–A2, A4–A.5∗, et A.8 (A.5∗

est la version stricte de A.5) si et seulement si elle est représentée par la copuleM(p, q) =

min(p, q).

Sous A.8, les préférences du médiateur sont représentées par la borne supérieure de
Fréchet M(p, q) = min(p, q), qui indique une dépendance positive maximale entre les
deux distributions marginales. Par conséquent, nous pouvons réinterpréter la solution
égalitaire de Kalai [1977b] comme la solution que le médiateur doit utiliser s’il pense que
les cibles des joueurs sont parfaitement corrélées positivement.

Enfin, nous considérons la solution utilitariste relative de Arrow [1963]. Cette solution
consiste à maximiser la somme des utilités après les avoir normalisées entre zéro et un.
Considérons l’axiome suivant.

A.9 (Indifférence pour la moyenne) pour tous p, q dans [0, 1], (p, q) ∼ (p+q
2
, p+q

2
).

A.9 dit que les préférences du médiateur ne changent pas si on baisse la probabilité
d’acceptation d’un joueur et simultanément on augmente la probabilité d’acceptation de
l’autre du même montant. Nous montrons le résultat suivant.

Théorème 1.2.4. Une relation de préférence % satisfait A.1–A.5 et A.9 si et seulement
si elle est représentée par la copule W (p, q) = max(p+ q − 1, 0).

Le Théorème 1.2.4 caractérise la borne inférieure de FréchetW (p, q) = max(p+q−1, 0)

qui indique la dépendance négative maximale entre les deux distributions marginales. Par
conséquent, nous pouvons réinterpréter cette forme de solution utilitariste (tronquée)
comme la solution qui maximise la probabilité d’acceptation jointe lorsque le médiateur
pense que les cibles des joueurs sont parfaitement corrélées négativement.

Sur l’interprétation target-based

Le modèle Nash est défini en terme d’utilité NM alors que notre modèle se base sur
des probabilités. Une question légitime se pose : est-ce vraiment de la négociation à la
Nash ?

Comme nous l’avons déjà dit, la négociation est target-based et, de plus, nous faison
l’hypothèse que le médiateur connait P (i accepte x) = P (x %i Ti) = Fi(x). L’observation
clé est que le modèle NM peut être reformulé dans une langue probabiliste, comme le
montrent les papiers de Castagnoli and LiCalzi [1996] et de Bordley and LiCalzi [2000].
Soit C = [c∗, c

∗] un intervalle compact et convexe de R. Considérons l’ensemble des loteries
P0(C). Si ui est une utilité de NM croissante, bornée et continue a droite, après une simple
normalisation nous pouvons définir P (Ti ≤ c) := ui(c) et considérer “l’ancienne” fonction
d’utilité ui comme la fonction de répartition de la cible Ti du joueur. Si une loterie X
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a pour fonction de répartition G et est stochastiquement indépendante de Ti, alors la
chaîne d’égalités

E[ui(X)] =

∫
ui(c) dG(c) =

∫
P (Ti ≤ c) dG(c) = P (X ≥ T )

montre que l’utilité espérée de la loterie X est équivalente à la probabilité que X soit
supérieure à une cible stochastique Ti.

L’hypothèse implicite de Nash [1950] est que les utilités ui des joueurs sont connais-
sance commune. Cela revient à supposer que les fonctions de répartition des cibles T1,
T2 sont connues ex-ante par les deux joueurs, tandis que les cibles ne le sont pas. Par
conséquent, si les agents ont une connaissance commune de la distribution conjointe de
leurs cibles ex-ante, ils maximisent la probabilité de succès en s’appuyant sur la copule
connue ex-ante. En particulier, s’ils savent que leurs deux cibles sont stochastiquement
indépendantes, ils doivent utiliser la solution de Nash.
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Chapitre 2

Introduction (English version)

Mathematical models offer powerful tools to study the functioning of economics and,
more broadly, of social interactions. As societies are composed by a set of individuals, it
is fundamental to understand how a single agent makes decisions.

Two aspects are particularly important when making economic decisions and should
be taken into consideration : time and risk (or, more generally, uncertainty).

Most of our choices have consequences through time. Consider for instance an agent
with a fixed amount of endowment living in a two periods economy. She should decide
how much she is going to consume in the first period and how much in the second one.
Usually, it is supposed that the decision maker prefers to consume more in the first per-
iod and less in the second. Such behaviour is known in the literature with the term of
impatience. If there are N periods in the economy then we may model any N -periods
income (or consumption) stream as a vector in RN . Starting from the seminal paper of
Samuelson [1937], the (exponential) discounting model has been the paradigm for descri-
bing impatient tastes. In this model, an intertemporal stream of income (x0, x1, . . . , xN)

is evaluated by the utility function :

U(x0, x1, . . . , xN) =
N∑
n=0

δnu(xn).

The function u : R → R is an instantaneous utility function that describes the tastes
of the agent. For every period of time n = 1, . . . N , δn, with δ ∈ (0, 1), is a discount
factor that represents the fact that the decision maker is putting decreasing weights on
periods of time. This model is widely spread because of its intuitiveness and simplicity.
However, as we will see later, it is not completely satisfactory since, for instance, it does
not allow to distinguish between different behavioural definitions of impatience (i.e. when
the properties are given directly in terms of preferences). In Chapter 3 and Chapter 4 we
address this problem, using some suitable generalizations of this framework for infinite
dimensional spaces.
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A second key aspect of any type of decision, is represented by risk. As for time, risk
is of capital importance in economics since, when making a choice, agents usually do not
face a deterministic environment. As a simple example, consider someone who is willing
to invest in the stock market : assets look like lotteries whose value cannot be precisely
determined. The key contribution to this literature is undoubtedly due to von Neumann
and Morgenstern [1947] who axiomatized the expected utility model (EU).

Let C be a set of prizes, or outcomes, and let P0(C) be the set of simple probability
measures over C (i.e. probabilities that are different from 0 only on for finitely many
c ∈ C). Then, under some intuitive axioms, there exists a function u : C → R such that
the the preferences over P0(C) can be represented by the functional :

U(P ) =
∑
C

P (c)u(c)

for all P ∈ P0(C). In Chapter 5, we apply a target-based version of this model due to
Castagnoli and LiCalzi [1996] to the theory of cooperative bargaining.

2.1 Intertemporal choice

The two chapters after the introduction deal with the theory of intertemporal choice.
More precisely, we are interested in describing and analysing preferences for advancing
the time of future satisfaction. Such “impatient” preferences play a key role in economic
theory. At the end of the 19th century Böhm-Bawerk [1891] was writing :

“Present goods are, as a rule, worth more than future goods of like kind and
number. This proposition is the kernel and center of the interest theory which
I have to present.” 1

We consider a decision maker who has preferences over infinite (discrete) streams of
income or consumption. Our setting follows the seminal papers of Koopmans [1960] and
Diamond [1965]. We are interested in imposing some rules so that her preferences would
show some kind of impatience. Loosely speaking, we want to find some conditions under
which a decision maker who is asked to consume some amounts of good at two different
points in time, would prefer to consume it at the earlier date. In these two chapters the
set of choices will be the set of real-valued, bounded sequences (denoted l∞), interpreted
as the set of infinite streams of income or consumption.

Since the seminal paper of Samuelson [1937], the standard way of tackling impatient
preferences has been the (exponential) discounting model :

U(x0, x1, . . . ) =
∞∑
t=0

δ(t)u(xt).

1. See Böhm-Bawerk [1891], p. 237.
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As Bayesianism and the subjective expected utility model of Savage [1954] are the refe-
rence points in decision theory in an uncertain environment (see Gilboa and Marinacci
[2013]), the (exponential) discounted utility model is the paradigm in the theory of inter-
temporal choice. In both Chapter 3 and Chapter 4 we depart from this classical approach.
In Chapter 3 we study preferences represented by some functionals used in the context
of ambiguity. These functionals can be thought as generalizations of Samuelson’s model.
In Chapter 4 we follow a topological approach.

The main contribution of Chapter 3 lies in the introduction of two behavioural defi-
nitions that represent preferences for anticipating utility.

The first concept, called long-term delay aversion, expresses the following idea. Sup-
pose that an agent who is facing some income distribution is asked to choose between
two extra payments which will be done at two different dates. Suppose further that the
earlier payment is lower than the other one. Then the agent is long-term delay averse
if she always chooses the lower (but earlier) payment as soon as the bigger one is done
sufficiently far in the future.

The second concept, called short-term delay aversion, tries to depict the intuitive idea
that a decision maker should show some kind of impatience if, whenever she is asked to
choose between two extra payments done at two consecutive dates, she weakly prefers
the one done at the earlier date.

We consider then a decision maker endowed with a preference relation represented
by three popular models used in the decision theoretic literature : the Expected Utility
(EU), the Choquet Expected Utility (CEU) and the MaxMin Expected Utility (MMEU)
models. These models were introduced in the context of decision under uncertainty in
the pioneer works of Schmeidler [1986], Schmeidler [1989] and Gilboa and Schmeidler
[1989]. The very use of these models to describe impatient preferences is not standard in
economic theory and represents one of the main contributions of this chapter. We show
that the EU, CEU and MMEU prove to be flexible tools and powerful generalizations of
the standard discounting model.

Long-term delay aversion can be characterised in the three models considered. The
characterisations show that it is a weak notion which depends only on some simple pro-
perties of the weights that the decision maker assigns on periods (or subsets of periods)
of time. Interestingly, it is possible to draw a parallel between the theory that study the
impossibility of being strongly paretian and treating equally all generation. Such a link
is made using the fact that long-term delay aversion is related with strong monotonicity
of preferences.

Short-term delay aversion proves to be a very interesting notion for several reasons.
First, unlike for long-term delay aversion, it is not possible to separate the tastes of the
agent and her evaluation of time. Short-term delay aversion require both properties of the
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probabilities (or the capacity) and of the (marginal) utility. Second, an agent exhibiting
short-term delay aversion should assign decreasing weights to periods of time. Third,
short-term delay aversion is the behavioral counterpart of Fisher’s definition of impatience
(see Fisher [1930]). In fact, it turns out that in the EU model a decision maker is short-
term delay averse if and only if she has a marginal rate of intertemporal substitution
always greater than one. Finally, we define the concept of temporal domination and we
prove that it is equivalent to short-term delay aversion. Temporal domination, linked
with the work of Foster and Mitra [2003] on the dominance of a stream of income over
another one at all interest rates, is an appealing notion that recalls the one of stochastic
dominance in the context of risk.

In Chapter 4, we develop the study on the concept of long-term delay aversion from
a different viewpoint. Instead of considering a preference relation represented by some
functional (like in Chapter 3), we use a topological approach.

The space of real-valued, bounded streams of income is an infinite dimensional space.
In such spaces, the choice of the topology has behavioural implications. Therefore a
topology should not be chosen only for technical convenience. To put it with the words
of Mas-Colell and Zame [1991] :

“It should be stressed that the choice of the topology can only be dictated by
economic, rather than mathematical, considerations.”

The economic concept behind the topologies studied in Chapter 4 is precisely long-term
delay aversion. We propose two Hausdorff locally convex topologies that “discount” the
future in a way that is consistent with long-term delay aversion. At the end of the chapter,
we also show that the definition of long-term delay aversion is compatible with the notion
of more delay aversion in Benoît and Ok [2007] (whose work inspired our definition).

First, we compare these topologies with other topologies that have the property of
representing impatient, or patient, preferences. We found, loosely speaking, that a long-
term delay averse decision maker is behaviourally “in between” a myopic and a patient
agent. Second, we study the topological dual spaces of l∞ (i.e. the space of bounded
streams). The most interesting result says that the dual space is equal to ba, the set of
bounded charges.

Our results bear relevance on the theory of infinite-dimensional general equilibrium
and with the works that consider bubbles as the pathological (not countably additive)
part of a charge (see Gilles and LeRoy [1992]). The comparison of topologies implies that
it is possible to have preference for advancing the time future satisfaction and still an
equilibrium may fail to exist. Such a result clarifies a paper of Araujo [1985] : decision
makers should be enough impatient to insure the existence of an equilibrium. The study
of the dual implies that it is possible to have equilibrium price with bubbles, even in spite
of the impatient attitude (represented by long-term delay aversion) of the agents.
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In the rest of Section 2.1 we provide the main mathematical results of Chapter 3 and
Chapter 4.

2.1.1 About delay aversion

In this section we are going to illustrate the main results of Chapter 3.
We consider a decision maker (DM) with a preference relation over the set l∞+ = {x :=

(xn)n∈N|xn ≥ 0∀n and supn xn < +∞} of real-valued, positive and bounded sequences.
The generic elements of l∞+ are denoted as x,y, etc. and are considered as infinite streams
of income or consumption. Obviously, the set N of natural numbers represents time.

In this chapter, the preference relation % over l∞+ of the DM is represented by :
– The Expected Utility (EU) model : U(x) = EP [u(x)].
– The Choquet Expected Utility (CEU) model : U(x) =

∫
u(x) dv.

– The MaxMin Expected Utility (MMEU) model : U(x) = minP∈C EP [u(x)].
– The discounting model : U(x) =

∑+∞
t=0 β(t)u(xt).

The EU, CEU and MMEU models are used in order to generalize the notion of weights
that the DM assigns to periods of time. All of them are generalizations of the discounting
model, which is, as we said above, the reference in the economic literature. For more
informations about these models, the reader is referred to Section 3.2.

Long-Term Delay Aversion

In this section we are interested in studying the notion of long-term delay aversion.
The formal definition follows.

Definition 2.1.1. A preference relation % over l∞+ is long-term delay averse if for 0 <

a ≤ b, n0 ∈ N and x ∈ l∞+ ∃N := N(x, n0, a, b) > n0 s.t. ∀n ≥ N ,

(xn0 + a,x−n0) � (xn + b,x−n).

Definition 2.1.1 states the following : when a DM with a certain distribution of income
(or consumption) faces two extra payments, a > 0 made in period n0 and b ≥ a made in
period n, if the second one happens to be sufficiently far into the future, then she will
strictly prefer the payment made before, even if it is lower.

It turns out that long-term delay aversion can be characterized in all the three models
considered. The characterizations are the following.

Proposition 2.1.1. Let % be represented by the CEU model. Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) ∀A ∈ 2N v(A ∪ {n})→n v(A) and ∀A ∈ 2N, ∀t /∈ A v(A ∪ {t}) > v(A).
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Proposition 2.1.2. Let % be represented by the MMEU model. Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) ∀P ∈ C, ∀n ∈ N, P ({n}) > 0.

Corollary 2.1.1. Let % be represented by the EU model. Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) P ({n}) > 0∀n ∈ N.

These characterizations, which depend on relatively simple properties of the weights
that the DM puts on time periods, are related with strong monotonicity of preference 2.
This link is presented in the following proposition.

Proposition 2.1.3. Let % be represented by either the MMEU model or the EU model.
Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) % is strongly monotonic.

Let % be represented by the CEU model. Then (i)⇒ (ii) :
(i) % is long-term delay averse ;
(ii) % is strongly monotonic.

Interestingly, Proposition 2.1.3 can be used to clarify some result of the theory that
studies the impossibility of being, at the same time, strongly Paretian and treating equally
all generations. Consider the following definition due to Basu and Mitra [2003].

Definition 2.1.2. (Basu and Mitra [2003]) A preference relation % satisfies anony-
mity if for all x,y ∈ l∞+ s.t. there exists i, j ∈ N s.t. xi = yj and xj = yi and s.t. for
k ∈ N \ {i, j}, xk = yk, then x ∼ y.

The main theorem of Basu and Mitra [2003] states that there is no numerical repre-
sentation for a preference relation that satisfies both anonymity and strong monotonicity
of preferences. We find that the intuition behind their result is not completely easy to
grasp (from an economic perspective). Proposition 2.1.3, and especially the part invol-
ving the EU model, may help to understand this impossibility result. In the EU model,
strong monotonicity is equivalent to long-term delay aversion. This latter notion is clearly
incompatible with anonymity. This is the reason why, in the limited framework of EU
preferences, strong monotonicity and anonymity are in conflict.

Finally, we show with one example that the use of the EU, CEU and MMEU mo-
dels allows to differentiate long-term delay aversion from other demanding notions of
preferences for anticipating future utility. The two concepts under consideration are the

2. We say that a preference relation over l∞ is monotone if xk ≥ yk for every k ∈ N implies x % y and strongly
monotone if xk ≥ yk for every k ∈ N and moreover x 6= y implies x � y.

34



one of weak myopia (here just called myopia) of Brown and Lewis [1981] and the one of
impatience of Chateauneuf and Ventura [2013].

Definition 2.1.3. (Brown and Lewis [1981]) A preference relation % is myopic if
∀x,y ∈ l∞+ such that x � y and ∀ε > 0, ∃n0(x,y, ε) := n0 ∈ N such that n ≥ n0 ⇒ x �
y + ε1[n,+∞).

Definition 2.1.4. (Chateauneuf and Ventura [2013]) A preference relation % is
impatient if ∀x ∈ l∞+ , ∀A > 0, ∃N(x, A) := N ∈ N such that n ≥ N ⇒ (x+A)1[0,n] � x.

It is not difficult to prove that the the discounting model is equivalent to the EU
model with a sigma-additive probability (see Section 3.2). In this case, Proposition 3.2
and Proposition 3.4 of Chateauneuf and Ventura [2013] show that myopia and impatience
cannot be disentangled. It is possible however to construct preferences which are long-
term delay averse but neither myopic nor impatient. We do it in the example that follows.

Example 2.1.1. Take % represented by EU w.r.t. a simply additive probability defined
in the algebra A of finite and cofinite sets as : P ({n}) =

(
1
3

)n+1 ∀n ∈ N, P (N) = 1 and

P (A) =


∑

n∈A P ({n}) if A is finite

1−
∑

n∈Ac P ({n}) if A is cofinite.

It is possible to extend the probability P to a simply additive probability Q over the power
set 2N s.t. Q|A = P . It should be noted that Q is not σ-additive in fact

1 = Q(N) = Q(∪n{n}) 6=
∞∑
n=0

Q({n}) =
∞∑
n=0

(
1

3

)n+1

=
1

2
.

By Corollary 2.1.1 the DM is long-term delay averse. However it is possible to prove that
she is neither myopic nor impatient. This example therefore shows that it is possible to
construct preferences that are long-term delay averse, but that do not display the much
stronger notions of impatience or myopia.

Short-Term Delay Aversion

In this section we are interested in studying the notion of short-term delay aversion.
The formal definition follows.

Definition 2.1.5. A preference relation % over l∞+ is short-term delay averse if for every
a > 0, k ∈ N and every x ∈ l∞+ , one has

(xk + a,x−k) % (xk+1 + a,x−(k+1)).

35



Definition 2.1.5 says that a DM is short-term delay averse if, when facing two payments
at two consecutive dates, she will always prefer the payment closer to the present.

We were able to give complete characterizations of short-term delay aversion for the
EU and CEU models, but not for the MMEU model. For this latter model we present
two partial characterizations.

Our results in this section assume the utility function u(·) to be C1 and such that
u′(x) > 0,∀x ∈ R+.

Proposition 2.1.4. Let % be represented by the CEU model. Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) The following holds :

1. ∀A ∈ 2N, ∀n ∈ N s.t. n, n+ 1 /∈ A, v(A ∪ {n}) ≥ v(A ∪ {n+ 1}) ;

2. ∀x, y ∈ R+ s.t. x > y ∀n ∈ N, ∀A,B ∈ 2N s.t. A ⊂ B, n ∈ B, n /∈ A, n+ 1 /∈ B,

u′(x)(v(A ∪ {n})− v(A)) ≥ u′(y)(v(B ∪ {n+ 1})− v(B))

3. ∀x, y ∈ R+ s.t. y > x ∀n ∈ N, ∀A,B ∈ 2N s.t. B ⊂ A, n+ 1 ∈ A, n /∈ A, n+ 1 /∈ B,

u′(x)(v(A ∪ {n})− v(A)) ≥ u′(y)(v(B ∪ {n+ 1})− v(B))

Corollary 2.1.2. Let % be represented by the EU model. Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) ∀x, y ∈ R+, ∀n ∈ N, u′(x)P ({n}) ≥ u′(y)P ({n+ 1}).

Proposition 2.1.5. Let % be represented by the MMEU model. Then (i)⇒ (ii) :
(i) ∀P ∈ C, ∀n ∈ N and ∀x, y ∈ R+, u′(x)P ({n}) ≥ u′(y)P ({n+ 1}) ;
(ii) % is short-term delay averse.

Proposition 2.1.6. Let % be represented by the MMEU model. Then (i)⇒ (ii) :
(i) % is short-term delay averse ;
(ii) ∀P ∈ C, ∀n ∈ N, P ({n}) ≥ P ({n+ 1}).

While long-term delay aversion involves only properties of the weights that the DM
attaches to periods of time, short-term delay aversion requires features of both the capa-
city, or the probabilities, and the utility function. We focus on the EU model, for which
the interpretation is sharper.

First, we can notice that an EU, short-term delay averse DM should discount the
future, in the sense that she should attach decreasing weights to periods of time. This
readily follows form Corollary 2.1.2 since we need P ({n}) ≥ P ({n + 1}). Second, the
characterization shows that short-term delay aversion entails substantial limitation on
the shape of the instantaneous utility function. In particular, the utility function cannot
satisfy at the same time the properties of Corollary 2.1.2 and Inada’s conditions. Third,
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short term delay aversion turns out to be a behavioural counterpart of Fisher’s definition
of impatience (see Fisher [1930]). Rearranging quantities in the characterization we get
that ∀x, y ∈ R+ and ∀n ∈ N :

P ({n})
P ({n+ 1})

u′(x)

u′(y)
≥ 1. (2.1)

Considering x as the DM’s income in period n and y as her income in period n+ 1, then
the expression above states that : a DM is short-term delay averse if and only if she has a
marginal rate of intertemporal substitution that is always greater than 1. This is precisely
Fisher’s definition.

We end this section linking short-term delay aversion with the concept of temporal
domination.

Definition 2.1.6. Given x,y ∈ l∞+ , we say that x temporally dominates y, denoted
x %T y, if

∑k
i=0 xi ≥

∑k
i=0 yi ∀k ∈ N.

A flow of income x temporally dominates another flow of income y if the partial sum
of the first k elements of x is higher or equal to the partial sum of the first k elements
of y, for every k ∈ N. This definition extends condition (3b) of [Foster and Mitra, 2003,
p. 474]. The interested reader can refer to their paper for a discussion of the relation of
Definition 2.1.6 to the criterion of stochastic dominance.

The link between these two notions is given below.

Proposition 2.1.7. Let % be a monotone and transitive preference relation over l∞+ ,
continuous w.r.t. monotone increasing convergence. Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) x %T y⇒ x % y.

Under some monotonicity and continuity assumptions 3, the notion of short-term delay
aversion is equivalent to the fact that, whenever x temporally dominates another flow of
income y, then the DM prefers x to y. In finite dimension, if x temporally dominates
y, then x has an higher present value for every possible interest rate. It seems natural
therefore for a DM to prefer x over y. Hence, such a result provides additional support
to the definition of short-term delay aversion.

2.1.2 A topological approach to delay aversion

In this section we are going to illustrate the main results of Chapter 4. In this chapter,
we study the concept of long-term delay aversion using a topological approach. Loosely
speaking, instead of assuming that the preference relation % of the decision maker can be

3. For more details concerning these conditions, the reader is referred to Section 3.4.2.
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represented by some functional, we propose a topology that discounts the future in a way
that is consistent with the notion of long-term delay aversion and we study its properties.

The framework in which we will work in Chapter 4 is the same as the one of Chapter 3
except for one thing. Instead of considering the space l∞+ , we consider the whole space
l∞. Negative quantities represent debts of money or consumption good.

As we anticipated, the concept that we are interested in, is the one of long-term delay
aversion, defined in Definition 2.1.1. For terminological convenience, we will drop the
adjective long-term from now on.

If a topology T over the set l∞ is given, it is possible to make precise the notion of
continuity of preferences. We say that a preference relation over l∞ is T -continuous if
the sets {x ∈ l∞|x � y} and {x ∈ l∞|y � x} are T -open for all y. In this introductory
section, we are going to present only the results concerning Haussdorff locally convex
topologies with a monotone base 4.

The main purpose of Chapter 4 is to find a topology that “discounts” the future
consistently with the notion of delay aversion. Once such a topology is defined, we are
interested in studying two things. First, how does this topology relates with the other
topologies usually paired with l∞ (especially the Mackey and the sup-norm topologies) ?
Second, is it possible to characterize the topological dual space ?

We are going to work with strongly monotonic preference relations 5. Strong monoto-
nicity places us in the good framework for two reasons. First, because this is the same
framework of Benoît and Ok [2007], whose work inspired the definition of delay aversion.
Second, because once delay aversion is assumed, then monotonicity and strong monoto-
nicity are equivalent.

We now define what we mean for delay averse topology.

Definition 2.1.7. A topology T on l∞ is said to be delay averse if every strongly mono-
tone, T -continuous preference relation is delay averse.

Given this definition, the two propositions below provide a starting point to de-
fine the topology that we will study. In what follows, 1n denotes the sequence 1n :=

(0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . . ) and 0 denotes the sequence (0, 0, . . . ).

Proposition 2.1.8. Every locally convex topology T for which 1n
T−→n 0 is a delay averse

topology.

Proposition 2.1.9. Given a locally convex topology T , if every T -continuous, preference
relation is delay averse then 1n

T−→n 0.

4. For more details about these topologies see Section 4.2.
5. See footnote 2, page 34
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Unfortunately, Proposition 2.1.8 and 2.1.9 fall short of a complete characterization
of delay averse topologies. Nevertheless, they underline that an important feature that
should be kept into consideration when modelling delay averse behaviours is the conver-
gence 1n

T−→n 0.
Given these preliminaries, we can now define the topology that we are going to study.

Definition 2.1.8. We denote T monDA the finest Hausdorff locally convex topology on l∞

with a monotone base for which we have 1n
T mon
DA−−−→n 0.

The economic idea behind Definition 2.1.8 is simple. Consider a DM facing a stream of
income or consumption that gives her one unit at period n and zero in every other period.
Then continuity w.r.t. T monDA says that, if we postpone this amount far away in the future,
such a stream can be made arbitrarily close to the sequence (0, 0, . . . ). Notice that the
sup-norm topology, T∞, does not have this property. In fact, ‖1n‖ = supk |1n(k)| = 1 for
every period of time n. In this sense, we may say that the sup-norm topology is suitable
to describe patient rather than impatient preferences.

It is easy to prove that T monDA is a delay averse topology in the sense of Definition 2.1.7.
Moreover, it is possible to show that such a topology exists.

Comparison with others topologies on l∞ and dual space

The usual topology considered when studying l∞ is the sup-norm topology T∞ defined
by the norm ‖x‖ = supk |xk|. We saw just above that such a topology is more suitable
to study patient rather than impatient preferences. Hence it is interesting to investigate
how the topology T monDA is related with the topology T∞.

Also, it is known that continuity of preferences with respect to the Mackey topology
induces an impatient behaviour of the DM. This topology is particularly relevant to
our analysis because of its extensive use in the theory of general equilibrium in infinite
dimensional spaces. Part of its glory is due to the work of Brown and Lewis [1981].
These authors show that every preference relation which is continuous with respect to
the Mackey topology is impatient in the precise sense described below.

Definition 2.1.9. (Brown and Lewis [1981]) % is strongly myopic if ∀x,y ∈ l∞ such
that x � y and ∀z ∈ l∞, ∃n1(x,y, z) := n1 ∈ N such that n ≥ n1 ⇒ x � y + z1[n,+∞).

Related to the concept of strong myopia, it is possible to define the strongly myopic
topology TSM .

Definition 2.1.10. (Brown and Lewis [1981]) The locally convex Hausdorff topo-
logy TSM on l∞ is the finest topology such that every TSM -continuous (not necessarily
monotone) preference relation is strongly myopic.
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Brown and Lewis [1981] proved that the topology TSM is equivalent to the Mackey
topology. Hence, if we want to compare T monDA with the Mackey topology, is enough to
focus on TSM .

We proceed comparing T monDA with TSM , which discounts the future, and T∞, which
does not.

Proposition 2.1.10. TSM ⊂ T monDA ⊂ T∞

Proposition 2.1.10 proves formally that delay aversion is a weaker notion than strong
myopia. In fact, since continuity with respect to a topology is defined in terms of openness
of upper and lower contour sets, and since TSM ⊂ T monDA means that all open sets of TSM
are also open for T monDA , then it is easier for a DM to be delay averse rather than strongly
myopic. Loosely speaking, Proposition 2.1.10 may be interpreted as saying that a delay
averse DM is “in between” a strongly myopic and a patient agent. However, we should be
careful to push this interpretation too far, since in Chapter 4 no concept of patience is
given starting from preferences.

The inclusion T monDA ⊂ T∞, has important consequences for what concerns the topo-
logical dual space of l∞ when paired with T monDA . In economic theory, and especially for
general equilibrium in infinite dimension, the dual plays a key role since it is the set of
possible prices of an economy, see Mas-Colell and Zame [1991]. Form Proposition 2.1.10
the following corollary is immediate. We recall that the set ba is the set of bounded
charges over 2N.

Corollary 2.1.3. l1 ⊂ (l∞, T monDA )∗ ⊆ ba.

Now one natural question is whether it is possible to completely characterise the dual
space (l∞, T monDA )∗ ? The answer is yes and it is provided by Proposition 2.1.11.

Proposition 2.1.11. (l∞, T monDA )∗ = ba

From a mathematical point of view, this is an interesting result, since it yields a new
characterization of the space ba. We briefly discuss below the economic consequences.

Link with general equilibrium and bubbles

Proposition 2.1.10 and Proposition 2.1.11 have interesting implications when linked
with general equilibrium theory in infinite dimension and the study of bubbles.

– About general equilibrium. Proposition 2.1.10 can be considered as a refinement
of a result of Araujo [1985]. In this paper, the author proved that, if agents have
preferences continuous w.r.t. some topology T and if we do not assume T ⊆ TSM
then an equilibrium may fail to exist. From this result the author concluded that
impatience is necessary in order to get an equilibrium. Proposition 2.1.10 clarifies
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this interpretation. When preferences are continuous with respect to TDA then it is
clear that the DM exhibits some kind of impatience. Nevertheless, an equilibrium
in an economy with such agents may fail to exist. Therefore the need for impatience
is in reality the need for enough impatience : discounting the future just as a delay
averse DM may lead to non existence of equilibria.

– About bubbles. As we said before, prices can be thought as elements of the dual
space. If the dual space is ba, then using the Yoshida–Hewitt theorem is possible to
decompose the price function into the sum of a countably additive part and a purely
finitely additive part. Gilles and LeRoy [1992] define a bubble as the pure part of a
charge. In their paper they argue that if a DM discounts the future, then a bubble
cannot occur (see [Gilles and LeRoy, 1992, p. 332]). Proposition 2.1.11 provides a
counterexample to the claim of the authors in the following sense : it proves that
we can have bubbles even when the DMs discount the future. Again, the point is
that in order to avoid bubbles the DMs should discount the future enough.

2.2 Bargaining

The last chapter of this thesis focuses on the theory of cooperative bargaining intro-
duced in the seminal paper of Nash [1950]. This section will introduce briefly this theory
and will explain how we contributed to the bargaining literature.

In the original Nash’s framework, a two-persons bargaining game consists of a pair
(S, d) where S ⊆ R2 is a compact and convex set and d ∈ S. The elements of S are
interpreted as pairs of von Neumann-Morgenstern (NM) utilities. The point d is called the
disagreement point and is thought as a pair of utilities that either player can unilaterally
enforce. This definition is an abstraction of a real world situation in which bargainers are
dealing with feasible alternatives. Consider the following example.

Example 2.2.1. Consider for instance two agents (endowed with two NM utilities) that
are bargaining over 1$. The feasible alternatives are all the possible division of the dollar,
i.e. the set of vectors {(x, 1 − x)|0 ≤ x ≤ 1} (supposing that there is no waste of the
dollar). Let’s suppose further that if the bargainers do not find an agreement they both
get 0$. Instead of focusing on the possible feasible divisions of the dollar, Nash’s model
takes as a starting point a set S ⊇ {(u1(x), u2(1 − x))|0 ≤ x ≤ 1} and the disagreement
point d = (u1(0), u2(0)). Every pair of utility clearly represents the level of satisfaction of
the bargainers associated to some division.

The question now is the following : how should the bargainers “share” the utility ? Or,
in other words, which point in S should be picked ?

A solution is a function f : (S, d) → R2 that assigns to each pair (S, d) an outcome
in S. Nash [1950] imposed four intuitive properties on the solution function.
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– Pareto Optimality : ∀y ∈ S, y � f(S, d) ;
– Scale Invariance : Let A : R2 → R2 be an affine transformation of utilities, that is
A(x1, x2) = (A1(x1), A2(x2)) where Ai(x) is of the form αix+ βi for αi > 0, βi ∈ R,
then f(A(S), A(d)) = A(f(S, d)) ;

– Symmetry : If d1 = d2 and (x, y) ∈ S implies (y, x) ∈ S, then f1(S, d) = f2(S, d) ;
– Independence of Irrelevant Alternatives : If T ⊆ S and f(S, d) ∈ T then
f(S, d) = f(T, d).

Pareto Optimality says that the solution should choose a vector of utilities that is in
the Pareto frontier of S. Since a NM utility function is unique up to positive affine trans-
formations, Scale Invariance says that the solution should be independent of any positive
affine rescaling of the problem. Symmetry imposes an equal outcome whenever the bar-
gaining set and the disagreement point are symmetric. Finally Independence of Irrelevant
Alternatives says, roughly speaking, that a bargaing solution should not change when “ir-
relevant” alternatives are dropped from a bargaining set. For more detailed explanations
on these axioms see Osborne and Rubinstein [1990].

Under these appealing axioms, Nash [1950] proves that the unique solution is

f(S, d) = arg maxs∈S,s≥d(s1 − d1)(s2 − d2).

The solution selects the utility pair that maximizes the product of the players’ gains (in
utility) over the disagreement outcome.

The simplicity and robustness of this solution have fostered both its widespread appli-
cation and its theoretical prominence. However, not all is well with the model : the Nash
solution cannot stake a claim for being intuitively appealing. For instance Rubinstein
et al. [1992] state :

“the solution lacks a straightforward interpretation since the meaning of the
product of two von Neumann–Morgenstern utility numbers is unclear”

Nash [1950] was not the only one who axiomatized a bargaining solution. A large body
of literature adopted the bargaining framework described above and proposed different
axiomatizations which lead to several alternative solutions. The most notable ones are
the Kalai-Smorodinsky solution due to Kalai and Smorodinsky [1975], the egalitarian
solution due to Kalai [1977b] and the relative utilitarian solution, first considered by
Arrow [1963]. However many more solution concepts are present in the literature. For a
survey on this topic see for instance Thomson et al. [1994]. A natural question can be
raised : which solution is the best one ?

The two main contributions of Chapter 5 are :
– We provide a unified interpretation for some well-known solutions in cooperative
bargaining.

– We offer a rationale for the Nash solution.
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Our model assumes that there are two players engaged in bargaining and one mediator.
The mediator’s role is to advise the bargainers about the best outcome they should pick
over a set of feasible proposals X. The mediator’s goal is to get them to agree on a
solution.

Each bargainer has ordinal preferences %i over X, i = 1, 2. Bargaining is target-based :
Player i accepts x ∈ X iff x %i ti, where ti ∈ X is his minimum acceptable outcome. We
say that ti is the player’s target or his level of toughness.

The mediator is uncertain about which players’ conditions would lead them to an
agreement. The mediator knows %i i = 1, 2, but she is uncertain about the level ti of
toughness of each bargainer. Her uncertainty about ti is represented by a random variable
Ti, with cumulative distribution function Fi ; that is, we assume that she is able to assess :

P (i accepts x) = P (x %i Ti) = Fi(x).

Given these assumptions, we offer a behavioural characterisation for a general class of
solutions so that the mediator will maximise the probability that the bargainers strike an
agreement. Such a framework allows us to characterise a few major solutions as special
cases of this approach, where the single feature separating them is the nature of the
stochastic dependence between the bargainers’ stances.

In particular, our probability-based approach suggests a straightforward interpretation
for the product of two von Neumann–Morgenstern utility numbers advocated by the
Nash solution. This is revealed as the product of two probabilities, and corresponds to an
implicit assumption of stochastic independence between the bargainers’ positions. Finally
we show how relaxing this assumption generates other well-known but less frequently used
alternatives, namely the egalitarian and the (truncated) utilitarian solutions.

2.2.1 Target-based solutions for Nash bargaining

We present here the results of Chapter 5 in more detail.
We define a bargaining problem as a compact set B in [0, 1]2. Each point p = (p1, p2)

in B corresponds to a pair of probabilities. The number pi represents the probability that
bargainer i accepts a feasible offer x made by the mediator. More formally, given a set X
of feasible alternatives, we map every x ∈ X to a point (p1, p2) in the unit square through
the function x→ (F1(x), F2(x)) (where F1 and F2 are the cdf defined above). We assume
therefore that B = (F1(X), F2(X)) and we take B as the starting point. A solution is a
map that for any problem B delivers (at least) one point in B.

We consider the preferences of the mediator over the set of lotteries on pairs of accep-
tance probabilities, and derive a behavioural characterisation under which she evaluates
a proposal by the probability that both bargainers agree to it.

43



The axioms and the representation theorem

We view [0, 1]2 as a mixture space for the ⊕ operation, under the standard interpre-
tation where αp ⊕ (1 − α)q is a lottery that delivers p in [0, 1]2 with probability α in
[0, 1] and q in [0, 1]2 with probability 1− α, see Herstein and Milnor [1953]. At the same
time, [0, 1]2 is a lattice under the standard component-wise monotonic partial ordering =

in R2. We note p ∨ q = (max(p1, q1),max(p2, q2)) and p ∧ q = (min(p1, q1),min(p2, q2)).
We make the following assumptions about the mediator’s preferences % over the mix-

ture/lattice space [0, 1]2.

A.1 (Regularity) % is a complete preorder, continuous and mixture independent.

For the interpretation and implications of A.1 we refer the reader to Theorem 8.4 in
Fishburn [1970]. Notice that [Nash, 1950, p. 157] explicitly points out how an analogue of
A.1 is implied in his model by the assumption that both bargainers are expected utility
maximizers.

A.2 (Non-triviality) (1, 1) � (0, 0).

This rules out the trivial case where the mediator is indifferent between a proposal
that is accepted for sure by both bargainers and another proposal that is refused for sure
by both bargainers.

A.3 (Disagreement indifference) for any p, q in [0, 1], (p, 0) ∼ (0, q).

This is named after Assumption DI in Border and Segal [1997], who study a preference
relation over solutions. Framed within the Nash model, Assumption DI states the follo-
wing : a solution that assigns to either player the same utility he gets at the disagreement
point is as good as the disagreement point itself. In our probability-based framework, it
states that having one of the bargainers refusing for sure is equivalent to having both
refusing for sure. A proposal is accepted if and only if both bargainers agree to it.

A.4 (Consistency over individual probabilities) for any p in [0, 1],

p(1, 1)⊕ (1− p)(0, 1) ∼ (p, 1) and p(1, 1)⊕ (1− p)(1, 0) ∼ (1, p).

This states the following. Assume that one bargainer is known to accept for sure. Then
the mediator is indifferent between a lottery that has the second bargainer accepting for
sure with probability p and refusing for sure with probability (1−p), or a proposal where
the second bargainer accepts with probability p.

A.5 (Weak complementarity) for any p,q in [0, 1]2,

(1/2) (p ∨ q)⊕ (1/2) (p ∧ q) % (1/2)p⊕ (1/2)q

This is named after Axiom S in Francetich [2013]. It states that a fifty-fifty lottery
between two pairs of acceptance probabilities p and q is weakly inferior to a fifty-fifty
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lottery between their extremes (under the component–wise ordering). Roughly speaking
A.5 requires that the individual acceptance probabilities are (weakly) complementary
towards getting to an agreement.

It is possible to show that, under A.1, the four assumptions A.2–A.5 are logically
independent.

The main representation theorem is given below.

Theorem 2.2.1. The preference relation % satisfies A.1–A.5 if and only if there exists
a unique copula C : [0, 1]2 → [0, 1] that represents %.

A copula is a mapping that describes the dependence structure for a bivariate random
variable as a function of its marginals. This key result is due to Sklar [1959]. The inter-
preation of Theorem 2.2.1 is that, under A.1–5, the mediator ranks proposals by their
probability of joint acceptance given her subjective opinion over the dependence structure
of bargainers’ thresholds. In plain words : the mediator maximizes the probability that
both sides accept the proposal.

The major solutions

The Nash solution arises whenever we assume that the individuals’ acceptance pro-
babilities are independent. As this is a fair and natural requirement, the Nash solution
appears as the prominent one. Consider the following axiom.

A.7 (Rescaling indifference) for any α, p, q in [0, 1], (αp, q) ∼ (p, αq) 6 .

This states that the mediator is indifferent whether the same proportional reduction
in the acceptance probability is applied to one bargainer or to the other one.

Theorem 2.2.2. The preference relation % satisfies A.1–A2, A4–A.5∗, and A.7 (A.5∗ is
the strict version of A.5) if and only if it is represented by the copula Π(p, q) = p · q.

Under axiom A.7, the mediator believes that players’ acceptances are stochastically
independent and therefore she picks a proposal x s.t.

max
x∈X

P (x %1 T1, x %2 T2) = max
(p1,p2)∈B

p1 · p2

and the Nash solution emerges.
In the original (utility-based) model, the egalitarian solution, see Kalai [1977b], recom-

mends the maximal point at which utility gains from the disagreement point are equal.
More simply, for a Nash problem (S, d), the egalitarian solution selects the maximiser of
the function min {(u1 − d1), (u2 − d2)} for (u1, u2) in S and ui ≥ di for i = 1, 2. In our
probability-based framework, consider the following assumption.

6. Axiom A.6, not presented in the this introductory section, is an anonymity axiom. The interested reader
is referred to Section 5.3
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A.8 (Meet indifference) for any p, q in [0, 1], (p, p ∧ q) ∼ (p ∧ q, q).

This states that the mediator is indifferent between two pairs of acceptance probabi-
lities as far as they have the same meet. Axiom A.8 gives us the following result.

Theorem 2.2.3. The preference relation % satisfies A.1–A2, A4–A.5∗, and A.8 (A.5∗ is
the strict version of A.5) if and only if it is represented by the copula M(p, q) = min(p, q).

Under A.8 the mediator’s preferences are represented by the Fréchet upper bound
M(p, q) = min(p, q), that provides the strongest possible positive dependence between
two marginal distributions. Hence we can reinterpret the egalitarian solution of Kalai
[1977b] as the solution that the mediator should use when she believes that players’
target are maximally positively correlated.

Finally, we consider the relative utilitarian solution of Arrow [1963]. This solution
consists in maximizing the sum of utilities after having normalized them between zero
and one. Consider the following axiom.

A.9 (Average indifference) for any p, q in [0, 1], (p, q) ∼ (p+q
2
, p+q

2
).

Axiom A.9 may be interpreted by saying that the preferences of the mediator are
not affected by a decrease of the acceptance probability of one bargainer whenever this
reduction is compensated by an increase of the acceptance probability of the other one.
We obtain the following result.

Theorem 2.2.4. The preference relation % satisfies A.1–A.5 and A.9 if and only if it is
represented by the copula W (p, q) = max(p+ q − 1, 0).

Theorem 2.2.4 characterises the Fréchet lower bound W (p, q) = max(p+ q−1, 0) that
provides the strongest possibile negative dependence between two marginal distributions.
Therefore, we can reinterpret this form of (truncated) utilitarian solution as the recom-
mendation that maximises the probability of joint acceptance when the mediator assumes
that the individual acceptance probabilities are maximally negatively correlated.

The target-based interpretation

The Nash model is framed in terms of NM utilities whereas our model takes probabi-
lities as basis. A natural question arises : is this really Nash bargaining ?

As we said above, bargaining is target-based and moreover we supposed that the
mediator knows P (i accepts x) = P (x %i Ti) = Fi(x). The key observation is that the
NM model can be recast in a probability-based language as shown by Castagnoli and
LiCalzi [1996] and Bordley and LiCalzi [2000]. Let C = [c∗, c

∗] be a compact and convex
interval of R and consider the set of lotteries P0(C). If ui is an increasing NM utility, under
boundedness, right-continuity and an obvious normalization we pose ui(c) = P (Ti ≤ c)
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and view the “old” utility function ui as the cumulative distribution function for the
target Ti of the bargainer. If a lottery X has cumulative distribution function G and is
stochastically independent of Ti then the chain of equalities

E[ui(X)] =

∫
ui(c) dG(c) =

∫
P (Ti ≤ c) dG(c) = P (X ≥ T )

shows that the expected utility of a lottery X is equivalent to the probability that X
beats an uncertain target Ti.

The implicit assumption in Nash [1950] is that the bargainers utilities u1 and u2 are
commonly known. This is tantamount to assume that the distribution of the targets T1, T2

is ex-ante commonly known, while the targets are private information. Hence, if the agents
have common knowledge of the joint distribution of their targets ex-ante, they maximise
the probability of success by settling on the commonly known copula. In particular, if it
is common knowledge that their two targets are stochastically independent, they should
settle for the Nash solution.
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Chapitre 3

About delay aversion

Ce chapitre est issu de l’article “About delay aversion”, en collaboration avec Alain
Chateauneuf 1.

Abstract. In this paper, we study the behaviour of decision makers who show prefe-
rences for advancing the timing of future satisfaction. We give two definitions that are
representative of this kind of attitude and investigate their implications in (an intertem-
poral version of) three popular models used in decision theory : the Expected Utility,
the Choquet Expected Utility and the MaxMin Expected Utility models. The first defi-
nition reveals interesting links with the theory studying the impossibility of aggregating
infinite streams of income, while keeping both strong monotonicity and equality among
all generations. Our second definition turns out to be a behavioural characterization of
what Irving Fisher called “impatience”. Finally, we make a connection with the notion of
domination of one stream of income over another, for all interest rates.

3.1 Introduction

“One today is worth two tomorrows.” 2

As an individual’s attitude towards time is crucial in almost all economic problems, it is
not surprising that the economic literature studying time preferences is extremely rich and
dates back to the 19th century with Böhm-Bawerk’s “The Positive Theory of Capital”, see
Böhm-Bawerk [1891]. Our research follows the stream of papers initiated by the seminal
works of Koopmans [1960] and Diamond [1965], as we focus on a Decision Maker (DM),

1. PSE- Université Paris 1, 106-112 Boulevard de l’Hôpital, 75647 Paris Cedex 13, chateaun@univ-paris1.fr
2. Benjamin Franklin (1706-1790)
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or Social Planner, who has preferences over positive, bounded sequences. In Section 3.3,
sequences are treated interchangeably as infinite streams of income or consumption. By
contrast, in Section 3.4, we think about them just as streams of income. This difference
in interpretation will be clarified below when the main concepts are introduced.

Our main concern is the study of preferences for advancing the time of future sa-
tisfaction. This general idea of having an inclination for immediate utility over delayed
utility has been given different names in the literature, mostly used as synonyms. We
would like to stress straight away, to avoid confusion, that when we are dealing with the
concepts of (long-term or short-term) delay aversion, impatience and myopia, we are in
fact referring to precise behavioural definitions. All these notions will be formally defined
in the main body of the paper, starting from the preferences of the DM over infinite,
bounded sequences.

Since the seminal paper of Samuelson [1937], the use of the (exponential) discounting
model has been the paradigm for describing such intertemporal tastes. In this model, a
stream of income (x0, x1, . . . ) is evaluated by the utility function :

U(x0, x1, . . . ) =
∞∑
t=0

δtu(xt).

The attitude towards the future is represented by the discount factor δ ∈ (0, 1). We think
that this approach is not totally satisfactory. For instance, it does not allow the concepts
of impatience, myopia and delay aversion to be distinguished.

We therefore depart from the traditional analysis and we work with three popular,
theoretical models of decision making, adapted to our framework : the Expected Utility
model, the Choquet Expected Utility model and the MaxMin Expected Utility model.
The idea that these models are suitable to study time preferences can already be found
in Marinacci [1998] and Chateauneuf and Ventura [2013]. In Marinacci [1998] the author
links the MaxMin Expected Utility model with the concept of patience, whereas in Cha-
teauneuf and Ventura [2013] the authors make a study of the Choquet Expected Utility
model and its connection with impatience and myopia. Even if these models are mostly
used to analyse decisions under uncertainty in the literature, we want to stress that in our
framework no uncertainty is involved. These models are used as flexible tools in order to
generalize the notion of the weights that a DM uses in order to evaluate different points
in time.

The main contribution of the paper is represented by the introduction of two novel
definitions that represent preferences for advancing the time of future satisfaction and
their mathematical representation in the three models cited above. In the rest of the
introduction we describe these two notions and we briefly present our main findings.

Recent work by Benoît and Ok [2007] describes and characterizes situations when
one DM is more delay averse (in some precise sense) than another. Starting from their
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paper, we define the concept of long-term delay aversion, which is compatible with their
work. Suppose that an agent has to choose between two extra payments of, say, $1,000
and $10,000. The $1,000 are paid within a month whereas the $10,000 will be paid much
later. We believe that if the second and bigger payment is made sufficiently far in the
future, then the agent will choose the first one. More formally, let us consider a DM who
is supposed to receive two additional amounts of income or consumption good, a and b,
with a ≤ b, delivered respectively in periods n0 and n with n0 < n. Then she will be
long-term delay averse if she prefers a over b provided that n is sufficiently big. The use
of the adjective “long-term” underlines the fact that n, the period of time in which the
bigger extra amount is given, can be a very large number. We want to emphasize that
there is no uncertainty regarding the date at which the payment b is made. The preference
for the sooner payment a derives purely from the fact that the DM has to wait too much,
according to her intertemporal tastes, in order to obtain b.

The characterizations of long-term delay aversion for the models considered yield
interesting features. First, as long-term delay aversion proves to be a very weak notion, it
allows a separation between tastes and evaluation of time to be made. In fact we proved
that long-term delay aversion depends only upon the “weights” that the DM attaches
to periods (or subsets of periods) of time, as long as she has a strictly increasing and
continuous utility function.

Let us now turn to a social planner who has preferences over flows of income in
which each period represents the wealth of one generation. The usual discounting model
implies very demanding notions of intergenerational inequality, analysed in Chateauneuf
and Ventura [2013], called impatience and myopia. Impatience states that an increase
in wealth for a finite number of generations, with all the future generations receiving
zero income afterwards, is preferred to the original income stream as soon as there are
enough generations which are better off. Myopia represents the following notion : suppose
that one stream of income is strictly preferred to another. Let us further assume that a
fixed, arbitrarily-large amount of extra income is added to the second stream for all but a
finite number of generations. Then myopia says that the preference order is not reversed
whenever this increase in wealth happens to start for a generation sufficiently far into the
future.

One of the main reasons that inspired us to define the concept of long-term delay
aversion is exactly the aim of proposing a notion that is weaker than the two described
above. A good feature of the Choquet, MaxMin and Expected Utility models is that they
allow to represent preferences exhibiting long-term delay aversion without neither myopia
nor impatience. Such a property is not shared by the discounting model. We show this
in Proposition 3.3.6 and Example 3.3.1 in Section 3.3.3.

Finally, and more interestingly, our definition is linked to the literature that studies
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the contrast between intergenerational inequalities and Pareto optimality. Basu and Mitra
[2003] have shown that there is no aggregating function which satisfies strong monoto-
nicity and equality among generations. In fact, we prove that for the Expected Utility
and the MaxMin Expected Utility models, long-term delay aversion is equivalent to the
strong monotonicity of preferences, while for the Choquet Expected Utility model strong
monotonicity is a necessary condition. Since long-term delay aversion is clearly incom-
patible with treating all generations equally, this result provides an insight about why
strong monotonicity of preferences and equality among generations are contradictory.

The other definition that we propose comes from a straightforward observation. An
agent should show preferences for advancing time of future satisfaction if, when dealing
with an extra payment that can be made in two consecutive periods, she always chooses
the one made at the earlier date. We call this notion short-term delay aversion. The word
“short-term” is used to underline precisely the fact that we are considering two consecutive
dates.

Short-term delay aversion is a demanding notion in terms of preferences of the DM.
In discussing this concept, we have in mind that preferences are defined only with respect
to streams of income, and not of consumption. While it is not plausible that a DM
with an uneven distribution of consumption over time would always prefer to consume at
earlier dates, we believe that, when facing two extra monetary payments, an agent should
invariably choose the one made at the earlier date. As expected, short-term delay aversion
implies both properties of the weights that the DM attaches to periods of time and of
the (marginal) utility function. If we focus on the constant marginal utility of wealth,
then short-term delay aversion becomes equivalent to discounting (attaching decreasing
weights to periods of time).

Short-term delay aversion turns out to be a behavioural counterpart to the definition
of preferences for advancing the time of future satisfaction given by Fisher [1930]. We
call Fisher’s definition F-impatience. According to Fisher, an individual is F-impatient
if she has a marginal rate of intertemporal substitution that is always greater than 1
(see footnote 18 p. 82 of Benoît and Ok [2007]). This is exactly our characterization of
short-term delay aversion for the Expected Utility model.

Linked to the short-term delay aversion, we propose the concept of temporal domina-
tion, which was studied recently in a paper by Foster and Mitra [2003] who are interested
in characterizing when one cash flow dominates another at all interest rates. We say that
one stream of income temporally dominates another if the sum of the first k cash flows
of the former is always higher than the sum of the first k cash flows of the latter. We find
that a DM is short-term delay averse if and only if whenever one sequence temporally
dominates another then she prefers the first to the second. Since accordance of preferences
with temporal domination is a natural requirement, its equivalence with short-term delay
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aversion provides an additional justification to this latter notion. Finally, we show that
one infinite cash flow temporally dominates another if and only if all the discounters with
constant marginal utility prefer the former to the latter.

The rest of the paper is organized as follows. Section 2 gathers some preliminary no-
tions. In Section 3, we define long-term delay aversion and provide the characterizations.
The next section presents the results on short-term delay aversion and temporal domina-
tion. Section 5 contains some concluding remarks. The proofs which are not in the main
body of the paper are given in the Appendix.

3.2 Preliminaries

We study the preferences of a DM over the set V := B+
∞(N) = {x := (xn)n∈N|xn ≥

0∀n and supn xn < +∞} of real-valued, positive and bounded sequences. The generic
elements of V are denoted as x,y, etc. and are considered as infinite streams of income
(Sections 3.3 and 3.4) or consumption (Section 3.3). The p-th element of sequence x is
denoted equivalently xp or x(p). Clearly, the set N of natural numbers represents time.
Given a sequence x = (x0, x1, . . . ), (xk + a,x−k) denotes sequence y s.t. yk = xk + a and
yn = xn for all n 6= k. The sum of two sequences and the multiplication times a scalar
are the pointwise sum and multiplication, meaning that if x,y ∈ V and λ ∈ R then
x + y = (x0 + y0, x1 + y1, . . . ) and λx = (λx0, λx1, . . . ). We also denote (xk + a,x−k) as

x+a1k, where 1A is the indicator function of the set A ⊆ N, i.e. 1A(n) :=

1 if n ∈ A

0 if n ∈ Ac.
Therefore 1A denotes the sequence with 1A(p) = 1 if p ∈ A and 1A(p) = 0 if p /∈ A and
1k the sequence with all the elements equal to 0, except the element k which is equal to
1. In the same way, x1A denotes the sequence y such that yk = xk if k ∈ A and yk = 0

otherwise.
As for the convergence of sequences, we use the following notation. If {an}n∈N is a sequence
of real numbers, we use the notation an →n l to indicate that the sequence converges to
l ∈ R when n approaches infinity. Whenever we write an ↑n l (resp. an ↓n l), we mean
that the sequence converges to l ∈ R and it is monotonically increasing, i.e. for every
n ∈ N, an ≤ an+1 (resp. monotonically decreasing, i.e. for every n ∈ N, an ≥ an+1).
Given a collection of sets {An}n∈N, An ↑n A (resp. An ↓n A) means that for every n ∈ N,
An ⊆ An+1 and ∪nAn = A (resp. n ∈ N, An ⊇ An+1 and ∩nAn = A).

The couple (N, 2N) is treated as a measurable space. In this setting, we say that :
– A set function v : 2N → [0, 1] is a (normalized) capacity if v(∅) = 0, v(N) = 1 and
∀A,B ∈ 2N, s.t. A ⊆ B, then v(A) ≤ v(B).

– P is a (finitely additive) probability if P is a normalized capacity and moreover
∀A,B ∈ 2N s.t. A ∩B = ∅, then P (A ∪B) = P (A) + P (B).
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– A probability P is countably additive if whenever {An} is a countable disjoint col-
lection of subsets of N then P (∪nAn) =

∑
n P (An).

– The core of a capacity v is defined by

C(v) = {P |P finitely additive s.t. P (A) ≥ v(A)∀A ∈ 2N}.

– A capacity is convex if ∀C,D ∈ 2N, v(C ∪D) + v(C ∩D) ≥ v(C) + v(D).
We recall that given a capacity v on 2N, the Choquet integral of x ∈ V w.r.t. v is

defined by : ∫
N
x dv :=

∫ +∞

0

v(x ≥ t) dt

where (x ≥ t) := {n ∈ N|xn ≥ t}. When the capacity v is simply additive we call it P
and denote the integral with the usual symbol used for expectation : EP [·] :=

∫
· dP . See

Denneberg [1994].
In the following, we endow the DM with a utility function u : R+ → R which is strictly

increasing, continuous and cardinal (i.e. defined up to a positive affine transformation).
With a slight abuse of notation, u(x) denotes the sequence (u(x0), u(x1), . . . ). Finally,
throughout the article, we normalize u(0) = 0.

In this paper we say that a preference relation % over V is represented by :
– The Expected Utility (EU) model, if there is a simply additive probability P and a
utility function u(·) s.t.

x % y⇔ EP [u(x)] ≥ EP [u(y)].

– The Choquet Expected Utility (CEU) model, see Schmeidler [1986] and Schmeidler
[1989], if there is a capacity v and a utility function u(·) s.t.

x % y⇔
∫
u(x) dv ≥

∫
u(y) dv.

– The MaxMin Expected Utility (MMEU) model, see Gilboa and Schmeidler [1989],
if there is a convex and compact (in the weak*-topology) set of simply additive
probabilities C and a utility function u(·) s.t.

x % y⇔ min
P∈C

EP [u(x)] ≥ min
P∈C

EP [u(y)].

– The discounting model (we denote it with the couple (u, β) to retain the notation
used in Benoît and Ok [2007]) if there is a discount function β : N→ (0, 1] s.t. β is
strictly decreasing, β(0) = 1 and

∑
t β(t) < +∞ and a utility function u(·) s.t.

x % y⇔
+∞∑
t=0

β(t)u(xt) ≥
+∞∑
t=0

β(t)u(yt).
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We finish this section with a proposition that explains why we want to represent time
preferences with models that are usually employed to catch the attitude of DMs towards
risk and/or ambiguity.

Proposition. A preference relation % can be represented by the discounting model if and
only if there exists a σ-additive, strictly positive, probability P , with P ({n}) > P ({n +

1})∀n ∈ N, such that EP [u(·)] represents %.

Démonstration. ⇒ Let (u, β) represents % then, calling
∑

t β(t) =: b, we have (u, β
b
)

which also represents %. In fact 0 < b < +∞ and therefore : x % y ⇔
∑+∞

t=0 β(t)u(xt) ≥∑+∞
t=0 β(t)u(yt) ⇔

∑+∞
t=0

β(t)
b
u(xt) ≥

∑+∞
t=0

β(t)
b
u(yt).

We can therefore define P : 2N → (0, 1] such that A ⊆ N, P (A) :=
∑

n∈A
β
b
(n). Such a

probability is clearly what we need.
⇐We have x % y⇔ EP [u(x)] ≥ EP [u(x)]⇔

∑+∞
t=0 P ({t})u(xt) ≥

∑+∞
t=0 P ({t})u(xt).

Therefore P
P ({0}) can be considered as a discount function.

The Proposition above uncovers the equivalence between probabilities and the weights
that the DM attaches to periods of time. Once this equivalence is established, we can
go a step further and consider the generalizations of the EU model (namely the CEU
model and the MMEU model) within our intertemporal framework. We therefore treat
probabilities and capacities as weights that the DM attaches to periods (or subsets of
periods) of time. Chateauneuf and Ventura [2013] already studied the case of the CEU
model in order to characterize the concepts of impatience and myopia. The MMEU model
deserves a separate comment. In fact in the MMEU case, there exists a family of weights
rather than a single one. We interpret this family as in Marinacci [1998] :

“Of course, a [. . .] justification for this model in our temporal context is that
the agents are not sure which weight to use, and instead of a single one, they
use a set of weights.” 3

3.3 Long-Term Delay Aversion

In this Section we define the concept of long-term delay aversion. We proceed with
the main definition.

Definition 3.3.1. A preference relation % over V is long-term delay averse if for 0 <

a ≤ b, n0 ∈ N and x ∈ V ∃N := N(x, n0, a, b) > n0 s.t. ∀n ≥ N ,

(xn0 + a,x−n0) � (xn + b,x−n).

3. In the interest of full disclosure, we report that the omitted part contains the world “alternative” used by
Marinacci [1998] since he also considers an interpretation in terms of natural density, a concept not presented in
this paper.
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Definition 3.3.1 states the following : when a DM with a certain distribution of income
(or consumption) faces two extra payments, a > 0 made in period n0 and b ≥ a made in
period n, if the second one happens to be sufficiently far into the future, then she will
strictly prefer the payment made before, even if it is lower.

3.3.1 Long-Term Delay Aversion in CEU, MMEU and EU models

We characterize the notion of long-term delay aversion in the CEU, EU and MMEU
models.

Proposition 3.3.1. Let % be represented by the CEU model. Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) ∀A ∈ 2N v(A ∪ {n})→n v(A) and ∀A ∈ 2N, ∀t /∈ A v(A ∪ {t}) > v(A).

Proposition 3.3.2. Let % be represented by the MMEU model. Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) ∀P ∈ C, ∀n ∈ N, P ({n}) > 0.

Corollary 3.3.1. Let % be represented by the EU model. Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) P ({n}) > 0∀n ∈ N.

In the three cases, we see that long-term delay aversion depends just on simple pro-
perties of the weights, given by the capacity or the probabilities, that the DM attaches to
periods of time, or subsets of periods. These weights need to possess two main features.
First, the DM should attach a strictly positive weight to every time-period, which means,
in simple words, that every time-period is worth something to her. Second, the weight
that the DM attributes to a period of time n could be set arbitrarily close to 0 (but still
be strictly positive) by taking n sufficiently far in the future. This is made explicit in
Proposition 3.3.1 through the requirement that ∀A ∈ 2N v(A ∪ {n}) →n v(A), and it
is implicit in Proposition 3.3.2 and Corollary 3.3.1 since we are dealing with probabili-
ties and therefore it is immediate that P ({n})→n 0. For, suppose by contradiction that
P ({n}) 6→n 0. Then for some ε > 0 there exists a subsequence (P ({Ψ(n)}))n∈N such that
P ({Ψ(n)}) ≥ ε for all n ∈ N. Hence since P is finitely additive there exists a finite subset
A of N such that P (A) > 1 which is impossible since 1 = P (N) ≥ P (B) for all B ∈ 2N.

It is interesting to remark that, besides continuity and increasingness, which are as-
sumed throughout this paper, no property of the instantaneous utility function u(·) is
involved. Such a characterization underlines the fact that long-term delay aversion is a
rather weak notion of preferences for advancing the time of future satisfaction. This fact
could be better understood with one example. Consider a stream of income x such that
xn0 = c > 0 and xn = 0, i.e. the income of the period in which a is added is equal to some
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constant c > 0 whereas the extra amount b is added in a period when the income of the
DM is equal to 0. Suppose that the period n is sufficiently far in the future as required by
Definition 3.3.1 so that the DM prefers the extra amount a rather than the extra amount
b. In economics, a usual requirement for the instantaneous utility function of the DM is
that the marginal utility satisfies the condition limx→0 u

′(x) = +∞ (we assume that u(·)
is differentiable for sake of simplicity). This means that adding b to the period n in which
the DM earns a zero amount of income should increase the overall utility more than ad-
ding a in period n0, in which the DM is already endowed with some income. In principle,
such a property could clash with preferences for anticipating utility. Specifically, it could
reverse the preferences of the DM so that she would prefer the extra amount b paid in
the distant future, rather the extra amount a paid closer to the present. However, the
characterizations above show that this is not an issue, when long-term delay aversion is
considered in the CEU, MMEU and EU models. In other words, long-term delay aversion
applies even when the marginal utility of the DM is infinite at a zero level of income.
These considerations show that long-term delay aversion is a rather mild requirement for
the preferences of the DM. It just involves the way she weights periods of time and it
does not put any constraint on the shape of her instantaneous utility (as soon as it is
strictly increasing and continuous).

As a final remark, it should be noted that a discounting utility DM is long-term delay
averse for every discount function δ : N→ (0, 1]. We will see in the next section that the
other notion that we introduced, namely short-term delay aversion, involves features of
both weights and utility.

Remark 3.3.1. Construction of a long-term delay averse capacity. While it is relatively
straightforward to exhibit non σ-additive probabilities with the characteristics required
in Proposition 3.3.2 and Corollary 3.3.1 (see for instance Example 3.3.1), it may seem
hard to exhibit capacities which show the properties of Proposition 3.3.1. A simple way to
bypass this difficulty is to consider probability distortion functions. A probability distortion
function is an increasing mapping f : [0, 1]→ [0, 1] with f(0) = 0 and f(1) = 1. It can be
easily shown that, given a finitely additive probability P , the set function v : 2N → [0, 1]

defined as v(A) = f ◦P (A) = f(P (A)) is a capacity. If the DM evaluates sequences in V
through the functional

∫
u(x)d f ◦ P we say that she is using the Rank Dependent Utility

(RDU) model. Notice that the CEU model is a generalization of the RDU model.
Consider now a strictly increasing and continuous distortion function f . Let P : 2N →

(0, 1] be a simply additive probability s.t. P ({n}) > 0∀n ∈ N. It can easily be shown that
the capacity v defined by v(A) = f(P (A))∀A ⊂ N satisfies the properties of Proposition
3.3.1. The first part of the characterization follows from the fact that P is a probability
and therefore P ({n}) →n 0. For the second part, it should be noted that t /∈ A implies
v(A ∪ {t}) = f(P (A ∪ {t})) = f(P (A) + P ({t})) > f(P (A)) = v(A) where the strict
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inequality derives from the assumption that P ({n}) > 0 ∀n ∈ N and that f is strictly
increasing.

It should be noted that we can obtain a capacity yielding long-term delay aversion with
mild assumptions about the function f and the probability P . Once again, we want to
stress that this is due to the fact that long-term delay aversion is a very weak notion
of preferences for advancing the time of future satisfaction. We need therefore to impose
weak assumptions for a DM to exhibit such a behaviour.

3.3.2 Long-Term Delay Aversion, strong monotonicity and
(in)equalities among generations

An interesting feature of long-term delay aversion is its link with the strong monoto-
nicity of preferences. This connection in turn implies some insights regarding the theory
that studies the impossibility of treating all generations equally. In this Section, the re-
sults could be better understood if we bear in mind the preferences of a social planner
rather than an agent. Moreover income or consumption in a certain period will be consi-
dered as the wealth of the generation living in that period. Obviously, this is just a matter
of interpretation and everything could be restated in terms of preferences of an agent.

We consider the following partial orders over V : x ≥ y means xk ≥ yk ∀k, x >> y

means xk > yk ∀k and x > y means xk ≥ yk ∀k, with a strict inequality for at least one
k. We recall that monotonicity is defined as x ≥ y⇒ x % y and strong monotonicity as
x > y⇒ x � y. The three results below set out the connection between the two notions
precisely.

Proposition 3.3.3. Let % be represented by the CEU model. Then (i)⇔ (ii) :
(i) % is strongly monotonic ;
(ii) ∀A ∈ 2N, ∀t /∈ A v(A ∪ {t}) > v(A).

Proposition 3.3.4. Let % be represented by the MMEU model. Then (i)⇔ (ii) :
(i) % is strongly monotonic ;
(ii) ∀P ∈ C, ∀n ∈ N, P ({n}) > 0.

Corollary 3.3.2. Let % be represented by the EU model. Then (i)⇔ (ii) :
(i) % is strongly monotonic ;
(ii) ∀n ∈ N, P ({n}) > 0.

Propositions 3.3.3, 3.3.4 and Corollary 3.3.2 together with our characterization show
that strong monotonicity is equivalent to long-term delay aversion in the EU and MMEU
models, and that it is implied by long-term delay aversion in the CEU framework. In
other words, the set of long-term delay averse preference relations over V representable
with the MMEU and EU models is equal to the set of strongly monotonic preference
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relations over V which can be represented with these models. In addition, the set of long-
term delay averse preference relations over V which can be represented with the CEU
model is a subset of the set of strongly monotonic preference relations over V which can
be represented by the CEU model.
We summarize the above discussion in the following proposition.

Proposition 3.3.5. Let % be represented by either the MMEU model or the EU model.
Then (i)⇔ (ii) :
(i) % is long-term delay averse ;
(ii) % is strongly monotonic.

Let % be represented by the CEU model. Then (i)⇒ (ii) :
(i) % is long-term delay averse ;
(ii) % is strongly monotonic.

The research area that studies the link between preferences for advancing the time
of future satisfaction and inter-generational equity dates back to 1965 with the seminal
work of Diamond [1965]. This literature has gained much attention recently thanks to
the paper of Basu and Mitra [2003]. The authors prove the impossibility of reconciling
strong monotonicity and inter-generational equity when the preference relation of a social
planner can be represented by a utility function. Basu and Mitra [2003] key axiom is called
anonymity.

Definition 3.3.2. (Basu and Mitra [2003]) A preference relation % satisfies the
anonymity axiom if for all x,y ∈ V s.t. there exists i, j ∈ N s.t. xi = yj and xj = yi and
s.t. for k ∈ N \ {i, j}, xk = yk, then x ∼ y.

Definition 3.3.2 says that, ceteris paribus, a permutation of the amount of income or
consumption of two generations should not affect the preferences of the social planner.

We think that the rationale behind the incompatibility between anonymity and strong
monotonicity is not obvious, and the results of Basu and Mitra [2003] pop out as a nice
mathematical achievement. Our work could help interpreting Theorem 1 of Basu and
Mitra [2003], in our (more limited) context.

It is easy to see that long-term delay aversion and anonymity are incompatible. Let
us consider a social planner facing two extra payments a, made in period n0 and b, made
in period n, with 0 < a = b added to a constant stream of income x. If she is long-term
delay averse then whenever n is sufficiently big we will observe that (xn0 + a,x−n0) �
(xn + a,x−n). Since x is constant, the sequences (xn0 + a,x−n0) and (xn + a,x−n) are
the same, except for a permutation of the amount of income of two generations. The
strict preference that derives from long-term delay aversion therefore contrasts with the
anonymity axiom of Definition 3.3.2.
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Since anonymity and long-term delay aversion are not compatible, and since long-term
delay aversion is equivalent to strong monotonicity (in the EU and MMEU models), the
impossibility result of Basu and Mitra [2003] is now explained.

From an economic point of view, Corollary 3.3.2 is the most explanatory. In the EU
model, and hence in the discounting model, both strong monotonicity and long-term
delay aversion are equivalent to assigning strictly positive weights to every period of
time. Therefore, as soon as a social planner assigns a strictly positive weight to every
generation, inequalities arise.

3.3.3 Long-Term Delay Aversion, impatience and myopia

As we said in the Introduction, one of the reasons that inspired us to define the
concept of long-term delay aversion is the fact that the usual discounting model implies
demanding notions related to the attitude towards time, namely myopia and impatience.
We proceed reporting the formal definitions of these two concepts.

Definition 3.3.3. (Brown and Lewis [1981]) A preference relation % is myopic if
∀x,y ∈ V such that x � y and ∀ε > 0, ∃n0(x,y, ε) := n0 ∈ N such that n ≥ n0 ⇒ x �
y + ε1[n,+∞).

Myopia implies that the strict preference ordering between two sequences x � y is
not reversed when adding an (arbitrarily large) constant amount of income from period
n to the second stream, provided that n is a sufficiently big number. Definition 3.3.3
represents a strong notion of future disliking behaviour : even when all but finitely many
periods are improved, if this improvement starts far enough into the future, then the
initial preferences are not changed.

Definition 3.3.4. (Chateauneuf and Ventura [2013]) A preference relation % is
impatient if ∀x ∈ V , ∀A > 0, ∃N(x, A) := N ∈ N such that n ≥ N ⇒ (x + A)1[0,n] � x.

Definition 3.3.4 says that adding a fixed amount of income to a stream x, to the first n
periods and then getting zero from period n+1 on, is preferred to having x itself, provided
that n is sufficiently big. Impatience, as myopia, depicts a strong notion of preferences
for advancing the time of future satisfaction too. In this case, improving the income in
a finite number of periods of time and then getting 0 is preferred, rather than sticking
with the initial endowment of income or consumption.

It should be remarked that, if the DM is thought of as a social planner as in Section
3.3.2, and the income in period n represents the wealth of the n-th generation, then both
myopia and impatience represent strong notions of generational inequality.

In Proposition 3.3.6 below, we can see that the discounted utility model implies
both myopia and impatience (not allowing therefore for a distinction between these two
concepts).
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Proposition 3.3.6. A preference relation % is represented by EP [u(·)] w.r.t. a σ-additive
probability P if and only if % is myopic if and only if % is impatient.

Démonstration. This follows easily from Proposition 3.2 and Proposition 3.4 of Chateau-
neuf and Ventura [2013].

We conclude this section by constructing a relatively simple example of long-term
delay averse preferences which are neither myopic nor impatient. We therefore show that,
using tools other than the usual discounted utility model, we can achieve a different (and
milder) type of preferences for advancing the time of future satisfaction. In other words,
a DM could be long-term delay averse without being neither impatient nor myopic..

Example 3.3.1. Take % represented by EU w.r.t. a simply additive probability defined
in the algebra A of finite and cofinite sets as : P ({n}) =

(
1
3

)n+1 ∀n ∈ N, P (N) = 1 and

P (A) =


∑

n∈A P ({n}) if A is finite

1−
∑

n∈Ac P ({n}) if A is cofinite.

By Lemma 3.6.1 in the Appendix, it is possible to extend the probability P to a simply
additive probability Q over the power set 2N s.t. Q|A = P . It should be noted that Q is
not σ-additive in fact

1 = Q(N) = Q(∪n{n}) 6=
∞∑
n=0

Q({n}) =
∞∑
n=0

(
1

3

)n+1

=
1

2
.

By Corollary 3.3.1 the DM is long-term delay averse. However by Proposition 3.3.6 she is
neither myopic nor impatient. This example therefore shows that it is possible to construct
preferences that are long-term delay averse, but that do not display the much stronger
notions of impatience or myopia.

3.4 Short-Term Delay Aversion

In this section we study the concept of short-term delay aversion. We begin with the
main definition.

Definition 3.4.1. A preference relation % over V is short-term delay averse if for every
a > 0, k ∈ N and every x ∈ V , one has

(xk + a,x−k) % (xk+1 + a,x−(k+1)).

Definition 3.4.1 says that a DM is short-term delay averse if, when facing two payments
at two consecutive dates, she will always prefer the payment closer to the present.

As we said in the Introduction, in this section the sequences will be interpreted exclusi-
vely as streams of income. We apply this restriction in order to avoid some criticisms that
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could be raised when short-term delay aversion is also applied to streams of consumption
goods. Consider the following example. Suppose that a DM is endowed with a consump-
tion stream which gives her seven units of a consumption good on Mondays and zero for
the rest of the week. Then short-term delay aversion says that she prefers to consume
an additional unit of the consumption good on Monday rather than on Tuesday. From a
behavioural point of view, this may seem too extreme.

In fact, we believe that it is natural to prefer some extra amount of money earlier
rather than later, because money could be, for instance, invested.

Clearly, all the formal definitions and proofs could be applied to infinite streams of
consumption good too, if one is willing to accept the implications of short-term delay
aversion. Another way of seeing this is as follows. The properties of weights and utility
that characterize short-term delay aversion should not be used if one is willing to work
with streams of consumption and, at the same time, thinks that short-term delay aversion
is not a plausible notion.

3.4.1 Short-Term Delay Aversion in CEU, MMEU and EU models

Now we characterize short-term delay aversion in the CEU and EU models. We give
two partial characterizations for the MMEU model.

Our results in this section assume the utility function u(·) to be C1, i.e. to be conti-
nuously differentiable, and such that u′(x) > 0, ∀x ∈ R+.

Proposition 3.4.1. Let % be represented by the CEU model. Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) The following holds :

1. ∀A ∈ 2N, ∀n ∈ N s.t. n, n+ 1 /∈ A, v(A ∪ {n}) ≥ v(A ∪ {n+ 1}) ;

2. ∀x, y ∈ R+ s.t. x > y ∀n ∈ N, ∀A,B ∈ 2N s.t. A ⊂ B, n ∈ B, n /∈ A, n+ 1 /∈ B,

u′(x)(v(A ∪ {n})− v(A)) ≥ u′(y)(v(B ∪ {n+ 1})− v(B))

3. ∀x, y ∈ R+ s.t. y > x ∀n ∈ N, ∀A,B ∈ 2N s.t. B ⊂ A, n+ 1 ∈ A, n /∈ A, n+ 1 /∈ B,

u′(x)(v(A ∪ {n})− v(A)) ≥ u′(y)(v(B ∪ {n+ 1})− v(B))

Corollary 3.4.1. Let % be represented by the EU model. Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) ∀x, y ∈ R+, ∀n ∈ N, u′(x)P ({n}) ≥ u′(y)P ({n+ 1}).

Proposition 3.4.2. Let % be represented by the MMEU model. Then (i)⇒ (ii) :
(i) ∀P ∈ C, ∀n ∈ N and ∀x, y ∈ R+, u′(x)P ({n}) ≥ u′(y)P ({n+ 1}) ;
(ii) % is short-term delay averse.
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Proposition 3.4.3. Let % be represented by the MMEU model. Then (i)⇒ (ii) :
(i) % is short-term delay averse ;
(ii) ∀P ∈ C, ∀n ∈ N, P ({n}) ≥ P ({n+ 1}).

While long-term delay aversion involves only properties of the weights that the DM
attaches to periods of time, short-term delay aversion requires features of both the capa-
city, or the probabilities, and the utility function. A necessary consequence of short-term
delay aversion is that the DM attaches higher weights to earlier periods of time : we
need P ({n}) ≥ P ({n + 1}) for the EU and MMEU models and v({n}) ≥ v({n + 1})
for the CEU model. The characterization of short-term delay aversion in the CEU mo-
del appears rather complicated but it is, in fact, just a generalization of part (ii) of
Corollary 3.4.1. If the capacity v would have been additive, then, for instance, the
condition u′(x)(v(A ∪ {n}) − v(A)) ≥ u′(y)(v(B ∪ {n + 1}) − v(B)) would read as
u′(x)v({n}) ≥ u′(y)v({n + 1}). Since in general v is non-additive, instead of considering
the weight v({n}), we need to take into account the “marginal contribution” of period n
when this period is considered together with another set of periods A (the same reasoning
holds for period n+ 1). Moreover, part (ii) of Proposition 3.4.1 is split in three sub-parts
since the Choquet integral depends on the ranking of the different outcomes. Therefore if
x is income in period n and y is income in period n+ 1, then all the cases (x < y, x = y

and x > y) need to be considered.
In the EU and CEU frameworks, short-term delay aversion also entails substantial

limitation of the shape of the (marginal) utility function. For example, if we consider a
DM with preferences represented by the EU model, then a utility function u(·) satisfying
the Inada conditions (e.g. limx→0 u

′(x) = +∞ and limx→+∞ u
′(x) = 0) would not be

suitable to obtaining short-term delay aversion. This result derives from the fact that
short-term delay aversion is a strong requirement. Suppose in fact that a DM is facing
an income stream which has a large amount of income in period n and 0 in period
n + 1. Short-term delay aversion says that the DM prefers to add an additional unit of
income in period n rather than in period n + 1. Roughly speaking, in order to exhibit
such preferences, we need to make sure that the marginal utility at zero is “not too big”,
otherwise the preferences could be inverted.

The characterization of short-term delay averse preferences in the EU model has an
appealing and simple interpretation. Let us focus on the case where % is strongly mo-
notone (P ({n}) > 0∀n ∈ N, see Corollary 3.3.2) and u′(x) > 0 ∀x ∈ R+. Rearranging
quantities we get that ∀x, y ∈ R+ and ∀n ∈ N :

P ({n})
P ({n+ 1})

u′(x)

u′(y)
≥ 1. (3.1)

Considering x as the DM’s income in period n and y as her income in period n+ 1, then
the expression above states that : a DM is short-term delay averse if and only if she has
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a marginal rate of intertemporal substitution that is always greater than 1.
For Fisher [1930] an economic agent has preferences for immediate utility compared to
delayed utility if she has a marginal rate of substitution that is always greater than 1
(see footnote 18 p. 82 of Benoît and Ok [2007]). We call Fisher’s definition F-impatience.
Definition 3.4.1 of short-term delay aversion turns out therefore to be a behavioural
characterization of the concept of F-impatience of Irving Fisher. In the following we will
refer to (3.1) as Fisher condition. 4

The particular case of convex preferences in the CEU model

A preference relation % over V is said to be convex if ∀x,y ∈ V, ∀α ∈ [0, 1], x % y⇒
αx+(1−α)y % y. Schmeidler [1989] suggests that convex preferences can be interpreted
as the natural inclination of a DM for smoothing income streams. See also Gilboa [1989]
and Wakker [1990].

An extensive study of convex preferences in the CEU framework has been presented
in the paper by Chateauneuf and Tallon [2002]. In their work, the authors prove that, in
a finite dimensional setting, convexity of preferences is equivalent to the utility function
u(·) being concave and the capacity v being convex. Under the mere assumption that
∃A ∈ 2N s.t. 0 < v(A) < 1, it is easy to see that in our infinite dimensional setting,
convexity of preferences is still equivalent to u(·) concave and v convex.

As a result, we can obtain a characterization of short-term delay aversion in the CEU
framework in terms of properties of the probabilities in the core of v. This result is
presented as Proposition 3.4.4.

Proposition 3.4.4. Let % be a convex preference relation represented by the CEU model.
Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) ∀P ∈ C(v), ∀x, y ∈ R+, ∀n ∈ N, u′(x)P (n) ≥ u′(y)P (n+ 1).

The proposition above states that a CEU decision maker who has preferences for
smoothing income streams is short-term delay averse if and only if the Fisher condition
is satisfied for every simply additive probability in the core of v.

Remark 3.4.1. The concept of strict short-term delay aversion is defined in an obvious
way using a strict preference relation instead of a weak one. In this case, all the results
of Sections 3.4.1 and 3.4.1 hold replacing the weak inequalities with strict ones under the
additional assumption that the utility function u(·) is strictly concave.

4. The Fisher condition is consistent by letting P ({n})
P ({n+1})

u′(x)
u′(y) = +∞ if P ({n}) > 0 and P ({n+ 1}) = 0, and

using the convention 0
0
= 1 if P ({n}) = 0 since in this latter case P ({n}) ≥ P ({n+ 1}) implies P ({n+ 1}) = 0.
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3.4.2 Temporal Domination

In this section we present the notion of temporal domination, and we link it with short-
term delay aversion. Temporal domination is an important tool for ranking streams of
income. It is derived by condition (3b) of Foster and Mitra [2003]. In a finite dimensional
setting, the authors show that whenever one stream of payments temporally dominates
another, then the former has a higher present value than the latter for every possible
choice of the interest rate. Intuitively, in our infinite dimensional setting, if a stream
of income x temporally dominates y, then a DM with preferences for advancing the
time of future satisfaction should prefer x to y. The aim of this section is to investigate
precisely the connection between temporal domination and short-term delay aversion.
We conclude our analysis by generalizing a result proved by Foster and Mitra [2003], in
infinite dimension.

Definition 3.4.2. Given x,y ∈ V , we say that x temporally dominates y, denoted
x %T y, if

∑k
i=0 xi ≥

∑k
i=0 yi ∀k ∈ N.

A flow of income x temporally dominates another flow of income y if the partial sum
of the first k elements of x is higher or equal to the partial sum of the first k elements
of y, for every k ∈ N. This definition extends condition (3b), of [Foster and Mitra, 2003,
p. 474]. The interested reader can refer to their paper for a discussion of the relationship
of Definition 3.4.2 to the criterion of stochastic dominance.

Definition 3.4.3. We say that a preference relation % over V agrees with temporal
domination if for every x,y ∈ V , x %T y⇒ x % y.

Therefore a preference relation is consistent with temporal domination if, whenever a
stream of income x temporally dominates a stream of income y, then x is preferred to y.

Before stating the main result of this section we recall the definitions of monotone
convergence and continuity w.r.t. monotone convergence.

Definition 3.4.4. A sequence (of sequences) xn ∈ V N monotonically converges to a
sequence x ∈ V , denoted xn ↑n x, if ∀n ∈ N, ∀p ∈ Nxn(p) ≤ xn+1(p) and ∀p ∈ N,
xn(p)→n x(p).

Definition 3.4.5. A preference relation % is continuous w.r.t. monotone increasing
convergence if xn ↑n x and y % xn ∀n ∈ N imply y % x.

Proposition 3.4.5. Let % be a monotone and transitive preference relation over V ,
continuous w.r.t. monotone increasing convergence. Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) % agrees with temporal domination.
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Under some monotonicity and continuity assumptions, the notion of short-term delay
aversion is equivalent to the fact that, whenever x temporally dominates another flow
of income y, then the DM prefers x to y. As we said above, in a finite dimension, if x
temporally dominates y, then x has an higher present value for every possible interest
rate. It seems natural therefore for a DM to prefer x over y. Therefore, such a result
provides additional support to the definition of short-term delay aversion.

Remark 3.4.2. If we want to focus on strict short-term delay aversion then we need some
additional definitions. We say that x strictly temporally dominates y, denoted x �T y,
if x %T y and ∃k ∈ N s.t.

∑k
i=0 xi >

∑k
i=0 yi. We say that % is continuous w.r.t. strict

monotone increasing convergence if xn ↑n x, x 6= y and y � xn ∀n ∈ N imply y � x. In
this case Proposition 3.4.5 can be rewritten as follows : Let % be a monotone and transi-
tive preference relation over V , continuous w.r.t. strict monotone increasing convergence.
Then strict short-term delay aversion is equivalent to agreeing to strict temporal domi-
nation (e.g. x �T y⇒ x � y).

We briefly study now the implication of continuity w.r.t. monotone increasing conver-
gence on the three models considered in this paper.

The next proposition shows that for the CEU, MMEU and EU models, continuity
w.r.t. monotone increasing convergence is nothing else than impatience as defined in
Chateauneuf and Ventura [2013] (see Definition 3.3.4).

Proposition 3.4.6. Let % be a preference relation represented by either the CEU, the
MMEU or the EU model. Then (i)⇔ (ii) :
(i) % is continuous w.r.t. monotone increasing convergence ;
(ii) % is impatient.

By means of Proposition 3.4.6, we can state the link between short-term delay aversion
and temporal domination in the CEU, MMEU and EU models. The following corollary
is obtained.

Corollary 3.4.2. Let % be an impatient preference relation represented by either the
CEU, the MMEU or the EU model. Then (i)⇔ (ii) :
(i) % is short-term delay averse ;
(ii) % agrees with temporal domination.

For sake of completeness we characterize impatience and continuity w.r.t. monotone
increasing convergence in the CEU, MMEU and EU models.

Proposition 3.4.7. Let % be represented by the CEU model. Then (i)⇔ (ii)⇔ (iii) :
(i) % is impatient ;
(ii) % is continuous w.r.t. monotone increasing convergence ;
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(iii) v is inner continuous (i.e. An ↑n A ⇒ v(An) ↑n v(A), where An ↑n A means
An ⊆ An+1 and ∪nAn = A).

Proposition 3.4.8. Let % be represented by the MMEU model. Then (i)⇔ (ii)⇔ (iii) :
(i) % is impatient ;
(ii) % is continuous w.r.t. monotone increasing convergence ;
(iii) ∀P ∈ C, P is σ-additive.

Corollary 3.4.3. Let % be represented by the EU model. Then (i)⇔ (ii)⇔ (iii) :
(i) % is impatient ;
(ii) % is continuous w.r.t. monotone increasing convergence ;
(iii) P is σ-additive.

To the best of our knowledge, Proposition 3.4.8 appears to be a novel result. The
proofs of Proposition 3.4.7 and Corollary 3.4.3 are well known, but we include them in
the Appendix for the sake of completeness. Note that for Proposition 3.4.7 we show that
v exact can be dispensed with, unlike in Proposition 3.2 of Chateauneuf and Ventura
[2013].

The next proposition generalizes Theorem 7, p.487 of Foster and Mitra Foster and
Mitra [2003].

Proposition 3.4.9. For every x,y ∈ V , the following are equivalent :
(i) x �T y ;
(ii) for every discount function β,

∑
t β(t)xt >

∑
t β(t)yt.

Corollary 3.4.4. For every x,y ∈ V , the following are equivalent :
(i) x %T y ;
(ii) for every weakly decreasing discount function β,

∑
t β(t)xt ≥

∑
t β(t)yt.

How can we identify whether x %T y ? Corollary 3.4.4 shows that a necessary and
sufficient condition for x to dominate y temporally is that every (weak) time discounter
(u, β) with constant marginal utility should prefer (weakly) x to y.

Using the words of Foster and Mitra Foster and Mitra [2003], if we interpret the dis-
count function β(·) of the DM as an interest rate, then the stream of income x dominates
the stream of income y at all interest rates if and only if x %T y.

3.5 Conclusion

In this paper we define and characterize in three popular theoretical models of de-
cision making two concepts that describe preferences for advancing the time of future
satisfaction. We call them long-term delay aversion and short-term delay aversion.
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The first important contribution lies in the use of an intertemporal version of the
Expected Utility, the Choquet Expected Utility and the MaxMin Expected Utility mo-
dels. While this has already been done in the literature, relatively few papers exploit
these models as flexible tools to describe intertemporal choices. Our work therefore offers
interesting and useful alternatives to the standard discounted utility model.

We show that our first notion, namely long-term delay aversion, is a very weak notion
of preferences for anticipating future consumption : it only depends on the weights that
the DM attaches to time periods (and subsets of time periods). We do not make any
assumption about the shape of the (instantaneous) utility function. Moreover we find
that it coincides with it coincides with strong monotonicity of preferences in the Expected
Utility Model. This provides an insight about why strong monotonicity of preferences and
treating all generations equally are incompatible.

Regarding short-term delay aversion, we prove that not only are the weights which a
DM assigns to periods of time important, but her marginal utility plays a role too. We
show that short-term delay aversion is equivalent to what Irving Fisher called impatience
(here, F-impatience), and thus we provided a behavioural foundation for Fisher’s notion.

We show that short-term delay aversion is equivalent to the concept of temporal domi-
nation. Temporal domination parallels the notion of second order stochastic dominance
in decision making under risk. As stochastic dominance is a compelling notion in decision
making under risk, temporal domination - its counterpart in decisions involving time -
is equally sound. Thus, the equivalence between short-term delay aversion and temporal
domination adds additional strength to the former concept.

Finally, as a dividend, we generalized one theorem of Foster and Mitra Foster and
Mitra [2003] and we characterized the definition of impatience (as defined in Chateauneuf
and Ventura [2013]) in the MaxMin Expected Utility model.

3.6 Proofs

We begin stating and proving a Lemma that allows us to extend a finitely additive
probability from an algebra to a σ-algebra.

Lemma 3.6.1. Let Ω be a set, B an algebra on Ω and A a σ-algebra such that B ⊆ A.
Let Q be a simply additive probability on B, then there exists a simply additive probability
P on A such that P |B= Q.

Démonstration. Define

v(A) = sup{Q(C) s.t. C ∈ B, C ⊆ A}, A ∈ A.

Claim : v is a convex normalized capacity on the σ-algebra A.
Notice that ∀A ∈ B, v(A) = Q(A), and therefore v(∅) = 0 and v(Ω) = 1 since ∅, Ω ∈ B
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and Q is a probability. Moreover if A,B ∈ A and A ⊆ B, {C ∈ B|C ⊆ A} ⊆ {C ∈ B|C ⊆
B} and therefore v(A) ≤ v(B). Hence v is a capacity.
Let us prove now that v is convex. Given A,B ∈ A, by definition of supremum, ∀ε > 0,
∃C ∈ B and ∃D ∈ B such that C ⊆ A and D ⊆ B and

Q(C) > v(A)− ε and Q(D) > v(B)− ε.

Therefore, by monotonicity of v, by the fact that B is an algebra and since, as noticed
before, Q(A) = v(A) if A ∈ B, we have :

v(A ∪B) + v(A ∩B) ≥ v(C ∪D) + v(C ∩D)

= Q(C ∪D) +Q(C ∩D)

= Q(C) +Q(D)

> v(A) + v(B)− 2ε.

Hence v(A ∪B) + v(A ∩B) ≥ v(A) + v(B) since ε can be arbitrarily small.
Hence, we proved that v is a convex capacity.

It is well known that if v is convex then C(v) 6= ∅. Therefore taking P ∈ C(v), we
have that ∀B ∈ B, P (B) ≥ v(B) = Q(B). Imagine ∃B′ ∈ B s.t. P (B′) > Q(B′), then
P (B′c) < Q(B′c), but B′c ∈ B and so Q(B′c) = v(B′c), contradiction. Hence ∀B ∈ B,
P (B) = Q(B). Therefore we found a simply additive probability defined on (Ω,A) s.t.
P |B= Q.

3.6.1 Proofs of Section 3.3

We first state and prove a lemma that will help us in other proofs. Abusing notation,
we will write u(x) ≥ t ∪ n := {k ∈ N|u(xk) ≥ t} ∪ {n}.

Lemma 3.6.2. For x ∈ V , u(·) strictly increasing, a > 0 and n ∈ N we have∫
u(x + a1n) dv =

∫ u(xn)

0

v(u(x) ≥ t) dt+

+

∫ u(xn+a)

u(xn)

v(u(x) ≥ t ∪ n) dt+

∫ +∞

u(xn+a)

v(u(x) ≥ t) dt.

Démonstration. Fix x ∈ V , n ∈ N and a > 0. Notice that we can write u(x + a1n) =

u(x)1nc + u(xn + a)1n and therefore ∀k 6= n u(xk + a1n(k)) = u(xk). Consider now the
sets At = {u(x) ≥ t} and Bt = {u(x+a1n) ≥ t} with t ∈ [0,+∞). We divide the interval
[0,+∞) in 3 parts :

– Take t ∈ [0, u(xn)]. We have that since u(xn + a) > u(xn) ≥ t, n ∈ At and n ∈ Bt.
Moreover ∀k 6= n we have that k ∈ At ⇔ k ∈ Bt. So At = Bt

– Take now t ∈ (u(xn), u(xn+a)]. We have that n /∈ At but n ∈ Bt. Also here ∀k 6= n,
k ∈ At ⇔ k ∈ Bt. Therefore Bt = At ∪ n.
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– Finally if t ∈ (u(xn +a),+∞), clearly n /∈ At and n /∈ Bt. Again, ∀k 6= n, k ∈ At ⇔
k ∈ Bt. Hence At = Bt.

Therefore∫
u(x + a1n) dv =

∫ u(xn)

0

v(u(x + a1n) ≥ t) dt+

+

∫ u(xn+a)

u(xn)

v(u(x + a1n) ≥ t) dt+

∫ +∞

u(xn+a)

v(u(x + a1n) ≥ t) dt =

=

∫ u(xn)

0

v(u(x) ≥ t) dt+

∫ u(xn+a)

u(xn)

v(u(x) ≥ t ∪ n) dt+

∫ +∞

u(xn+a)

v(u(x) ≥ t) dt.

Proof of Proposition 3.3.1. (i) ⇒ (ii) a) Let us see first that ∀A ∈ 2N v(A ∪ n) →n

v(A). Take A ∈ 2N, n0 ∈ A, and define x := 1A. For all a > 0, we have by definition of
Choquet integral :∫

u(1A + a1n0) dv =

∫ +∞

0

v(u(1A + a1n0) ≥ t) dt =

= u(1)v(A) + (u(1 + a)− u(1))v(n0).

Take a s.t. given ε > 0, u(1+a)−u(1)
u(1)

v(n0) < ε. Notice that it is possible since u(·) is
continuous and therefore lima→0 u(1 + a) = u(1). Since % is long-term delay averse, b ≥ a

(and b ≥ 1 if necessary) ∃N s.t. ∀n ≥ N :∫
u(1A + b1n) dv < u(1)v(A) + (u(1 + a)− u(1))v(n0)

We can now have two cases. Either n /∈ A, therefore
∫
u(1A + b1n) dv = u(1)v(A ∪ n) +

(u(b)− u(1))v(n). Hence

u(1)v(A ∪ n) + (u(b)− u(1))v(n) < u(1)v(A) + (u(1 + a)− u(1))v(n0)

u(1)(v(A ∪ n)− v(A)) < (u(1 + a)− u(1))v(n0)− (u(b)− u(1))v(n)

u(1)(v(A ∪ n)− v(A)) < (u(1 + a)− u(1))v(n0)

(v(A ∪ n)− v(A)) <
(u(1 + a)− u(1))

u(1)
v(n0) < ε.

Or, n ∈ A, and in this case we simply get v(A ∪ n)− v(A) = v(A)− v(A) = 0 < ε.
And hence v(A ∪ n)→n v(A).

b) Here we want to show that ∀A ∈ 2N, ∀t /∈ A v(A ∪ t) > v(A). Take A ∈ 2N, b ≥ a = 1

t /∈ A and notice that
∫
u(1A + 1t) dv = u(1)v(A ∪ t). Since % is long-term delay averse,

∃N s.t. ∀n ≥ N ,
∫
u(1A + b1n) dv < u(1)v(A ∪ t). We can have two cases :
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– n /∈ A, and therefore
∫
u(1A + b1n) dv = u(1)v(A ∪ n) + (u(b)− u(1))v(n). Hence

u(1)v(A ∪ t) > u(1)v(A ∪ n) + (u(b)− u(1))v(n) ≥ u(1)v(A ∪ n) ≥ u(1)v(A),

and hence v(A ∪ t) > v(A).
– n ∈ A implies

∫
u(1A + b1n) dv = u(1)v(A) + (u(b+ 1)− u(1))v(n), therefore

u(1)v(A ∪ t) > u(1)v(A) + (u(b+ 1)− u(1))v(n) ≥ u(1)v(A).

And again v(A ∪ t) > v(A).
(ii) ⇒ (i) Fix 0 < a ≤ b, n0 ∈ N, x ∈ V and notice that we will be done as soon as

we prove the following :

1)
∫
u(x + b1n) dv →

∫
u(x) dv ;

2)
∫
u(x + a1n0) dv >

∫
u(x) dv.

Suppose in fact that 1) and 2) are true, then
∫
u(x + a1n0) dv −

∫
u(x + b1n) dv →∫

u(x + a1n0) dv −
∫
u(x) dv > 0. And therefore ∃N s.t. ∀n ≥ N ,

∫
u(x + a1n0) dv −∫

u(x + b1n) dv > 0, proving that % is actually long-term delay averse.
1) Since x is bounded (∃Mx s.t. xn ≤Mx ∀n ∈ N), then∫

u(x + b1n) dv =

∫ +∞

0

v(u(x + b1n) ≥ t) dt =

∫ u(Mx+b)

0

v(u(x + b1n) ≥ t) dt.

Notice now that ∀t ∈ [0, u(Mx + b)], At := {k s.t. u(xk + b1n(k)) ≥ t} ⊆ {k s.t. u(xk) ≥
t} ∪ {n} := Bt. In fact k ∈ At and k 6= n, then u(xk) ≥ t and so k ∈ Bt. If k ∈ At and
k = n then k ∈ Bt since n ∈ Bt ∀t. Therefore since v is monotone, ∀t ∈ [0, u(Mx + b)]

v(u(x + b1n) ≥ t) ≤ v(u(x) ≥ t ∪ n).
Define now two functions f : [0, u(Mx + b)] → [0, 1] as f(t) = v(u(x) ≥ t) and fn :

[0, u(Mx + b)] → [0, 1] as fn(t) = v(u(x) ≥ t ∪ n). We have that by hypothesis ∀t ∈
[0, u(Mx + b)], fn(t) →n f(t), and moreover ∀t ∈ [0, u(Mx + b)], fn(t) ≤ 1. We can
therefore use the Dominated Convergence Theorem and hence∫ u(Mx+b)

0

v(u(x) ≥ t ∪ n) dt =

∫ u(Mx+b)

0

fn(t) dt→n

→n

∫ u(Mx+b)

0

f(t) dt =

∫ u(Mx+b)

0

v(u(x) ≥ t) dt.

We get therefore∫
u(x) dv ≤

∫
u(x + b1n) dv =

∫ u(Mx+b)

0

v(u(x + b1n) ≥ t) dt ≤

≤
∫ u(Mx+b)

0

v(u(x) ≥ t ∪ n) dt→n

∫ u(Mx+b)

0

v(u(x) ≥ t) dt =

∫
u(x) dv
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So actually
∫
u(x + b1n) dv →n

∫
u(x) dv.

2) Consider now the difference
∫
u(x + a1n0) dv −

∫
u(x) dv, and notice that we can

rewrite, by Lemma 3.6.2,
∫
u(x + a1n0) dv =

∫ +∞
0

v(u(x + a1n0) ≥ t) dt as :∫ +∞

0

v(u(x + a1n0) ≥ t) dt =

∫ u(xn0 )

0

v(u(x) ≥ t) dt+

+

∫ u(xn0+a)

u(xn0 )

v(u(x) ≥ t ∪ n0) dt+

∫ +∞

u(xn0+a)

v(u(x) ≥ t) dt.

And since we can write∫ +∞

0

v(u(x) ≥ t) dt =

∫ u(xn0 )

0

v(u(x) ≥ t) dt+

+

∫ u(x(n0)+a)

u(xn0 )

v(u(x) ≥ t) dt+

∫ +∞

u(xn0+a)

v(u(x) ≥ t) dt,

then the difference
∫
u(x + a1n0) dv −

∫
u(x) dv will be just :∫

u(x + a1n0) dv −
∫
u(x) dv =

∫ u(xn0+a)

u(xn0 )

v(u(x) ≥ t ∪ n0)− v(u(x) ≥ t) dt.

Since we supposed that ∀A ∈ B, ∀t /∈ A v(A∪ t) > v(A), and for t ∈ (u(xn0), u(xn0 + a)),
n0 /∈ {u(x) ≥ t}, then

∫
u(x + a1n0) dv >

∫
u(x) dv.

Proof of Proposition 3.3.2. (i) ⇒ (ii) Take x = 0 and suppose that ∃P ∈ C and
∃n0 ∈ N s.t. P (n0) = 0. Then for a > 0

min
P∈C

EP [u(0 + a1n0)] = min
P∈C

u(a)P (n0) = u(a)P (n0) = 0,

where P will be a solution of the minimization problem since ∀P ∈ C and a > 0,
u(a)P (n0) ≥ 0. Taking now b ≥ a, we have that ∀n ∈ N,

min
P∈C

EP [u(0 + b1n)] = min
P∈C

u(b)P (n) ≥ 0 = min
P∈C

EP [u(0 + a1n0)].

Hence ∀n ∈ N, b1n % a1n0 , so % is not long-term delay averse, contradiction.

(ii) ⇒ (i) We need to show that for x ∈ V , n0 ∈ N, 0 < a ≤ b, ∃N s.t. ∀n ≥
N , (xn0 + a,x−n0) � (xn + b,x−n) i.e. ∃N s.t. ∀n ≥ N , minP∈C EP [u(x + a1n0)] >

minP∈C EP [u(x + b1n)].
Notice that u(x+a1n0) = u(x)1nc

0
+u(xn0 +a)1n0 and that u(xn0 +a) = u(xn0) +u(xn0 +

a)− u(xn0). Therefore

EP [u(x + a1n0)] = EP [u(x)1nc
0

+ u(xn0)1n0 + (u(xn0 + a)− u(xn0))1n0 ] =

= EP [u(x) + (u(xn0 + a)− u(xn0))1n0 ] = EP [u(x)] + (u(xn0 + a)− u(xn0))P (n0).
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By the properties of the operator min we have :

min
P∈C

EP [u(x)] + (u(xn0 + a)− u(xn0))P (n0) ≥

≥ min
P∈C

EP [u(x)] + min
P∈C

(u(xn0 + a)− u(xn0))P (n0).

Call k := minP∈C(u(xn0 + a) − u(xn0))P (n0) and notice that k > 0 since by hypothesis
P (n) > 0∀n ∈ N and u(·) is strictly increasing. Let P ∗ be s.t. P ∗ ∈ arg minEP [u(x)], then
there is NP ∗ s.t. ∀n ≥ NP ∗ and ∀b > 0, (u(xn + b)− u(xn))P ∗(n) < k, since P ∗(n)→n 0.
So we have

min
P∈C

EP [u(x + a1n0)] ≥ min
P∈C

EP [u(x)] + k

> EP ∗ [u(x)] + (u(xn + b)− u(xn))P ∗(n)

= EP ∗ [u(x + b1n)]

≥ min
P∈C

EP [u(x + b1n)].

Therefore ∃N (i.e. in this case NP ∗) s.t. ∀n ≥ N , (xn0 + a,x−n0) � (xn + b,x−n).

Proof of Corollary 3.3.1. It follows immediately from either Proposition 3.3.1 or 3.3.2.

Proof of Proposition 3.3.3. (i) ⇒ (ii) Let us first prove that u(·) : R+ → R strictly
increasing is a necessary condition for strong monotonicity. Fix x, y ∈ R+ s.t. x > y and
consider the sequences x := x and y := y ∀n ∈ N. By strong monotonicity, x � y and
therefore u(x) =

∫
u(x) dv >

∫
u(y) dv = u(y).

Fix now A ∈ 2N, n /∈ A and y := 1A and x := 1A∪n. We have that x ≥ y and x 6= y

therefore by strong monotonicity x � y, and hence
∫
u(x) dv >

∫
u(y) dv. Notice that∫

u(y) dv =

∫ u(1)

0

v(A) dt = u(1)v(A)∫
u(x) dv =

∫ u(1)

0

v(A ∪ n) dt = u(1)v(A ∪ n).

Hence x � y⇔ u(1)v(A ∪ n) > u(1)v(A)⇔ v(A ∪ n) > v(A).

(ii)⇒ (i) Take x ≥ y, x 6= y we want to show that x � y.
Since x ≥ y, x 6= y there exists an n ∈ N, ε > 0 s.t. xn = yn+ε. We already showed in the
proof of Proposition 3.3.1 that ∀A ⊂ N, ∀n /∈ A v(A∪n) > v(A) implies

∫
u(y + ε1n) dv >∫

u(y) dv. Therefore, ∫
u(x) dv ≥

∫
u(y + ε1n) dv >

∫
u(y) dv,

i.e. x � y.
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Proof of Proposition 3.3.4. (i) ⇒ (ii) Let us first prove that u(·) : R+ → R strictly
increasing is a necessary condition for strong monotonicity. Fix two numbers x, y ∈ R+

s.t. x > y and consider the sequences x1n and y1n for some n ∈ N. Clearly x1n ≥ y1n and
x1n 6= y1n and therefore by strong monotonicity minP∈C EP [u(x1n)] > minP∈C EP [u(y1n)],
hence u(x) minP∈C P (n) > u(y) minP∈C P (n), i.e. u(x) > u(y). Suppose now that ∃P ∈ C
and ∃n0 ∈ N s.t. P (n0) = 0. Take x := 1n0 and y := 0, we have x ≥ y and x 6= y, but
minP∈C EP [u(x)] = 0 = minP∈C EP [u(y)], a contradiction.

(ii) ⇒ (i) Fix x,y ∈ V s.t. x ≥ y and x 6= y. We have that there exists at least one
n ∈ N s.t. xn > yn and therefore u(x) ≥ u(y) + (u(xn)− u(yn))1n. But then ∀P ∈ C, we
get :

EP [u(x)] ≥ EP [u(y)] + (u(xn)− u(yn))P (n),

and considering the minimum :

min
P∈C

EP [u(x)] ≥ min
P∈C

EP [u(y)] + (u(xn)− u(yn))P (n)

≥ min
P∈C

EP [u(y)] + min
P∈C

(u(xn)− u(yn))P (n)

> min
P∈C

EP [u(y)].

Where the last strict inequality comes form the fact that minP∈C(u(xn)−u(yn))P (n) > 0,
since u(·) is strictly increasing and ∀P ∈ C, ∀n ∈ N, P (n) > 0. Hence x � y.

Proof of Corollary 3.3.2. The proof follows immediately from either Propositions 3.3.3
or 3.3.4.

3.6.2 Proof of Section 3.4

Proof of Proposition 3.4.1. (i)⇒ (ii) Point 1 :
Let A ∈ 2N and n, n + 1 /∈ A. Fix x := 1A and a = 1. By short-term delay aversion,
x + 1n % x + 1n+1 and therefore

∫
u(x + 1n) dv ≥

∫
u(x + 1n+1) dv. Notice that∫

u(x + 1n) dv =

∫ u(1)

0

v(A ∪ n) dt,

and similarly ∫
u(x + 1n+1) dv =

∫ u(1)

0

v(A ∪ n+ 1) dt.

Therefore v(A ∪ n) ≥ v(A ∪ n+ 1).

Point 2 :
Fix x, y ∈ R+ s.t. x > y and fix n ∈ N and A,B ∈ 2N s.t. A ⊂ B, n ∈ B, n /∈ A,
n+ 1 /∈ B.
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Define the set C := B \ (A ∪ n) and notice that the sets A, C, {n}, {n+ 1} are pairwise
disjoint. Define now the following sequence :

xa := y1n+1 + c1C + (x− a)1n + d1A

with a, c, d s.t. they satisfy 0 < y + a < c < x− a < d. Let us consider :

xa + a1n = y1n+1 + c1C + x1n + d1A

and
xa + a1n+1 = (y + a)1n+1 + c1C + (x− a)1n + d1A.

Integrating by mean of the Choquet integral these two sequences we have∫
u(xa + a1n) dv = u(y)(v(n+ 1 ∪ C ∪ n ∪ A)− v(C ∪ n ∪ A))+

+ u(c)(v(C ∪ n ∪ A)− v(n ∪ A)) + u(x)(v(n ∪ A)− v(A)) + u(d)v(A) =

= u(y)(v(n+1∪B)−v(B))+u(c)(v(B)−v(n∪A))+u(x)(v(n∪A)−v(A))+u(d)v(A),

and in the same way∫
u(xa + a1n+1) dv = u(y + a)(v(n+ 1 ∪B)− v(B))+

+ u(c)(v(B)− v(n ∪ A)) + u(x− a)(v(n ∪ A)− v(A)) + u(d)v(A).

Hence by short-term delay aversion for every a > 0 small enough (so that it satisfies the
inequalities above), xa + a1n % xa + a1n+1, and therefore

∫
u(xa + a1n) dv −

∫
u(xa +

a1n+1) dv ≥ 0. i.e.

(u(y)− u(y + a))(v(n+ 1 ∪B)− v(B)) + (u(x)− u(x− a))(v(n ∪ A)− v(A)) ≥ 0

Dividing both the left and right hand-side by a and letting a→ 0 we get the result.

Point 3 :
The proof is similar to the one of Point 2.

(ii)⇒ (i) Fix x ∈ V , n ∈ N and a > 0. We need to prove the following inequality∫
u(x + a1n) dv ≥

∫
u(x + a1n+1) dv.

To simplify notation call xn =: z and xn+1 =: y. We need to consider 5 possible cases
summarized in the following table :

Case 0 : z = y

z > y
Case 1 : u(y) < u(y + a) ≤ u(z) < u(z + a)

Case 2 : u(y) < u(z) ≤ u(y + a) < u(z + a)

z < y
Case 3 : u(z) < u(z + a) ≤ u(y) < u(y + a)

Case 4 : u(z) < u(y) ≤ u(z + a) < u(y + a)
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Case 0 :
Since z = y then u(z) = u(y) and u(z + a) = u(y + a), and therefore we can write, using
Lemma 3.6.2 :∫

u(x + a1n) dv =

∫ u(z)

0

v(u(x) ≥ t) dt+

∫ u(z+a)

u(z)

v(u(x) ≥ t ∪ n) dt+

+

∫ +∞

u(z+a)

v(u(x) ≥ t) dt,

and∫
u(x + a1n+1) dv =

∫ u(z)

0

v(u(x) ≥ t) dt+

∫ u(z+a)

u(z)

v(u(x) ≥ t ∪ n+ 1) dt+

+

∫ +∞

u(z+a)

v(u(x) ≥ t) dt.

We have therefore∫
u(x + a1n) dv −

∫
u(x + a1n+1) dv =

=

∫ u(z+a)

u(z)

v(u(x) ≥ t ∪ n)− v(u(x) ≥ t ∪ n+ 1) dt ≥ 0,

where the last inequality comes from the hypothesis. In fact, since ∀t ∈ (u(z), u(z + a)),
n, n+ 1 /∈ {u(x) ≥ t} =: At, we have v(At ∪ n) ≥ v(At ∪ n+ 1).

Case 1 :
We rewrite :∫

u(x + a1n) dv =

∫ u(y)

0

v(u(x) ≥ t) dt+

∫ u(y+a)

u(y)

v(u(x) ≥ t) dt+

+

∫ u(z)

u(y+a)

v(u(x) ≥ t) dt+

∫ u(z+a)

u(z)

v(u(x) ≥ t ∪ n) dt+

∫ +∞

u(z+a)

v(u(x) ≥ t) dt, (3.2)

and∫
u(x + a1n+1) dv =

∫ u(y)

0

v(u(x) ≥ t) dt+

∫ u(y+a)

u(y)

v(u(x) ≥ t ∪ n+ 1) dt+

+

∫ u(z)

u(y+a)

v(u(x) ≥ t) dt+

∫ u(z+a)

u(z)

v(u(x) ≥ t) dt+

∫ +∞

u(z+a)

v(u(x) ≥ t) dt. (3.3)

Subtracting the equations (3.2)− (3.3) we obtain :∫ u(z+a)

u(z)

v(u(x) ≥ t ∪ n)− v(u(x) ≥ t) dt−
∫ u(y+a)

u(y)

v(u(x) ≥ t ∪ n+ 1)− v(u(x) ≥ t) dt.

To simplify the notation we define two functions f : (u(z), u(z + a)) → [0, 1] as f(t) :=

v(u(x) ≥ t ∪ n) − v(u(x) ≥ t) and g : (u(y), u(y + a)) → [0, 1] as g(t) := v(u(x) ≥
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t ∪ n+ 1)− v(u(x) ≥ t).
Hence we have that :∫ u(z+a)

u(z)

f(t) dt ≥ (u(z + a)− u(z)) inf
t∈(u(z),u(z+a))

f(t).

Notice that we can find a sequence (ti)i∈N s.t. ∀i ∈ N ti ∈ (u(z), u(z + a)) s.t. f(ti) →i

inft f(t).
In fact suppose that it was not true and that for some i ∈ N \ {0}, there is no ti ∈
(u(z), u(z + a)) such that inft f(t) ≤ f(ti) < inft f(t) + 1

i
. Then this would imply that

for all t ∈ (u(z), u(z + a)), f(t) ≥ inft f(t) + 1
i
> inft f(t), i.e. it would imply that there

is a lower bound strictly greater then the infimum for the set {f(t)|t ∈ (u(z), u(z + a))},
which is not possible since the infimum is defined as the greatest lower bound.
So ∃I ∈ N s.t. ∀i ≥ I, ∫ u(z+a)

u(z)

f(t) dt ≥ (u(z + a)− u(z))f(ti).

Fix one of such ti and call it t∗.
We can do the same reasoning with g and we will get that∫ u(y+a)

u(y)

g(t) dt ≤ (u(y + a)− u(y)) sup
t∈(u(y),u(y+a))

g(t).

And therefore we can find a sequence (ti)i∈N s.t. ∀i ∈ N ti ∈ (u(y), u(y+ a)) s.t. g(ti)→n

supt g(t). So ∃I ∈ N s.t. ∀i ≥ I,∫ u(y+a)

u(y)

g(t) dt ≤ (u(y + a)− u(y))g(ti).

Again, fix one of such ti and call it t∗.
Notice that t∗ ∈ (u(z), u(z+ a)) and t∗ ∈ (u(y), u(y+ a)) and u(y+ a) ≤ u(z). Therefore
calling A := {u(x) ≥ t∗} and B := {u(x) ≥ t∗}, we have that A ⊂ B, n ∈ B, n /∈ A,
n+ 1 /∈ B.Therefore :∫ u(z+a)

u(z)

f(t) dt−
∫ u(y+a)

u(y)

g(t) dt ≥

≥ (u(z + a)− u(z))(v(A ∪ n)− v(A))− (u(y + a)− u(y))(v(B ∪ n+ 1)− v(B)),

Now, since u(·) is C1, we use the Mean Value Theorem and we have that ∃c ∈ (z, z + a)

and ∃d ∈ (y, y + a) (so that c > d) s.t.

(u(z + a)− u(z)) = u′(c)a and (u(y + a)− u(y)) = u′(d)a.

Since the hypothesis of Point 2 is satisfied we finally get :

(u(z + a)− u(z))(v(A ∪ n)− v(A))− (u(y + a)− u(y))(v(B ∪ n+ 1)− v(B)) =

= u′(c)a(v(A ∪ n)− v(A))− u′(d)a(v(B ∪ n+ 1)− v(B)) ≥ 0.
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This means
∫
u(x + a1n) dv −

∫
u(x + a1n+1) dv ≥ 0.

Case 2 :
We can write :∫

u(x + a1n) dv =

∫ u(y)

0

v(u(x) ≥ t) dt+

∫ u(z)

u(y)

v(u(x) ≥ t) dt+

+

∫ u(y+a)

u(z)

v(u(x) ≥ t ∪ n) dt+

∫ u(z+a)

u(y+a)

v(u(x) ≥ t ∪ n) dt+

∫ +∞

u(z+a)

v(u(x) ≥ t) dt,

(3.4)

and∫
u(x + a1n+1) dv =

∫ u(y)

0

v(u(x) ≥ t) dt+

∫ u(z)

u(y)

v(u(x) ≥ t ∪ n+ 1) dt

+

∫ u(y+a)

u(z)

v(u(x) ≥ t ∪ n+ 1) dt+

∫ u(z+a)

u(y+a)

v(u(x) ≥ t) dt+

∫ +∞

u(z+a)

v(u(x) ≥ t) dt.

(3.5)

Subtracting (3.4)− (3.5) we get :∫
u(x + a1n) dv −

∫
u(x + a1n+1) dv =

∫ u(z)

u(y)

v(u(x) ≥ t)− v(u(x) ≥ t ∪ n+ 1) dt+

+

∫ u(y+a)

u(z)

v(u(x) ≥ t∪n)−v(u(x) ≥ t∪n+1) dt+

∫ u(z+a)

u(y+a)

v(u(x) ≥ t∪n)−v(u(x) ≥ t) dt.

Notice that the only difference between Case 1 and Case 2 is the term
∫ u(y+a)

u(z)
v(u(x) ≥

t∪n)− v(u(x) ≥ t∪n+ 1) dt. Since ∀t ∈ (u(z), u(y+ a)), n, n+ 1 /∈ {u(x) ≥ t} we have,
using Point 1 of the hypothesis :

v(u(x) ≥ t ∪ n) ≥ v(u(x) ≥ t ∪ n+ 1) for every t ∈ (u(z), u(y + a)).

Therefore∫
u(x + a1n) dv −

∫
u(x + a1n+1) dv ≥

∫ u(z)

u(y)

v(u(x) ≥ t)− v(u(x) ≥ t ∪ n+ 1) dt+

+

∫ u(z+a)

u(y+a)

v(u(x) ≥ t ∪ n)− v(u(x) ≥ t) dt. (3.6)

Now, using the same argument as before we can find some t∗ ∈ (u(y + a), u(z + a)) and
t∗ ∈ (u(y), u(z)) s.t., calling again B := {u(x) ≥ t∗} and A := {u(x) ≥ t∗} we get,∫ u(z+a)

u(y+a)

v(u(x) ≥ t∪n)− v(u(x) ≥ t) dt−
∫ u(z)

u(y)

v(u(x) ≥ t∪n+ 1)− v(u(x) ≥ t) dt ≥

≥ (u(z + a)− u(y + a))(v(A ∪ n)− v(A))− (u(z)− u(y))(v(B ∪ n+ 1)− v(B)).
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Moreover as in the previous case we have : A ⊂ B, n ∈ B, n /∈ A, n+ 1 /∈ B, as required
by the hypothesis of Point 2. Therefore, through the Mean Value Theorem we can find
some c ∈ (y + a, z + a) and d ∈ (y, z) (we remind that in Case 2, (z ≤ y + a) and hence
d < c) s.t.

(u(z + a)− u(y + a))(v(A ∪ n)− v(A))− (u(z)− u(y))(v(B ∪ n+ 1)− v(B)) =

= u′(c)(z − y)(v(A ∪ n)− v(A))− u′(d)(z − y)(v(B ∪ n+ 1)− v(B)) ≥ 0

and the last inequality comes again from Point 2 of the hypothesis. Hence
∫
u(x+a1n) dv−∫

u(x + a1n+1) dv ≥ 0.

Case 3 and Case 4 are similar to the cases above.

Proof of Corollary 3.4.1. The EU model is nothing else than the CEU model when
the capacity v proves to be a simply additive probability P . Therefore % is short-term
delay averse if and only if P (n) ≥ P (n+1), for x > y P (n)u′(x) ≥ P (n+1)u′(y) and x < y

P (n)u′(x) ≥ P (n+1)u′(y). Therefore ∀x, y ∈ R+, ∀n ∈ N, P (n)u′(x) ≥ P (n+1)u′(y).

Proof of Proposition 3.4.2. Fix x ∈ V , n ∈ N and a > 0. By the Mean Value Theorem
there exist c ∈ (xn, xn + a) and d ∈ (xn+1, xn+1 + a) s.t.

u′(c) =
u(xn + a)− u(xn)

a

u′(d) =
u(xn+1 + a)− u(xn+1)

a
.

And therefore using the fact that ∀P ∈ C, ∀x, y ∈ R+, ∀n ∈ N, u′(x)P (n) ≥ u′(y)P (n+1),

u(xn + a)− u(xn)

a
P (n) ≥ u(xn+1 + a)− u(xn+1)

a
P (n+ 1)

EP [u(x)] + (u(xn + a)− u(xn))P (n) ≥ EP [u(x)] + (u(xn+1 + a)− u(xn+1))P (n+ 1)

EP [u(x + a1n)] ≥ EP [u(x + a1n+1)].

Since the last inequality is true ∀P ∈ C then :

min
P∈C

EP [u(x + a1n)] ≥ min
P∈C

EP [u(x + a1n+1)],

i.e. % is short-term delay averse.

Proof of Proposition 3.4.3. Fix n ∈ N and consider the following sequence :

xa := (c, c, . . . , c︸︷︷︸
n

, c− a︸ ︷︷ ︸
n+1

, c, . . . ),

where c > a > 0. Clearly ∀a < c :

min
P∈C

EP [u(xa + a1n+1)] = u(c).
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Moreover ∀a < c :

min
P∈C

EP [u(xa + a1n)] =

= min
P∈C

EP [u(c)1N + (u(c+ a)− u(c))1n + (u(c− a)− u(c))1n+1] =

= u(c) + min
P∈C

(u(c+ a)− u(c))P (n) + (u(c− a)− u(c))P (n+ 1)

Then by short-term delay aversion we will get for every a s.t. 0 < a < c,

u(c) + min
P∈C

(u(c+ a)− u(c))P (n) + (u(c− a)− u(c))P (n+ 1) ≥ u(c).

Therefore ∀P ∈ C and ∀a < c, we get (u(c+a)−u(c))P (n)+(u(c−a)−u(c))P (n+1) ≥ 0.
Dividing both sides times a > 0 and letting a→ 0 we get

u′(c)P (n) ≥ u′(c)P (n+ 1),

and since we supposed u′(·) > 0, we obtain the result.

Lemma 3.6.3. If v is convex then condition 2 of Proposition 3.4.1, is equivalent to the
following :

∀x, y ∈ R+ s.t. x > y, ∀n ∈ N, ∀P ∈ C(v), u′(x)P ({n}) ≥ u′(y)P ({n+ 1})

Proof of Lemma 3.6.3. We first prove that if v is convex then condition 2 of Proposi-
tion 3.4.1 is equivalent to the following :

∀x, y ∈ R+, s.t. x > y, ∀n ∈ N, u′(x)v(n) ≥ u′(y)(1− v({n+ 1}c)) (3.7)

If condition 2 of Proposition 3.4.1 is satisfied, then choosing A = ∅ ans B = {n+ 1}c we
get condition (3.7).
Let us suppose that condition (3.7) is satisfied let us consider A,B ∈ 2N s.t. A ⊂ B, n ∈ B,
n /∈ A, n+1 /∈ B. Recall that v is convex if ∀C,D ∈ 2N, v(C∪D)+v(C∩D) ≥ v(C)+v(D).
Consider now C := B ∪ n+ 1 and D := {n+ 1}c, we have :

(v(A∪n)−v(A))u′(x) ≥ u′(x)v(n) ≥ u′(y)(1−v({n+1}c)) ≥ u′(y)(v(B∪n+1)−v(B)).

It remains to prove that condition (3.7) is equivalent to ∀x, y ∈ R+ s.t. x > y, ∀n ∈
N, ∀P ∈ C(v), u′(x)P (n) ≥ u′(y)P (n+ 1).
If (3.7) is satisfied then, since P ∈ C(v),

u′(x)P (n) ≥ u′(x)v(n) ≥ u′(y)(1− v({n+ 1}c)) ≥ u′(y)P (n+ 1).

Conversely, since v is convex and {n} ⊂ {n+ 1}c, then ∃P0 ∈ C(v) s.t. P0(n) = v(n) and
P0({n+ 1}c) = v({n+ 1}c) 5. Therefore u′(x)v(n) ≥ u′(y)(1− v({n+ 1}c)).

5. This comes for instance from Lemma 2 of Delbaen [1974]
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Proof of Proposition 3.4.4. (i) ⇒ (ii) Suppose the DM is short-term delay averse.
Since % is convex then v is convex and therefore by Lemma 3.6.3, ∀x, y ∈ R+ s.t. x > y,
∀n ∈ N and ∀P ∈ C(v), u′(x)P (n) ≥ u′(y)P (n + 1). Letting x decrease towards y we
see that ∀n ∈ N, ∀P ∈ C(v), P (n) ≥ P (n + 1). Take now x ≤ y and notice that, by
convexity of %, u(·) is concave and hence u′(x) ≥ u′(y). Since ∀n ∈ N, P (n) ≥ P (n+ 1),
we conclude that u′(x)P (n) ≥ u′(y)P (n+ 1).
Hence ∀P ∈ C(v), ∀x, y ∈ R+, ∀n ∈ N, u′(x)P (n) ≥ u′(y)P (n+ 1).

(ii)⇒ (i) Suppose that ∀P ∈ C(v), ∀x, y ∈ R+, ∀n ∈ N, u′(x)P (n) ≥ u′(y)P (n + 1).
Since when v is convex the CEU model is the MMEU model, Proposition 3.4.2 entails
that the DM is short-term delay averse.

We state and prove now a Lemma which will be used in the proof of Proposition 3.4.5.
We first need a definition that will simplify notation.

Definition 3.6.1. Given x, y ∈ Rn+, we say that x elementary dominates y, denoted
x %eT y, if

∑n
i=1 xi =

∑n
i=1 yi and ∃ε > 0 and i0, i1 ∈ [1, n] with i0 < i1 such that

xi0 = yi0 + ε, xi1 = yi1 − ε and xi = yi for i 6= i0 and i 6= i1.

Lemma 3.6.4. Let x, y be vectors in Rn+. Then (i)⇔ (ii) :
(i)
∑k

i=1 xi ≥
∑k

i=1 yi ∀k ∈ [1, n] with
∑n

i=1 xi =
∑n

i=1 yi ;
(ii) there exists a finite sequence of vectors y(p) ∈ Rn+ with p ∈ [0,m] s.t. y(0) = y,
y(p+1) %eT y

(p) and y(m) = x. Moreover the number of steps m is at most n− 1.

Démonstration. (i)⇒ (ii) If for every k = 1, 2, . . . , n
∑k

i=1 xi =
∑k

i=1 yi then x = y.
Suppose therefore that for at least one k we have a strict inequality. Denote k̂ the smallest
k s.t.

∑k
i=1 xi >

∑k
i=1 yi. Since for k ∈ [1, k̂ − 1],

∑k
i=1 xi =

∑k
i=1 yi, then xk = yk for

such ks, whereas xk̂ − yk̂ > 0.
Denote εk̂ := xk̂ − yk̂ and dk := yk − xk for k ∈ [k̂ + 1, n]. Notice that, since

∑n
i=1 xi =∑n

i=1 yi, we have
∑n

i=k̂+1 dk = εk̂ > 0. Therefore there exists k(1) := min{k ∈ [k̂ +

1, n]|dk > 0}.
Then the algorithm to construct the sequence is the following :

– εk̂ ≤ dk(1) . Then, take the amount εk̂ from yk(1) and add it to yk̂ so that yk̂ + εk̂ = xk̂.
We will have :

y(1) = (y1, . . . , yk̂ + εk̂, . . . , yk(1) − εk̂, . . . , yn)

q q ≥
x = (x1, . . . , xk̂, . . . , xk(1) , . . . , xn)

Clearly, y(1) %eT y(0) = y, and y
(1)

k̂
= xk̂. Restart the algorithm considering now

y(1), and finding the next smallest k s.t. xk > y
(1)
k .
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– εk̂ > dk(1) . Then, take the amount dk(1) from yk(1) so that yk(1) − dk(1) = xk(1) , and
add it to yk̂. We will have :

y(1) = (y1, . . . , yk̂ + dk(1) , . . . , yk(1) − dk(1) , . . . , yn)

q < q
x = (x1, . . . , xk̂, . . . , xk(1) , . . . , xn)

Start again the algorithm finding k(2) := min{k ∈ [k̂ + 1, n]|dk > 0}, and so on.
Since at every step at least one coordinate of the vector y(·) becomes equal to one coordi-
nate of the vector x, and at the very last step, necessarily we have that two coordinates
will become equal, then the number of steps needed is at most n− 1.

(ii)⇒ (i) It follows by the transitivity of %eT and by the fact that ∀x, y ∈ Rn+, x %eT y

implies (i).

Proof of Proposition 3.4.5. (i)⇒ (ii) Consider x,y ∈ V s.t. x %T y and let us show
that x % y.
Let n ∈ N, n ≥ 2 and consider the sequences x1[0,n] := (x0, x1, . . . , xn, 0, 0, . . . ) and
y1[0,n] := (y0, y1, . . . , yn, 0, 0, . . . ). Since x %T y,

∑k
i=0 xi ≥

∑k
i=0 yi, ∀k ∈ [0, n]. Let

εn ≥ 0 be s.t.
∑n

i=0 xi =
∑n−1

i=0 yi+(yn+εn) and let ỹ1[0,n] := (y0, y1, . . . , yn+εn, 0, 0, . . . ).
Then, considering the first n components of the two sequences as n-dimensional vector,
thanks to Lemma 3.6.4 we can find a sequence y(p) ∈ Rn+ with p ∈ [0,m] (with m ≤ n−1)
s.t.

y(0) = ỹ1[0,n], y
(p+1) %eT y

(p), and y(m) = x1[0,n].

We can notice that by short-term delay aversion, y(p+1) %eT y(p) implies y(p+1)1[0,n] %

y(p)1[0,n] and therefore by transitivity of%, x1[0,n] % ỹ1[0,n]. Monotonicity implies therefore
x1[0,n] % y1[0,n] and again by monotonicity x % y1[0,n]. Since by hypothesis% is continuous
w.r.t. monotone increasing convergence, y1[0,n] ↑n y gives x % y, which completes the
proof.

(ii)⇒ (i) Since (xk+a,x−k) %T (xk+1+a,x−(k+1)), then by hypothesis (xk+a,x−k) %

(xk+1 + a,x−(k+1)).

Proof of Proposition 3.4.6. First, it is straightforward to see that if % is represented
by a utility index I : V → R (where I(·) can be the functional of the CEU, MMEU or
EU model) then % is continuous w.r.t. monotone increasing convergence if and only if
xn ↑n x⇒ I(xn) ↑n I(x).

(i)⇒ (ii) Fix x ∈ V and A > 0. We have clearly (x +A)1[0,n] ↑n x +A and therefore
I((x + A)1[0,n]) ↑n I(x + A) by hypothesis. Since in CEU, MMEU and EU models,
I(x + A) > I(x), ∃N(x, A) := N ∈ N such that n ≥ N ⇒ I((x + A)1[0,n]) > I(x) and
hence (x + A)1[0,n] � x.
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(ii)⇒ (i) Let xn ↑n x, we need to show that I(xn) ↑n I(x).
Case 1 : x ∈ V is such that there exists a real number k > 0 s.t. xp ≥ k ∀p ∈ N.
Fix ε > 0, we are going to show that ∃N(ε) ∈ N s.t. n ≥ N(ε)⇒ I(xn) ≥ I(x)− ε. Notice
that since x is bounded and u(·) is continuous, u(·) is uniformly continuous and hence
∃β > 0 s.t. β < k and s.t. ∀n ∈ N, u(xn − β) ≥ u(xn)− ε. Therefore from the definition
of the utility index I(·) in CEU, MMEU and EU, it turns out that I(x− β) ≥ I(x)− ε.
Fix now γ ∈ R s.t. 0 < γ < β, impatience implies that ∃n0 s.t. n ≥ n0 ⇒ (x−β+γ)1[0,n] �
x − β. Since γ < β, we have x >> x − β + γ. xn ↑n x implies that ∀k ∈ [0, n0], ∃Nk

s.t. n ≥ Nk ⇒ xn(k) > (x − β + γ)1[0,n0](k). Take N(ε) := max{N0, . . . , Nn0}, we have
n ≥ N(ε) ⇒ xn ≥ (x − β + γ)1[0,n0], and hence in the CEU, MMEU and EU models,
xn % (x− β + γ)1[0,n0]. But then we get

I(xn) ≥ I((x− β + γ)1[0,n0]) > I(x− β) ≥ I(x)− ε

and therefore Case 1 is proved.
Case 2 : We consider a general x ∈ V .

Since xn ↑n x by monotonicity of % in CEU, MMEU and EU models we have I(xn) ↑n
a. Let us suppose by contradiction that a < I(x). Notice that the set of sequences
{xn : n ∈ N} is uniformly bounded since xn(p) ≤ x(p), ∀p, n ∈ N and x ∈ V . Fix
ε ∈ R s.t. 0 < ε < I(x) − a and notice that by uniform continuity of u(·), ∃k > 0

s.t. u(xn(p) + k) − u(xn(p)) ≤ ε ∀n, p ∈ N. This implies again by monotonicity that
∀n ∈ N, I(xn + k) ≤ I(xn) + ε. But then

lim
n
I(xn + k) ≤ lim

n
I(xn) + ε = a+ ε < I(x) ≤ I(x + k).

Since xn + k ↑n x + k and xp + k ≥ k > 0 for every p ∈ N this contradicts the proof of
Case 1. Hence I(xn) ↑n I(x).

Proof of Proposition 3.4.7. (i) ⇔ (ii) It follows from Proposition 3.4.6. Moreover
as noticed in Proposition 3.4.6 if % is represented by the CEU model, continuity w.r.t.
monotone increasing convergence is equivalent to xn ↑n x⇒

∫
u(xn) dv ↑n

∫
u(x) dv.

(ii) ⇒ (iii) Consider An ↑n A and define xn := 1An . Clearly 1An ↑n 1A and by
hypothesis

∫
u(1An) dv ↑n

∫
u(1A) dv. Since

∫
u(1An) dv = u(1)v(An) and

∫
u(1A) dv =

u(1)v(A), we can conclude that v(An) ↑n v(A).

(iii) ⇒ (ii) Let xn ↑n x. Since the utility function u(·) is continuous and strictly in-
creasing, u(xn) ↑n u(x). By definition of the Choquet integral,

∫
u(xn) dv =

∫∞
0
v(u(xn) ≥

t) dt and
∫
u(x) dv =

∫∞
0
v(u(x) ≥ t) dt. Let us define An(t) := {k|u(xn(k)) ≥ t} and

A(t) := {k|u(x(k)) ≥ t}. Clearly ∀t, An(t) ↑n A(t) and by hypothesis v(An(t)) ↑n
v(A(t)). By the Monotone Convergence Theorem,

∫∞
0
v(An(t)) dt ↑n

∫∞
0
v(A(t)) dt, i.e.∫

u(xn) dv ↑n
∫
u(x) dv.
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Proof of Proposition 3.4.8. (i) ⇔ (ii) It follows from Proposition 3.4.6. Again, as
noticed in Proposition 3.4.6 if % is represented by the MMEU model, continuity w.r.t.
monotone increasing convergence is equivalent to xn ↑n x ⇒ minP∈C EP [u(xn)] ↑n
minP∈C EP [u(x)].

(ii) ⇒ (iii) Fix Q ∈ C and consider a sequence of sets An ↑n N. Define xn := 1An .
Clearly 1An ↑n 1N = 1 and therefore u(1)1An = u(1An) ↑n u(1) since u(·) is continuous
and strictly increasing (with u(0) = 0). Moreover EP [u(1)1An ] = u(1)P (An). Therefore :

u(1) ≥ u(1)Q(An) ≥ u(1) min
P∈C

P (An) = min
P∈C

EP [u(1)1An ] ↑n min
P∈C

EP [u(1)] = u(1).

Dividing everything by u(1) we can see that Q(An) ↑n 1.

(iii)⇒ (ii) To simplify notation, let us write ∀n ∈ N, EPn [u(xn)] := minP∈C EP [u(xn)]

and EP ∗ [u(x)] := minP∈C EP [u(x)] (i.e. for every n ∈ N Pn ∈ arg minP∈C EP [u(xn)] and
P ∗ ∈ arg minP∈C EP [u(x)]). In words, Pn is a probability in the convex and compact set
C that minimizes the expectation of the sequence u(xn) and P ∗ is a probability in C that
minimizes the expectation of the sequence u(x).

Claim 1. EPn [u(xn)] ↑n a ∈ R.

Proof of Claim 1. We can notice that

EPn+1 [u(xn+1)] ≥ EPn+1 [u(xn)] ≥ EPn [u(xn)],

where the first inequality comes from the fact that xn ↑n x and the second from the fact
that Pn is the probability that minimize the expectation of u(xn).
Moreover

∀P ∈ C EPn [u(xn)] ≤ EP [u(xn)] ≤ EP [u(x)].

Therefore EPn [u(xn)] ≤ EP ∗ [u(x)] < u(Mx) < +∞, where Mx is an upper bound of x.
Hence EPn [u(xn)] is increasing and bounded and therefore it converges to a ∈ R.

Let us consider the sequence of probabilities (Pn)n∈N. Since ∀n ∈ N, Pn ∈ C and C is
a compact set, then (Pn)n∈N has a cluster point P̄ ∈ C. Recall that C is compact for the
weak*-topology, where the convergence of a sequence is defined as Pn

w∗−→ P if and only
if ∀y ∈ V EPn [u(y)]→n EP [u(y)].

Claim 2. EPn [u(xn)] ↑n EP̄ [u(x)].

Proof of Claim 2. Suppose by contradiction EPn [u(xn)] ↑n a < EP̄ [u(x)]. Since P̄ ∈ C

is σ-additive by hypothesis, we are allowed to use the Monotone Convergence Theorem
and hence EP̄ [u(xn)] ↑n EP̄ [u(x)]. Therefore ∃N s.t. ∀n ≥ N , EP̄ [u(xn)] > a. If we
define ε := EP̄ [u(xN)] − a > 0, since P̄ is a cluster point for (Pn)n∈N, ∃m > N s.t.
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|EPm [u(xN)] − EP̄ [u(xN)]| < ε
2
. This implies that EPm [u(xN)] > EP̄ [u(xN)] − ε

2
. Now,

since m > N we have that u(xm) ≥ u(xN) and therefore :

EPm [u(xm)] ≥ EPm [u(xN)] > EP̄ [u(xN)]− ε

2
=
EP̄ [u(xN)] + a

2
>
a+ a

2
= a.

This means that ∃m ∈ N s.t. EPm [u(xm)] > a. Since we supposed EPn [u(xn)] ↑n a, we
obtain a contradiction.

Notice that EP̄ [u(x)] ≥ EP ∗ [u(x)] since P ∗ is the probability that minimizes the
expectation of u(x). Moreover, as we saw in the proof of Claim 1, ∀n ∈ N EPn [u(xn)] ≤
EP ∗ [u(x)], and hence if EP̄ [u(x)] is the limit, necessarily EP̄ [u(x)] ≤ EP ∗ [u(x)], and the
result follows.

Proof of Corollary 3.4.3. The proof follows easily either from Proposition 3.4.7 or
Proposition 3.4.8.

Proof of Proposition 3.4.9. (i) ⇒ (ii) Let us consider a strictly decreasing discount
function β and define z := x− y. For every n ∈ N we can use the decomposition :

n∑
i=0

β(i)zi = β(n)
n∑
i=0

zi +
n−1∑
j=0

(β(j)− β(j + 1))

j∑
i=0

zi.

Taking the limit for n→∞ we have that, since the limit on the left side of the equation
exists, also the one on the right side of the equation exists. Moreover, using the hypothesis,
we know that there exists at least one k̂ ∈ N s.t.

∑k̂
i=0 zi > 0. Defining c := (β(k̂)−β(k̂+

1))
∑k̂

i=0 zi > 0 then ∀n > k̂, we have that β(n)
∑n

i=0 zi+
∑n−1

j=0 (β(j)−β(j+1))
∑j

i=0 zi ≥
c > 0 since β(n)

∑n
i=0 zi ≥ 0 ∀n ∈ N and

∑n−1
j=0 (β(j) − β(j + 1))

∑j
i=0 zi ≥ c for every

n > k̂. Therefore

lim
n→∞

β(n)
n∑
i=0

zi +
n−1∑
j=0

(β(j)− β(j + 1))

j∑
i=0

zi ≥ c > 0,

and hence
∑∞

i=0 β(i)zi > 0.

(ii)⇒ (i) Define z := x−y and suppose that for all β strictly decreasing,
∑

t β(i)zi >

0, but that ∃k s.t.
∑k

i=0 zi < 0. Thanks to the decomposition already used we can write :

∞∑
i=0

β(i)zi = β(k)
k∑
i=0

zi +
k−1∑
j=0

(β(j)− β(j + 1))

j∑
i=0

zi +
∞∑

i=k+1

β(i)zi.

Consider now the strictly decreasing discount function β s.t. for a sufficiently small δ > 0,
β(0) = 1, β(1) = 1− δ, β(2) = 1− 2δ and so on until β(k) = 1− kδ ; and β(k+ 1), β(k+
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2), . . . strictly decreasing s.t.
∑∞

i=0 β(i) = k + 1. We can notice that

k∑
i=0

β(i) = 1 + (1− δ) + · · ·+ (1− kδ) = (k + 1)− δ
k∑
i=0

i.

and therefore
∞∑

i=k+1

β(i) = (k + 1)−
k∑
i=0

β(i) = δ

k∑
i=0

i.

Then since the sequence zi, i = 0, 1, 2, . . . is bounded (since 0 ≤ xi ≤ Mx ∀i ∈ N and
0 ≤ yi ≤My ∀i ∈ N, then |zi| ≤ max{Mx,My} =: M ∀i ∈ N) we have, substituting for β
defined above :

(1− kδ)
k∑
i=0

zi + δ

k−1∑
j=0

j∑
i=0

zi +
∞∑

i=k+1

β(i)zi ≤

≤ (1− kδ)
k∑
i=0

zi + δM
k−1∑
j=0

j +Mδ
k∑
i=0

i.

And hence for δ sufficiently close to 0 we will have

0 <
∞∑
i=0

β(i)zi ≤ (1− kδ)
k∑
i=0

zi + 2Mδ
k∑
i=0

i =

=
k∑
i=0

zi + δ(−k
k∑
i=0

zi + 2M
k∑
i=0

i) < 0

a contradiction.
Suppose now that

∑k
i=0 zi = 0∀k ∈ N. We will have that for every strictly decreasing

discount function and ∀n ∈ N, β(n)
∑n

i=0 zi +
∑n−1

j=0 (β(j) − β(j + 1))
∑j

i=0 zi = 0 and
hence limn→∞ β(n)

∑n
i=0 zi +

∑n−1
j=0 (β(j)− β(j + 1))

∑j
i=0 zi = 0, a contradiction.

Proof of Corollary 3.4.4. The proof is similar to the one of Proposition 3.4.9.
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Chapitre 4

A topological approach to delay
aversion

Ce chapitre est issu d’un travail en cours.

Abstract. A decision maker is to choose between two different amounts of money, with
the smaller one available at an earlier period. Then she is delay averse if she chooses
the smaller and earlier extra amount whenever the bigger one is delivered sufficiently far
in the future. In this paper we study new topologies on l∞ which “discount” the future
consistently with the notion of delay aversion. We compare these topologies with other
topologies that have the property of representing impatient, or patient, preferences. Our
results bear relevance on the theory of infinite-dimensional general equilibrium and with
the works that consider bubbles as the pathological (not countably additive) part of a
charge. Finally we show that the definition of delay aversion is consistent with the notion
of more delay aversion in Benoît and Ok [2007].
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4.1 Introduction

One of the standard assumptions made in most economic models is that agents have
preferences for advancing the time of future satisfaction. This behaviour is commonly
known with the term of impatience.

This paper studies the preferences of a Decision Maker (DM) over infinite flows of
income. An alternative interpretation is to think not of an agent but of different gene-
rations living in different ages. In this case we will talk about a Social Planner who has
preferences over infinite streams of wealth (each period represents the wealth of a gene-
ration). In both situations, the natural framework to model this infinite horizon problem
is the study of preferences over the set l∞ of bounded, real-valued sequences.

The classical way of describing impatient preferences is to use a discounted sum of
utilities. If the DM is facing a monetary flow (x0, x1, . . . ) then she evaluates it through
the functional :

U(x0, x1, . . . ) =
∞∑
t=0

δ(t)u(xt).

The function u : R → R is an instantaneous utility function that represents the utility
derived by using a certain amount of income. The function δ : N→ (0, 1], is called discount
function and it represents the willingness of the DM to anticipate future consumption.
Often, the function δ(t) = δt (where δ is a constant in the interval (0, 1)) and the model
is called the exponential discounted utility model. The exponential discounted utility
model was first proposed back in the thirties in a seminal paper of Samuelson [1937]. A
further boost to its popularity was given by Koopmans [1960] who showed that the model
could be derived from a set of plausible axioms. Since then, it has become the standard
treatment of impatient behaviours in the economic field.

Departures from the classical discounted utility model are present in the literature
of mathematical economics. These deviations consider functional different from the dis-
counted sum of utilities presented above. For instance, Chateauneuf and Ventura [2013]
use the Choquet integral in order to analyze different kind of impatient behavior. Ma-
rinacci [1998] characterizes complete patience through the MaxMin model and Rébillé
[2007] considers patience in the Choquet model. Finally in Bastianello and Chateauneuf
[2016] a concept called long-term delay aversion was introduced and analyzed in both the
Choquet and MaxMin models.

This paper does not follow any of the approaches aforementioned but we consider a
topological approach. We do not specify any utility function for the DM, and rather focus
on the continuity of her preferences with respect to a suitable topology. The topology
considered makes the DM “discount” the future in a way consistent with the notion
of long-term delay aversion proposed in Bastianello and Chateauneuf [2016]. As noted
by Koopmans [1960] and Brown and Lewis [1981] the choice of the topology over the
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infinite dimensional space l∞ is relevant for its behavioural implication. Continuity is not
a technical requirement, it is, in fact, a behavioural assumption.

As we mentioned, in most economic papers preferences for advancing the time of
future satisfaction are just taken into account through the discount factor. In this work
we start from the description of delay averse preferences (we drop here the adjective long-
term, used in Bastianello and Chateauneuf [2016]). Delay aversion means the following.
Suppose that an agent has to choose between two extra payments of, say, 1000$ and
10000$. The 1000$ are paid on a fixed date whereas the 10000$ will be payed later. We
believe that, if the second and bigger payment is done sufficiently far in the future, then
she will chose the first one. More formally, let us consider a DM who is supposed to receive
two additional amounts of income or consumption good, a and b, with a ≤ b, delivered
respectively in periods n0 and n with n0 < n. Then she is delay averse if she prefers a
over b if n is sufficiently big.

After presenting the main definition, we consider two Hausdorff locally convex topo-
logies that represent a future-disliking behavior consistent with delay aversion. The key
idea is that a suitable topology should make a cash flow which pays one unit of income
in the n-th period very close to the cash flow paying zero at all periods, provided that n
is big enough. Such a property could be rephrased as “the far future is negligible”.

Endowed with such topologies we proceed comparing them with the strong and weak
myopic topologies introduced by Brown and Lewis [1981]. These topologies are fundamen-
tal in economics and specifically in the theory of general equilibrium in infinite dimension,
see Mas-Colell and Zame [1991]. Roughly speaking, we find that the delay averse topolo-
gies are finer than the myopic topologies. This implies that it is easier to be delay averse
rather than myopic and therefore, it is possible to have preference for advancing the time
future satisfaction and still an equilibrium may fail to exist. Such a result clarifies the
famous paper of Araujo [1985], where the author shows that impatience is a necessary
condition to insure the existence of an equilibrium in an infinite dimensional setting. Our
results show that DMs should be enough impatient to get an equilibrium.

Next, we study the property of the topological dual of l∞ when paired with the
delay averse topologies. Dual spaces play a major role in general equilibrium since the
equilibrium prices are functionals belonging to the dual space. Interestingly, we find that
the dual space is bigger than the one obtained with the topologies usually considered.
This entails the possibility of having bubbles (in the sense of Gilles and LeRoy [1992])
even when agents show a form of impatience.
As a dividend, we obtain a new characterization of the space ba of bounded charges. This
space is the dual of l∞ when paired with a particular delay averse topology.

We conclude the paper with a justification of the use of delay aversion as a notion of
impatience. In Bastianello and Chateauneuf [2016] it was argued, but not proved, that
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delay aversion is coherent with the concept of more delay aversion given by Benoît and
Ok [2007]. In the last section of the paper we prove formally how, from delay aversion,
we can recover the main theorem in Benoît and Ok [2007].

The paper is organized as follows. Section 2 presents some preliminary notions. Section
3 and Section 4 present and analyze the delay averse topology and the delay averse
topology with a monotone base respectively. Section 5 links delay aversion with more
delay aversion.

4.2 Preliminary notions

We study the preferences of a DM over the space l∞ of real-valued bounded sequences.
The generic elements of l∞ are denoted as x,y, etc. and are considered as infinite streams
of income. The p-th element of sequence x is denoted equivalently xp or x(p). Clearly,
the set N of natural numbers represents time.

Given a sequence x = (x0, x1, . . . ), (xk+a,x−k) denotes the sequence y s.t. yk = xk+a

and yn = xn for all n 6= k. Sum between two sequences and the multiplication by a scalar
correspond to the pointwise sum and multiplication, meaning that if x,y ∈ l∞ and λ ∈ R
then x+y = (x0 +y0, x1 +y1, . . . ) and λx = (λx0, λx1, . . . ). We also write (xk+a,x−k) as

x+a1k, where 1A is the indicator function of the set A ⊆ N, i.e. 1A(n) :=

1 if n ∈ A

0 if n ∈ Ac.
Therefore 1A denotes the sequence with 1A(p) = 1 if p ∈ A and 1A(p) = 0 if p /∈ A and
1k the sequence with all the elements equal to 0, but the element k which is equal to 1.

A vector spaceX is an ordered vector space with an order≥ ifX is partially ordered by
≥ and if for every x,y, z ∈ X and every real number λ ≥ 0, x ≥ y implies x+ z ≥ y+ z

and x ≥ 0 implies λx ≥ 0. The space we are considering, l∞, comes equipped with a
natural order. We write x ≥ y when xk ≥ yk ∀k, x � y when xk > yk ∀k and x > y

when xk ≥ yk ∀k with a strict inequality for at least one k. A sequence is non-negative if
x ≥ 0 and l∞+ denotes the positive orthant of l∞ i.e. l∞+ := {x ∈ l∞ : x ≥ 0}.

Let X be an ordered vector space. A seminorm on X is a function p : X → R s.t.
∀x,y ∈ X and ∀α ∈ R, (i) p(x + y) ≤ p(x) + p(y) and (ii) p(αx) = |α|p(x). If moreover
p(x) = 0 if and only if x = 0 then p is called a norm. A locally convex topology is a
topology generated by a family of seminorms. We say that p is a monotone seminorm if
0 ≤ y ≤ x⇒ p(y) ≤ p(x). A subfamily of seminorms Q is said to be a base for a family
of seminorms P if for every p ∈ P there is q ∈ Q and c > 0 s.t. p(x) < cq(x) for every
x. In this case we say that every seminorm p in P is dominated by a seminorm from Q.
A topology is said to be a locally convex topology with a monotone base if the associated
family of seminorms has a monotone base.

Regarding convergence of sequences or nets we use the following notation. If {an}n∈N
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is a sequence of real numbers, an →n l means that the sequence converges to the real
number l ∈ R. If {xλ}λ∈Λ is a net of elements of a set X endowed with a topology T ,
then xλ

T−→λ x means that the net converges to the element x in the topology T . If T
is a locally convex topology generated by a family of seminorms {pα, α ∈ A} then a net
xλ

T−→λ x if and only if pα(xλ − x) →λ 0 for every α ∈ A (see Aliprantis and Border
[2006], Lemma 5.76). Sometimes we may write only xn → x for convergence of sequences
(or xλ → x for convergence of nets) when no confusion can arise about the index and the
topology that we are considering.

The symbol T∞ designates the sup-norm topology on l∞, that is the topology generated
by the supremum norm ‖x‖∞ = supk |xk|. When l∞ is endowed with a particular topology
T , its (topological) dual w.r.t. T is the set of T -continuous linear function on l∞ and it
is denoted (l∞, T )∗. Let T1 and T2 be two topologies on l∞. If T1 ⊆ T2 we say that T1

is weaker (or coarser) than T2 or that T2 is stronger (or finer) that T1. If additionally
T1 6= T2, we write T1 ⊂ T2 and we say that T1 is strictly weaker (or strictly coarser) than
T2 or that T2 is strictly stronger (or strictly finer) that T1.

A preference relation % over l∞ is a complete and transitive binary relation, i.e. a
weak order. Given a preference relation % we denote its symmetric and asymmetric parts
by ∼ and � respectively. We say that a preference relation over l∞ is monotone if x ≥ y

implies x % y and strongly monotone if x > y implies x � y. A preference relation %

over l∞ is continuous w.r.t. a topology T if the sets of the form {x|x � y} and {x|y � x}
are T -open for every y ∈ l∞.

Given a set X and a field F of its subsets, a set function µ : F → R is called a charge
if (i) µ(∅) = 0 and (ii) if A,B ∈ F and A ∩ B = ∅ then µ(A ∪ B) = µ(A) + µ(B). A
charge µ is said to be bounded if sup{|µ(F )| : F ∈ F} < +∞. If µ(F ) ≥ 0 for every
F ∈ F then µ is said to be positive. If, given a sequence of sets {An}n s.t. ∪nAn ∈ F and
Ai ∩Aj = ∅ for i 6= j, implies that µ(∪nAn) =

∑
n µ(An) then µ is said to be a countably

additive charge or, more simply, a measure. As it is standard, we denote by ba(X,F)

and ca(X,F) the set of all bounded charges and all bounded measures respectively. For
X = N and F = 2N we denote ba = ba(N, 2N) and ca = ca(N, 2N). A positive charge µ is
called a pure charge if there is no non-zero positive measure λ such that λ ≤ µ.

We recall that the space ba is isomorphic to the dual space (l∞, T∞)∗ via the mapping
x →

∫
xdµ for every x ∈ l∞. The latter integral is known as the Dunford integral, see

Chapter 4 of Rao and Rao [1983]. The set l1 is the subspace of l∞ such that l1 = {x ∈
l∞ :

∑
|xi| <∞}. It is known that l1 can be put in a one to one correspondence with ca.

The Mackey topology, Tma, is the strongest topology on l∞ for which the dual is l1.

We conclude this section with a terminological caveat. In the sequel we use the word
impatience to denote the generic attitude of a DM who enjoys more present consumption
than future consumption. Impatience specializes in different nuances. Every specific be-
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havioural shade of this generic concept will be formally defined in numbered Definitions.

4.3 Delay Averse Topology

4.3.1 Existence

We recall the definition of delay aversion given in Bastianello and Chateauneuf [2016].

Definition 4.3.1. (Bastianello and Chateauneuf [2016]) A preference relation %

over l∞ is delay averse if for 0 < a ≤ b, n0 ∈ N and x ∈ l∞ ∃N := N(x, n0, a, b) ≥ n0

s.t. ∀n ≥ N ,
(xn0 + a,x−n0) � (xn + b,x−n).

Definition 4.3.1 says the following. Suppose that a DM with a given endowment is to
choose between two extra payments : a > 0 done in a fixed period n0 and b ≥ a done in a
period n. The DM will be delay averse if she prefers the lower payment done at the early
date if the bigger one is done sufficiently far in the future (namely after the period N).

In the subsequent analysis, we will confine in the case of strongly monotone prefe-
rences. This assumption may seem strong, but in some sense strong monotonicity places
us in the good framework for two reasons. First, it places us in the same setting used
by Benoît and Ok [2007] (see p. 75 of their paper), whose work inspired the definition of
delay aversion. Second, if we are ready to accept delay aversion and simple monotonicity
of preferences, then strong monotonicity follows. This last assertion is proved in Lemma
4.3.1 below.

Lemma 4.3.1. Let % be a delay averse preference relation. Then % is monotone iff %

is strongly monotone.

Démonstration. ⇒ Let x > y, we need to prove x � y. Since x > y, there exists n0 s.t.
xn0 = yn0 + ε for some ε > 0. Clearly x ≥ y and hence by monotonicity x % y+ ε1n0 and
by delay aversion ∃N s.t. ∀n ≥ N , y + ε1n0 � y + ε1n. Again by monotonicity we get
y + ε1n % y and hence x � y.
⇐ Obvious.

Since the aim of this paper is to study delay aversion, and since monotonicity is a
natural requirement, we impose strong monotonicity from the start.

As we said in the Introduction our specific purpose is to present some topologies over
l∞ which are linked with the concept of delay aversion. We define therefore what we mean
for a delay averse topology.

Definition 4.3.2. A topology T on l∞ is said to be delay averse if every strongly mono-
tone, T -continuous preference relation is delay averse.
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We focus locally convex topologies and we are interested in finding which properties
such topologies should satisfy in order to represent delay averse preferences. The two
propositions below provide the starting point. In the statements of the propositions, 1n

denotes the sequence 1n := (0, . . . , 0︸ ︷︷ ︸
n−1

, 1, 0, . . . ) and 0 denotes the sequence (0, 0, . . . ).

Proposition 4.3.1. Every locally convex topology T for which 1n
T−→n 0 is a delay averse

topology.

Démonstration. We need to show that every strongly monotone and T -continuous prefe-
rence relation is delay averse. Fix x ∈ l∞, n0 ∈ N, 0 < a ≤ b and consider a T -continuous
and strongly monotone preference relation %.
Since T is a locally convex topology, it is generated by a family of seminorms of the form
{pα|α ∈ A} (see Aliprantis and Border [2006], Theorem 5.73). The fact that 1n

T−→n 0

implies that for all α ∈ A

0 ≤ pα(x + b1n − x) = pα(b1n) = bpα(1n)→n 0.

This shows that x + b1n
T−→n x. Moreover since % is strongly monotone, x + a1n0 � x.

Therefore by T -continuity of the preference relation %, there exists N s.t. ∀n ≥ N

x + a1n0 � x + b1n, i.e. the % is delay averse.

We now prove a kind of converse implication of Proposition 4.3.1.

Proposition 4.3.2. Given a locally convex topology T , if every T -continuous, preference
relation is delay averse then 1n

T−→n 0.

Démonstration. We first need this auxiliary Lemma. A proof is given for sake of comple-
teness.

Lemma 4.3.2. Let T be generated by a family of seminorms {pi|i ∈ I}. Define a pre-
ference relation %i as x %i y iff pi(x) ≥ pi(y). Then %i is a T -continuous preference
relation for each i ∈ I.

Démonstration. To see that%i is a preference relation, we need to show that it is complete
and transitive. For completeness notice that ∀x,y ∈ l∞ pi(x), pi(y) ∈ R and therefore
either pi(x) ≥ pi(y) or pi(y) ≤ pi(x), i.e. either x %i y or y %i x, hence %i is complete.
For transitiveness, take x, y and z s.t. x %i y and y %i z. Then pi(x) ≥ pi(y) and
pi(y) ≥ pi(z). By transitivity of ≥ for the real numbers, pi(x) ≥ pi(z) and hence x %i z.
We conclude that %i is a preference relation.
Regarding T -continuity we need to show that the set Oy := {x|x �i y} = {x|pi(x) >

pi(y)} is open for each y ∈ l∞. Take x ∈ Oy then pi(x) > pi(y). Choose ε > 0 s.t.
ε < pi(x)− pi(y), we will show that the open ball Bx,ε = {z|pi(x− z) < ε} ⊂ Oy. Notice
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that by the triangular inequality we have that |pi(x)−pi(z)| ≤ pi(x−z) and so if z ∈ Bx,ε

then |pi(x) − pi(z)| < ε. If pi(z) ≥ pi(x) then pi(z) ≥ pi(x) > pi(y) so z ∈ Oy. Else if
pi(z) < pi(x) then pi(x)− pi(z) < ε < pi(x)− pi(y) and hence pi(z) > pi(y) i.e. z ∈ Oy.
A similar argument shows that the set Oy := {x|y �i x} is open.

Suppose now that T is generated by a family of seminorms {pα|α ∈ A} and that every
T -continuous preference relation % over l∞ is delay averse. First notice that ∀α ∈ A and
∀n ∈ N, pα(1n) 6= 0. In fact, suppose that this is not true and that there exist ᾱ ∈ A and
n0 ∈ N such that pᾱ(1n0) = 0. Then choosing x = 0 (x is the constant sequence equal to
0), and 0 < a ≤ b we get pᾱ(x + a1n0) = 0 ≤ pᾱ(x + b1n) ∀n ∈ N. Now, defining %ᾱ as
in Lemma 4.3.2, %ᾱ is T -continuous but not delay averse since x + a1n0 %ᾱ x + b1n for
all n ∈ N, a contradiction.
Fix now α ∈ A and n0 ∈ N and consider %α related to pα. By Lemma 4.3.2 %α is T -
continuous and since by hypothesis every T -continuous preference relation is delay averse,
for 0 < ε < 1, we have that ∃N s.t. ∀n ≥ N ε1n0 �α 1n. Hence, εpα(1n0) > pα(1n), and
since ε can be arbitrarily small, pα(1n)→n 0. Since this is true for every α ∈ A, 1n

T−→n 0.

We were not able to completely describe all the locally convex delay averse topology.
This is due to the fact that for proving Proposition 4.3.1 strong monotonicity is needed,
whereas for Proposition 4.3.2, the delay averse preferences constructed using seminorms
may not be strongly monotone. Anyway, even if the two propositions above fall short of
a complete characterization of locally convex, delay averse topology, they underline that
a salient feature is the converge of 1n → 0. Taking into account this fact, we define the
topology TDA, which will play a central role in the subsequent analysis.

Definition 4.3.3. We denote TDA the finest Hausdorff locally convex topology on l∞ for
which we have 1n

TDA−−→n 0.

The idea underlying TDA is the following. Suppose that one is endowed with a unit of
income or consumption good at a certain date n. Continuity of a preference relation with
respect to TDA says that postponing this unit of income or consumption in the future
eventually will make the value of it arbitrarily close to the sequence (0, 0, . . . ). Notice
that this property is not enjoyed by the sup-norm topology : the “weight” of one unit of
endowment is the same whatever is the date at which the DM receives it. It should be
said that there are locally convex topologies insuring the convergence of 1n → 0, e.g. the
product or the Mackey topology. However, we will see in the following sections that these
topologies are different from TDA. The fact that we impose TDA to be the finest topology
enjoying this property is a crucial requirement. We think that it is also a natural one since
we want to impose as few restrictions as possible on agents’ preferences. Remember that
the finer is a topology, the more there are open sets and the “easier” is for a preference
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relation to be continuous (for, continuity of a preference relation with respect to some
topology is defined in term of openness of the upper and lower contour sets).

We can easily prove the following corollary.

Corollary 4.3.1. TDA is a delay averse topology

Démonstration. It follows from the definition of TDA and from Proposition 4.3.1.

Corollary 4.3.1 says that every strongly monotone preference relation which is conti-
nuous with respect to TDA is delay averse. We would like to underline that, Corollary 1 is
silent about preferences that are not strongly monotone. In other words, it is possible to
have non-strongly monotone preferences continuous with respect to TDA, which are not
delay averse.

Finally, we show that the topology TDA exists.

Proposition 4.3.3. There exists a finest Hausdorff locally convex topology, TDA, over
l∞ such that 1n

TDA−−→n 0.

Démonstration. Let P = {pα|α ∈ A} be the family of seminorms over l∞ s.t. ∀α ∈ A,
pα(1n)→n 0. Below it is shown that P is non-empty.
By definition, a locally convex topology is a topology generated by a family of seminorms.
Moreover this topology is Hausdorff if and only if pα(x) = 0 ∀α ∈ A ⇒ x = 0 (see
Aliprantis and Border [2006], Lemma 5.76). We will show that {pα|α ∈ A} separates
points and that it generates therefore an Hausdorff locally convex topology.
Consider the family of seminorms {qk|k ∈ N} defined as qk(x) = |xk|. (Notice that
actually qk is a seminorm in fact : qk(x) = |xk| ≥ 0, qk(λx) = |λxk| = |λ||xk| and
qk(x + y) = |xk + yk| ≤ |xk|+ |yk| = qk(x) + qk(y)).
We will show now that {qk|k ∈ N} ⊂ {pα|α ∈ A}. Consider the sequence 1n. We have
that ∀k ∈ N,

qk(1n) =

0 if n 6= k

1 if n = k

So ∀n > k, qk(1n) = 0 and hence qk(1n − 0) = qk(1n)→n 0 ∀k ∈ N.
Suppose now that pα(x) = 0 ∀α ∈ A. We will have also that qk(x) = 0 ∀k ∈ N since
{qk|k ∈ N} ⊂ {pα|α ∈ A}. But this means that |xk| = 0 ∀k ∈ N, i.e. x = 0. Hence
{pα|α ∈ A} separates points.
Therefore {pα|α ∈ A} generates an Hausdorff locally convex topology on l∞. It is the
finest because of the definition of P .

4.3.2 Dual space of (l∞, TDA)

The space of continuous linear functions is important in economics and especially for
the theory of general equilibrium since price vectors are elements of the dual space. See
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Mas-Colell and Zame [1991] for a detailed exposition on the subject.
We are able to describe all the continuous linear functional in the topological dual

space (l∞, TDA)∗. It is done in the next proposition.

Proposition 4.3.4. A linear functional L is TDA-continuous iff L(1n)→n 0.

Démonstration. ⇒ P = {pα|α ∈ A} generates TDA. By Conway [2013], Theorem 3.1(f),
p. 108, L is TDA-continuous iff there are p1, . . . pl ∈ P and positive scalars α1 . . . , αl

s.t. |L(x)| ≤
∑l

k=1 αkpk(x) ∀x ∈ l∞. Hence |L(1n)| ≤ α1p1(1n) + . . . αlpl(1n) and since
pi(1n) →n 0 for i = 1 . . . l and l is a finite number then 0 ≤ |L(1n)| →n 0 and the result
follows.
⇐ Consider a linear functional L s.t. L(1n)→n 0 and consider the seminorm p(x) =

|L(x)|. It follows that p is a continuous seminorm of TDA. Hence by Conway [2013],
Theorem 3.1(e) p. 108, L is continuous.

The characterization of the TDA-continuous functional given in Proposition 4.3.4 allows
us to study the usual spaces considered in the literature of general equilibrium in infinite
dimensional spaces.

Recall that a linear functional L on l∞ is a purely finitely additive integral if for every
x ∈ l∞ such that x has at most finitely many values different from zero, L(x) = 0.

Corollary 4.3.2. Every purely finitely additive integral is TDA-continuous.

Démonstration. Since in the sequence 1n just the n-th value is different from zero, if L is a
purely finitely additive integral then L(1n) = 0. Therefore L(1n)→n 0, and the assertion
follows from Proposition 4.3.4.

Corollary 4.3.3. l1 ⊆ (l∞, TDA)∗

Démonstration. Fix y ∈ l1 and consider the linear function on l∞ associated with y :
Ty(x) =

∑
yixi. We need to show that Ty(·) is TDA continuous. To do this it is enough

to prove that p(x) = |Ty(x)| is a continuous seminorm of TDA. This is the case indeed

|Ty(1n)| = |
∑
i

yi1n(i)| = |yn|

and since y ∈ l1, |yn| →n 0 and the result follows from Proposition 4.3.4.

Recall that the dual of l∞, when equipped with the sup-norm, is isomorphic to the
space ba of bounded charge. When l∞ is paired with the topology TDA the dual space is
actually larger.

Proposition 4.3.5. ba ⊆ (l∞, TDA)∗
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Démonstration. Consider µ ∈ ba. Define the functional L on l∞ by L(x) =
∫
xdµ. By

Proposition 4.3.4, L is TDA-continuous iff L(1n) →n 0. Notice that L(1n) =
∫

1ndµ =

µ(n). Since µ ∈ ba, by the Yoshida-Hewitt Theorem (see Rao and Rao [1983], Theorem
10.2.1) we can uniquely decompose µ = µc + µp with µc countably additive and µp pure.
Then µ(n) = µc(n)+µp(n) but µp(n) = 0 by Aliprantis and Border [2006], Lemma 16.29,
and hence µ(n) = µc(n). But then L(1n) = µ(n) = µc(n)→n 0, since µc is bounded and
countably additive. Therefore L is TDA-continuous.

The next question is whether ba is a strict subset of (l∞, TDA)∗. We see in the proof
of Proposition 4.3.7 in the next section that the answer is actually yes.

4.3.3 Comparison with others topologies on l∞

As we said in the introduction, imposing continuity on preferences with respect to a
particular topology has behavioral implications. Several topologies share the properties
of providing preferences for advancing the time of future satisfaction, for instance the
aforementioned product and Mackey topologies. In this section we are going to consider a
topology introduced by Brown and Lewis [1981] which imposes myopic tastes. The formal
definitions are given below.

Definition 4.3.4. (Brown and Lewis [1981]) % is weakly myopic if ∀x,y ∈ l∞ such
that x � y and ∀A > 0, ∃n1(x,y, A) := n1 ∈ N such that n ≥ n1 ⇒ x � y + A1[n,+∞)

Definition 4.3.4 says the following. Let x and y be two streams of income such that
x is strictly preferred to y. Suppose now that y is increased by an extra payment of a
fixed amount A > 0 which will be paid for all the period after a certain date n1 (notice
that the extra payment A can be as big as one wishes). A weakly myopic DM will still
prefer the stream x to the stream y improved by the amount A from period n1 onwards,
provided that n1 is sufficiently far in the future.

Endowed with the notion of a weakly myopic preference relation, we can proceed with
the definition of weakly myopic topology as given in Brown and Lewis [1981].

Definition 4.3.5. The topology TWM on l∞ is the finest topology such that every TWM -
continuous (not necessarily monotone) preference relation is weakly myopic.

The proof that such a topology exists and the study of its basic properties can be found
in Brown and Lewis [1981]. Both weak myopia and delay aversion describe preferences for
advancing the time of future satisfaction. Intuitively, we feel that the former definition
implies a stronger form of impatient tastes when compared to the latter. Consider the
example of a social planner with preferences over all the possible distribution of wealth
of different generations (identified with l∞). Then weak myopia implies that such a social
planner has a strong taste for inequality among generations since improving the wealth

97



of all but finitely many generations does not reverse her preferences. We propose delay
aversion as a weaker notion of impatience.

In Proposition 4.3.6 below we write down formally the intuition that delay aversion
is less demanding (in terms of continuity of preferences) than weak myopia and therefore
a DM will be more prone to be delay averse. Roughly speaking, Proposition 4.3.6 says
that all the open sets of the weakly myopic topology TWM are also open set for the delay
averse topology TDA and therefore it is “easier” for a DM to be delay averse rather than
weakly myopic.

Proposition 4.3.6. TWM ⊂ TDA.

Démonstration. By Brown and Lewis [1981], Lemma 1, an Hausdorff locally convex topo-
logy T is weakly myopic iff 1(n) := (0, . . . , 0︸ ︷︷ ︸

n−1

, 1, 1, . . . )
T−→n 0 (1(n) is the sequence that has

0 in the first n−1 terms and then 1 from the n-th term on). Let {qβ|β ∈ B} be the family
of all seminorms s.t. ∀β ∈ B qβ(1(n))→ 0. Then by Brown and Lewis [1981], Theorem 1,
{qβ|β ∈ B} generates the finest Hausdorff locally convex topology TWM which is weakly
myopic. Consider now the family of all seminorms {pα|α ∈ A} s.t. ∀α ∈ A, pα(1n)→n 0.
We proved in Proposition 4.3.3 that it generates the finest Hausdorff locally convex to-
pology TDA which is delay averse.
Since 1n = 1(n) − 1(n+1), by the triangular inequality we get ∀β ∈ B :

0 ≤ qβ(1n) = qβ(1(n) − 1(n+1)) ≤ qβ(1(n)) + qβ(1(n+1))→n 0,

and therefore qβ ∈ {pα|α ∈ A}. So the family of seminorms that generates TWM is
included in the family of seminorms that generates TDA and therefore TWM ⊆ TDA, i.e.
TDA is finer than TWM . Also consider the seminorm p̄ defined as p̄(x) = lim supi |xi|. The
seminorm p̄ belongs to {pα|α ∈ A}, but not to the family generating TWM . For, one can
easily see that p̄(1n) = lim supi |1n(i)| = 0 and p̄(1(n)) = lim supi |1(n)(i)| = 1. Therefore
p̄(1(n)) 6→n 0 and hence TWM ⊂ TDA, i.e. TDA is strictly finer than TWM .

The set l∞ of real valued, bounded sequences comes equipped with a natural topology,
T∞, the topology generated by the sup-norm. It is natural therefore to confront the
topologies TDA and T∞. From an economic point of view, such a comparison is interesting
because the topology T∞ has the property of not “discounting” the value of one unit of
consumption.

Proposition 4.3.7. TDA ∩ T∞ ⊂ TDA.

Démonstration. It is clear that TDA∩T∞ ⊆ TDA. Let us show now that TDA∩T∞ 6= TDA.
We follow the proof of Theorem 4 of Brown and Lewis [1981]. The set {1k}∞k=1 is a linearly
independent subset of l∞ and therefore can be extended to a Hamel basis B using Zorn’s
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lemma (see Aliprantis and Border [2006], Theorem 1.8). Hence every x ∈ l∞ can be
uniquely written as

x =
∑
i∈F

αibi

whit F finite, αi ∈ R and bi ∈ B for every i ∈ F . Choosing images of basis vector uniquely
determines a linear function, i.e., if B is a basis of V then for any vector spaceW and any
map g : B → R there exists exactly one linear map f : V → R such that f |B = g. Define
the function g(1n) = 0 for every n. There are at least a countable infinity of vectors in the
sets B \{1k}∞k=1. Take the countable set with a fixed enumeration {bk}∞k=1 in B \{1k}∞k=1.
Define g(bn) = n. There is a linear functional f such that f |B = g. By Proposition 4.3.4
this function is TDA-continuous since f(1n) = g(1n) →n 0. But it is not bounded with
respect to T∞ and hence not T∞-continuous. Hence TDA ∩ T∞ ⊂ TDA.

We are going to see in the next section that under some additional assumptions of
monotonicity of the seminorms generating TDA, it is possible to define a topology T ,
different from TDA, such that T ∩ T∞ = T .

4.4 Delay averse topology with a monotone base

4.4.1 Existence of a delay averse topology with a monotone base

We look now, like Raut [1986], at the finest Hausdorff locally convex topology with a
monotone base which is delay averse. The restriction to topologies with a monotone base
yields interesting results in terms of dual spaces and comparison with other topologies.
We are going to provide several examples of monotone seminorms in the proofs of the
propositions in this section. Clearly, we maintain the general idea of convergence that we
studied in Section 4.3. Formally, the topology that we intend to study is the one defined
below.

Definition 4.4.1. We denote T monDA the finest Hausdorff locally convex topology on l∞

with a monotone base for which we have 1n
T mon
DA−−−→n 0.

The justifications for considering the topology T monDA as a good candidate for the study
of delay aversion are the same as in Section 4.3.1. Moreover we have that the proof of
Proposition 4.3.3 remains true (it suffices to check that {qk : qk(x) := |xk|, k ∈ N} are
actually monotone seminorms). We formalize this result in the following proposition.

Proposition 4.4.1. There exists a finest Hausdorff locally convex topology with a mono-
tone base over l∞, T monDA , such that 1n

T mon
DA−−−→n 0.
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4.4.2 Comparison with others topologies on l∞ and dual space

We noticed in the beginning of Section 4.3.3 that continuity of preferences with respect
to the Mackey topology induces an impatience behaviour of the DM. This topology is
particularly relevant to our analysis because of its extensive use in the theory of general
equilibrium in infinite dimensional spaces. Part of its glory is due to the work of Brown
and Lewis [1981]. These authors show that every preference relation which is continuous
with respect to the Mackey topology is impatient in the precise sense described below.

Definition 4.4.2. (Brown and Lewis [1981]) % is strongly myopic if ∀x,y ∈ l∞ such
that x � y and ∀z ∈ l∞, ∃n1(x,y, z) := n1 ∈ N such that n ≥ n1 ⇒ x � y + z1[n,+∞)

The interpretation of strong myopia is similar to the one of weak myopia given in
Definition 4.3.4. Clearly, strong myopia implies weak myopia. Moreover if the preferences
are monotone then weak myopia and strong myopia are equivalent as noted in footnotes
4 and 7 of Brown and Lewis [1981] (an explicit proof of this result can be found in
Chateauneuf and Ventura [2013]).

Definition 4.4.3. The topology TSM on l∞ is the finest topology such that every TSM -
continuous (not necessarily monotone) preference relation is strongly myopic.

The proof that such a topology exists and the study of its basic properties can be
found in Brown and Lewis [1981]. Let us introduce now the strict topology on l∞. The
idea of the strict topology comes from the seminal paper of Buck [1958].

Definition 4.4.4. The strict topology TS on l∞ is defined by the family of seminorms
qa(x) = supn |anx(n)| with (an)n a sequence of real numbers converging to 0.

Conway [1967] proved that the strict topology TS and the Mackey topology Tma coin-
cide on l∞. Brown and Lewis [1981] show that in fact we have TS = Tma = TSM .

As we did when studying TDA, we proceed by comparing T monDA with other topologies
over l∞. Namely we are interested to look at the relation between T monDA and the topologies
TSM , which discounts the future, and T∞, which does not.

Proposition 4.4.2. TSM ⊂ T monDA ⊂ T∞

Démonstration. As we mentioned earlier, Brown and Lewis [1981] proved that TSM = TS,
therefore we will work with the topology TS.
We prove that TS ⊂ T monDA . Consider the family of seminorms generating the strict to-
pology. Notice that this family of seminorms is monotone. In fact for a sequence (an)n

converging to 0 and x,y s.t. |y| ≤ |x| we have ∀n ∈ N, |an||yn| ≤ |an||xn| and therefore
pa(y) = supn |any(n)| ≤ supn |anx(n)| = pa(x). Moreover for every decreasing sequence
(an)n generating a member pa of the strict topology we have

pa(1n) = sup
k
|ak1n(k)| = |an| →n 0.

100



This means that every seminorm of TS is also a seminorm of T monDA , and therefore TS ⊆
T monDA . To show that TS 6= T monDA , let us consider the seminorm q(x) = lim supk |xk|. This
seminorm is monotone and moreover, q(1n) = 0∀n ∈ N and hence q is a seminorm of
T monDA . Recall that 1(n) is the sequence with 0 in the first n− 1 terms and 1 after. Clearly
1(n) →n 0 in the strict topology TS, but since ∀n ∈ N, lim supk |1(n)(k)| = 1, 1(n) 6→n 0

for the topology T monDA , we have TS 6= T monDA .
We prove that T monDA ⊂ T∞. We follow Raut [1986] (Lemma 5.4) argument. Let p be
a monotonic seminorm generating T monDA . We need to show that there exists c > 0 s.t.
p(x) < c for all x ∈ l∞ with ‖x‖∞ = 1. Suppose by contradiction that p(x) > c for all
c > 0. Then for all m > 0 there exists xm with ‖xm‖∞ = 1 such that p(xm) > m. Notice
that, since ‖xm‖∞ = 1, |xm| ≤ u where u is the unit vector of l∞, i.e. u = (1, 1, . . . ).
But then since p is monotone for every m > 0, p(u) ≥ p(xm) > m, which contradicts the
fact that p is real valued. As all seminorms generating T monDA are dominated by monotone
seminorms (by definition of locally convex topology with a monotone base), we have
that all T monDA -continuous seminorms are T∞-continuous, i.e. T monDA ⊆ T∞. Notice now
that ∀n ∈ N supk |1n(k)| = 1 and hence 1n 6→n 0 in T∞. Since 1n →n 0 in T monDA then
T monDA ⊂ T∞.

It turns out that T monDA is strictly finer than the Strict topology TS and strictly coarser
than the sup-norm topology T∞. Remember that TS = Tma i.e. the Strict and the Mackey
topology coincides. Hence saying that T monDA is strictly finer than TS means that in the
dual space (l∞, T monDA )∗ there will be continuous linear functionals that are not in l1. This
is because the Mackey topology is the finest topology over l∞ such that the dual space
consists of the set of countably additive probabilities. On the other end T monDA ⊂ T∞
implies that we know that the dual will be a subset of the space of charges ba.

From Proposition 4.4.2, the following corollary is immediate and summarizes the dis-
cussion above.

Corollary 4.4.1. l1 ⊂ (l∞, T monDA )∗ ⊆ ba.

One question now arises : is the dual space (l∞, T monDA )∗ equal to ba or is it strictly
smaller ? The following proposition shows that the former statement holds. The topology
T monDA is therefore strictly weaker than the sup-norm topology, but it preserves the dual
space. From a mathematical point of view, this is an interesting result, since it yields
a new characterization of the space ba. Section 4.4.2 is devoted to analyse its economic
implications.

Proposition 4.4.3. (l∞, T monDA )∗ = ba

Démonstration. The inclusion (l∞, T monDA )∗ ⊆ ba follows from Corollary 4.4.1.
We will prove now the inclusion ba ⊆ (l∞, T monDA )∗. Take µ ∈ ba. By the Yoshida-Hewitt

Theorem (see Rao and Rao [1983], Theorem 10.2.1), we can decompose µ = µc+µp with µc
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countably additive and µp pure. Since every countably additive measure can be identified
with an element of l1, by Corollary 4.4.1 we have that µc ∈ (l∞, T monDA )∗.
It is left to show that µp is also an element of (l∞, T monDA )∗. In order to prove it we consider
the topology generated by a family of seminorms Q defined as follows. Consider all the
sequences a ∈ l1 s.t. an 6= 0 for all but finitely many n. Notice that ∀N ,

∑
k≥N |ak| > 0.

A seminorm q is in the family Q if it is of the type :

qa(x) = lim sup
N→∞

∑
k≥N |akxk|∑
k≥N |ak|

.

This family of seminorms was introduced in Orrillo and Bazán [2014]. The seminorms
in Q define a Hausdorff locally convex topology topology, Th, on l∞. The authors prove
that Th is weaker than the sup-norm topology T∞ and they show that the dual (l∞, Th)∗

consists of the set of pure charges.
We claim that the family of seminorm Q is included in the family of seminorms generating
T monDA . In fact for all sequences a generating the topology Th and for every n ∈ N,

qa(1n) = lim sup
N

∑
k≥N |ak1n(k)|∑

k≥N |ak|
= 0.

Moreover we can easily check that they are monotone. Therefore since Q is contained in
the family of seminorms generating T monDA , we have that Th ⊆ T monDA . Hence (l∞, Th)∗ ⊆
(l∞, T monDA )∗ which implies µp ∈ (l∞, T monDA )∗.

Finally we compare T monDA and TDA in the following corollary.

Corollary 4.4.2. T monDA ⊂ TDA

Démonstration. We have by definition, T monDA ⊆ TDA. This implies

T monDA ∩ T∞ ⊆ TDA ∩ T∞.

Now notice that T monDA ∩ T∞ = T monDA by Proposition 4.4.2 and TDA ∩ T∞ ⊂ TDA by
Proposition 4.3.7. Therefore T monDA ⊂ TDA.

Link with general equilibrium and bubbles

Proposition 4.4.2 and Proposition 4.4.3 have interesting implications when linked with
general equilibrium theory in infinite dimension and the study of bubbles.

Concerning the general general equilibrium literature, Proposition 4.4.2 can be consi-
dered as a refinement of a result of Araujo [1985]. In that paper it is shown that in an
economy where consumers have preferences continuous with respect to a topology stron-
ger than the Mackey topology, Tma, an equilibrium may fail to exist. Even worse, it is
possible to construct an economy without individually rational Pareto optimal allocations
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(Theorem 3 of Araujo [1985]). Hence the need to consider preferences continuous with
respect to the Mackey topology.

As we said in the previous section, Brown and Lewis [1981] prove that the Mackey
topology is equivalent to the strongly myopic topology, and therefore its use in economics
is justified whenever agents are impatient. Proposition 4.4.2 clarifies this interpretation.
When preferences are continuous with respect to TDA then it is clear that the DM exhibits
some kind of impatience. Nevertheless, an equilibrium in an economy with such agents
may fail to exist. Therefore the need for impatience is in reality the need for enough
impatience : discounting the future just as a delay averse DM may lead to non existence
of equilibria.

On the other hand, Proposition 4.4.3 allows us to link our work with the theory that
studies bubbles as lack of countable additivity in prices, as first presented in the paper
of Gilles and LeRoy [1992]. For the authors a price function is a positive continuous
linear functional over the set l∞, view as the set of all bounded cash flows. They use the
Yoshida–Hewitt theorem to decompose the price function in a countably additive part
and in a purely finitely additive part. The first part is defined to be the fundamental
value of a cash flow, the second one characterizes the bubble. They justify at length this
definition, both formally and with examples. In a nutshell their argument is that if the
price functional is in l1, i.e. it consists just of the countably additive part, then the price
of an element of l∞ is just the sum of the discounted cash flows.

Interestingly, they underline the fact that if a DM discounts the future, then a bubble
cannot occur (see [Gilles and LeRoy, 1992, p. 332]). Proposition 4.4.3 shows that the dual
of l∞ when paired with T monDA is exactly ba, which includes both countably additive and
purely finitely additive charges. Such a result provides a counterexample to the claim of
the authors in the following sense : it proves that in the set of prices we can have bubbles
(i.e. purely finitely additive charges) even when the DMs discount the future. Again, the
point is that in order to avoid bubbles the DMs should discount the future enough.

Recent related work linking bubble with some kind of impatience behaviour was done
by Araujo et al. [2011]. More precisely the authors study wary agents. Formally, an agent
is wary if her preferences are upper but not lower Mackey semi-continuous. In this case
DMs are “semi-impatient, in the sense of overlooking what they earn but not what they
lose at far away dates” (see [Araujo et al., 2011, p. 786]). Therefore their approach differs
from the one of this paper since they stick with the definition of myopia of Brown and
Lewis [1981] and relax the definition of continuity of preferences. They do not propose an
alternative definition of impatience, as done here with delay aversion. The authors then
focus on how lack of countably additivity, implied by wariness, influences equilibria in a
sequential market. It would be interesting, even though outside the scope of this paper, to
study what happens if we replace wariness with delay aversion in the class of economies
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where an equilibrium actually exists.

A T monDA -continuous utility function

We conclude this section with an elementary example of a T monDA -continuous utility
function.

Example 4.4.1. Let u : R → R be a strictly positive affine function (i.e. u(t) = at + b

with a > 0 and b ∈ R). Let P : 2N → [0, 1] be a simply additive probability (i.e. a positive
charge with P (N) = 1) with P (n) > 0∀n ∈ N, clearly P ∈ ba. Consider now the following
functional U : l∞ → R

U(x) =

∫
N
u(x)dP,

where u(x) denotes the sequence (u(x1), u(x2), . . . ). We are going to show that U(·) is
T monDA -continuous. First notice that since P (n) > 0 ∀n ∈ N, and u(·) is strictly increasing
and continuous then U(·) represents strongly monotone preferences (see Bastianello and
Chateauneuf [2016]). The simply additive probability P should be interpreted as weights
that the DM puts on (subsets of) periods of time.

Take now a net xλ
T mon
DA−−−→λ x. We need to show that U(xλ) →λ U(x). Notice that since

u(·) is affine for every seminorm p of T monDA ,

p(u(xλ)− u(x)) = p(a(xλ − x)) = ap(xλ − x)→λ 0

and therefore u(xλ)
T mon
DA−−−→λ u(x), i.e. u(xλ) converges to u(x) in the T monDA topology.

Remark that the functional J(x) =
∫
N xdP is a continuous linear functional in (l∞, T monDA )∗.

To see this, we will prove that |J(x)| is a monotone seminorm of T monDA . Clearly |J(x)|
is a seminorm. That is monotone come from Theorem 4.4.13(vi) of Rao and Rao [1983]
and the fact that P is positive. Moreover |J(1n)| =

∫
1ndP = P (n)→n 0.

Now since u(xλ)
T mon
DA−−−→λ u(x), and the functional J is T monDA -continuous,

∫
N u(xλ)dP →λ∫

N u(x)dP , which means
U(xλ)→λ U(x),

i.e. U(·) represent a T monDA -continuous preference relation.

4.5 More delay aversion

As we said in the introduction, the paper of Benoît and Ok [2007] inspired the notion
of delay aversion. The aim of this section is to show that Definition 4.3.1 is the correct
one, in the sense that it entails the same notion of more delay aversion developed by these
authors.

More precisely, we assume that agents are delay averse and we develop a natural notion
of more delay aversion. We show that this notion is in fact equivalent to the one proposed
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by Benoît and Ok [2007] and we prove their main result, stated below as Proposition 4.5.2,
in a more general framework. Notice that Benoît and Ok [2007] do not assume that the
agents are delay averse. Anyway, in their main results the class of utility functions that
they study implies not only delay aversion (Corollary 3.1 of Bastianello and Chateauneuf
[2016]) but also myopia (Proposition 3.6 of Bastianello and Chateauneuf [2016]).

In the sequel we will restrict our attention to the set l∞+ (which is the same set
considered by Benoît and Ok [2007]).

Let us consider now two delay averse DMs. From Definition 4.3.1, we believe that a
natural way of developing a concept of more delay aversion is the following. Let us define
the two quantities

N1(x, a, b, n0) := min{n ≥ n0 | (xn0 + a,x−n0) �1 (xn + b,x−n)} (4.1)

N2(x, a, b, n0) := min{n ≥ n0 | (xn0 + a,x−n0) �2 (xn + b,x−n)} (4.2)

To simplify notation we will refer to Ni(x, a, b, n0) as Ni for i = 1, 2. The natural
number Ni, i = 1, 2, represents the first dates at which the DM i is willing to choose
a payment done at a sooner date rather than one done later, holding fixed x, a, b, and
n0. Since we assumed that agents are delay averse, N1 and N2 are finite. Notice that,
following Benoît and Ok [2007], we do not require b ≥ a. Anyway by strong monotonicity
of preferences, this relaxation does not pose any problem (notice that also in Benoît
and Ok [2007] strong monotonicity is assumed). To see it, fix x ∈ l∞+ , a, b ∈ R+ and
n0 ∈ N and consider b′ ≥ max{a, b}. Obviously b′ ≥ a and hence by delay aversion
there exists ni such that n ≥ ni implies (xn0 + a,−n0 ) �i (xn + b′,x−n). By monotonicity
(xn + b′,x−n) %i (xn + b,x−n) and by transitivity we get the result.

Once the numbers N1 and N2 are introduced, the natural definition of more delay
aversion is the following.

Definition 4.5.1. A preference relation %1 is said to be more delay averse than a prefe-
rence relation %2 if N1 ≤ N2 for all x ∈ l∞, n0 ∈ N and a, b > 0.

The definition above states that given x ∈ l∞, n0 ∈ N and a, b > 0, for DM 1 it is
enough to wait N1 − n0 periods in order to prefer the stream (xn0 + a,x−n0) (i.e. the
stream with the earlier payment) to the stream (xn + b,x−n). On the contrary, DM 2
would be ready to wait more (since N2 − n0 ≥ N1 − n0) to switch from the first to the
second stream.

We state now the definition of more delay aversion proposed by Benoît and Ok [2007].

Definition 4.5.2. (Benoît and Ok [2007]) %1 is more delay averse than %2 if for any
x ∈ l∞+ , n0 ∈ N, a, b ≥ 0, and n > n0 we have :

(xn0 + a,x−n0) %2 (�2)(xn + b,x−n)⇒ (xn0 + a,x−n0) %1 (�1)(xn + b,x−n),
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and for all 0 ≤ b ≤ xn0 and 0 ≤ a ≤ xn,

(xn0 − b,x−n0) %2 (�2)(xn − a,x−n)⇒ (xn0 − b,x−n0) %1 (�1)(xn − a,x−n).

Definition 4.5.2 says that agent 1 is more delay averse than agent 2 if, whenever 1
prefers to receive an earlier payment rather that a later one, then 2 does. Notice that
the second part of Definition 4.5.2 is redundant (see footnote 12 p. 79 of Benoît and Ok
[2007], therefore in the sequel we will concentrate just on the first one.

Below, we show the equivalence of Definition 4.5.2 and Definition 4.5.1.

Proposition 4.5.1. N1 ≤ N2 if and only if ∀x ∈ l∞+ , n0 ∈ N, a, b > 0, and n ≥ n0 we
have :

(xn0 + a,x−n0) �2 (xn + b,x−n)⇒ (xn0 + a,x−n0) �1 (xn + b,x−n).

Démonstration. ⇒ Fix x ∈ l∞+ , n0 ∈ N, a, b > 0 and n ≥ n0 and suppose (xn0+b,x−n0) �2

(xn + b,x−n). Then n ≥ N2 because of the definition of N2 given in (4.2). Since %1 is
more delay averse than %2 then N2 ≥ N1 and hence n ≥ N1. Therefore because of the
definition of N1 in (4.1), (xn0 + a,x−n0) �1 (xn + b,x−n).
⇐ Fix x ∈ l∞+ , n0 ∈ N, a, b > 0 and suppose that (xn0 + a,x−n0) �2 (xn + b,x−n) for

some n ≥ n0. Then (xn0 +a,x−n0) �2 (xn2 + b,x−n2)⇒ (xn0 +a,x−n0) �1 (xn2 + b,x−n2).
Therefore N1 ≤ N2.

We will prove now the main theorem of Benoît and Ok [2007] in a more general
framework. The authors, after introducing their main definition in terms of preferences,
focus on the class of intertemporal separable utility functions. An intertemporal separable
utility function, consist on a pair (u, δ), where u is an instantaneous utility and δ a
discount factor. The utility u : R→ R is strictly increasing and continuous with u(0) = 0

and u(∞) =∞, the discount factor is represented by a strictly positive, strictly decreasing
sequence in l1 with δ0 = 1. The sequences are ranked through the functional U : l∞+ → R

U(x) =
∞∑
t=0

δtu(xt).

We are going to work in a framework that subsumes the one described above. We
endow the DMs with a preference relation represented by the following functional

U(x) =

∫
u(x)dµ. (4.3)

In the integral in (4.3), u in an instantaneous utility function, whereas µ is a positive
charge in ba with µ(n) > 0 ∀n ∈ N. The charge µ plays the role of the discounting
function. Notice that if µ ∈ l1 then we are back to the model of Benoît and Ok [2007].
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Such a generalization might seem a minor one, but in fact it has a relevant link with the
sections above. It can be shown that the utility function studied by Benoît and Ok [2007]
entails that the preferences relation are strongly myopic. The functional considered here,
instead, allows one to disentangle different nuances of impatience. Namely, Bastianello
and Chateauneuf [2016] prove in Example 3.1 that this particular functional form can
represent preferences which are delay averse but not myopic.

Notice that the sequence of instantaneous utilities can be rewritten as :

ui(x + a1n0) = ui(x)1(n∪n0)c + ui(xn0 + a)1n0 + ui(xn)1n

and
ui(x + b1n) = ui(x)1(n∪n0)c + ui(xn0)1n0 + ui(xn + b)1n.

For i = 1, 2, applying Theorem 4.4.13(ii) of Rao and Rao [1983], we can define the function
dix,b,n0,n

: R+ → R as

dix,b,n0,n
(a) =

∫
ui(x + a1n0)dµi −

∫
ui(x + b1n)dµi =

= (ui(xn0 + a)− ui(xn0))µi(n0)− (ui(xn + b)− ui(xn))µi(n).

To simplify notation, we will write d1(a) = dix,b,n0,n
(a) for a ∈ R+. We can notice that

since ui(·) is strictly increasing and continuous then also di is strictly increasing and
continuous and therefore :

lim
a→0+

di(a) = −(ui(xn + b)− ui(xn))µi(n) < 0

and
lim
a→∞

di(a) =∞.

Therefore the image Im(di(a)) = (−(ui(xn + b) − ui(xn))µi(n),+∞) and hence, by the
Intermediate Value Theorem there exists a number a∗i < +∞ s.t. di(a∗i ) = 0, i.e. such
that (ui(xn0 + a∗i )− ui(xn0))µi(n0) = (ui(xn + b)− ui(xn))µi(n).

We are ready now to prove the following lemma :

Lemma 4.5.1. N1 ≤ N2 if and only if a∗1 ≤ a∗2 ∀x ∈ l∞+ , n ≥ n0 and b > 0.

Démonstration. ⇒ Fix x ∈ l∞+ , n ≥ n0 and b > 0, since N1 ≤ N2, using the characteri-
zation proved in Proposition 4.5.1 we have that if d2(a) > 0 then d1(a) > 0. Being di(·)
strictly increasing for i = 1, 2, and since di(a∗i ) = 0, we have that ∀ε > 0 :

d2(a∗2 + ε) > 0⇒ d1(a∗2 + ε) > 0.

But d1(a∗2 + ε) > 0 iff (u1(xn0 + a∗2 + ε)− u1(xn0))µ1(n0) > (u1(xn + b)− u1(xn))µ1(n) =

(u1(xn0 + a∗1)− u1(xn0))µ1(n0) and therefore it follows that ∀ε > 0 :

(u1(xn0 + a∗2 + ε)− (u1(xn0 + a∗1))µ1(n0) > 0
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and being u(·) strictly increasing this will imply a∗2 + ε > a∗1 and since ε can be arbitrarily
small a∗2 ≥ a∗1.
⇐ Let a∗1 ≤ a∗2 and fix an x ∈ l∞+ , n ≥ n0 and a, b > 0. If (xn0 + a, x−n0) �2

(xn + b, x−n) then d2 > 0 = d2(a∗2) and being di(·) strictly increasing we have a > a∗2 ≥ a∗1
(where we have the last inequality by hypothesis). Since a∗1 is s.t. d1(a∗1) = 0 we have
that d1(a) > d1(a∗1) = 0 i.e.

∫
u1(x + a1n0)dµ1 −

∫
u1(x + b1n)dµ1 > 0 which means

(xn0 + a, x−n0) �1 (xn + b, x−n). And so by Proposition 4.5.1, N1 ≤ N2.

We present the main result of Benoît and Ok [2007] as Proposition 4.5.2. Since Pro-
position 4.5.2 follows applying Lemma 4.5.1 and repeating the same steps of Benoît and
Ok [2007], its proof will be omitted.

Proposition 4.5.2. (Benoît and Ok [2007], Theorem 2) Suppose that %i is repre-
sented by the function Ui(·) =

∫
ui(·)dµi given in (4.3). Then the following are equivalent.

(a) U1(·) is more delay averse than U2(·).
(b) There exists a map h : R+ → R+ such that u1 = h ◦ u2 and

h

(
x+

µ2(n)

µ2(n0)
y

)
≥ h(x) +

µ1(n)

µ1(n0)
(h(y + z)− h(z))

for all n0, n ∈ N with n0 < n and x, y, z ≥ 0.
moreover if u1 and u2 are continuously differentiable on R++ then either of the above
statements is equivalent to either of the following statements.

(c) There exists a continuously differentiable map h : R+ → R+ such that u1 = h ◦ u2

and

inf{h′(x) : x > 0} ≥ µ1(n)/µ1(n0)

µ2(n)/µ2(n0)
sup{h′(x) : x > 0} whenever n0 < n

(d)
µ1(n0)u′1(x)

µ1(n)u′1(y)
≥ µ2(n0)u′2(x)

µ2(n0)u′2(y)

for all n0, n ∈ N with n0 < n and x, y ≥ 0.

4.6 Conclusion

In this paper we analysed the notion of delay aversion following a topological ap-
proach. We defined two Hausdorff locally convex topologies that discount the future in a
way that is consistent with delay aversion. We compared this two topologies with other
topologies usually considered in the theory of general equilibrium in infinite dimensional
spaces. We proved formally that the notion of delay aversion is a weak notion represen-
ting the concept of advancing the time of future satisfaction. Namely, it is easier for a
DM to show a delay aversion behaviour rather than a myopic one. Next, we analysed
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the topological dual spaces of l∞ when paired with the delay averse topologies. We found
that the duals are larger than the space l1 of summable sequences. As a dividend, we
gave an alternative characterization of the space ba of bounded charges.

These results have implications for the theory of general equilibrium in infinite di-
mensions and for the theory that study bubbles as lack of countable additivity of prices.
For the former theory, our results imply that an equilibrium may fail to exist. For the
latter, we showed that bubbles may occur. Both situations could happen even when the
economy is composed by impatient agents. The key point in both cases is that the agents
should be enough impatient in order to guarantee equilibrium and no bubbles.

We concluded our analysis by proving that the concept of delay aversion is consistent
with the notion of more delay aversion proposed by Benoît and Ok [2007]. Finally, we
proved their main theorem in a more general setting.
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Chapitre 5

Target-based solutions for Nash
bargaining

Ce chapitre est issu de l’article “Target-based solutions for Nash bargaining”, en col-
laboration avec Marco LiCalzi 1.

Abstract. We revisit the Nash model for two-person bargaining. A mediator knows
agents’ ordinal preferences over feasible proposals, but has incomplete information about
their acceptance thresholds. We provide a behavioural characterisation under which the
mediator recommends a proposal that maximises the probability that bargainers strike
an agreement. Some major solutions are recovered as special cases ; in particular, we offer
a straightforward interpretation for the product operator underlying the Nash solution.

5.1 Introduction

The Nash model for two-person bargaining pivots on the assumption that agents are
expected utility maximisers. The underlying feasible alternatives are abstracted away
by mapping any proposal into a pair of von Neumann-Morgenstern utilities (u1, u2). A
Nash bargaining problem (S, d) consists of a compact and convex set S ⊂ R2 of feasible
utility pairs, and a disagreement point d in S representing the utilities associated with
bargaining breakdown. Moreover, the convexity of S is frequently justified by including
lotteries among the feasible proposals.

A bargaining solution assigns to any Nash problem (S, d) a single pair of utility values
in S. Nash [1950] proved that the unique solution satisfying four axioms is defined as the

1. Université Ca’ Forscari Venezia, Dept. of Management, licalzi@unive.it
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maximiser of the product (u1−d1)(u2−d2) for (u1, u2) in S and ui ≥ di for i = 1, 2. These
four axioms are usually known as symmetry, Pareto optimality, invariance to positive
affine transformations, and independence of irrelevant alternatives.

The Nash model is a cornerstone of two-person bargaining theory. Its simplicity and
robustness have fostered both its widespread application and its theoretical prominence.
A vast body of literature has adopted it, proposing different axiomatizations for the Nash
solution as well as several alternative solutions ; see f.i. Thomson et al. [1994]. Along its
many glories, however, not all is well with the model : the Nash solution cannot stake a
claim for being intuitively appealing. Rubinstein et al. [1992] put it very sharply : “the
solution lacks a straightforward interpretation since the meaning of the product of two
von Neumann–Morgenstern utility numbers is unclear” ; see Section 5.4.2.

Motivated by this, they review the foundations of the Nash model and offer a very lucid
account of its interpretive limitations. Restating the classical utility-based Nash model in
terms of agents’ preferences, they offer a more attractive definition of the Nash solution.
This conceptual switch to a preference-based language is a key step for reinterpreting the
logic underlying the axioms and the solution. However, while their focus on preferences
brings substantial theoretical insights, it does not yet uncover an intuitive meaning neither
for the product operator nor for the Nash solution.

This paper revisits the Nash model from a related viewpoint. We switch from a utility-
based language to a probability-based language. (Specifically, we dispense with most of
the formalities of expected utility.) This unlocks several theoretical dividends. We offer a
behavioural characterisation for a general class of solutions, equivalent to maximising the
probability that the bargainers strike an agreement. This provides a sound underpinning
for giving prescriptive advice to a mediator. We also characterise a few major solutions
as special cases of this approach, where the single feature separating them is the nature
of the stochastic dependence between the bargainers’ stance.

Our probability-based approach suggests a straightforward interpretation for the pro-
duct of two von Neumann–Morgenstern utility numbers advocated by the Nash solution.
This is revealed as the product of two probabilities, and corresponds to an implicit as-
sumption of stochastic independence between the bargainers’ positions. We then show
how relaxing this assumption generates other well-known but less frequently used alter-
natives, namely the egalitarian and the (truncated) utilitarian solutions.

A simple example may be useful to elucidate our interpretation of the Nash solution,
leaving generalisations and details to the rest of the paper. Two agents are bargaining
over a set A of feasible alternatives, described in physical terms. (The Nash model ignores
A and focuses on the space of utilities.) Assume that A is a nonempty, compact and
connected subset of Rn. Each agent i = 1, 2 has an ordinal continuous preference %i

over A. The two agents hire a mediator to suggest a solution and help them strike an
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agreement. The mediator knows agents’ ordinal preferences, but she is not sure what it
takes for an agent to accept a proposal x from A.

More formally, we postulate that i accepts a proposal x if and only if x %i ti, where
ti in A is i’s acceptance threshold (for short, his target). The mediator has incomplete
information about the bargainers’ targets : she believes that each target is a random
variable Ti, with a compact and convex support in A. Under her beliefs, she maps each
proposal x to a pair of individual acceptance probabilities (p1, p2) in [0, 1]2, where pi =

P (x %i Ti). If the bargainers’ targets are stochastically independent, the probability that
both accept x is given by the product p1 · p2 of the individual acceptance probabilities.

The mediator can recommend any feasible alternative, but she cannot impose it : if she
suggests x, it is left to the bargainers to accept it. Her goal is to find a proposal x that
maximises the probability that agents strike an agreement. Assuming that targets are
stochastically independent, she should advance a proposal x that maximises the product
p1 ·p2. Hence, the Nash solution may be interpreted as the rule that recommends to maxi-
mise the probability to strike an agreement when agents’ targets are private information
and independently distributed.

This is not merely an analogy. Section 5.4.2 shows that the distribution function
P (x %i Ti) for Ti is formally equivalent to the Bernoulli index function Ui(x) and thus
we can set P (x %i Ti) = Ui(x). The Nash solution requires to maximise the product of
two numbers, and they can be equivalently interpreted as utilities or probabilities. The
existing axiomatizations are framed in a utility-based language for which the product
operator is a puzzle. Switching to a probability-based language uncovers a straightforward
interpretation.

The rest of the paper is organised as follows. Section 5.2 provides preliminary infor-
mation on bivariate copulas. Section 5.3 describes our model, offers a general characteri-
sation for preferences over bargaining solutions, as well as an axiomatization for the Nash
solution, the egalitarian solution, and the (truncated) utilitarian solution. Section 5.4 re-
views related literature, and offers a commentary on our results. Section 5.5 illustrates
applications and extensions, as well as some testable restrictions on the model.

5.2 Preliminaries

Copulas are functions that link multivariate distributions to their one-dimensional
marginal distributions ; see Nelsen [2006]. They are used to model different forms of
statistical dependence and construct families of distributions exhibiting them. We focus
on the prominent case of bivariate copulas.

A (bivariate) copula is a function C : [0, 1]2 → [0, 1] that satisfies two properties :

C1) for any p, q in [0, 1], C(p, 0) = C(0, q) = 0, C(p, 1) = p, and C(1, q) = q ;
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C2) for any p1 > q1 and p2 > q2 in [0, 1], C(p1, p2) + C(q1, q2) ≥ C(p1, q2) + C(q1, p2).

Property C2 is usually called 2-increasingness in the literature, but is of course equivalent
to supermodularity. We use this latter name because it is presumably more familiar for
our readers. The combination of C1 and C2 implies that C(p, q) is increasing in each
argument ; see Lemma 2.1.4 in Nelsen [2006]. When the weak inequality in C2 is replaced
by a strict one, the copula C is said to be strictly supermodular and it is strictly increasing
in each argument, provided that the other one is not zero.

The following result is in Sklar [1959] and characterizes how a copula links the bivariate
distribution to its univariate marginals.

Theorem 1. Let (X, Y ) be a random vector with marginal distributions F (x) and G(y).
The following are equivalent :

i) H(x, y) is the joint distribution function of (X, Y ) ;

ii) there exists a copula C(p, q) such that H(x, y) = C[F (x), G(y)] for all x, y.

If F (x) and G(y) are continuous, then C(p, q) is unique. Otherwise, C(p, q) is uniquely
defined on the cartesian product Ran(F )×Ran(G) of the ranges of the two marginal distri-
butions. Conversely, if C(p, q) is a copula and F (x) and G(y) are distribution functions,
then the function H(x, y) defined above is a joint distribution function with margins F (x)

and G(y).

The best known example of a copula is the product Π(p, q) = p · q, associated with
stochastic independence. Two other important examples are W (p, q) = max(p+ q− 1, 0)

andM(p, q) = min(p, q). For any copula C(p, q) and any (p, q) in [0, 1]2, it is the case that
W (p, q) ≤ C(p, q) ≤ M(p, q). Intuitively, M is the copula associated with the strongest
possible positive dependence between X and Y , given the marginal distributions F and
G ; similarly, W describes the strongest possible negative dependence. The copulas W
and M are known as the Fréchet lower and upper bound, respectively.

5.3 Model and results

In its simplest version, our model for two-person bargaining is as abstract as the Nash
model. We postulate that each feasible proposal x is mapped to a pair of probabilities
(p1, p2). At this stage, it suffices to think of pi as the individual acceptance probability
that a third-party called the mediator attributes to Agent i = 1, 2 when he is offered the
proposal x. Section 5.4.2 discusses two compatible interpretations for this mapping.

For our purposes, a bargaining problem is represented by a compact set B in [0, 1]2

where each point p in B corresponds to a pair of (acceptance) probabilities. A solution
is a map that for any problem B delivers (at least) one point in B.
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We consider the preferences of the mediator over the set of lotteries on pairs of accep-
tance probabilities, and derive a behavioural characterisation under which she evaluates
a proposal by the probability that both bargainers agree to it. More formally, we assume
that the mediator has a preference relation % on the lotteries on [0, 1]2, and provide a
representation theorem under which the solution for B corresponds to a %–maximal point
in B.

5.3.1 Assumptions on preferences

We denote an element (p1, p2) in [0, 1]2 by p. We view [0, 1]2 as a mixture space for the
⊕ operation, under the standard interpretation where αp⊕ (1−α)q is a lottery that deli-
vers p in [0, 1]2 with probability α in [0, 1] and q in [0, 1]2 with the complementary probabi-
lity 1−α ; see Herstein and Milnor [1953]. Moreover, let p∨q = (max(p1, q1),max(p2, q2))

and p∧q = (min(p1, q1),min(p2, q2)) denote the standard lattice-theoretical join and meet
for the usual component-wise monotonic partial ordering = in R2.

We make the following assumptions about the mediator’s preference % over [0, 1]2,
where � and ∼ have the usual meaning. For simplicity, we write “for sure” instead of the
more accurate “with probability 1”.

A.1 (Regularity) % is a complete preorder, continuous and mixture independent.

This implies that there exists a real-valued function V : [0, 1]2 → [0, 1], unique up to
positive affine transformations, that represents % and is linear with respect to ⊕ ; that
is, V (αp⊕ (1− α)q) = αV (p) + (1− α)V (q), for any α in [0, 1] and any p,q in [0, 1]2.
See Theorem 8.4 in Fishburn [1970]. Quite interestingly, [Nash, 1950, p. 157] explicitly
points out how an analog of A.1 is implied in his model by the assumption that both
bargainers are expected utility maximizers.

A.2 (Non-triviality) (1, 1) � (0, 0).

This rules out the trivial case where the mediator is indifferent between a proposal
that is accepted for sure by both bargainers and another proposal that is refused for sure
by both bargainers.

A.3 (Disagreement indifference) for any p, q in [0, 1], (p, 0) ∼ (0, q).

This is named after Assumption DI in Border and Segal [1997], who also study a
preference relation over solutions. Their paper is discussed in Section 5.5.2. Framed within
the Nash model, Assumption DI states the following : a solution that assigns to either
player the same utility he gets at the disagreement point is as good as the disagreement
point itself. In simple words, a solution that gives one player the worst individually
rational outcome is equivalent to a solution that gives both bargainers the same utility as
the disagreement point. In our probability-based framework, it states that having one of
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the bargainers refusing for sure is equivalent to having both refusing for sure. A proposal
is accepted if and only if both bargainers agree to it.

A.4 (Consistency over individual probabilities) for any p in [0, 1],

p(1, 1)⊕ (1− p)(0, 1) ∼ (p, 1) and p(1, 1)⊕ (1− p)(1, 0) ∼ (1, p).

This states the following. Assume that one bargainer is known to accept for sure. Then
the mediator is indifferent between a lottery that has the second bargainer accepting for
sure with probability p and refusing for sure with probability (1−p), or a proposal where
the second bargainer accepts with probability p. Intuitively, the first lottery has an “ob-
jective” probability p of success, while the second proposal has a “subjective” probability
with the same value p. We assume that the mediator is indifferent between the two moda-
lities. Technically speaking, the assumption aligns the marginal acceptance probabilities
with the corresponding joint acceptance probability if one of the two bargainers accepts
for sure.

A.5 (Weak complementarity) for any p,q in [0, 1]2,

(1/2) (p ∨ q)⊕ (1/2) (p ∧ q) % (1/2)p⊕ (1/2)q

This is named after Axiom S in Francetich [2013]. It states that a fifty-fifty lottery
between two pairs of acceptance probabilities p and q is weakly inferior to a fifty-fifty lot-
tery between their extremes (under the component–wise ordering). The interpretation is
the following. Suppose p1 ≥ q1 and q2 ≥ p2. When the individual acceptance probabilities
improve from (q1, p2) to (p1, p2), the increase in the probability of success for a proposal
cannot be greater than when they change from (q1, q2) to (p1, q2). Whatever advantage
is gained when the first bargainer’s acceptance probability increases by p1 − q1, it adds
more to the probability of success when the second bargainer is more likely to accept.
In simple words, the individual acceptance probabilities are (weakly) complementary to-
wards getting to an agreement. For a particularly sharp illustration, let p1 = q2 = 1 and
p2 = q1 = 0 : clearly, joint acceptance occurs only at (1, 1), and a fifty-fifty lottery between
(1, 1) and (0, 0) is strictly better than a fifty-fifty lottery between (1, 0) and (0, 1).

We show by example in Section 5.3.6 that, under A.1, the four assumptions A.2–A.5
are logically independent.

5.3.2 A general characterisation

Our first result gives a behavioural characterisation for the preferences of the media-
tor. Under A1–A5, there exists a unique copula that represents %. Given the marginal
distributions, any copula identifies a joint probability distribution consistent with them ;
see Section 5.2 and Nelsen [2006]. For any possible dependence structure linking the
marginals, there is a copula that describes it.
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Theorem 2. The preference relation % satisfies A.1–A.5 if and only if there exists a
unique copula C : [0, 1]2 → [0, 1] that represents %, in the sense that

p % q if and only if C(p) ≥ C(q).

Démonstration. Necessity being obvious, we prove only sufficiency. By A.1, the Mixture
Space Theorem (Herstein and Milnor [1953]) implies that there exists a unique (up to
positive affine transformations) function V : [0, 1]2 → R that represents % and is linear
with respect to ⊕. By A.2, V (1, 1) − V (0, 0) > 0. Apply the appropriate positive affine
transformation and consider the (unique) function C : [0, 1]2 → [0, 1] defined by

C(p, q) =
V (p, q)− V (0, 0)

V (1, 1)− V (0, 0)
.

We show that C satisfies the two defining properties C1–C2 of a copula given in Sec-
tion 5.2.

By A.3, we have C(p, 0) = C(0, p) = C(0, 0) = 0, for any p in [0, 1]. Moreover, clearly
C(1, 1) = 1. By A.4 and linearity, for any p in [0, 1], we get C(p, 1) = C(p(1, 1) ⊕ (1 −
p)(0, 1)) = pC(1, 1)+(1−p)C(0, 1) = p ; a similar argument shows that C(1, p) = p. This
proves C1.

By A.5 and the linearity of C, for all p,q in [0, 1]2, it follows that

1

2
C(p∨ q) +

1

2
C(p∧ q) = C

(
1

2
(p ∨ q)⊕ 1

2
(p ∧ q)

)
≥ C(

1

2
p⊕ 1

2
q) =

1

2
C(p) +

1

2
C(q),

so that C is supermodular, and C2 holds.

In our setup, this result has a straightforward interpretation. A pair (p, q) of accep-
tance probabilities in B represents the individual probability that each bargainer accepts
the underlying proposal. When the mediator’s preferences satisfy axioms A.1–A.5, she
behaves as if she aggregates these individual probabilities by consistently using a (unique)
copula C and computes the joint probability C(p, q) that the bargainers strike an agree-
ment. Since the copula is arbitrary, the mediator may entertain any subjective opinion
regarding the dependence structure (as embedded in the copula) between the individual
acceptance probabilities. The proposals in B are ranked accordingly to the resulting joint
acceptance probability.

A %-maximal element in B is a choice that maximises the probability that the bar-
gainers accept the underlying proposal and strike an agreement. Since any copula is
necessarily Lipschitz continuous and B is compact, the set of %-maximal elements in B
is not empty and a solution exists. On the other hand, our assumptions do not imply its
uniqueness. In general, the solution in B corresponds to an equivalence class of pairs of
individual acceptance probabilities (including lotteries over those) for which the mediator
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assesses the same joint acceptance probability. It is worth noting that B is not required
to be convex or even connected.

The copula representing the preferences of the mediator in Theorem 2 is linear with
respect to⊕, in the sense that C(αp⊕(1−α)q) = αC(p)+(1−α)C(q). When the mediator
evaluates the probability of success for a lottery, she assesses first the probabilities of
success for p and q through C(p) and C(q), and then she mixes them with the same
weights defining the lottery. On the contrary, our assumptions do not imply linearity with
respect to convex combinations of points in [0, 1]2 based on the standard + operator.

Two simple variations on Theorem 2 are worth mentioning. Recall that a copula
C(p, q) is (weakly) increasing in each argument. Therefore, the preference relation %

does not violate the (weak) Pareto ordering : if p1 ≥ q1 and p2 ≥ q2, then (p1, p2) %

(q1, q2). But it may not satisfy the (strong) Pareto ordering, under which the condition
(p1 − q1)(p2 − q2) > 0 implies (p1, p2) � (q1, q2). Consider a mild strengthening of A.5,
where we write p ./ q to indicate that p 6= q and that p and q are not comparable with
respect to the usual partial ordering =.

A.5∗ (Complementarity) for any p,q in [0, 1]2,

(1/2) (p ∨ q)⊕ (1/2) (p ∧ q) % (1/2)p⊕ (1/2)q.

Moreover, if p ./ q,

(1/2) (p ∨ q)⊕ (1/2) (p ∧ q) � (1/2)p⊕ (1/2)q.

In combination with the other assumptions, this rules out “thick” indifference curves
and makes % consistent with the (strong) Pareto ordering : if p1 ≥ q1 and p2 ≥ q2, then
(p1, p2) % (q1, q2) and, moreover, (p1, p2) � (q1, q2) if (p1 − q1)(p2 − q2) > 0. This follows
from the next result, because any strictly supermodular copula is strictly increasing in
each argument.

Theorem 3. The preference relation % satisfies A.1–A.5∗ if and only if there exists a
unique strictly supermodular copula C : [0, 1]2 → [0, 1] that represents %.

A second variation embodies an elementary notion of fairness.

A.6 (Anonymity) for any p, q in [0, 1], (p, q) ∼ (q, p).

This states that the evaluation for any pair (p, q) of individual acceptance probabilities
is unaffected by permutations, and hence is anonymous with respect to the bargainers’
identity. The following result is immediate.

Theorem 4. The preference relation % satisfies A.1–A.5 and A.6 if and only if there
exists a unique symmetric copula C : [0, 1]2 → [0, 1] that represents %.
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Symmetric copulas are the most frequently studied class, and Anonymity seems to be
a natural requirement. However, it remains a special case. The analog of some solutions
(including the Nash solution) require Complementarity and imply Anonymity, and hence
are associated with strictly supermodular and symmetric copulas.

Theorem 2 shows that we can characterise different solution concepts for cooperative
bargaining as the aggregation (via copula) of two individual acceptance probabilities
into a joint probability of success. As a special case, the following Theorem 5 proves
that stochastic independence is the key assumption for deriving the product operator
underlying the Nash solution.

Since each copula models a different dependence structure, other solutions for coope-
rative bargaining may be recovered under alternative assumptions. In particular, the two
extreme assumptions of maximal positive dependence and maximal negative dependence
between the individual acceptance probabilities bring about the egalitarian solution and
a variant of the (truncated) utilitarian solution, discussed respectively in Sections 5.3.4
and 5.3.5.

5.3.3 The Nash solution

The Nash solution is a special case of Theorem 2 when the copula chosen by the me-
diator presumes stochastic independence among the individual acceptance probabilities.
That is, the Nash solution emerges whenever we assume that these individual probabi-
lities are independent. This seems by far a very natural requirement, and in our view it
gives the Nash solution a central position among the special cases.

Under A.5∗, we need only one additional assumption to characterise the Nash solution.

A.7 (Rescaling indifference) for any α, p, q in [0, 1], (αp, q) ∼ (p, αq).

This states that the mediator is indifferent whether the same proportional reduction in
the acceptance probability is applied to one bargainer or to the other one. The probability
of joint acceptance is equally affected when downsizing (by the same factor) the indivi-
dual propensity to accept of either bargainer. Clearly, A.7 implies A.3 (Disagreement
indifference) and A.6 (Anonymity).

Theorem 5. The preference relation % satisfies A.1–A2, A4–A.5∗, and A.7 if and only
if it is represented by the copula Π(p, q) = p · q.

Démonstration. Necessity is obvious. Sufficiency follows if we show that all the indiffe-
rence curves for the representing copula are hyperbolas. First, suppose that p = (p1, p2)

and q = (q1, q2) satisfy p1p2 = q1q2 ; without loss of generality, assume p1 > q1 and
p2 < q2. Consider p ∨ q = (p1, q2) and let α = q1/p1 = q2/p2 < 1. By A.7, we ob-
tain (αp1, q2) ∼ (p1, αq2) and, substituting for α, we find q = (q1, q2) ∼ (p1, p2) = p.
Therefore, two points on the same hyperbola are indifferent.
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Conversely, suppose without loss of generality that p1p2 > q1q2. We show that (p1, p2) �
(q1, q2). Let α = (q1q2)/(p1p2) < 1. By strong Pareto dominance, (p1, p2) � (αp1, p2). Since
the point (αp1, p2) lies on the same hyperbola as (q1, q2), by the first part of this proof
(αp1, p2) ∼ (q1, q2). Hence, (p1, p2) � (αp1, p2) ∼ (q1, q2).

This result uncovers an appealing interpretation for the product operator underlying
the Nash solution for cooperative bargaining. When the bargaining problem is framed
with respect to pairs of acceptance probabilities (instead of utilities), the product operator
is the natural consequence of the assumption that the contribution of these individual
probabilities to the joint acceptance probability satisfies stochastic independence.

The key behavioural implication of Theorem 5 is the following. Suppose that the
mediator evaluates that the probability of joint acceptance for a proposal (p, q) is π. For
any α in [0, 1], by the linearity of C, the mediator attributes a probability of success απ to
the lottery α(p, q)⊕(1−α)0. Intuitively, the introduction of the α-randomisation reduces
the probability π of success by a factor α. The reduction is multiplicative because the
randomising device is (tacitly assumed as) stochastically independent. Under the Nash
copula, any α-reduction to either of the individual acceptance probabilities has the same
effect on the mediator’s evaluation as an α-randomisation : α(p, q)⊕ (1−α)0 ∼ (αp, q) ∼
(p, αq). It is immaterial whether the reduction comes from an (objective) lottery or from
a (subjective) assessment.

5.3.4 The egalitarian solution

In the utility–based Nash model, the egalitarian solution (Kalai [1977b]) recommends
the maximal point at which utility gains from the disagreement point d are equal. More
simply, for a Nash problem (S, d), the egalitarian solution selects the maximiser of the
function min {(u1 − d1), (u2 − d2)} for (u1, u2) in S and ui ≥ di for i = 1, 2.

In our probability-based formulation, this translates to the requirement that the solu-
tion for a bargaining problem B is the (set of) maximiser(s) of the function min (p1, p2)

for p in B. Consider the following assumption.

A.8 (Meet indifference) for any p, q in [0, 1], (p, p ∧ q) ∼ (p ∧ q, q).

This states that the mediator is indifferent between two pairs of acceptance probabi-
lities as far as they have the same meet. Intuitively, preferences over (p, q) depend only
on the smallest value between p and q. Clearly, A.8 implies A.3 (Disagreement indiffe-
rence) and A.6 (Anonymity). The manifest analogies between A.7 and A.8 reappear in
the formulation of the following result, whose proof is similar and thus can be omitted.

Theorem 6. The preference relation % satisfies A.1–A2, A4–A.5∗, and A.8 if and only
if it is represented by the copula M(p, q) = min(p, q).
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This characterises the representing copula under Meet indifference as the Fréchet up-
per bound M(p, q) = min(p, q), that provides the strongest possible positive dependence
between two marginal distributions. Therefore, we can reinterpret the egalitarian solu-
tion as the recommendation that maximises the probability of joint acceptance when the
mediator assumes that the individual acceptance probabilities are maximally positively
dependent.

5.3.5 The utilitarian solution

There exist alternative formulations for the utilitarian solutions in the Nash model.
They share the general principle that the solution should recommend an alternative that
maximises the sum of utilities, or of utility increments over the disagreement point. The
main obstacle impeding a unified definition is that utilities are defined only up to positive
affine transformations. We consider relative utilitarianism, that normalises the individual
utilities to have infimum zero and supremum one before considering their sum. This
reasonable normalisation choice was first considered in Arrow [1963] ; see Dhillon and
Mertens [1999].

In our probability-based framework, the normalisation issue is immaterial and we can
simply map the utilitarian precept into the (still) generic recommendation of maximising
the sum of individual acceptance probabilities. Clearly, if we are to reinterpret this sum as
a probability of joint success, this generic recommendation needs to be suitably qualified.
Consider the following assumption.

A.9 (Average indifference) for any p, q in [0, 1], (p, q) ∼ (p+q
2
, p+q

2
).

Consider all pairs of acceptance probabilities on the segment between (p, q) and
(p+q

2
, p+q

2
). As we move inward towards the bisector, the components are “less spread

out” and one individual acceptance probability decreases at the expense of the other.
Assumption A.9 states that the mediator is indifferent among all these pairs of accep-
tance probabilities, because the increase of one exactly compensates the diminution of the
other. Intuitively, the two individual probabilities behave as substitutes towards the joint
probability of acceptance. Clearly, this is at odds with A.5∗, but it is compatible with
A.5. Moreover, A.9 implies A.6 (Anonymity) but not A.3 (Disagreement indifference).

Theorem 7. The preference relation % satisfies A.1–A.5 and A.9 if and only if it is
represented by the copula W (p, q) = max(p+ q − 1, 0).

Démonstration. Necessity is obvious. As for sufficiency, by Theorem 2 there exists a
copula C representing %. It is known that W is the only quasi-convex copula ; see
Example 3.27 in Nelsen [2006]. Hence, it suffices to show that A.9 implies that C is
quasi-convex ; that is, for any α in (0, 1) and p,q in [0, 1]2, we have C(αp + (1− α)q) ≤
max {C(p), C(q)}.
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For ease of notation, given p = (p1, p2), let p =
(
p1+p2

2
, p1+p2

2

)
denote its symmetrised

counterpart lying on the main diagonal. Then A.9 states that p ∼ p and thus C(p) =

C(p). Assume without loss of generality that q1 + q2 ≤ p1 + p2. Since C is increasing over
the main diagonal, we obtain

C (αp + (1− α)q) = C
(
αp + (1− α)q

)
≤ C (p) = C(p) ≤ max {C(p), C(q)} ,

and thus C is quasi-convex.

This characterises the representing copula under Average indifference as the Fréchet
lower bound W (p, q) = max(p + q − 1, 0), that provides the strongest possibile negative
dependence between two marginal distributions. Therefore, we can reinterpret this form of
(truncated) utilitarian solution as the recommendation that maximises the probability of
joint acceptance when the mediator assumes that the individual acceptance probabilities
are maximally negatively correlated.

This interpretation requires a comment. The copulaW (p, q) is strongly Pareto increa-
sing on the triangle above the diagonal from (0, 1) to (1, 0), and is zero on the rest of
its domain. If the mediator’s preferences are represented by this copula, she behaves as
an utilitarian for all pairs above the diagonal, and is indifferent for the pairs below the
diagonal, suggesting that she may violate (strong) Pareto dominance. The reason for the
mediator’s indifference is that, under the assumptions of Theorem 7, she believes that
any feasible proposal mapping to a pair (p, q) below the diagonal will be refused for sure.
Hence, from her viewpoint, it is neither better nor worse than 0.

5.3.6 Logical independence of the assumptions

This section provides simple examples to show that, under A.1, the four assumptions
A.2–A.5 used in Theorem 2 are logically independent. Recall that A.1 implies the existence
of a real-valued function V : [0, 1]2 → [0, 1], unique up to positive affine transformations,
that represents % and is linear with respect to ⊕. We recall each assumption and list the
associated counterexample immediately after. We omit quantifiers when they are obvious.

A.2 (Non-triviality) (1, 1) � (0, 0).

Consider V (p, q) = k, for some constant k in [0, 1]. Then A.3 holds because V (p, 0) =

k = V (0, q). A.4 holds because pV (1, 1) + (1 − p)V (0, 1) = k = V (p, 1), and similarly
for the second relation. And A.5 holds because (1/2)V (p ∨ q) + (1/2)V (p ∧ q) = k =

(1/2)V (p) + (1/2)V (q). However, A.2 does not hold because V (1, 1) = k = V (0, 0).

A.3 (Disagreement indifference) for any p, q in [0, 1], (p, 0) ∼ (0, q).

Consider V (p, q) = p. Then A.2 holds because V (1, 1) = 1 > 0 = V (0, 0). A.4 holds
because pV (1, 1)+(1−p)V (0, 1) = p = V (p, 1), and pV (1, 1)+(1−p)V (1, 0) = 1 = V (1, p).
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And A.5 holds because

1

2
V (p ∨ q) +

1

2
V (p ∧ q) =

1

2
(p1 ∨ q1) +

1

2
(p1 ∧ q1) =

1

2
p1 +

1

2
q1 =

1

2
V (p) +

1

2
V (q)

However, A.3 does not hold : for p > 0 and any q, we have V (p, 0) = p > 0 = V (0, q).

A.4 (Consistency over individual probabilities) for any p in [0, 1],

p(1, 1)⊕ (1− p)(0, 1) ∼ (p, 1) and p(1, 1)⊕ (1− p)(1, 0) ∼ (1, p).

Consider V (p, q) = p2q. Then A.2 holds because V (1, 1) = 1 > 0 = V (0, 0). A.3
holds because V (p, 0) = 0 = V (0, q). A.5 holds because the first mixed derivative of V is
positive, and hence V is supermodular. However, A.4 does not hold because pV (1, 1) +

(1− p)V (0, 1) = p > p2 = V (p, 1).

A.5 (Weak complementarity) for any p,q in [0, 1]2,

(1/2) (p ∨ q)⊕ (1/2) (p ∧ q) % (1/2)p⊕ (1/2)q

Consider the function

V (p, q) =

min
(
p, q, 1

3
, p+ q − 2

3

)
if 2

3
≤ p+ q ≤ 4

3

max(p+ q − 1, 0) otherwise,

borrowed from Exercise 2.11 in Nelsen [2006]. Then A.2 holds because V (1, 1) = 1 >

0 = V (0, 0). A.3 holds because V (p, 0) = 0 = V (0, q). A.4 holds because pV (1, 1) + (1−
p)V (0, 1) = p = V (p, 1), and similarly for the second relation. But A.5 does not hold :
let p = (1/3, 2/3) and q = (2/3, 1/3), so that p ∨ q = (2/3, 2/3) and p ∧ q = (1/3, 1/3).
Then V (p ∨ q) + V (p ∧ q)− V (p)− V (q) = −1/3 < 0, contradicting supermodularity.

5.4 Commentary

This section discusses the model and two interpretations of the results presented in
Section 5.3, contrasting them with the related literature.

5.4.1 Fundamentals

The Nash model is an abstraction of real bargaining situations. As mentioned, Ru-
binstein et al. [1992] — from now on, RST — have re-examined the Nash model, moving
away from the utility-based language of the Nash model towards the fundamentals of a
two-person bargaining problem. This work indirectly provides a foundation for the Nash
model that is independent of the assumption that bargainers maximise expected utility.
We provide a similar description of the fundamentals for our model, and argue that they
nest RST’s formulation.
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There are two agents and a set A of feasible alternatives, described in physical terms
and viewed as deterministic outcomes. The set A is a nonempty compact subset of a
connected topological space X. Each agent i = 1, 2 has an ordinal preference order %i

over X, and hence over A. Preferences are continuous : therefore, there exist ordinal (i.e.,
unique up to increasing transformations) and continuous value functions vi(x) such that
x %i y if and only if vi(x) ≥ vi(y). Moreover, agents’ preferences are (jointly) non-trivial :
there are alternatives x, y in A such that x �i y for both i. We add a final simplifying
assumption : there are no alternatives x, y in A such that x ∼i y for both i. This avoids
the need to rephrase definitions and results in terms of equivalence classes.

A native bargaining problem is a triple (A,%1,%2) that satisfies the assumptions above.
Compared to RST, we assume neither a commonly known disagreement point δ (in phy-
sical terms) nor that agents’ preferences are defined over lotteries where the prizes are
elements of X. In particular, we do not require that agents are expected utility maxi-
misers or, more generally, that their preferences over A are representable by (cardinal)
utility functions that are invariant only to positive affine transformation. Compared to
the six restrictions made in RST (Section 2), we maintain (i)-(ii)-(v), weaken (iii) to
non-triviality, and drop (iv)-(vi).

5.4.2 Interpretations

We provide two compatible interpretations for the bare-bones model of Section 5.3.
The first one is behavioural and casts the mediator’s problem as a decision problem with
incomplete information. The second interpretation hijacks this setup, and shows that the
classical Nash model (based on utilities) is mathematically equivalent to our probability-
based formulation.

The target-based interpretation

The first interpretation takes the viewpoint of a mediator, hired by two bargainers to
recommend them a feasible proposal over which they could strike an agreement. Given a
native bargaining problem (A,%1,%2), the mediator may suggest any feasible alternative
in A, but cannot impose it. Her goal is to put on the table a proposal that each bargainer
will individually evaluate and decide whether to accept. She may take into account issues
of fairness or other considerations, but eventually her task is to select a proposal from
A and her success is defined by its joint acceptance on the part of the bargainers. The
mediator wants to maximise her probability of success.

We cast this situation as a decision problem under incomplete information. A bargainer
i = 1, 2 accepts a proposal x when x %i ti. We say that ti is the minimum acceptance
target for i. We may think of ti as the minimal “fair” outcome that the bargainer has in
mind, or as a proxy for his toughness (akin to his type), or as the outcome of a deliberative
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process over the risk of disagreement. The crucial assumption is that the mediator has
incomplete information about ti. She knows that %i is continuous, and she believes that
the type Ti of i has a random distribution with an (order-)convex support on (X,%i).

Given that %i is continuous on X, it admits a real-valued representation by a conti-
nuous function vi : X → R. Therefore, x %i ti if and only if vi(x) ≥ vi(ti) and we can
equivalently reformulate the incomplete information about Ti as a random variable v(Ti)

on (R,≥) with c.d.f. Fi and convex support. Consequently, P (x %i Ti) = Fi ◦vi(x), where
Fi is a strictly increasing and continuous c.d.f. on R. Note that vi is unique only up to
increasing transformations, so Fi is not uniquely defined ; however, the function Fi ◦ vi
is unique. Therefore, we assume that the incomplete information of the mediator about
each bargainer’s type is summarised by Fi ◦ vi ; in particular, given a proposal x, this is
mapped into an individual acceptance probability pi = Fi ◦ vi(x).

The model in Section 5.3 takes this as its point of departure and provides a behavioural
characterisation for the mediator’s preferences over proposals in A. She ranks the feasible
alternatives by their probability of being accepted by both bargainers, after combining
their individual acceptance probabilities into a joint probability of success based on their
dependence structure. For any native bargaining problem on A, the solution proposed by
the mediator is a feasible alternative that maximises her induced preference order % over
A.

We note two advantages for this behavioural interpretation. It is compatible with (but
does not require) the assumption that agents are expected utility maximisers. In fact, it
is not even necessary to include lotteries over feasible alternatives among the objects
of choice for the bargainers. A similar comment applies for the disagreement point : in
the literature, it is customary to mention it and immediately dispatch it by normalising
its value to zero. Our model does not presume that a disagreement point δ (in physical
terms) is known ; however, if one is given, then the agent’s individual rationality implies
that his target has zero probability to lie below δ, and thus P (δ �i Ti) = 0.

Nash bargaining redux

The original Nash model selects a solution by maximising the product of two von Neumann–
Morgenstern utilities (from now on, NM). Our approach picks a solution by maximising
a copula that aggregates two individual probabilities. The goal of this section is to show
that these two approaches are consistent and strictly linked.

The key decision-theoretic observation is that the utility-based NM model may be re-
cast in an exclusively probability-based language ; see Castagnoli and LiCalzi [1996] and
Bordley and LiCalzi [2000]. For simplicity, consider preferences over a compact nonempty
interval B = [x∗, x

∗] in R. Suppose that the Bernoulli index U is strictly increasing, boun-
ded, and continuous ; see Grandmont [1972] for an axiomatization. Applying if necessary
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a positive affine transformation, let U(x∗) = 0 and U(x∗) = 1. Then U(x) has the formal
properties of a cumulative distribution function (c.d.f.), and on some appropriate proba-
bility space there exists a random variable T with c.d.f. U(x) = P (T ≤ x). We call T a
(random) target.

Let L the space of lotteries over B. If a lottery X in L has c.d.f. F and is stochastically
independent of T , the chain of equalities

EU(X) =

∫
U(x) dF (x) =

∫
P (T ≤ x) dF (x) = P (X ≥ T ) (5.1)

shows that the expected utility EU(X) is formally equivalent to the probability that the
lottery X scores better than the target T . Hence, a claim made in a utility-based language
for EU(X) maps to an equally valid statement in a target-based language for P (X ≥ T ).
In particular, we can replace the notion of a cardinal Bernoulli index U(x) that is unique
only up to positive affine transformations by the simpler concept of a c.d.f P (T ≤ x)

for the target T . The NM model for preferences under risk postulates that preferences
are linear in probabilities. It can be equivalently interpreted as a procedure that ranks
lotteries by the expected value of their Bernoulli index or by the probability that they
score better than a target T ; see LiCalzi [1999].

We are ready to consider the Nash bargaining problem (S, d). Recall that S is a
compact and convex subset of feasible NM utility pairs, while d represents bargainers’
utilities in case of breakdown. The crucial, but often implicit, assumption of the Nash
model is that the NM-utility functions U1 and U2 are commonly known. Using (5.1), this
reads as the assumption that the distributions of the bargainers’ targets T1 and T2 are ex
ante commonly known, whereas the targets are private information.

In our former interpretation, given a proposal x, the mapping pi = Fi ◦ vi(x) is based
on the mediator’s beliefs. Under common knowledge, the alternative interpretation is that
the bargainers themselves agree on their own individual acceptance probabilities and may
directly use these as input in constructing a bargaining solution. The missing step for
the two bargainers is how to aggregate the commonly known individual probabilities
and evaluate the proposals. This aggregation problem may be attacked in different ways.
Ours is a behavioural characterisation : if the agents have common knowledge of the
joint distribution of their targets ex ante, they maximise the probability of success by
settling on the commonly known copula. In particular, if it is common knowledge that
their two targets are ex ante stochastically independent, they should settle for the Nash
solution. A related normative approach is pursued by Border and Segal [1997], discussed
in Section 5.5.2.
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Related literature

A relevant byproduct of our approach is the interpretation of the product operator
in the Nash solution as the consequence of an assumption of stochastic independence
between individual acceptance probabilities. To the best of our knowledge, the utility-
based literature offers two competing interpretations for the product operator. We recall
them briefly, for comparison.

[Roth, 1979, Section I.C] shows that we can frame the bargaining model as a single-
person decision problem, where each agent chooses how much to claim by maximising
his expected utility under the assumption that the claim of the other bargainer i is
uniformly distributed between his disagreement point di and his ideal point mi (defined
as i’s highest feasible utility). The Nash solution emerges from the independent choices of
the two bargainers. A very similar interpretation is also in Glycopantis and Muir [1994],
who make no reference to Roth [1979]. As Roth himself acknowledges, this approach is
outside the game-theoretic tradition, because the processes by which the two agents form
their expectations are not mutually consistent. On the other hand, similarly to ours, this
interpretation is grounded on an assumption of independence between the evaluations
made by the two agents.

A second interpretation for the Nash product is proposed in Trockel [2008]. He views
the Nash product as a special case of a social welfare function that aggregates the admis-
sible payoff pairs into a social ranking. It evaluates a recommendation u by the Lebesgue
measure of the set of utility pairs that are Pareto-dominated by u. Without advocating
more than a formal analogy, we note that any copula in Theorem 2 may be interpreted
as a social welfare function adopted by the mediator to select her recommendation.

5.4.3 Domain

The Nash model is framed in the space of utilities : it implicitly assumes that all native
bargaining problems with the same utility representation are indistinguishable, and thus
must have the same solution. This hidden assumption is probably extreme. RST discuss at
length its implications, and lay bare the tradeoff between the power of Nash’s axioms and
the granularity of the domain. Switching to a preference-based language, they remould
the assumption by keeping fixed the set A of alternatives and varying the bargainers’
preferences. In their approach, a bargaining solution is a function that assigns a unique
element of a given set A to every pair of bargainers’ preferences over lotteries on A∪{d}.

Consistent with Nash [1950], however, the standard way to specify the domain of the
solution is to hold bargainers’ preferences fixed and let the set A of alternatives vary.
The typical formulation considers all the Nash problems based on the same disagreement
point (in utilities). For generality, we cast our presentation assuming that the domain of
our model contains all compact (but not necessarily convex) subsets of [0, 1]2. However,
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this domain may be considerably shrunk and, in practical applications, it is reasonable to
do so. The domain must be rich enough to include enough problems and elicit preferences
over [0, 1]2. A smaller domain may be more appropriate to ensure that the dependence
embedded in the copula refers to comparable situations : for instance, the two bargainers
should be the same, and the problems submitted to the mediator should justify similar
answers.

Here is an exemplification. Fix two bargainers and their preferences on X. For any
feasible (compact) set A, let di be the acceptance probability for a %i-minimal proposal
in A ; similarly, let mi be the acceptance probability for a %i-maximal proposal. Borro-
wing language from the Nash model, let d and m be called the disagreement point and
the ideal point (in probabilities). A rich domain for our model may consider only the
compact subsets in [0, 1]2 associated with the same d, and for those we may characterise
a preference relation %d represented by a copula C such that C(d) = 0. (We assume that
an agent rejects a minimal proposal for sure.) A smaller but still rich domain is formed by
the bargaining problems with the same d and m : if we assume that an agent accepts his
ideal point for sure, the representing copula would have both C(d) = 0 and C(m) = 1 ;
see Cao [1982] for a similar normalisation over utility functions in the Nash model.

5.5 Applications and extensions

This section illustrates the richness and robustness of the target-based approach. We
present a few applications and extensions, including comparative statics, testable restric-
tions, and prescriptive advice.

5.5.1 Comparative statics

A small but elegant literature deals with the comparative statics of the Nash solution.
For a typical result, consider Theorem 1 in Kihlstrom et al. [1980] : “The utility which
Nash’s solution assigns to a player increases as his opponent becomes more risk averse.”
Let us consider the implications of this result for the target-based approach, when the
Bernoulli index function Ui(x) = Fi ◦ vi(x) is interpreted as the cumulative distribution
function P (x %i Ti).

An agent with a Bernoulli index function V1(x) is more risk averse than an agent
characterised by U1(x) if and only if there exists an increasing concave transformation
K such that V1(x) = K ◦ U1(x). Under the target-based interpretation, both V1 and
U1 are distribution functions over the same domain and with the same range in [0, 1].
Therefore, the function K is bounded in [0, 1] with limx↓0K(x) ≥ 0 and limx↑1K(x) = 1 ;
by concavity, it follows that K(x) ≥ x for all x. Hence, V1(x) ≥ U1(x) for all x ; that
is, viewed as c.d.f.’s, V1 is stochastically dominated by U1. In simple words, the target
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associated with V1 can be regarded as “less demanding” than the target associated with
U1. Theorem 1 may be reformulated as follows. At the Nash solution, i = 1, 2 is offered a
better proposal and his individual acceptance probability increases when the target of the
other agent j = 3− i becomes less demanding. If an agent becomes more accommodating,
the Nash solution ends up rewarding the other one.

A related comment concerns the observation recently made in Alon and Lehrer [2014]
that the Nash solution is not ordinally equivalent. Suppose that two agents are to divide
a unit amount of money. Let xi in [0, 1] be the quantity attributed to Agent i, with
x1 + x2 = 1. From an ordinal viewpoint, assume that each agent has increasing (and
continuous) preferences in the amount xi he secures. A model with ordinal preferences
U1(x) = U2(x) = x is equivalent to a model with ordinal preferences U1(x) =

√
x and

U2(x) = 1−
√

1− x. However, when applied literally, the Nash solution predicts x1 = x2 =

1/2 for the first model, and x1 = 1/4 and x2 = 3/4 for the second one. In our approach,
the function Ui(x) = Fi ◦ vi(x) embodies both the ordinal preference expressed by vi and
the individual acceptance probability represented by Fi. The two models are ordinally
equivalent, but in the second model Agent 1 has a less demanding target while Agent 2
has a more demanding target. (In a utility-based language, what drives the difference is
that in the second model Agent 1 is more risk averse while Agent 2 is less risk averse.)

These examples deal with comparative statics over the distribution of individual ac-
ceptance probabilities. The target-based approach, however, allows to study analogous
results based on (partial) orderings for the copulas underlying the dependence that links
individual probabilities to the joint probability of success. We consider only a simple
example. Given two copulas C1 and C2, the concordance ordering states that C1 is more
concordant than C2 if C1(p) ≥ C2(p) for all p in [0, 1]2. Suppose this is the case for C1

and C2, and let p∗i be a solution under the copula Ci, for i = 1, 2 and the same bargaining
problem B. Clearly,

C1(p∗1) ≥ C1(p∗2) ≥ C2(p∗2)

so that the joint probability of success at the solution is increasing in the concordance
ordering. Agents with concordant targets are more likely to strike a deal.

5.5.2 Social preferences and implementation

The model in Section 5.3 characterises a preference relation % and derives the bar-
gaining solution through the maximisation of a copula. A similar approach is followed by
Blackorby et al. [1994], who define a bargaining solution as the (set of) maximisers for
a generalised Gini ordering, represented by a quasi-concave, increasing function that is
linear on the rank-ordered subsets of [0, 1]2. The class of generalised Gini orderings spans
a continuum of solutions, exhibiting different levels of inequality aversion and including
the egalitarian and the utilitarian solutions as extreme cases.
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We use their model as an example to illustrate the flexibility and limitations of our
copula-based approach. For 0 ≤ α ≤ 1/2, the family of symmetric copulas

Cα,α(u, v) =


u+ α

1−αv −
α

1−α if α ≤ u ≤ v ≤ 1

v + α
1−αu−

α
1−α if α ≤ v ≤ u ≤ 1

0 otherwise

represents a continuum of affine (truncated) generalised Gini orderings. This family in-
cludes the egalitarian solution for α = 0 and the utilitarian solution for α = 1/2. Ac-
cordingly, the parameter α may be interpreted as an index of (increasing) inequality
aversion. (This family is nested in a larger class of asymmetric copulas Cα,β with α, β > 0

and α + β < 1 ; see Exercise 3.8 in Nelsen [2006].) We say that this family is truncated
because C(u, v) = 0 if min{u, v} < α. The same comment made for the utilitarian so-
lution in Section 5.3.5 applies here, and clearly these copulas do not satisfy A5∗ when
α > 0.

In our model, the copulas aggregate individual acceptance probabilities. One should
be careful not to carry formal analogies too far, but the copulas Cα,α may be used to mo-
del the mediator’s aversion to inequalities among the individual acceptance probabilities.
The alternative interpretation is that the copulas represent the stochastic dependence
between agents’ targets and that this dependence drives the choices. If the mediator’s
opinion is captured by Cα,α, then her recommended solution exhibits (some degree of)
inequality aversion between the individual acceptance probabilities. If Cα,α rationalises
the mediator’s recommendations, these two interpretations are behaviourally indistingui-
shable.

More generally, when % is viewed as a social preference relation, one may recast the
representing copula as a social welfare function. This approach was pioneered by Kaneko
and Nakamura [1979], who define and characterise a Nash social welfare function that
evaluates the relative increases in individuals’ welfare from a state δ (in physical terms)
unanimously considered as the worst possible. In a subsequent paper, Kaneko [1980]
takes care to point out the conceptual differences between a social welfare function and
a bargaining solution. Put simply, however, the underlying idea is to pick a solution
by maximising a function : this works also over non-convex (compact) sets, but it may
generate set-valued solutions. The applicability of the Nash model is extended at the cost
of forfeiting uniqueness.

Border and Segal [1997] provide an axiomatisation of the Nash (bargaining) solution
that is very close in spirit both to Kaneko’s insight and to our model. The natural
interpretation for their setup is that “the two bargainers hire an arbitrator to make
choices for them” (p. 1) and that the arbitrator has a preference order % over solutions.
Border and Segal [1997] motivate these preferences by analogy to social choice, suggesting
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that the arbitrator relies on her notions of fairness to come up with a decision rule for all
the bargaining problems. An ancillary interpretation views the axioms as guidelines that
both bargainers should find acceptable before they agree to hire her. In their approach,
the arbitrator’s selection is justified by (normatively) binding axioms. Instead, we share
with RST the search for a behavioural characterisation that downplays the normative
undertones : the mediator in our model issues recommendations but cannot impose a
solution.

A related but independent issue concerns the implementation problem. Our model
assumes that the mediator knows the individual acceptance probabilities or, more pre-
cisely, that she holds subjective beliefs about the agents’ targets. However, it may be
in the agents’ interest to misrepresent their objectives and manipulate the mediator’s
beliefs. Therefore, one should worry about devising mechanisms that help elicit correct
information from the agents. An important step forward in this direction is made by
Miyagawa [2002], who studies this problem in the context of two-person bargaining. He
provides a simple four-stage sequential game that fully implements a reasonably large
class of two-person bargaining solutions in subgame-perfect equilibrium.

Miyagawa [2002] relies on four restrictive assumptions to derive his results. First,
the bargaining problem B must contain an alternative d that both agents consider least
preferred. Second, any most preferred alternative for i is judged by j = 3− i as indifferent
to d. Third, the Pareto frontier of B is strictly convex. Finally, the bargaining solution
must be generated by the maximisation of a (component-wise) increasing and quasi-
concave function. This generating function is an analog of the social welfare function just
discussed. Coincidentally, Miyagawa (2002) also assumes that this function is normalized
to [0, 1] as in the copula-based model. Each assumption has technical implications ; for
instance, the combination of strict convexity for the Pareto frontier and quasi-concavity
for the generating function entails the uniqueness of the solution.

Compared to our setup, the crucial restriction is that the generating function must be
quasi-concave. A copula need not be quasi-concave ; for instance, the function C(u, v) =

[M(u, v) + W (u, v)]/2 is a copula, but it is not quasi-concave. Hence, the applicabi-
lity of Miyagawa (2002) cannot generally be taken for granted. However, many common
examples, and all the functional forms presented so far, are quasi-concave. Therefore,
the class of solutions that are implementable includes the Nash, the egalitarian, and the
(truncated) utilitarian solutions.

5.5.3 Testable restrictions

An important requirement for a theory is the ability to generate falsifiable predic-
tions. A direct test exists for the target-based approach. We first illustrate the idea, and
then formalise it. As introduced in Section 5.3, a bargaining problem is represented by a
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compact set B in [0, 1]2 where each point p in B corresponds to a pair of (acceptance)
probabilities. A solution is a map that for any problem B selects (at least) one point in
B. The target-based approach recommends a solution by maximising a suitable copula
C over B.

Suppose that B contains a point p = (p1, p2) with p1 + p2 > 1. The Fréchet lower
bound implies C(p) ≥ p1 + p2 − 1 > 0 for any C. Consider another feasible point
q = (q1, q2) in B. The Fréchet upper bound implies C(q) ≤ min(q1, q2). Therefore, if
min(q1, q2) < p1 + p2 − 1, the point p must be strictly preferred to q, and q cannot be a
solution for any copula C. More generally, by picking a point p∗ that maximises p1+p2−1

in B, we can formulate the following more stringent test.

Proposition 5.5.1. Let p∗∈arg maxB (p1 + p2 − 1). Define the quadrant

Q :=
{
q∈ [0, 1]2 : min(q1, q2) ≥ p∗1 + p∗2 − 1

}
.

Then the solution must belong to B ∩Q.

Clearly, under A.5∗, a second immediate test is that a solution for B cannot be domi-
nated (in the strong Pareto ordering) by another point available in B.

A different class of restrictions is the following. As discussed in Section 5.5.2, our model
characterises bargaining solutions that can be rationalised by a copula. Roughly speaking,
this implies that we can generate only solutions that satisfy independence of irrelevant
alternatives. For instance, the well-known Kalai-Smorodinsky (1975) solution (for short,
KS solution) cannot be derived in our model. Formally speaking, this solution violates A1
as can be shown by a simple example. For the bargaining problem B1 represented by the
convex hull of the three points (0, 0), (0, 1), and (1, 0), the KS solution uniquely prescribes
the point p = (1/2, 1/2). On the other hand, for the bargaining problem B2 represented
by the convex hull of the four points (0, 0), (0, 1), (1/2, 1/2), and (1/2, 0), the KS solution
uniquely prescribes the point q = (1/3, 2/3). Since both p and q belong to B2 ⊂ B1,
the first KS solution reveals p � q while the second one reveals q � p, in violation
of A1. Although it is formally possible to rationalise the KS solution as the outcome of a
lexicographic maximisation, we find this approach interpretively unsatisfactory and thus
we do not pursue it here.

5.5.4 Bargaining power

Since Binmore et al. [1986], the economic literature has made extensive use of an
asymmetric version of the Nash Solution as a reduced form for the differences in the
bargaining power of the agents. Formally, given a Nash bargaining problem (S, d), the
asymmetric Nash solution is defined as the maximiser of the product (u1−d1)a(u2−d2)1−a,
for a in [0, 1]. As a increases from 0 to 1, the asymmetric solution increasingly favours
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the first agent, with symmetry holding at a = 1/2. For instance, consider the illustrative
example from Section 5.5.1 where two agents are to divide a unit amount of money, and
U1(x) = U2(x) = x. The asymmetric Nash solution gives x1 = a and x2 = 1− a.

It is natural to suggest using the function Na(p, q) = paq1−a but this is not a copula,
because it fails the second half of C1 in Section 5.2. Therefore, one cannot import the
asymmetric Nash solution under the copula-based approach. On the other hand, since
asymmetric copulas exist, we might search for some suitable (possibly parametric) sub-
stitute copula with similar properties. For instance, by Theorem 2.1 in Liebscher [2008],
for any copula C the expression

Ca(p, q) = paq1−aC(p1−a, qa) = Na(p, q) · C(p1−a, qa)

defines an asymmetric copula, bearing an obvious relationship with Na. We argue that
this approach cannot work either.

Given a bargaining problem B, let ∆B(C) = sup(p,q)∈B |C(p, q)− C(q, p)| be the degree
of asymmetry for a function C over B. In our illustrative example, we obtain ∆B(Na) = 1

at a = 0 and a = 1 ; that is, the family of asymmetric Nash solutions includes the case
of maximal asymmetry. On the other hand, it is known that over B = [0, 1]2 we have
∆B(C) ≤ 1/3 for any copula C (Nelsen [2007]) ; moreover, ∆B(C) ≤ 1/5 if C is also
quasi-concave (see Alvoni and Papini [2007]). Therefore, there exist no copula that can
mimic the extreme asymmetry allowed by Na. In our illustrative example, for instance,
∆B(Na) is symmetric around a = 1/2 and increasing in |a− 1/2|, with ∆B(Na) = 1/3 at
|a−1/2| ≈ 0.219 ; therefore, the copula-based approach cannot replicate Na for a outside
of the interval [.281, .719].

In fact, a sound interpretation for modelling bargaining power requires more care.
Consider again the standard utility-based approach. The widespread use of the asymme-
tric Nash solution is most likely due to its technical convenience, without much concern
about the lack of any intuitive meaning for the weighted geometric mean of utilities re-
presented by Na. However, utility-based axiomatic foundations exist in the literature.
Kalai [1977a] provides a characterisation for the asymmetric solution based on a replica-
tion argument for symmetric solutions. His approach is technically clean and simple, but
provides little intuition.

A richer and more convincing approach is Harsanyi and Selten [1972], who study the
case of fixed threats under incomplete information. This latter assumption, absent in the
Nash model, explicitly recognises that each player has private information about some
of his characteristics that are relevant for the bargaining process. Harsanyi and Selten
[1972] show that differential information provides a foundation for asymmetric solutions.
We follow in their footsteps and discuss a reduced form for modelling bargaining power
in our illustrative example, based on the copula-based approach.
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Recall the distinction between the native bargaining problem (A,%1,%2) and the
derived bargaining problem B ; see Section 5.4.1. Bargaining power must be traced back
to the native problem. The individual acceptance probabilities provide the link between
this and the derived problem, while the choice of a copula applies only to B as a tool
to reconcile the individual acceptance probabilities into a joint probability of success.
Therefore, bargaining power should affect the shape of the derived problem B rather
than the functional form C.

In the illustrative example, the feasible set A = {(x1, x2)∈ [0, 1]2 : x1 + x2 ≤ 1} for
the native problem is especially simple to describe. In particular, it can be reduced to a
unidimensional problem {(x1, 1− x1)∈ [0, 1]2 : 0 ≤ x1 ≤ 1}, where each agent only cares
about the money he receives. Assume Theorem 5 ; that is, the mediator aggregates agents’
acceptance probabilities assuming stochastic independence and C(p, q) = p · q. When
Agent 1 has more bargaining power than Agent 2, he can aspire to higher targets. (As
in Harsanyi and Selten [1972], bargaining power is only one among several issues that
may cause this relationship to hold.) Everything else being equal, this us captured by the
assumption that T1 stochastically dominates T2.

For practical purposes, it is convenient to adopt a parametric formulation. For ins-
tance, let P (x %i Ti) = xai where ai ≥ 0 can be interpreted as the bargaining strength
of Agent i, and assume a1 + a2 > 0. Clearly, T1 stochastically dominates T2 if and only if
a1 ≥ a2. The shape of the derived bargaining problem

B(a1, a2) =
{

(p1, p2)∈ [0, 1]2 : p1 = xa1 and p2 = (1− x)a2 , for 0 ≤ x ≤ 1
}

depends on how the bargaining strength ai of each agent affects his own acceptance
probability in the eyes of the mediator. Given the product copula, the acceptance proba-
bilities aggregate into the function xa1 · (1−x)a2 , and the corresponding recommendation
is x∗1 = a1/(a1 + a2) and x∗2 = a2/(a1 + a2). We recover the same solution set associated
with the asymmetric Nash solution.

From an interpretive viewpoint, we emphasise that the asymmetry associated with
differences in bargaining power affects the individual acceptance probabilities. The ap-
proach described at the beginning of this section fails because it tries to impose the
asymmetry on the copula, that instead aggregates those into the joint probability of suc-
cess. Although our approach allows asymmetric copulas, they are not meant as a tool to
capture modelling issues concerning the native problem or its relation with the derived
problem.

5.5.5 Negotiation analysis

This last section touches upon the relationships of our approach with the practice of
negotiations. When [Roth, 1979, Section I.B] writes that “a solution can be interpreted
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as a model of the bargaining process”, he argues for considering its descriptive implica-
tions that can be tested empirically. However, he points out that there is an alternative
prescriptive approach which views the solution as “a rule which tells an arbitrator what
outcome to select” ; e.g., Border and Segal [1997] aim to this second goal.

Our model is concerned with a mediator rather than an arbitrator : the latter can
impose a solution, while the former can only recommend it. This puts the mediator in a
hybrid position. Maximising the joint probability of success appears very natural, but its
prescriptive value for the mediator may not be shared by the agents who presumably worry
about more than just striking an agreement. This is not the place for a full discussion,
but we wish to add a few remarks to highlight the potential of our approach.

[Subramanian, 2010, pp. 109–110] finds “that the implications for negotiation strategy
change dramatically when we move away from the assumption that dealmakers will accept
deals that are just better than their BATNA [Best Alternative to a Negotiated Agreement,
equivalent to the disagreement point] to the more realistic and nuanced assumption that
the likelihood the other side will say yes increases with the incentives to do so.” The
target-based interpretation makes the role of individual acceptance probabilities explicit.
The mediator should acquaint herself with the agents well enough to understand how
each of them views the native bargaining problem and code her understanding in terms
of individual acceptance probability.

A second step requires the mediator to make a conscious choice about the possible
connections between the individual acceptance probabilities and the joint probability
of success. While the assumption of stochastic independence seems by far the simple
and most natural one, it is not the only possible one. Different copulas may rationalise
alternative recommendations, and thus this element should be given attention by the
mediator.
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